泛函分析第七章 习题解答125
泛函分析课后习题答案
![泛函分析课后习题答案](https://img.taocdn.com/s3/m/0bf67099dd88d0d233d46a2f.png)
明必有 U ( f , ) A 。设 g U ( f , ) ,则若 t B ,必有 f (t ) g (t ) ,于 是 | g (t ) | f (t ) g (t ) | f (t ) | | f (t0 ) a ,所以 g A 这样就证明了 A 是 开集
f n (t ) f ( r ) (t ) 1 1 r max r0 . r ( r ) ( r ) a t b 2r0 2 1 f n (t ) f (t ) r ro 1 2 r 0 2 (r )
即
d ( f , f n ) ——>0 (n ) 。证毕
2r0
, r 0,1,2, r0 ,取 N=max{ N1 N N },当 n>N 时,
(r )
f n (t ) f ( r ) (t ) 1 d ( f , f n ) r max (r ) a t b 1 f n (t ) f ( r ) (t ) r 0 2
___ ___ ___
1பைடு நூலகம்n
d ( x, y ) 1 d ( x, y )
t 在 [o, ) 上是单增函数, 1 t
___ d ( x, y ) d ( x, z ) d ( y , z ) d ( x, y ) 1 d ( x, y ) 1 d ( x, z ) d ( y , z )
6 设 B [a, b] ,证明度量空间 C[a, b] 中的集{f|当 t B 时 f(t)=0}
C[a, b] 中的闭集,而集
A={f|当 t B 时,|f(t)|〈a } (a 0)为开集的充要条件是 B 为闭集 证明 记 E={f|当 t B 时 f(t)=0}。设 { f n } E , { f n } 按 C[a, b] 中 度量收敛于 f,即在[a,b]上 f n (t ) 一致收敛于 f(t) 。设 t B ,则
泛函分析第七章 习题解答
![泛函分析第七章 习题解答](https://img.taocdn.com/s3/m/1956ef6a856a561252d36ff1.png)
第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。
例如离散空间(X ,d )。
)1,(0x U ={0x },而)1,(0x S =X 。
因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。
2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。
证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑=d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。
3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =⋂∞=1。
证明 令n n n o n nB x d Bo o .2,1},1),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1),(10<。
设,0),(110>-=x x d n δ则易验证n o x U ⊂),(0δ,这就证明了n o 是 开集 显然B o n n ⊃⋂∞=1。
若n n o x ∞=⋂∈1则对每一个n ,有B x n ∈使n x x d 1),(1<,因此)(∞−→−−→−n x x n 。
因B 是闭集,必有B x ∈,所以B o n n =⋂∞=1。
4. 设d (x ,y )为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。
泛函分析第七章习题解答125
![泛函分析第七章习题解答125](https://img.taocdn.com/s3/m/b8577474195f312b3169a5eb.png)
第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。
例如离散空间(X ,d )。
)1,(0x U ={0x },而)1,(0x S =X 。
因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。
2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义)()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑证明],[b a C ∞按),(g f d 成度量空间。
证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑ )()(1)()()()(1)()(max 21)()()()()()()()(0t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞=∑ )()(1)()(max 21)()(1)()(max 21)()()()(0)()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞=∑∑ =d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。
3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =⋂∞=1。
泛函分析习题
![泛函分析习题](https://img.taocdn.com/s3/m/00ccd6f1650e52ea5418987e.png)
第七章 度量空间和赋范线性空间复习题:1。
设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。
设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。
证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。
7。
设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。
8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。
泛函分析习题及参考答案
![泛函分析习题及参考答案](https://img.taocdn.com/s3/m/3ab2794cc5da50e2534d7f33.png)
泛函分析习题及参考答案一、在2R 中定义如下三种距离:21212(,),(,)x x x y y y R ==∈,1(,)d x y =21122(,)max{,}d x y x y x y =−−,31122(,)d x y x y x y =−+−,试证:212d d ≤≤3132d d d ≤≤,2322d d d ≤≤,从而这三种距离诱导出的极限是等价的。
二、设),(y x d 为空间X 上的距离,试证:),(1),(),(~x y d x y d x y d +=也是X 上的距离。
证明:显然,0),(~≥y x d 并且y x y x d y x d =⇔=⇔=0),(0),(~。
再者,),(~),(1),(),(1),(),(~y x d y x d y x d x y d x y d x y d =+=+=;最后,由tt t +−=+1111的单调增加性及),(),(),(y z d z x d y x d +≤,可得 ),(),(1),(),(),(1),(),(),(1),(),(),(1),(),(~y z d z x d y z d y z d z x d z x d y z d z x d y z d z x d y x d y x d y x d +++++=+++≤+= ),(~),(~),(1),(),(1),(y z d z x d y z d y z d z x d z x d +=+++≤。
三、设1p ≥,1()()(,,,)i n n pn x l ξξ=∈ , ,2,1=n ,1(,,,)pi x l ξξ=∈ ,则n →∞时,1()1(,)0ppn n i i i d x x ξξ∞=⎛⎞=−→⎜⎟⎝⎠∑的充要条件为)1(n →∞时,()n i i ξξ→,1,2,i = ;)2(0ε∀>,存在0N >,使得()1pn p ii N ξε∞=+<∑对任何自然数n 成立。
《泛函分析》习题解答(不完全版)
![《泛函分析》习题解答(不完全版)](https://img.taocdn.com/s3/m/3f0fc50e3d1ec5da50e2524de518964bcf84d20f.png)
第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。
泛函分析习题及参考答案
![泛函分析习题及参考答案](https://img.taocdn.com/s3/m/1bcd38ec102de2bd960588fd.png)
En
∫x
n
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
泛函分析习题及参考答案
一、在 R 中定义如下三种距离: x = ( x1 , x2 ), y = ( y1 , y2 ) ∈ R ,
2
2
d1 ( x, y ) = ( x1 − y1 ) 2 + ( x2 − y2 ) 2 , d 2 ( x, y ) = max{ x1 − y1 , x2 − y2 } ,
i =1
= ∑ ξi( n ) − ξi +
p i =1
K
i = K +1∑∞ξi( n ) − ξi
p
≤∑ξ
i =1
K
(n) i
− ξi
p
∞ p 1 ⎛ ∞ p 1 ⎞ + ⎜ ( ∑ ξi( n ) ) p + ( ∑ ξi ) p ⎟ < 2ε p 。 i = K +1 ⎝ i = K +1 ⎠
1
取 δ = min(δ 1 , δ 2 ) ,则 e ⊂ E , me < δ 时,
∫
e
x n (t ) dt ) p < ε ,对每个自然数 n 成立。
p
即 {x n (t )} 在 [a, b] 上具有等度绝对连续的积分。 充分性证明,对任何 ε > 0 ,令 E n (ε ) = E ( x n − x ≥ ε ) ,则 mE n (ε ) → 0 。由此可知, 对任何 δ > 0 ,存在 N > 0 ,使得 n > N 时, mE n (ε ) < δ 。 令 Fn (ε ) = E ( x n − x < ε ) ,则 ρ ( x n , x ) =
《应用泛函分析》习题解答
![《应用泛函分析》习题解答](https://img.taocdn.com/s3/m/617ac7d0856a561252d36f93.png)
1泛函分析与应用-国防科技大学第 一 章第 一 节3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞<N∈k k x sup 。
证明:0>∀ε,0N ∃,当0,N n m >时,有εε<-⇒<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。
取0N m =,则有0 ,0N n x x N n >+<ε,令},,,,m a x {0021ε+=N N x x x x c ,则1 ,≥<n c x n 。
6.设E 是Banach 空间,E 中的点列满足∞<∑∞=1k kx(此时称级数∑∞=1k k x 绝对收敛),证明存在E ∈x ,使∑∞=∞→=1lim k kn xx (此时记x 为∑∞=1k kx,即∑∞==1k kxx ).证明:令∑==nk kn xy 1,则∑∑++=++=+≤=-pn n k kpn n k kn p n xxy y 11。
由于∞<∑∞=1k kx绝对收敛,则它的一般项0→k x 。
因此0>∀ε,总0N ∃,当0,N p n ≥时,有ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必存在E ∈x ,使得∑∑∞==∞→==11limk k nk kn x xx 。
9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。
若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。
此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。
通常用E dim 表示E 的维数,并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。
泛函分析部分课后习题答案
![泛函分析部分课后习题答案](https://img.taocdn.com/s3/m/886880237375a417866f8f69.png)
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b
xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。
泛函分析答案(完整版)
![泛函分析答案(完整版)](https://img.taocdn.com/s3/m/657723fa551810a6f524868c.png)
1.}{ .1的极限是唯一的中的收敛列证明距离空间n x X *.** 0*)**,( )( 0*)*,(*),(*)**,(0)( *** x x x x n x x x x x x n x x x x n n n n ==∞→→+≤≤∞→→→,即所以,则,设ρρρρ第七章距离空间、赋范线性空间2.* }{* }{ .2x x X x x X n n 的任一子列收敛于收敛于中的序列试证距离空间⇔∈.* 0*),( 0*),(}{}{)( *x x x x x x x x n x x kkk n n n n n n →→→∞→→,所以,故的任一子列,依条件,是,设ρρ.*}{.*}{*),( }{}{*),(0*}{*}{000x x x x x x x x x x N n N x x x x n n n n n n n n k k k收敛于此与假设矛盾,故不收敛于显然使的一个子列,于是可选取,使,都存在,使对任意的自然数则必存在,不收敛于,如果的任一子列收敛于反之,设ερερε≥≥>>3),(),(|),(),(| )ii (),(|),(),(| )i ( .3w z y x w y z x y x z y z x X w z y x ρρρρρρρ+≤−≤−:中的任意四个点,证明是距离空间、、、设),(|),(),(|)2()1()2( ),(),(),( ),(),(),()1( ),(),(),( ),(),(),( )i (y x z y z x y x z x z y z x x y z y y x z y z x z y y x z x ρρρρρρρρρρρρρρρ≤−≤−+≤≤−+≤即得:、结合得再由得由),(),(|),(),(|)4()3()4( ),(),(),(),( ),(),(),(),()3( ),(),(),(),( ),(),(),(),(),(),( )ii (w z y x w y z x w z y x z x w y w z z x x y w y w z y x w y z x z w w y y x z y y x z x ρρρρρρρρρρρρρρρρρρρρρρ+≤−+≤−++≤+≤−++≤+≤即得:、结合得再由得由4距离吗?是定义在实数集合上的2)(),( .4y x y x −=ρ.,24120),(),(),(),(.)(),(2上式就不成立时,,,比如取满足、、不能对所有的因为的距离不是定义在实数集合上>===+≤⋅⋅−=z y x y z z x y x z y x y x y x ρρρρρ.),( }{}{ .5收敛中的基本列,证明是距离空间、设n n n n n y x X y x ρα=.Cauchy }{),(),( |),(),(|||),( 0),( ),( 0),(数列,故收敛是即知再由依条件:n m n m n m m n n m n m n m n y y x x y x y x m n y y m n x x αρρρρααρρ+≤−=−∞→→∞→→5的闭包是闭集。
泛函分析课后习题答案
![泛函分析课后习题答案](https://img.taocdn.com/s3/m/c20368e3941ea76e59fa0410.png)
有某自然数 n,使 U ( x, ) Ox 。
1 ) 中必有 2n 1 1 1 某 U ( xk , ) ,且 U ( xk , ) Ox 。 。事实上,若 y U ( xk , ) ,则 2n 2n 2n 1 1 1 1 d ( y , x ) d ( y , xk ) + d ( x k , x ) + = 所以 y U ( xk , ) Ox 。 2n 2n n 2n 1 这样我们就证明了对任意 x X ,存在 k,n 使 x U ( xk , ) 且 2n 1 1 存在 U ( xk , ) O 任取覆盖 U ( xk , ) 的 O,记为 Ok ,n 是 2n 2n
8
设 B[a,b]表示[a,b]上实有界函数全体,对 B[a,b]中任意 两元素 f,g B[a,b],规定距离为 d ( f , g ) = sup | f (t ) − g (t ) | 。
a t b
证明 B[a,b]不是可分空间 证明
0
对任意 t0 [a,b],定义 ft (t ) = 1, t [a, t0 )2, t [to , b)}
5,证明点列{ f n }按习题 2 中距离收敛与 f C [a, b] 的充要条件为 f n 的 各阶导数在 [a,b]上一致收敛于 f 的各阶导数 证明 若{ f n }按习题 2 中距离收敛与 f C [a, b] ,即
f n (t ) − f ( r ) (t ) 1 ——>0 d ( f , f n ) r max (r ) a t b 1 + f n (t ) − f ( r ) (t ) r =0 2
f ( r ) (t ) − g ( r ) (t ) h ( r ) (t ) − g ( r ) (t ) 1 max + r a t b 1 + f ( r ) (t ) − g ( r ) (t ) 1 + h ( r ) (t ) − g ( r ) (t ) r =0 2
刘炳初泛函分析部分习题解答
![刘炳初泛函分析部分习题解答](https://img.taocdn.com/s3/m/1c71a1cc08a1284ac85043b4.png)
. 要证 x0 A ,即证 F x 0 k . 由
xn x0 , n 且 F 连 续 F xn F x0 . 由 于
xn A
, 故
F xn k F x0 k x0 A . 故 x X : F x k 为闭集 . 所以每一个 wk 为
d x,0 d x,0 d 0,0 即 7 3 3 6 . 矛盾
(7)证明在空间 S 中,按距离收敛等价于按坐标收敛. 证 设 x x 1 ,x 2 , ,x n S , y y1 , y2 ,, yn S , 则
d x, y
d xn , xm .
(1)
由 rn 0 , n 知, 对上述 0, N 2 , 当 n N 2 时有 rn . 而当 m n 时,
som , rm son , rn ,从而 xm son , rn , 有
d xn , xm rn .
பைடு நூலகம்
d x n , x0 0 ,
即
n .
1 xi x 0 0 , n . i n n x0 i 1 2 1 xi
n
n
故有
xi
n
0 xi , i 1,2, , n .
(1)
反之若(1)成立,从(1)依次递推可得 xn x0 , n . 即 S 中点列若按坐 标收敛, 则按距离收敛. (8)试举例说明有界集不是全有界集. 证 取 C 0, 1 中的点列 xn ,
0
Sx 0 ,r U , M k 0 ,命题得证.
(16)举例说明,在压缩映射原理中, 1)空间完备性条件不可少; 2)映射 T 所满足的条件不能代之以条件: d Tx, Ty d x, y 解 1) 设T : 0, 0, 且Tx x ,x 0, ,其中 0 1 . 可以 看出 T 为 0, 上的压缩映射. 事实上 x ,y 0, 有
刘炳初等 《泛函分析》第二版课后习题答案
![刘炳初等 《泛函分析》第二版课后习题答案](https://img.taocdn.com/s3/m/93cfa22ac5da50e2524d7fcb.png)
刘炳初等 《泛函分析》第二版课后习题答案习题二1.设(,)X 是赋范空间. 对于,,x y X ∈令10,,1,,x y d x y x y =⎧=⎨-+≠⎩ 证明:1d 是X 上的距离但不是由范数诱导的距离.证明:显然1d 满足距离公理1)、2). 若x y =,显然有111(,)0(,)(,)d x y d x z d z y =≤+; 若x y ≠,则当,x z z y ≠≠时,111(,)112(,)(,)d x y x y x z z y x z z y d x z d z y =-+≤-+-+≤-+-+≤+; 当,x z z y =≠时,1111(,)11(,)(,)(,)d x y x y z y d z y d x z d z y =-+=-+==+; 当,x z z y ≠=时,1111(,)11(,)(,)(,)d x y x y x z d x z d x z d z y =-+=-+==+; 因此,1(,)d x y 满足距离公理3).但10,,(,)1,,x d x x x θθθ=⎧=⎨+≠⎩显然不满足11(,)(,)d x d x αθαθ=,因此1d 不是由范数诱导的距离.2.在l ∞中,按坐标定义线性运算且对,k x l x ξ∞∈=定义sup n nx ξ=,证明l ∞是一个赋范空间.证明:显然这是一个范数.3.设M 是空间l ∞中除有穷个坐标之外为0的元之全体构成的子空间. 证明M 不是闭子空间.证明:令01111111,,,,,0,0,,1,,,,,2323n x x nn⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则显然我们有n x M ∈,且01110,0,,,,0()121n x x n n n n ⎛⎫-==→→∞ ⎪+++⎝⎭,但0x M ∉,因此M 不是l ∞得闭子空间.4.试举例说明,在赋范空间中,由1n n x ∞=<∞∑,一般地不能推出1n n x ∞=∑收敛.例: 5. 设(,)X 是赋范空间,0X 是X 中的稠密子集,证明:对于每一x X ∈,存在{}0n x X ⊂,使得1n n x x ∞==∑,并且1n n x ∞=<∞∑.证明:取10x X ∈,使得112x x -<,则112x x ≤+;0X X =,∴可取20x X ∈,使得12212x x x --<,则2121211122x x x x x x ≤--+-<+<;同理可取30x X ∈,使得123312x x x x ---<,则31231223111222x x x x x x x x ≤---+--<+<;继续此法,可得{}0n x X ⊂,使得112ni ni x x =-<∑,且21(2,3,)2nn x n -<=,由此知1n n x x ∞==∑,并且1n n x ∞=<∞∑11112n n x ∞-=⎛⎫≤++ ⎪⎝⎭∑.6. 设(,)X 是赋范空间,{}0X ≠,证明:X 是Banach 空间,当且仅当,X 中的单位球面{}:1S x X x =∈=是完备的.证明:必要性是显然的(S 为X 中闭集),下证充分性.若S 是完备的,设{}n x 为X 中的Cauchy 列,由于m n m n x x x x -≤-,从而lim n n x →∞存在,不妨设lim n n x a →∞=. 若0a =,则显然0()n x n →→∞.若0a ≠,不妨设0n x ≠,则n n x S x ⎧⎫⎪⎪⊂⎨⎬⎪⎪⎩⎭,因为11()0m n n m m n n m n m nn m nm nm nx xx x x x x x x x x x x x x x x x -=-≤-+-→也即n n x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为S 中的Cauchy 列,由S 的完备性,lim n n n x x →∞存在,不妨设limn n n x x S x →∞=∈,从而有1lim 0n n n nn n x a ax ax x x x x x x a →∞-=-→-=,故lim 0n n x ax →∞-=,即{}n x 收敛,从而证得X 是Banach 空间.7. 证明0c 是可分的Banach 空间. 证明:分以下三步来证明:1). 证明0c 是l ∞的线性子空间. 事实上收敛列必有界,从而显然0c l ∞∈,且设()()12120,,,,,,,,,n n x y c ξξξηηη==∈,则()1122,,,,n n x y αβαξβηαξβηαξβη+=+++,由于lim 0n x y αβ→∞+=,从而我们有0x y c αβ+∈,即0c 是l ∞的线性子空间.2). 证明0c 是l ∞的闭子空间. 事实上,设()()()()120,,,,,k k k k n x c ξξξ=∈()(0)(0)(0)012,,,,n x ξξξ=,并且()(0)0sup 0()k k n n nx x k ξξ-=-→→∞,因此0ε∀>,1N ∃,使得当1k N >时,()(0)0sup 2k k n n nx x εξξ-=-<. 由于(0)()()(0)()1()2k k k n n n n n k N εξξξξξ≤+-<+>,又因0k x c ∈,()0()k n n ξ→→∞,故存在()1N N ≥,使得当n N >时恒有()2k n εξ<,从而(0)n ξε<,n N ∀>,即00x c ∈,由此知0c 是l ∞的闭子空间.3). 由于l ∞为Banach 空间,而0c 是l ∞的闭子空间,从而0c 是Banach 空间,下证0c 是可分的. 设M 为一切有限有理数列全体,即()12,,,,n n x M ξξξξ=∈⇔全为有理数,且存在x N ,使得当x n N >时,0n ξ=. 显然1n n MQ ∞=,可知M 可数.()1200,,,,,n y c εηηη∀>=∈,由于0n η→,故存在N ,使得当n N >时,n ηε<. 对()12,,,N N R ηηη∈,存在()12,,,N N Q ξξξ∈,使得1sup n n n Nηξε≤≤-<,从而存在()012,,,,0,0,N x M ξξξ=∈,使得0y x ε-<,即M 在0c 中稠密.综上可知0c 是可分的Banach 空间. 8. 设(,)n nX 是一列赋范空间,{}(),1,2,n n n x x x X n =∈=且满足条件1pkk x ∞=<∞∑,用X 表示所有x 的全体,按坐标定义线性运算构成的线性空间,在X 中定义11(1)ppkk x x p ∞=⎛⎫=≥ ⎪⎝⎭∑,证明(,)X 是一个赋范空间.证明:只需证明是一个范数即可. 事实上,显然0x ≥,且0x =,即10pkk x ∞==∑,从而有0(1,2,)kkx k ==,又k X 是赋范空间,故(1,2,k x k θ==,从而可得x θ=,即证明了范数公理的条件1)成立,而条件2)显然成立,下证条件3)成立. 设{}{}(),,,1,2,n n n n n x x y y x y X n ==∈=,由离散情形的Minkowski 不等式,我们有111111ppppp p kk kk k k k x y x yx y x y ∞∞∞===⎛⎫⎛⎫⎛⎫+=+≤+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,从而证得是一个范数,从而(,)X 是一个赋范空间.9. 证明:1) 离散情形的Hölder 不等式与Minkowski 不等式;2) ()1p l p ≥是可分的Banach 空间.证明:1). 首先证明离散情形的Hölder 不等式,即证明下列不等式成立:11111pqp q k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,其中111,1p p q ≥+=. 令11,pqpqk kk k A B ξη∞∞====∑∑,由不等式pqabab p q ≤+可得11p qk kk kAB p A q Bξηξη≤+从而有1111111111pqpq pqk kk kkk k k k k k A B AB p A q Bpqp qξηξηξη--∞∞∞∞∞=====≤+=+=+=∑∑∑∑∑,所以11111pqp q k k k k k k k AB ξηξη∞∞∞===⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑. 由离散情形的Hölder 不等式,我们可以推导相应的Minkowski 不等式:111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑事实上,由Hölder 不等式,我们得到111111111(1)(1)1111111111,pp p k k k k kk k kk k k pqpqp q p p q p k k k k k k k k k k qp p p p pk k k k k k k ξηξξηηξηξξηηξηξηξη∞∞∞--===∞∞∞∞--====∞∞∞===+≤+++⎛⎫⎛⎫⎛⎫⎛⎫≤+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑由此即可得到111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.2). 首先,由于(){}12,,,,,1,2,,n n i Q r r r r r Q i n ==∈=为n R 中全体有理点集,它是n R 中稠密的可数集,因此n R 是可分空间. 令(){}12,,,,;,,1,2,,n i M r r r r n N r Q i n ==∈∈=,易知M 为p l 的可数子集,下证p M l =. 事实上,设()12,,,,,0,p n x l ξξξε=∈∀>存在()N ε,使得12ppi i N εξ∞=+<∑,从而有()12,,,,0,N y r r r M =∈,使得111122p ppNpp p i i i pi i N x yr εεξξε∞==+⎛⎫⎛⎫-=-+<+= ⎪⎪⎝⎭⎝⎭∑∑,因此p M l =,即()1p l p ≥是可分的Banach 空间.10. 证明任意线性空间中存在Hamel 基.证明:设E 是线性空间X 中的线性无关集,令集合M 为包含E 的所有线性无关集全体,在M 上定义偏序关系为''''⊂,显然M 的全序子集都有上界(所有集合的并集),由Zorn 引理,M 有极大元,不妨设为B ,下证B 即为X 的Hamel 基,如若不然,则存在y X ∈,但y B ∉,即y 与B 中任何元素都线性无关,从而{}y B M ∈,这与B 的极大性矛盾.11. 设A 是线性空间X 中的子集. 证明:111():,01.nn n k k k k Co A x x X n x A αααα=⎧⎫=++∈∈≥=⎨⎬⎩⎭∑是任意自然数,且证明:若令S 表示上式右端,则A S ⊂而且S 是凸集,从而()Co A S ⊂. 反之,设F 是包含A 的任一凸集,那么(1,2,,)i x F i n ∈=,从而1ni i i x F α=∈∑,即得S F ⊂,从而()S Co A ⊂.12. 设E 是直线上的Lebesgue 可测集,且mE <∞,用p表示()(1)p L E p ≥的范数,∞表示()L E ∞的范数. 证明:对于每一()x L E ∞∈,lim pp x x ∞→∞=.证明:设xM ∞=,若0mE =或0M =,显然成立,下设0,0mE M ≠≠:i). 根据本性上确界的可达性,即存在0E E ⊂,使得00mE =,并且0\sup ()E E M x t =,所以0\\()d ()d d ppp pEE E E E x t t x t t M t M mE =≤=*⎰⎰⎰,所以()1ppxM mE ≤*. 因为当p →∞时,()11pmE →,即lim pp xM x ∞→∞≤=;ii). 对任意的0ε>,令{}1:()E t E x t M ε=∈>-,由上确界定义易知10mE >,从而11()d ()d ()ppp EE x t t x t t M mE ε≥≥-*⎰⎰,令p →∞,则lim pp xM ω→∞≥-,由ε的任意性,知lim pp xM →∞≥.从而lim pp xM x ∞→∞==.13. 设()11,X ,()22,X 是赋范空间,在乘积线性空间12XX ⨯中定义()1212112212,max ,z x x z x x =+=,其中()1212,,z X X z x x ∈⨯=.证明1z ,2z 是12X X ⨯上的等价范数.证明:显然2122z z z ≤≤,从而它们是等价范数.14.设X 是区间[],a b 上所有连续函数全体按通常方式定义线性运算所成的线性空间,对于x X ∈定义1sup ();()d ba a t bx x t x x t t ≤≤==⎰.证明:和1是X 上两个不等价的范数. 证明:显然和1是X 上的两个范数,且1()x b a x ≤-,要证两个范数不等价,则只需证明不存在0c >,使得1x c x ≥,即证明存在[]C ,n x a b ∈,使得1n nx x →∞.令()()(),,2()2,,20,,n b aa n t a a t a nb a nbb ax t a b a t a b a n nb a a t b n-⎧+-≤≤+⎪⎪--⎪=--++≤≤+⎨-⎪⎪-+≤≤⎪⎩则()()12,,2n n b a b a x x b n-+==()()122n nx nx b b a b a =→∞-+.15. 设Banach 空间(,)X 具有Schauder 基{}n e ,用M 表示所有使得1k k k e ξ∞=∑在X 中收敛的数列{}k ξ的全体,按通常方式定义线性运算构成的线性空间,对于每一{}k x M ξ=∈,定义11supnk knk x eξ==∑,证明(,)M 是Banach 空间.证明:首先易知1是范数.设{}()m x M ∈是Cauchy 列,()()()()()12,,,,m m m m n x ξξξ=16. 设(,)X 是赋范空间,Y 是X 的子空间,对于x X ∈,令(),inf y Yd x Y x y δ∈==-.如果存在0y Y ∈,使得0x y δ-=,称0y 是x 的最佳逼近. 1) 证明:如果Y 是X 的有穷维子空间,则对每一x X ∈,存在最佳逼近.2) 试举例说明,当Y 不是有穷维空间时,1)的结论不成立. 3) 试举例说明,一般地,最佳逼近不惟一.4) 证明对于每一点x X ∈,x 关于子空间Y 的最佳逼近点集是凸集.证明:1).有下确界定义,0,n y Y ε∀>∃∈,使得n x y δδε≤-<+.因为Y 是有穷维子空间,从而存在子列{}{}k n n y y ⊂,使得0k n y y →,将上面不等式中的n 改为k n ,并令k →∞,便有0x y δδε≤-<+,由ε的任意性即可得到0x y δ-=,即0y 就是x 的最佳逼近元.2).例:在0c 空间中,令{}011:02n n nn n M x c ξξ∞∞==⎧⎫==∈=⎨⎬⎩⎭∑,则易证M 是0c 的闭子空间. 设()02,0,,0,x =,下面说明对此0x ,M 中不存在最佳逼近元. 事实上,N m ∀∈,令()111,1,,1,0,0,2m m m x M -⎛⎫⎪=---∈ ⎪ ⎪⎝⎭个,则()00111(,)12m m m x x d x M →∞--=+⇒≤.下证0,1y M x y ∀∈->.用反证法.假设存在()12,,,,k y M ξξξ=∈,使得01x y -≤,则()0122,,,,k x y ξξξ-=---,011,2,12 1.kk x y ξξ⎧≤≥-≤⇒⎨-≤⎩又由()12211,21222kkk kkk k k ξξξξ∞∞==≤≥⇒≤<⇒<∑∑.这与121ξ-≤矛盾.所以0,1y M x y ∀∈->.两边取下确界,得到0(,)1d x M ≥,从而我们可以得到0(,)1d x M =,即在M 上找不到一点,使得该点是0x 的最佳逼近. 3).例:在2R 中,对()212,x x x R ∀=∈,定义范数12max(,)x x x =,并设()00,1x =,()11,0e =,a R ∈,则(){}01,1max ,1x ae a a -=-=,从而01min 1a Rx ae ∈-=,但最佳逼近元{}11a ae ≤不惟一.4).设M 为x 关于子空间Y 的最佳逼近点集,则对[]12,,0,1y y M λ∀∈∈,12(,)x y x y d x Y -=-=,从而()()()121212(1)(1)(1)(,)x y y x y x y x y x y d x Y λλλλλλ-+-=-+--≤-+--=又显然()12(1)(,)x y y d x Y λλ-+-≥,从而()12(1)(,)x y y d x Y λλ-+-=,即12(1)y y M λ+-∈,所以M 是凸集.17. 设(,)X 是赋范空间,如果对任意,,x y X x y ∈≠且1x y ==必有2x y +<,称(,)X 是严格凸赋范空间. 1) 证明赋范空间(,)X 是严格凸的,当且仅当,对任意,x y X ∈,x y x y +=+必有(0)x y αα=>.2) 证明在严格凸赋范空间中,对于每一个x X ∈,x 关于任意子空间Y 的最佳逼近是惟一的.证明:1). 必要性. 设x y x y +=+,则11x y x y xyx y x y x x yy+=⇒+=+++,由严格凸性,x y c x y =,即c x x y y=,令c x yα=,即可得到x y α=.充分性.用反证法,如果存在,,x y X x y ∈≠且1x y ==,使得(1)1x y ββ+-=,即(1)(1)x y x y ββββ+-=+-,由假设,必存在α,使得(1)x y βαβ=-,又因为1x y ==,从而可得x y =,矛盾.2).用反证法.事实上,若(),0d x Y >,并有12(,)x y x y d x Y -=-=,则对[]0,1α∀∈,由严格凸性有()()()12121211(1)(1)(,)(,)(1)1(,)(,)x y y x y x y d x Y d x Y x y x y d x Y d x Y αααααα-+-=-+--⎛⎫⎛⎫--=+-< ⎪ ⎪⎝⎭⎝⎭即()12(1)(,)x y y d x Y αα-+-<,这显然与(,)d x Y 的定义矛盾.但若(),0d x Y =,12,y y 是相应的最佳逼近元,则必有12y x y ==,从而最佳逼近元必是惟一的.18.设(,)X 是赋范空间,如果对任意0ε>,存在0δ>,当x y ε-≥,1x y ==时必有2x y δ-≤-,称(,)X 是一致凸的. 证明: 1) 一致凸赋范空间必是严格凸的. 2) [],C a b 不是一致凸的. 3) []1,L a b 不是一致凸的.证明:设X 是一致凸的赋范空间,,,x y X x y ∈≠且1x y ==,则必存在00ε>,使得0x y ε-≥(若不然,对0ε∀>,都有x y x y ε-<⇒=,矛盾). 由一致凸性,对此00ε>,必存在0δ>,使得22x y δ-≤-<,从而X 是严格凸的. 2). 由1),只需证明[],C a b 不是严格凸的即可.以[]0,1C 为例.取()1,()x t y t t ≡= 都满足1x y ==,但2x y +=.从而不是严格凸的.3). 同理. 取()1,()2x t y t t ≡=,都满足1x y ==,但2x y +=.从而不是严格凸的.习题三1. 设1sup n n α≥<∞,在1l 上定义算子:T y Tx =,其中{}{},k k x y ξη==,k k k ηαξ=(1,2,)k =. 证明T 是1l 上的有界线性算子并且1sup n n T α≥=.证明:111,sup k k k k k k k k k k x ηαξηαξα∞∞≥====≤∑∑,()112,,,,,k x l ξξξ∀=∈()112,,,,k y l ηηη∴=∈,且1sup k k Tx x α≥≤,1sup k k T α≥∴≤.另一方面,由上确界定义,对任意的n ,存在k n ,使得11sup k n k k nαα≥>-. 取()010,0,,1,0,k n x =第项为,则显然01x =,且00k n Tx T x T α=≤=,从而11sup k k T nα≥-<. 令n →∞,则有1sup k k T α≥≤. 所以1sup k k T α≥=.3. 证明Banach 空间X 是自反的,当且仅当*X 是自反的.证明:必要性. 设X 是自反的,:**()J X X J X →=为典型映射,现证*X 也自反. 任取****:x x J X =→k ,显然**x X ∈. 因为()****()()(*)x Jx x x Jx x ==,及X 的自反性得()**R J X =,因此对任意的****x X ∈,()*******(*)x x x x =,由此知1****J x x =,其中1:****J X X →为典型映射,且()1***R J X =,从而*X 是自反的.充分性. 设*X 自反,假设X 不是自反的,即0()J X X =为**X 的真闭子空间(因为J 是X 到0X 上的等距同构映射,且X 完备),由Hann —Banach 定理,存在0******x X ∈,满足0***1x =,且()**x J X ∀∈,()0*****0x x =. 因为()1****J X X =,故存在*0*x X ∈,使得********001001,()x x J x x ===,********001001,()x x J x x ===,因而对任意的****x X ∈,()****00(**)**x x x x =,但()()*****000()0,x x x x Jx x X ===∀∈,因此*0*x X θ=∈,这与*01x =矛盾,从而设X 是自反的.20. 设X 是一致凸赋范空间,()0,1,2,n x x X n ∈=. 证明如果()0Wn x x n −−→→∞且 ()0n x x n →→∞,则()0n x x n →→∞.证明:不妨设00,n x x θ≠≠,用反证法. 为简单起见,设01n x x ==,且n x 不按范数收敛于0,那么可设00ε∃>,使得00n x x ε-≥,由空间的一致凸性,0δ∃>,使得02n x x δ+≤-. 由于0Wn x x −−→,故*f X ∀∈,且1f =有()()0n f x f x →,从而有()()002n f x x f x +→. 由于()002n n f x x f x x δ+≤+≤-及()()0001112sup sup lim22n n f fx f x f x x δ→∞==-==+≤知01x <,这与01x =矛盾,从而必有()0n x x n →→∞.22. 证明空间(1)pl p <<∞上的有界线性泛函的一般形式为()1k kk f x αξ∞==∑,其中{}pk x l ξ=∈,{}111qk y l p q α⎛⎫=∈+= ⎪⎝⎭并且11q k k f q α∞=⎛⎫= ⎪⎝⎭∑,()*p q l l =.证明:令()0,,0,1,0,n e =,显然()12,,,,pn x lξξξ∀=∈,有1i ii x eξ∞==∑. 设()1i i i f x ξη∞==∑,其中()12,,,,q n y l ηηη=∈,则由Hölder 不等式,我们可以得到 ()11111qpqpi i i i i i i f x y x ξηηξ∞∞∞===⎛⎫⎛⎫=≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑,从而可知()*pf l ∈,且f y ≤.反之,对任一()*p f l ∈,()()1,2,i i f e i η==,()12,,,,n y ηηη=,下证qy l ∈且()1i i i f x ξη∞==∑及f y =. 事实上,令11sgn nq p n ii i i x e l ηη-==∈∑,则()()111sgn nnq qn ii i i n i i f x f e fx ηηη-====≤∑∑. 由于()11111nnppp q q n ii i i x ηη-==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑,因此()111,2,nqq i i fn η=⎛⎫≤= ⎪⎝⎭∑,令n →∞得11nqq i i y fη=⎛⎫=≤ ⎪⎝⎭∑,令(),:*p q Tf y T l l =→,则y T f f =≤,从而y T f f ==. 又显然T 是线性算子,且为满射,故为()*p l 到q l 上的等距同构映射,从而()*p q l l =.习题四1. 设12,,,,n H H H 是一列内积空间,令{}21:,.n n n nn H x x H x ∞=⎧⎫=∈<∞⎨⎬⎩⎭∑对于{}{},n n x y H ∈,定义{}{}{}(,)n n n n x y x y αβαβαβ+=+∈k ,{}{}(),n n x y ()1,n n n x y ∞==∑.证明H 是内积空间,并且当每一个n H 都是Hilbert 空间时,H 是Hilbert 空间. 证明:先证H 是内积空间. 因为()()11222211111,,n n n n n n n n n n n n n x y x y x y x y ∞∞∞∞∞=====⎛⎫⎛⎫≤≤≤<∞ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑, 故定义{}{}(),nnx y ()1,nnn x y ∞==∑是有意义的. 又由{}{}{}()()()(){}{}(){}{}()111,,,,,,nnnnn n n n n n n n n n n n n x y z xy z x z y z x z y z αβαβαβαβ∞∞∞===+=+=+=+∑∑∑及{}{}()()()(){}{}()111,,,,,nnnnnnnnnnn n n x y x y y x y x y x ∞∞∞=======∑∑∑,而且{}{}()()1,,0nnnnn x x x x ∞==≥∑及{}{}()()(),0,01,2,n n n n x x x x n =⇔==⇔(){}1,2,n n x n x θθ==⇔=,由内积定义可知H 是内积空间.再证H 是完备的. 设{}()1i i x ∞=是H 中的Cauchy 列,其中()()()()()12,,,,i i i i n x x x x =.由定义00,i ε∀>∃,使得当0,i j i >时,有()()i j x x ε-<,即122()()1i jn nn x x ε∞=⎛⎫-< ⎪⎝⎭∑,于是()()i j n nx x ε-<,所以{}()1i nn x ∞=是n H 中的Cauchy 列(n 固定),设()(0)i n n x x →,并令()(0)(0)(0)12,,,,n x x x x =,由前证122()()1i j n n n x x ε∞=⎛⎫-< ⎪⎝⎭∑,0,i j i ∀>,故对固定的k 使得2()()21ki j n nn x x ε=-<∑. 令j →∞,则2()(0)21ki n nn x x ε=-≤∑,再令k →∞,就有2()(0)21i n nn x x ε∞=-≤<∞∑,即()i x x H -∈. 因为H 是线性空间,于是有()()()i i x x x x H =--∈,故点列()()1,2,i x i =按H 中范数收敛于x ,于是H 是完备的,即是Hilbert 空间.2. 设H 是Hilbert 空间,M 是H 的闭子空间. 证明M 是H 上某个非零连续线性泛函的零空间,当且仅当M ⊥是一维子空间.证明:必要性. 若M 是H 上某个非零连续线性泛函的零空间,由Riesz 表示定理知存在f y H ∈,使得()(),,f f x x y x H =∀∈,于是()(){}{}:,0,f f f M x f x x y y H y ⊥===∈=,由本节题4知.{}(){}span f fM y y ⊥⊥⊥==是一维子空间.充分性. 若M ⊥是非零元y 生成的一维子空间,,x H ∀∈令()(),f x x y =,则显然有()0f x x y =⇔⊥,即()x M M ⊥⊥∈=,所以M 是非零连续线性泛函f 的零空间.4. 设M 是Hilbert 空间H 上的非空子集,证明()M ⊥⊥是包含M 的最小闭子空间.证明:记span Y M =,则Y 是包含M 的最小闭子空间,故只需证()M Y ⊥⊥=.事实上,x Y ∀∈,有s p a n n x M ∈,使得n x x →. y M ⊥∀∈有()(),lim ,0n n x y x y →∞==,故()x M ⊥⊥∈,即有()Y M ⊥⊥⊂. 又因为Y 是闭子空间,故有()Y Y ⊥⊥=(证明见指南P63例5). 于是由M Y ⊂可得Y M ⊥⊥⊂,进而可得()()M Y Y ⊥⊥⊥⊥⊂=,所以可得()span M Y M ⊥⊥==.5. 设H 是内积空间,M 是H 的线性子空间. 证明如果对于每一个x H ∈,它在M 上的正交投影存在,则M 必是闭子空间.证明:x M ∀∈,存在{}n x M ⊂,使得lim n n x x →∞=. 由条件0101,,x x x x M x M ⊥=+∈∈,于是001n x x x x x M ⊥-→-=∈. 注意到0n x x M -∈,故有()()1101,lim ,0n n x x x x x →∞=-=即1x θ=,从而0x x M =∈,从而M 是闭子空间.6. 证明在可分内积空间中,任一标准正交系最多为一可数集.证明:设H 为可分的内积空间,{}1n n x ∞=为H 的可数稠密子集,又设{}:e λλ∈Λ为H 中任意一簇标准正交系,则,n x λ∀∈Λ∃,使得n x e λ-<. 若Λ不可数,则必有{}1k n n x x ∞=∈以及,','λλλλ∈Λ≠,使得'k k x e x e λλ-<-<''k k e e x e x e λλλλ-≤-+-<,但由勾股定理,有222''2e e e e λλλλ-=+=,即'e e λλ-=H 中的任一标准正交系最多为可数集. 7. 设{}e I αα∈是内积空间H 中的标准正交系. 证明对于每一个x H ∈,x 关于这个标准正交系的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.证明:记{}:F e I αα=∈,由Bessel 不等式, x X ∀∈,若取n 个F 中元素e λ排成一列,不妨设为12,,,n e e e ,则有()221,ni i x e x =≤∑,于是在F 中使(),x e λ≥得e λ只能为有限个,记():,,n F e x e λλλ⎧=∈Λ≥⎨⎩及1ˆnn F F ∞==. 显然ˆF 为可数集,且当ˆe F F λ∈-时,(),0x e λ=,即x 的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.8. 设H 为Hilbert 空间,()0,1,2,n x x H n ∈=.当n →∞时,0Wn x x −−→,且 0n x x →,证明()0n x x n →→∞.证明:由()()()()()2,,,,,n n n n n n n x x x x x x x x x x x x x x -=--=--+,故当n →∞时,()2222,0n x x x x x -→-=,即()0n x x n →→∞.11. 设T 是Hilbert 空间H 上的线性算子且对所有,x y H ∈,()(),,Tx y x Ty =.证明T 是有界算子.证明:只需证明T 是H 上的闭线性算子. 设n x H ∈,且满足00,n n x x Tx y →→,则y H ∀∈,由条件()(),,n n Tx y x Ty =. 令n →∞,则有()()()000,,,y y x Ty Tx y ==,故00y Tx =,即T 是闭线性算子,从而由闭图像定理可知T 有界.13. 设H 是Hilbert 空间,(),x y ϕ是定义在H H ⨯上的泛函且关于x 是线性的,关于y 是共轭线性的并且存在常数C ,使得()(),,x y C x y x y H ϕ≤∈.证明:存在惟一算子()A B H ∈,使得对所有,x y H ∈,()(),,x y Ax y ϕ=且A ϕ=,其中()11sup ,x y x y ϕϕ===.证明:因(),x y ϕ关于y 是共轭线性的,故(),x y ϕ关于y 是线性的,固定x H ∈,则(),x y ϕ为H 上的有界线性泛函,由Riesz 表示定理,存在惟一*x H ∈,使得()(),,*x y y x ϕ=,即()(),*,x y x y ϕ=. 作映射:*A xx ,有()()(),*,,x y x y Ax y ϕ== 由于()()()()()()()()1212121212,,,,,,,A x x y x x y x y x y Ax y Ax y Ax Ax y αβϕαβαϕβϕαβαβ+=+=+=+=+,即()1212A x x Ax Ax αβαβ+=+又因为()()2,,Ax Ax Ax x Ax x y ϕϕ==≤,即A ϕ≤,所以()A B H ∈.再由Schwartz 不等式,有()(),,x y Ax y Ax y A x y ϕ=≤≤,故A ϕ≤,于是 A ϕ=. 若设()T B H ∈,且满足()(),,x y Tx y ϕ=,则()(),,,,A xy T x y xy H =∀∈,即()(),0,,A T x y x y H -=∀∈. 特别地,令()y A T x =-,得()20A T x -=,因此(),A T x x H θ-=∀∈,故0A T -=,所以A T =.14. 设{}n T 是Hilbert 空间H 上的有界自共轭算子列且()0n T T n -→→∞. 证明T 也是自共轭的.证明:由()()***0n n n T T T T T T n -=-=-→→∞,即可得**n T T →,由n T 的自共轭性即可得T 也是自共轭的.2011年博士研究生第二次公开招考报考须知发布时间:2011-02-24 08:37 来源:本站点击量:303一、报名2011博士研究生第二次公开招考网上报名时间:2011年3月4日-13日,网址:/hityzb/zs.jsp?cla=2。
实变函数与泛函分析基础第七章(1-3)
![实变函数与泛函分析基础第七章(1-3)](https://img.taocdn.com/s3/m/617f6a0210a6f524ccbf85aa.png)
则 ρ(x, y) 是 B(A) 上的度量,事实上, ρ(x, y)显然满足1 ,以下证明也满足2 . 对另一连续函数 z∈B(A), 由
0 0
x(t ) y(t ) x(t ) z(t ) y(t ) z(t )
sup x( t ) z( t ) sup y( t ) z( t )
其次注意到在递增11nnnggg?所以于是11nnngxgxg?????????????????????????11nnngmxgmxg??????????????????????????0lim
现代分析学
实变函数论与泛函分析基础
第七章 度量空间和赋范线性空间
§1 度量空间的进一步例子
§2 度量空间中的极限,稠密集,可分空间
都是 R 中的元素,由Cauchy不等式
n n 2 2 x y x y k k k k k 1 k 1 k 1 n 2
n
再令右端 n→∞,即得
xk yk k 1
n
2
2 2 x y k k k 1 k 1
2 2 2 2 xk 2 x . y y k k k k 1 k 1 k 1 k 1
1 2
2 2 xk yk k 1 k 1
再令左端的 n→∞,即得
2 2 x y x y k k k k k 1 k 1 k 1 n 2
由此可得
2 2 x y x 2 x y y k k k kk k 2 k 1 k 1 k 1 k 1
《泛函分析》课后习题答案(张恭庆)
![《泛函分析》课后习题答案(张恭庆)](https://img.taocdn.com/s3/m/02abf1563c1ec5da50e270a7.png)
2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须
对
6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn
证
由
m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f
(完整word版)泛函分析习题标准答案
![(完整word版)泛函分析习题标准答案](https://img.taocdn.com/s3/m/9aa8afd78ad63186bceb19e8b8f67c1cfad6eed1.png)
(完整word版)泛函分析习题标准答案第⼆章度量空间作业题答案提⽰ 1、试问在R 上,()()2,x y x y ρ=-能定义度量吗?答:不能,因为三⾓不等式不成⽴。
如取则有(),4x y ρ=,⽽(),1x z ρ=,(),1z x ρ= 2、试证明:(1)()12,x y x y ρ=-;(2)(),1x y x y x yρ-=+-在R 上都定义了度量。
证:(1)仅证明三⾓不等式。
注意到21122x y x z z y x z z y ??-≤-+-≤-+- ?故有111222x yx z z y-≤-+-(2)仅证明三⾓不等式易证函数()1xx x=+在R +上是单调增加的,所以有()()a b a b ??+≤+,从⽽有1111a b a b a b++≤≤+++++++令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y zy x z x y z---≤++-+-+-4.试证明在[]b a C ,1上,)12.3.2()()(),(?-=ba dt t y t x y x ρ定义了度量。
证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成⽴。
[]),(),()()()()()()()()()()(),()2(y z z x dtt y t z dt t z t x dtt y t z dt t z t x dtt y t x y x bab ab aba ρρρ+≤-+-≤-+-≤-=5.试由Cauchy-Schwarz 不等式证明∑∑==≤??ni in i i x n x 1221证:∑∑∑∑=====?≤??ni in i n i i n i i x n x x 1212122118.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积21R R R ?=上定义了度量{}212/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三⾓不等式。
(完整版)实变函数与泛函分析基础第三版第七章答案
![(完整版)实变函数与泛函分析基础第三版第七章答案](https://img.taocdn.com/s3/m/1ef36fab5f0e7cd18525369b.png)
习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。
0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。
[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。
()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。
实变函数与泛函分析基础第三版第七章答案
![实变函数与泛函分析基础第三版第七章答案](https://img.taocdn.com/s3/m/cb1aaef5b0717fd5370cdc3c.png)
习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ?解不一定。
例如离散空间(X ,d )。
)1,(0x U ={0x },而)1,(0x S =X 。
因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。
2.设],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。
证明(1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑=d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。
3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =⋂∞=1。
证明令n n n o n n B x d Bo o .2,1},1),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使nx x d 1),(10<。
设,0),(110>-=x x d nδ则易验证n o x U ⊂),(0δ,这就证明了n o 是开集显然B o n n ⊃⋂∞=1。
若n n o x ∞=⋂∈1则对每一个n ,有B x n ∈使nx x d 1),(1<,因此)(∞−→−−→−n x x n 。
因B 是闭集,必有B x ∈,所以B o n n =⋂∞=1。
4.设d (x ,y )为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。
证明(1)若0),(___=y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而tt+1在),[∞o 上是单增函数,于是),(),(1),(),(),(),(1),(),(______z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+==),(),(1),(),(),(1),(z y d z x d z y d z y d z x d z x d +++++),(1),(),(1),(z y d z y d z x d z x d +++≤=),(),(_____z y d z x d +。
5.证明点列{n f }按习题2中距离收敛与],[b a C f ∞∈的充要条件为n f 的各阶导数在[a ,b]上一致收敛于f 的各阶导数。
证明若{n f }按习题2中距离收敛与],[b a C f ∞∈,即)()(1)()(max 21),()()()()(0t f t f t f t f f f d r r n r r n b t a r r n -+-≤≤≤∞=∑——>0)(∞−→−n 因此对每个r ,)()(1)()(max 21)()()()(0t f t f t f t f r r n r r n bt a r r -+-≤≤∞=∑——>0)(∞−→−n ,这样 bt a ≤≤max )()()()(t f t f r r n -——>0)(∞−→−n ,即)()(t f r n 在[a ,b]上一致收敛于)()(t f r 。
反之,若的n f (t )各阶导数在[a ,b]上一致收敛于f (t ),则任意o >ε,存在0r ,使2211ε<∑∞+=o r r r;存在r N ,使当r N n >时,max )()()()(t f t f r r n -00,2,1,0,2r r r =<ε,取N=max{N N N 1},当n>N 时,)()(1)()(max 21),()()()()(0t f t f t f t f f f d r r n r r n b t a r r n -+-≤≤≤∞=∑ 即),(n f f d ——>0)(∞−→−n 。
6.设],[b a B ⊂,证明度量空间],[b a C 中的集{f|当t ∈B 时f (t )=0}为],[b a C 中的闭集,而集A={f|当t ∈B 时,|f (t )|〈a }(a >0)为开集的充要条件是B 为闭集。
证明记E={f|当t ∈B 时f (t )=0}。
设E f n ∈}{,}{n f 按],[b a C 中度量收敛于f ,即在[a ,b]上)(t f n 一致收敛于f (t )。
设B t ∈,则0)(lim )(==∞>-t f t f n n ,所以f ∈E ,这就证明了E 为闭集充分性。
当B 是闭集时,设f ∈A 。
因f 在B 上连续而B 是有界闭集,必有B t ∈0,使)(max )(0t f t f Bt ∈=。
设0)(0>=-δt f a 。
我们证明必有A f U ⊂),(δ。
设),(δf U g ∈,则若B t ∈,必有δ<-)()(t g t f ,于是a t f t f t g t f t g =+<+-≤)(||)(|)()(|)(|0δ,所以A g ∈,这样就证明了A 是开集必要性。
设A 是开集,要证明B 是闭集,只要证明对任意.....2,1,=∈n B t n 若0t t n >-)(∞−→−n ,必有B t ∈0。
倘若B t ___0∈,则定义||)(0t t a t f o --=。
于是对任意B t ∈,a t t a t f o <--=||)(0因此A t f o ∈)(由于A 是开集,必有0>δ,当∈f C[a ,b]且δ<),(0f f d 时,A f ∈。
定义,n=1,2。
则)(0||),(00∞>->--=n t t f f d n n 因此当δ<-||0t t n 时,A f n ∈。
但是a t t t t a t f n n n =-+--=||||)(00,此与A f n ∈的必要条件:对任意B t ∈,有a t f n <)(矛盾因此必有B t ∈0。
7.设E 及F 是度量空间中的两个集,如果o F E d >),(,证明必有不相交开集O 及G 分别包含E 及F 。
证明设o F E d >=δ),(。
令}2),(|{},2),(|{δδ====F x d x G E x d x o则,,G F O E ⊂⊂且Φ≠⋂G O ,事实上,若Φ≠⋂G O ,则有Φ≠⋂∈G O z ,所以存在E 中的点x 使2),(δ〈z x d ,F 中点y 使2),(δ〈z y d ,于是δ〈),(),(),(z y d z x d y x d +≤,此与≥),(y x d ),(F E d δ=矛盾。
8.设B[a ,b]表示[a ,b]上实有界函数全体,对B[a ,b]中任意两元素f ,g ∈B[a ,b],规定距离为|)()(|sup ),(t g t f g f d bt a -=≤≤。
证明B[a ,b]不是可分空间。
证明对任意∈0t [a ,b],定义{)},[,2),[,1)(00b t t t a t t f o t ∈∈= 则)(0t f t ∈B[a ,b],且若21t t ≠,1),(21=t t f f d 。
倘若B[a ,b]是不可分的,则有可数稠密子集{}n g n ∞=1,对任意∈0t [a ,b],)21,(0t f U 必有某n g ,即21),(0<t nfg d 。
由于[a ,b]上的点的全体是不可数集。
这样必有某n g ,21,t t ,使n g ∈)21,(1t f U ,n g ∈)21,(2t f U ,于是12121),(),(),(2121=+<+≤t n n t t t f g d g f d f f d 此与1),(21=t t f f d 矛盾,因此B[a ,b]不是可分空间。
9.设X 是可分距离空间,ϑ为X 的一个开覆盖,即ϑ是一族开集,使得对每个X x ∈,有ϑ中的开集O ,使得O x ∈,证明必可从ϑ中选出可数个集组成X 的一个开覆盖。
证明若X x ∈,必有ϑ∈x O ,使x O x ∈,因x O 是开集,必有某自然数n ,使x O nx U ⊂)1,(。
设{}n x n ∞=1是X 的可数稠密子集,于是在)21,(n x U 中必有某)21,(n x U k ,且x k O n x U ⊂)21,(。
事实上,若)21,(n x U y k ∈,则nn n x x d x y d x y d k k 12121),(),(),(=+<+≤所以)21,(n x U y k ∈x O ⊂。
这样我们就证明了对任意X x ∈,存在k ,n 使)21,(n x U x k ∈且存在O n x U k ⊂)21,(任取覆盖)21,(nx U k 的O ,记为n k O ,是X 的可数覆盖。
10.X 为距离空间,A 为X 中子集,令,.),,(inf )(X x y x d x f Ay ∈=∈证明)(x f 是X 上连续函数。
证明若,.0X x ∈对任意0>ε,存在A y ∈0,使200)(2),(inf ),(εε+=+<∈x f y x d y x d Ay o 。
取02>=εδ。
则当δ<),(0x x d 时,ε+<+≤≤=)(),(),(),(),(inf )(0000x f y x d x x d y x d y x d x f o因此ε<-)()(0x f x f 。
由于x 与0x 对称性,还可得ε<-)()(0x f x f 。
于是ε<-|)()(|0x f x f 。
这就证明了)(x f 是X 上连续函数。
11.设X 为距离空间,21,F F 是X 中不相交的闭集,证明存在开集21,G G 使得221121,,F G F G G G ⊃⊃Θ=⋂。
证明若1F x ∈,则由于2F x ∉,2F 为闭集,必有0>x ε,使Θ=⋂2),(F x U x ε,令)2,(11xF x x UG ε∈= ,类似)2,(22yF x y UG ε∈= ,其中Θ=⋂1),(F y U y ε,显然21,G G 是开集,且2211,F G F G ⊃⊃。