经典雷达资料-第2章--雷达距离估算
雷达基础知识
三、最大不模糊距离
当多个目标的位置产生相同的信息,模糊产生
通常
Ru
c Tr 2
Ru Rmax
Tr是脉冲重复周期
Tr
2 c
Rmax
10
三、最大不模糊距离
例:某雷达的脉冲重复频率为每秒1250个脉冲,则它 的最大不模糊距离是?
1250个脉冲/秒 可得: Rumax = 120km
Tr=800μs
20
八、速度的测量
v
-v
21
八、速度的测量
fd
2v
v 是径向速度 λ 是波长
22
八、速度的测量
fd
2v
co辆汽车以29m/s的速度向交警测速雷达驶来, 其速度方向与雷达的轴线方向重合;雷达的发射频率 为24.15G,问接收到的回波信号的频率和多普勒频移 是多少?
25
八、分贝表示法
30 dB = 1000 3 dB = 2 -3 dB = 0.5
- times, - times , - times
26
八、分贝表示法
30 dBm = 1000 • 1mW = 1W 60 dBm = 1000 W 99 dBm = 8,000,000 W,
27
九、天线的波束宽度
雷达距雷分辨力
R c
2
R c 2B
15
六、角度的获得
天线 方向图
方位角
16
六、角度的获得
俯仰角
17
六、角度的获得
18
七、角度(横向距离)分辨力
区分相同距离上不同角度位置上多个目标的能力
准则:相同距离上的目标分开超过波束宽度能够分辨
19
七、角度(横向距离)分辨力
雷达测距方法
设脉冲重复频率分别为fr1和fr2 (fr2>fr1),它们都不满足无模 糊测距的要求,fr1和fr2具有公约频率为fr=fr1/N=fr2/(N+a),其 中N, a为正整数。 常选a=1使N和N+a为互质数,且fr的选择应保证无模糊测 距,即0<tR<Tr=N*Tr1=(N+1)*Tr2。这样有 fr2=(N+1)fr=fr1+fr tR=t1+n1/fr1=t2+n2/fr2 则在0<tR<Tr范围内,n1和n2关系只可能有两种可能: n2=n1、n2=n1+1 根据获得的t1, t2值大小,可据下式计算tR及目标距离R=c*tR/2
双脉冲重复频率解模糊
t1<t2, n1=n2=1, tr=4t2-3t1
t1 t 2 n1 2 3 n2 f r1 f r 2 fr 3 4 t 2 f r 2 t1 f r1 1 tr f r 2 f r1 4t 2 3t1 Tr
2017/12/30 哈尔滨工业大学电子工程系 28
2017/12/30 哈尔滨工业大学电子工程系 18
脉冲雷达的天线是收发共用的,这需要一个收发转换开关。在发射时,收 发开关使天线与发射机接通,并与接收机断开,以免高功率的发射信号进 入接收机把高放或混频器烧毁。接收时,天线与接收机接通,并与发射机 断开,以免因发射机旁路而使微弱的接收信号受损失。
T1、T2:雷达系统探测脉冲的重复周期。Np1、Np2分别为周期取T1、 T2时所对应的积累脉冲数。
RT 发射天线Tx
对双基地雷达,计算RT+RR有两种方法:
直接法:
间接法:
单基地:R=cT/2
经典雷达资料-第2章--雷达距离估算
第2章雷达距离估算Lamont V. Blake2.1 引言对于自由空间中特定目标的检测(该目标的检测受热噪声的限制),雷达最大作用距离估算的基本物理机理从雷达出现起就为人所熟知。
本章的术语自由空间指以雷达为球心、半径远远延伸到目标之外的球形空域内仅有雷达和目标。
本章采用的自由空间定义对具体的雷达而言是相当准确的,而通用定义是冗长的,且用处不大。
该定义还暗示,自由空间内可被检测的雷达频率电磁波除了来源于雷达自身的辐射外,仅来自于自然界热或准热噪声源,如2.5节所述。
尽管上述的条件是不可能完全实现的,但是它接近许多雷达的实际环境。
在许多非自由空间和完全非热噪声的背景下,估算问题要复杂得多。
这些在早期分析中没有考虑到的复杂性也是由接收系统电路的信号和噪声关系的改变(信号处理)引起的。
在本章中将给出自由空间方程,讨论基本的信号处理,以及考虑一些十分重要的非自由空间环境下的方程和信号处理。
另外还将考虑一些常见非热噪声的影响。
虽然不可能涉及所有可能的雷达环境,但是本章所叙述的方法将简要地说明那些适合于未考虑到的环境和条件的必然方法的一般性质。
一些要求采用特定分析的专用雷达将在后面章节中叙述。
定义雷达作用距离方程包含许多雷达系统及其环境的参数,其中一些参数的定义是相互依赖的。
正如2.3节所讨论的,某些定义含有人为因素,不同作者使用不同的作用距离方程因子定义是常见的。
当然,若存在被广泛接受的定义,则采用该定义。
但更重要的是,虽然某些定义允许一定的随意性,但是一旦一个距离方程因子采用特定的定义,则一个或更多的其他因子的定义将不再具有随意性。
例如,脉冲雷达的脉冲功率和脉冲宽度的定义各自均具有很大的随意性,但是一旦任何一个定义被确定,那么另一个定义将由限制条件决定,即脉冲功率与脉冲宽度的乘积必须等于脉冲能量。
在本章中将给出一套定义,该定义遵循上述准则,并已被权威组织采纳。
约定由于传播途径因子和其他距离方程因子的变化很大,因此在这些因子的具体值未知的标准条件下,某些约定是估算作用距离所必需的。
雷达基础知识
雷达基础知识摘自王小谟,张光义等主编雷达与探测一书测量空间位置的方法(距离,角度,高度三坐标,速度等)1:方位角测量:波束扫描到目标时,回波从时间顺序上从无到有,从小到大,再从大到小最后消失.所以天线对回波信号进行调制.当测量的回波最大时,此时方位即为方位角数据.另一种测量方法是顺序比较法:用两个相互交叉的波束照射目标.只有当方向角对准目标时左右两侧回波强度才相等.所以只要对两个接收机的信号做出比较即可精密测向.这种方法称单脉冲测角法,往往用于要求高精度的场合2:距离的测量:电磁波以光速传递,则有R=1/2·(CT):R=雷达和目标的直线距离,C=光速(3X10^8米/秒),T=时间单一脉冲制雷达为了防止距离模糊(雷达无法分清接受到回波是什么时段发射而导致距离失准),有时会采用互质频率发射以统计时间3:高度的测量:需要通过点头雷达或相扫等手段确定目标仰角θ,再依据目标与雷达的距离R,可测量出目标高度考虑地球曲率,雷达高度h后的目标高度计算公式为H=h+Rsinθ+R^2/2ρ.其中ρ为地球曲率半径与之相对,如果知道目标高度(如舰船,山峰等),求目标距离的公式为R=2.08(√h+√H)4:目标测速:通过多普勒原理得知,从目标反射回的波段,相比发射的波段多了一个多普勒频移f如果目标径向速度V,雷达波长为λ,则f=2V/λ.则目标速度V=Fλ/2 5:其他测量:通过对目标回波起伏特性的测量,可以判定目标的一些状态(如稳定或翻滚);通过对目标回波极化矩阵的测量,在一定程度上可判断目标的构成与属性;通过提高雷达的分辨能力和多目标跟踪能力,可以作到雷达成像,以及对目标状态变化的跟踪等(如飞机发射导弹,卫星脱离火箭等)另有,甚高频雷达对地下目标(如工事坑道,地下管道等)有比较强的探测能力频率的划分:波长与频率的关系为:频率F=c/波长λ雷达接受距离的方程简单点说就是接收距离R的四次方与目标面积δ,波长λ的平方,峰值功率P,以及发射/接收天线的增益之积G成正比,而与信噪比(S/N)和带宽(△f),损耗因数L,玻耳兹曼常数K(1.38x10^-23 J/K),以及等效噪声温度T成反比R^4=[P·G·δ·λ^2]/[(4π)^3·L·K·T·△f·(S/N)]雷达观察区域受到观察空域(如两坐标监视雷达要求360环视),最大仰角(比如对于监视雷达一般取0到30度),最大探测高度Hmax,最大和最小观测距离Rmax/Rmin等的影响一般雷达对指定截面积目标可以观测到的距离和高度有一定包线,称雷达威力图例如下图电子对抗电子战的实质是斗争双方利用一切手段争夺对电磁频谱的有效使用权.主要包括三个方面:电子支援措施(ESM),主要功能是对敌辐射源进行截获,识别,分析和定位电子对抗措施(ECM),主要是破坏敌人电子设备或降低其效能,乃至物理摧毁等以及电子反对抗措施(ECCM),是保障自己电子设备在敌方实施电子对抗手段后仍能正常工作的各种战术和技术手段按照使用种类,可以分为平台式(如降低信号,干扰等),和投放式(投放诱饵,拖曳信号标等)按照有无辐射源,可分为无源干扰(降低信号,投放箔条)和有源干扰(各种有源诱饵,闪光照射,噪声/红外/欺骗干扰等)电子侦察以及反侦察电子战中雷达的电子侦察主要包括:雷达情报侦察,运用各种手段侦察敌雷达的特征参数,判断其性能,类型,用途,配置,以及所指挥武器的有关战术情报雷达对抗支援侦察:凭借上一步侦察到的对方雷达各种数据和有关战术情报,识别敌雷达的数量,部署,范围,性质以及威胁等级程度等,为作战指挥实施雷达预警,以及相关战役战术行动等提供依据雷达告警:作战中实时发现敌雷达并作出告警引导干扰:侦察是实现有效干扰的前提和依据辐射源定位:为武器精确摧毁敌人雷达提供依据雷达为了自己的生存,必须具备良好的反侦察能力.最重要的是想办法让敌人收不到雷达信号或者受到假信号.主要措施有:设计低截获概率雷达:依上叙述,雷达可以采取低峰值功率,宽频率带宽,高占空因数,低旁瓣发射天线,采取被动工作方式,采用自适应发射功率管理等技术,降低被发现的距离(如美国APG77.而有关侦察距离则可用有源相控手段控制各个单元分别将其波段和频率合成成较适合波段,以及侦察方向的集中性等手段来弥补)控制雷达开机时间:在完成任务的前提下,开机时间尽量短,次数尽量少,同时开机必须经过规定程序批准.值班雷达的开机时间和顺序应当无规律.控制雷达工作频率:对雷达的使用频率要按常用频率工作;同一模式的雷达应尽量按同一频率工作;严格控制使用频率,禁止擅自改变雷达频率,若必须采用跳频手段工作,必须经过批准并按照预定计划进行.隐蔽雷达和新雷达的使用必须经过批准适时更换敌人可能发现和熟悉的雷达阵地设置假目标并对外发射假信号等电子干扰针对雷达的对抗措施有三种:一是告警和回避,而是火力摧毁,三就是干扰雷达干扰是指利用干扰设备发射干扰电磁波,或录用能反射,散射,衰减以及吸收电磁波的材料反射或衰减雷达波,乃至通过主动手段欺骗和使武器系统失控等,从而扰乱敌人雷达工作,降低其效能,使其不能发现目标和告警,造成武器系统威力无法发挥等.这是电子对抗中最常用的一种手段雷达抗干扰电子反干扰是指确保己方有效运用电磁频谱而对电子干扰采取的各种举措,这些措施共同的特点是它们几乎总是与雷达等电子设备设计制造的技术有关.电子干扰和反干扰的斗争基本上就是争夺功率和带宽资源的斗争.任何雷达和通信都是可以被干扰的,同样任何干扰手段都是可以预防的.这最终还是主要取决于双方愿意投入电子战的资源.精心设计,性能优良的雷达基本上都具备强大的ECCM能力,而各种先进技术,如无源探测手段和低概率雷达等的研究,也取决于一个国家的工业能力和工业基础,以及投资的多少雷达抗摧毁现代战争中反辐射导弹(ARM,包括反辐射无人机)已经成为雷达不可回避的对手.海湾战争中联军在战争第一小时之内就投放200多枚ARM,配合其他电子战手段,彻底将伊拉克防空系统炸瘫ARM的特点有:采用多种方式制导:包括红外,光学,惯性制导等;采用宽频接收机,可攻击各种先进雷达(包括单脉冲雷达,脉冲压缩雷达,跳频雷达和连续波雷达等),且自身抗干扰能力较强,一些先进的ARM甚至采用了人工智能技术,可自动寻找,记忆,锁定和攻击辐射目标抗ARM的办法,除了主动打掉ARM极其载机以外,还有一些被动措施:1:ARM在攻击之前需要电子支援手段先截获,识别和定位目标雷达信号,因此可以采用战术手段让ARM难以接受信号.如经常更换阵地,控制开机和控制频率;将发射机和接收机分离并设置各种电子/光学/红外诱饵(甚至可以让诱饵轮番开机消耗其能量,并使其无法瞄准);技术上提高和优化雷达的空间,频率,波形和极化的隐蔽性;以及多台雷达组网(摧毁个别雷达仍能保证地域监视)等雷达的低空性能与低空突防低空/超低空一般指地表以上300米以下的空域.这里是大多数雷达探测的盲区,一些先进雷达即使能探测,性能也要打折扣(例如典型二代战斗机下视能力基本为零,典型三代战斗机和预警机的下视能力也很不乐观往往探测距离要减一半左右.装备先进相控阵雷达的三代半和四代战斗机这方面则可以接近和达到雷达的探测距离)一些西方专家认为,目前飞机和巡航导弹突防高度为:水面上10到15米(甚至有的可以做到5米);平原地区50到60米;丘陵山地等100到120米.而且降低高度比增加速度更有利于提高生存能力从军事上说,低空对雷达的干扰主要有:地球曲率的遮挡地形多径效应(雷达直射波,地面反射波和目标回波产生干涉效应,导致波束分裂和衰减.这种效应与地形平坦有关,山区等地的多径效应比平原和海面更严重)地表反射背景回波的强干扰(往往杂波的强度是回波的许多倍,尤其对于小反射面积的巡航导弹和隐身飞机而言.所以对低空雷达有个参数叫做杂波可见度SCV,用来表示多普勒雷达或动目标监视雷达从杂波中分辨目标的能力)雷达反低空突防,从技术上说可以采用各种反杂波技术.如降低旁瓣,采用超视距雷达(低空视野可达普通雷达数倍乃至数十倍,甚至几千千米.但是地波雷达精度低且易被干扰,天波雷达则受气象和环境限制比较大,虽不容易找到波段相位但是只要找到则非常小的功率即可干扰);采用SAR(合成孔径雷达)搜索地表目标(比较适合卫星和飞机使用).而从战术上,通过雷达提升高度(如制高点或者直接使用雷达飞艇或预警机等);不同种类的各种探测手段(雷达/红外/光学/甚至防空哨等)组网观察;依靠技术手段和计算而精选雷达阵地等,都可减弱地表杂波对雷达的影响反隐身飞机首先说明一下,根据相关材料,F22雷达反射面积小于F117,而不是之前某些人士宣称的0.3M^2(一发导弹的反射面积都有0.5M^2以上)隐身飞机通过涂料,材料和外型,使大多数雷达波被吸收或者反射到其他角度,其对雷达的威胁极大,甚至将完全成为防空作战的主要对手对于常规雷达来说,雷达截面积的减小明显削弱了雷达的探测能力,也就削弱了整个武器系统的战斗力.如果要维持旧有雷达体系不变的情况下象发现常规飞机一样发现隐身飞机,功率和口径都需要成几何级数的增大.二者的乘积需要增加10~1000倍.这可以对个别单基地雷达使用,但是在整体上是军费难以支撑的一些有前途的技术手段为:短波超视距雷达甚高频(100~300MHZ)与超高频(300~500MHZ)雷达,但需要克服抗干扰能力低和精度差的问题.可作为警戒和引导手段使用多基地雷达,或雷达组网对于某些必须使用单体雷达的单位,可以试图增大功率和口径使用带辐射管理功能的主动相控阵雷达目前反隐身技术仍在研究中。
第章雷达目标距离的测量
图6.4 大气层中电波的折射
3. 测读方法误差
测距所用具体方法不同, 其测距误差亦有差别。 早期的脉 冲雷达直接从显示器上测量目标距离, 这时显示器荧光屏亮点 的直径大小、所用机械或电刻度的精度、人工测读时的惯性等 都将引起测距误差。当采用电子自动测距的方法时, 如果测读 回波脉冲中心, 则图6.3中回波中心的估计误差(正比于脉宽τ而 反比于信噪比)以及计数器的量化误差等均将造成测距误差。
式中,τ为距离分辨单元所对应的时宽。 当脉冲重复频率选定(即m1m2m3值已定), 即可按式(6.1.9a)
~(6.1.9c)求得C1、C2、C3的数值。只要实际测距时分别测到A1 、 A2、A3的值, 就可按式(6.1.8)算出目标真实距离。
2. “舍脉冲”
当发射高重复频率的脉冲信号而产生测距模糊时, 可采用“ 舍脉冲”法来判断m值。所谓“舍脉冲”, 就是每在发射M个脉冲 中舍弃一个, 作为发射脉冲串的附加标志。如图6.6(b)所示, 发 射脉冲从A1到AM, 其中A2不发射。与发射脉冲相对应, 接收到的 回波脉冲串同样是每M个回波脉冲中缺少一个。只要从A2以后, 逐个累计发射脉冲数, 直到某一发射脉冲(在图中是AM-2)后没有 回波脉冲(如图中缺B2)时停止计数, 则累计的数值就是回波跨越 的重复周期数m。
(6.1.6)
雷达的最大单值测距范围由其脉冲重复周期Tr决定。为保证单 值测距, 通常应选取
Rmxa为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲 多卜勒雷达或远程雷达, 这时目标回波对应的距离R为
雷达探测距离公式
雷达探测距离公式雷达是一种常用的无线电波探测技术,被广泛应用于军事、航空、导航、气象等领域。
它利用电磁波在空间中传播的特性,通过发送和接收信号来探测目标的位置和距离。
在雷达技术中,距离是一个重要的参数,而雷达探测距离公式则是计算目标与雷达之间距离的数学表达式。
雷达探测距离公式可以通过以下方式来推导,首先我们需要了解雷达的工作原理。
雷达系统通过发射脉冲信号并接收目标反射回来的信号来实现目标探测。
当脉冲信号发射后,它会以光速的速度在空间中传播,当遇到目标时,部分能量会被目标反射回来,形成回波信号。
雷达接收机会接收到这个回波信号,并进行信号处理,从而得到目标的信息。
在雷达探测过程中,距离是通过测量信号的往返时间来计算的。
假设目标与雷达之间的距离为R,发送信号的速度为c,则信号往返的时间为2R/c。
根据这个时间,我们可以计算出目标与雷达之间的距离。
雷达探测距离公式可以表示为:R = (c * Δt) / 2其中,R表示目标与雷达之间的距离,c表示信号的传播速度,Δt表示信号的往返时间。
公式中的除以2是因为往返时间是信号从雷达发射到目标反射回来的时间,而雷达探测的是往返距离。
在实际应用中,雷达探测距离公式需要考虑到许多因素的影响。
首先,信号的传播速度c通常取光速,因为雷达系统中使用的是无线电波,其传播速度非常接近光速。
其次,信号的往返时间Δt需要通过精确的时间测量来获取,因为微小的误差会导致测量结果的不准确。
此外,目标与雷达之间的距离R也会受到空气密度、反射系数等因素的影响。
在雷达探测中,除了距离,还有其他参数也需要考虑,如目标的速度、方向、角度等。
这些参数可以通过雷达系统的信号处理来获取。
雷达技术的发展使得我们能够更准确地探测目标,提高了雷达的应用领域和效果。
总结一下,雷达探测距离公式是计算目标与雷达之间距离的数学表达式。
它通过测量信号的往返时间来计算距离,公式中包含了信号的传播速度和往返时间两个参数。
雷达距离估算
经典雷达距离估算2.1 引言对于自由空间中特定目标的检测(该目标的检测受热噪声的限制),雷达最大作用距离估算的基本物理机理从雷达出现起就为人所熟知。
本章的术语自由空间指以雷达为球心、半径远远延伸到目标之外的球形空域内仅有雷达和目标。
本章采用的自由空间定义对具体的雷达而言是相当准确的,而通用定义是冗长的,且用处不大。
该定义还暗示,自由空间内可被检测的雷达频率电磁波除了来源于雷达自身的辐射外,仅来自于自然界热或准热噪声源,如2.5节所述。
尽管上述的条件是不可能完全实现的,但是它接近许多雷达的实际环境。
在许多非自由空间和完全非热噪声的背景下,估算问题要复杂得多。
这些在早期分析中没有考虑到的复杂性也是由接收系统电路的信号和噪声关系的改变(信号处理)引起的。
在本章中将给出自由空间方程,讨论基本的信号处理,以及考虑一些十分重要的非自由空间环境下的方程和信号处理。
另外还将考虑一些常见非热噪声的影响。
虽然不可能涉及所有可能的雷达环境,但是本章所叙述的方法将简要地说明那些适合于未考虑到的环境和条件的必然方法的一般性质。
一些要求采用特定分析的专用雷达将在后面章节中叙述。
定义雷达作用距离方程包含许多雷达系统及其环境的参数,其中一些参数的定义是相互依赖的。
正如2.3节所讨论的,某些定义含有人为因素,不同作者使用不同的作用距离方程因子定义是常见的。
当然,若存在被广泛接受的定义,则采用该定义。
但更重要的是,虽然某些定义允许一定的随意性,但是一旦一个距离方程因子采用特定的定义,则一个或更多的其他因子的定义将不再具有随意性。
例如,脉冲雷达的脉冲功率和脉冲宽度的定义各自均具有很大的随意性,但是一旦任何一个定义被确定,那么另一个定义将由限制条件决定,即脉冲功率与脉冲宽度的乘积必须等于脉冲能量。
在本章中将给出一套定义,该定义遵循上述准则,并已被权威组织采纳。
约定由于传播途径因子和其他距离方程因子的变化很大,因此在这些因子的具体值未知的标准条件下,某些约定是估算作用距离所必需的。
(整理)经典雷达资料-第1章 雷 达 概 论
第1章雷达概论Merrill I. Skolnik1.1 雷达描述雷达的基本概念相对简单,但在许多场合下它的实现并不容易。
它以辐射电磁能量并检测反射体(目标)反射的回波的方式工作。
回波信号的特性提供有关目标的信息。
通过测量辐射能量传播到目标并返回的时间可得到目标的距离。
目标的方位通过方向性天线(具有窄波束的天线)测量回波信号的到达角来确定。
如果是动目标,雷达能推导出目标的轨迹或航迹,并能预测它未来的位置。
动目标的多普勒效应使接收的回波信号产生频移,因而即使固定回波信号幅度比动目标回波信号幅度大多个数量级时,雷达也可根据频移将希望检测的动目标(如飞机)和不希望的固定目标(如地杂波和海杂波)区分开。
当雷达具有足够高的分辨力时,它能识别目标尺寸和形状的某些特性。
雷达可在距离上、角度上或这两方面都获得分辨力。
距离分辨力要求雷达具有大的带宽,角度分辨力要求大的电尺寸雷达天线。
在横向尺度上,雷达获得的分辨力通常不如其在距离上获得的分辨力高。
但是当目标的各个部分与雷达间存在相对运动时,可运用多普勒频率固有的分辨力来分辨目标的横向尺寸。
虽然人们通常认为SAR是通过在存储器中存储接收到的信号,从而产生大的“合成”天线,但是用于成像(如地形成像)的合成孔径雷达在横向尺度上获得的分辨力仍可解释为,是由于利用了多普勒频率分辨力的结果。
这两种观点(多普勒分辨力和合成天线)是等效的。
展望用于目标成像的ISAR所能得到的横向分辨力的途径,理所当然应该是多普勒频率分辨力。
雷达是一种有源装置,它有自己的发射机而不像大多数光学和红外传感器那样依赖于外界的辐射。
在任何气象条件下,雷达都能探测或远或近的小目标,并精确测量它们的距离,这是雷达和其他传感器相比具有的主要优势。
雷达原理已在几兆赫兹(高频或电磁频谱的高频端)到远在光谱区外(激光雷达)的频率范围内得到应用。
这范围内的频率比高达109:1。
在如此宽的频率范围内,为实现雷达功能而应用的具体技术差别巨大,但是基本原理是相同的。
精品文档-雷达对抗原理(第二版)(赵国庆)-第2章
def
dms 10lg
Pso Psm
dB
(2-11)
为了保证镜像干扰不引起测频错误,一般要求dms≥60 dB。
提高dms的方法主要有:
(1) 采用频带对准。
(2) 采用宽带滤波和高中频接收。提高中频,可以增加主信
道与镜像信道之间的频率差2fi-ΔΩRF; 如果该频率差能够满足 测频范围ΩRF=[f1,f2]的要求:
f
t
def
t
2πt
它的二阶导数称为调频斜率,即
kFM
t
def
2 t
2πt 2
对于单载频射频脉冲信号,在其脉冲宽度τPW内,
f t f , kFM 0; 0 t PW
(2-1) (2-2) (2-3)
第2章 对雷达信号的频率测量与频谱分析 相位编码调制的射频脉冲除了有限的相位跃变点以外,脉 内其它时刻的频率同式(2-3)。线性调频脉冲的频率和调频斜 率分别为
第2章 对雷达信号的频率测量与频谱分析 图2-2 雷达信号频谱分析数字接收机的基本组成
第2章 对雷达信号的频率测量与频谱分析 ADC具有检测采样和盲采样两种工作方式。如果在ΩSF内对 视频包络信号直接进行门限检测能够满足灵敏度sf min的要求, 则可以利用包络的门限检测输出,将有检测信号存在时的中放输 出波形数据采集下来,送给数字信号处理机进行调制分析,同时 也可以对包络和门限检测信号进行tTOA、τPW、AP的测量,交付数 字信号处理。这种处理方法可以降低采集和处理的数据量,提高 信号分析的工作效率,也是大多数频谱分析数字接收机的实际工 作方式。 如果直接对脉冲包络信号的门限检测不能满足sf min的要求, 则ADC的信号采样和数字信号处理都是连续进行的;只有在经过 了连续、实时的信号处理以后,才能检测和判决是否存在有用信 号,然后进行相应的信号分析处理,这将极大地增加信号处理的
雷达第二章.
搜索雷达性能
WSR-88D/新一代 天气雷达 平 均 功 率 ( W ) (等效)天线直径(m)
搜索雷达性能
(等效)天线直径(m)
目录
• 简介 • 介绍雷方程 • 雷达方程的监视表 • 雷达损失 • 示例 • 总结
雷达方程的损耗
传输损耗:
天线罩 波导馈电 波导 循环 低通滤波器 旋转接头 天线效率 光束形状 扫描 量化 大气 场降解
λ,R—距离
t t—时间
S/N, L, 4π是无量纲的
检查等式中的以来关系是否有意义
增大距离和信噪比要求设备更好 减少σ和tt 要求设备更好 增大A和P使得雷达性能更好 减少噪声容限和损耗使得雷达性能更好 减小λ使得雷达性能更好
雷达方程和检测过程
雷达参数 发送功率 天线增益 频率脉冲宽度 波形 目标波动统计 Swerling模型1,2,3,4……
雷达系统的简介
雷达公式
免责声明的支持和责任
• 这些视频课件和材料准备工作都是由美国政府的 一个机构在支持。无论是美国政府或任何机构,也 没有任何的员工和麻省理工学院的林肯实验室、 也没有任何的承包商,分包商,或员工,做出任何保 证,明示或暗示,或承担任何法律责任或者为了试验 的准确性、完整性、或任何信息的有用性,设备、 产品或过程披露,或代表,它的使用不会侵犯私有权 利。此处引用到任何特定的商业产品、过程或服 务的贸易名称、商标、制造商,或者不一定构成或 暗示其背书,建议,或由美国支持的政府,机构,或任 何承包商或分包商或麻省理工学院的林肯实验室。
举例—机场监控雷达
问题:下面列出来的雷达参数,可以在60海里范围内的小型飞机上得
到良好的信噪比。
雷达参数 范围 飞机横截面积 峰值功率 占空比 脉冲宽度 带宽 频率 天线旋转速度 脉冲重复速率 天线尺寸 方位波束宽度 系统噪声限度 60海里 1²m 1.4兆瓦 0.000525 .6毫秒 1.67兆赫兹 2800兆赫兹 12.8转每分 1200赫兹 4.9米宽2.7高 1.35º 950ºK
(整理)经典雷达资料-第1章 雷 达 概 论
第1章雷达概论Merrill I. Skolnik1.1 雷达描述雷达的基本概念相对简单,但在许多场合下它的实现并不容易。
它以辐射电磁能量并检测反射体(目标)反射的回波的方式工作。
回波信号的特性提供有关目标的信息。
通过测量辐射能量传播到目标并返回的时间可得到目标的距离。
目标的方位通过方向性天线(具有窄波束的天线)测量回波信号的到达角来确定。
如果是动目标,雷达能推导出目标的轨迹或航迹,并能预测它未来的位置。
动目标的多普勒效应使接收的回波信号产生频移,因而即使固定回波信号幅度比动目标回波信号幅度大多个数量级时,雷达也可根据频移将希望检测的动目标(如飞机)和不希望的固定目标(如地杂波和海杂波)区分开。
当雷达具有足够高的分辨力时,它能识别目标尺寸和形状的某些特性。
雷达可在距离上、角度上或这两方面都获得分辨力。
距离分辨力要求雷达具有大的带宽,角度分辨力要求大的电尺寸雷达天线。
在横向尺度上,雷达获得的分辨力通常不如其在距离上获得的分辨力高。
但是当目标的各个部分与雷达间存在相对运动时,可运用多普勒频率固有的分辨力来分辨目标的横向尺寸。
虽然人们通常认为SAR是通过在存储器中存储接收到的信号,从而产生大的“合成”天线,但是用于成像(如地形成像)的合成孔径雷达在横向尺度上获得的分辨力仍可解释为,是由于利用了多普勒频率分辨力的结果。
这两种观点(多普勒分辨力和合成天线)是等效的。
展望用于目标成像的ISAR所能得到的横向分辨力的途径,理所当然应该是多普勒频率分辨力。
雷达是一种有源装置,它有自己的发射机而不像大多数光学和红外传感器那样依赖于外界的辐射。
在任何气象条件下,雷达都能探测或远或近的小目标,并精确测量它们的距离,这是雷达和其他传感器相比具有的主要优势。
雷达原理已在几兆赫兹(高频或电磁频谱的高频端)到远在光谱区外(激光雷达)的频率范围内得到应用。
这范围内的频率比高达109:1。
在如此宽的频率范围内,为实现雷达功能而应用的具体技术差别巨大,但是基本原理是相同的。
雷达复习资料
只与侦察机定向天线的扫描有关。输助支路B不仅能够消除雷
达天线扫描对测向的影响也能够消除发射信号起伏的影响,还
能用于旁瓣匿影。只有当A支路信号电平高于B支路信号电平
时才进行测向处理。
13、(p53)多波束测向技术的基本原理(罗特曼透镜)
为了清除由于雷达天线扫描等因素引起的信号幅度起伏对角度测量的影响,可以增加一个参考支路,它采用无方向性天线,对定向支路中的信号起伏进行对消处理。假设Fr(t),Fa(t)分别为侦察天线和雷达天线的扫描函数,A(t)为脉冲包络函数,则两支路收到的信号分别为Sa(t)=Fa(t)Fr(t)A(t)cosωt;Sb(t)=Fa(t)A(t)cosωt
17、对雷达旁瓣信号的侦察
一般雷达天线主瓣很窄,又处于空间搜索状态,侦察机接收到雷达天线主瓣的辐射信号概率很低,往往需要较长时间,通过提高侦察系统灵敏度,实现对雷达天线旁瓣信号的侦收。旁瓣侦察的作用距离为Rr=[PtGsaveGrλ²/(4π)²Prmin10°`]½Gsave是雷达天线的平均旁瓣增益。实现旁瓣侦察时,侦察接收机的灵敏度需要提高35-40dB
现代测频技术的分类(p15-p16)
2、(p19)射频调谐晶体视频接收机
检波器视放
微波预选器
3、(P19)频率搜索形式:连续搜索(分为单程搜索和双程搜索),步进搜索
4、(P20)频率慢速可靠搜索
Tf≤τn=ZnTr(τn为脉冲群宽度)
满足f2-f1≤(Zn/Z)△fr公式的搜索概率为1,故称为可靠搜索,Z为满足处理机所需的脉冲个数,Tr为脉冲重复周期。频率快速可靠搜索(它与慢速可靠搜索一样,都为全概率搜索)。在脉冲宽度τ内,要搜索完整个侦察频段,即Tf≤τ,故搜索速度应满的扫频速度不宜过大,否则会引起输出幅度的严重下降,导致接收机灵敏度降低
雷达成像技术(保铮word版)-第二章-距离高分辨和一维距离像
第二章距离高分辨和一维距离像雷达采用了宽频带信号后,距离分辨率可大大提高,这时从一般目标(如飞机等)接收到的已不再是“点”回波,而是沿距离分布开的一维距离像。
雷达回波的性质可以用线性系统来描述,输入是发射脉冲,通过系统(目标)的作用,输出雷达回波。
系统的特性通常用冲激响应(或称分布函数)表示,从发射波形与冲激响应的卷积可得到雷达回波的波形。
严格分析和计算目标的冲激响应是比较复杂的,要用到较深的电磁场理论,不属于本书的范围。
简单地说,雷达电波作用的目标的一些部件对波前会有后向散射,当一些平板部分面向雷达时还会有后向镜面反射;这些是雷达回波的主要部分;此外还有谐振波和爬行波等。
因此,目标的冲激响应(分布函数)可以用散射点模型近似,即目标可用一系列面向雷达的散射点表示,这些散射点位于后向散射较强的部位。
由于谐振波和爬行波的滞后效应,有时也会有少数散射点在目标本体之外。
如上所述,目标的散射点模型显然与雷达的视线向有关,例如当飞机的平板机身与雷达射线垂直时有很强的后向镜面反射,而在偏离不大的角度后,镜向反射射向它方,不为雷达所接收。
目标的雷达散射点模型随视角的变化而缓慢改变,且与雷达波长有关,分析和实验结果表明,在视角变化约10°的范围里,可认为散射点在目标上的位置和强度近似不变。
顺便提一下,前面曾提到微波雷达对目标作ISAR成像,目标须转动3°左右,在分析时用散射点模型是合适的。
虽然目标的散射点模型随视角快得多。
可以想像到,一维距离像是三维分布散射点子回波之和,在平面波的条件下,相当三维子回波以向量和的方式在雷达射线上的投影,即相同距离单元里的子回波作向量相加。
我们知道,雷达对目标视角的微小变化,会使同一距离单元内而横向位置不同散射点的径向距离差改变,从而使两者子回波的相位差可能显著变化。
以波长3厘米为例,若两散射点的横距为10米,当目标转动0.05°时,两者到雷达的径向距离差变化为1厘米,它们子回波的相位差改变240°!由此可见,目标一维距离像中尖峰的位置随视角缓慢变化(由于散射点模型缓变),而尖峰的振幅可能是快变的(当相应距离单元中有多个散射点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章雷达距离估算Lamont V. Blake2.1 引言对于自由空间中特定目标的检测(该目标的检测受热噪声的限制),雷达最大作用距离估算的基本物理机理从雷达出现起就为人所熟知。
本章的术语自由空间指以雷达为球心、半径远远延伸到目标之外的球形空域内仅有雷达和目标。
本章采用的自由空间定义对具体的雷达而言是相当准确的,而通用定义是冗长的,且用处不大。
该定义还暗示,自由空间内可被检测的雷达频率电磁波除了来源于雷达自身的辐射外,仅来自于自然界热或准热噪声源,如2.5节所述。
尽管上述的条件是不可能完全实现的,但是它接近许多雷达的实际环境。
在许多非自由空间和完全非热噪声的背景下,估算问题要复杂得多。
这些在早期分析中没有考虑到的复杂性也是由接收系统电路的信号和噪声关系的改变(信号处理)引起的。
在本章中将给出自由空间方程,讨论基本的信号处理,以及考虑一些十分重要的非自由空间环境下的方程和信号处理。
另外还将考虑一些常见非热噪声的影响。
虽然不可能涉及所有可能的雷达环境,但是本章所叙述的方法将简要地说明那些适合于未考虑到的环境和条件的必然方法的一般性质。
一些要求采用特定分析的专用雷达将在后面章节中叙述。
定义雷达作用距离方程包含许多雷达系统及其环境的参数,其中一些参数的定义是相互依赖的。
正如2.3节所讨论的,某些定义含有人为因素,不同作者使用不同的作用距离方程因子定义是常见的。
当然,若存在被广泛接受的定义,则采用该定义。
但更重要的是,虽然某些定义允许一定的随意性,但是一旦一个距离方程因子采用特定的定义,则一个或更多的其他因子的定义将不再具有随意性。
例如,脉冲雷达的脉冲功率和脉冲宽度的定义各自均具有很大的随意性,但是一旦任何一个定义被确定,那么另一个定义将由限制条件决定,即脉冲功率与脉冲宽度的乘积必须等于脉冲能量。
在本章中将给出一套定义,该定义遵循上述准则,并已被权威组织采纳。
约定由于传播途径因子和其他距离方程因子的变化很大,因此在这些因子的具体值未知的标准条件下,某些约定是估算作用距离所必需的。
通常采用的一种约定是标准假设,这种假设实际上并不一定能遇到,但却在所能遇到的条件范围内,尤其是在条件范围的中间附近,这种假设是可行的。
就像传统的地球物理假设一样,为计算基于地球曲率的某些地球环境效应,假设地球是一个半径为6370km的理想球体。
约定的重要性在于,它提供了比较不同雷达系统的共同基础。
约定是典型条件的代表,就这一点来说,它们也可用于估算实际的探测距离。
本章将使用被广泛采用的约定,而当所需的约定不存在时,将提出另外适当的约定。
距离估算的基本观点由前面的讨论可确知,基于约定假设的作用距离估算并不要求用严格的实验结果来验证。
这一点将由噪声的统计特性进一步证实,而噪声通常是信号检测过程的限制因素。
换句话说,即使所有的环境因素都精确已知,距离估算结果也不可能由一次实验完全证实。
统计估算结果是指多次实验结果的平均值。
所以,雷达距离估算并不是一门严格学科。
(实际上,量子力学的教训表明,从严格的意义上讲不存在所谓的严格学科。
)然而,雷达作用距离的估算仍然是有用的。
尽管从绝对意义上讲,估算是不精确的,但它可以得到不同设计方案预期性能方面有意义的比较结果,并且如果雷达参数或环境条件发生变化时,距离估算可以显示预期的距离性能的相对变化。
因此,距离估算是系统设计者强有力的工具。
估算的作用距离是雷达系统的一个质量指标。
估算的距离并不是惟一指标,其他的重要指标还有目标位置测量精度、数据率、可靠性、可维修性、体积、重量和价格。
虽然从绝对意义上说,估算是不精确的,但是估算距离的误差可以小到足以体现在一般环境下雷达的预期性能。
2.10节将详细讨论估算精度问题。
由于在工作状态下,雷达方程的许多因子是不可能确知的,因而试图精确估计距离方程各因子(精确到1dB以下)是不必要的。
这个观点虽有些道理,但如果方程中每个因子的精度都发生细微的下降,那么方程的整个精度将大大降低。
因此,在估算距离时要尽可能精确地估算各个因子。
0.1dB的精度是合适的,尽管并不是所有的因子都能达到该精度。
历史回顾第一篇广泛论述雷达作用距离估算的文献可能是Omberg和Norton的文献[1]。
它于1943年作为美国陆军通信部队报告第一次发表。
这篇文章给出了较详细的距离方程,并且在当时知识局限的情况下,还包含了诸如多路径干涉和最小可检测信号等一些疑难的参数估算资料。
文章中,有关信号检测过程的讨论是假设用阴极射线管显示器来观察的。
假设天线“照射”着目标,而且不考虑信号检测的统计特性。
1943年D. O. North[2]在以军事安全密级发表的经典报告中简述了统计信号检测的基础理论。
(这篇报告直到1963年才在《IEEE汇刊》上再次发表。
)他提出现在称为检测概率和虚警概率的概念,并阐明脉冲信号检测的积累作用。
这篇报告还提出匹配滤波器的概念。
在1963年之前人们对匹配滤波器的作用就有一些认识。
但除了概念之外,匹配滤波器对信号检测理论的作用,直到20年后重新发表这篇文章时才得到雷达工程师的重视。
在1948年首次发表,并于1960年在IRE信息论汇刊上再次发表的一篇著名报告[3]中,J. I. Marcum借助于机器运算,并参考North的报告,发展了信号检测的统计理论。
他将检测概率视做与信噪比相关的距离参数的函数,对于不同的脉冲积累数和不同的虚警参数的值(他记为虚警数)进行计算。
他通过这种计算方法来研究不同积累数、积累形式、不同的检波器和显示器损耗(空间坐标“重叠”引起的)的影响,以及各种其他影响。
在假设接收信号与距离的4次方成反比的条件下,Marcum的结论给出检测概率曲线图,图中检测概率是实际作用距离与信噪比为1时的作用距离之比的函数。
由于上述的比例关系只有当目标在自由空间中时才成立,因此Marcum 的结论有时应用起来很复杂。
Marcum 仅仅考虑了稳定信号(即在观察周期内目标截面积不变)情况,并且他的大部分结论都是在假设使用平方律检波器的情况下推出的。
Robertson [4]曾发表过更详细也更有用的稳定信号的结论,该结论适用于普遍采用的线性检波器。
平方律检波器的结论也是有用的,因为它们和线性检波器的结论差别很小。
Swerling 发展了Marcum 的结论,他考虑了起伏信号 [5]。
他的文章在1960年的IRE 信息论汇刊上再次发表。
Fehlner [6]重新计算了Marcum 和Swerling 的结论,给出了更适用的特性曲线(取信噪功率比为横坐标)。
Kaplan [7],Schwartz [8],Heidbreder 和Mitchell 等人[9],以及Bates [10]进一步研究了起伏信号的问题。
1956年,Hall [11]在一本关于雷达作用距离估算的综合性著作中进一步讨论了检测概率、虚警概率、检波前和检波后积累的相对效果、天线波束扫描影响等问题。
雷达方程用有效接收信号功率在理想条件下(匹配滤波器)使用的情况来表示,用损耗因子表示与理想条件下的偏差。
1961年,Blake [12] 运用以下一些最新的进展,包括系统噪声温度的计算、大气吸收、根据大气折射指数模型绘制威力图的方法及多路径干涉的计算,发表文章进一步阐述了距离估算问题。
这一章是根据美国海军研究实验室(NRL )的报告[13]和一本给出更多细节的专著[14]写成的。
从事距离估算研究还有许多其他人,不胜枚举。
这里只概略地举出一些主要文章。
MIT 辐射实验室丛书第13和24卷(Kerr [15],Lawson 和Uhlenbeck [16]主编)列举了大量的有关文章。
本章引用以上两卷中的许多内容。
2.2 距离方程雷达传播方程下式是由Kerr [15]给出的方程称为单基地雷达(发射机和接收机同基地)传播方程。
R F F G G P P r t r t tr 43222)4(π=λσ (2.1) 式中,P r 为接收信号的功率(天线端);P t 为发射信号的功率(天线端);G t 为发射天线功率增益;G r 为接收天线功率增益;σ 为雷达目标截面积;λ为波长;F t 为从发射天线到目标的方向图传播因子;F r 为从目标到接收天线的方向图传播因子;R 为雷达到目标的距离。
这个方程与Kerr 所列的方程并不完全相同。
Kerr 假设发射和接收使用同一天线,因而G t G r 成为G 2,F t 2F r 2成为F 4。
在上述方程中惟一要解释的是传播因子F t 和F r 。
F t 的定义为,目标位置处的场强E 与自由空间中天线波束最大增益方向上距雷达同样距离处的场强E 0之比。
F r 的定义与此类似。
这两个因子说明目标不在波束最大值方向上的情况(G t 和G r 是最大值方向上的增益)以及自由空间中不存在的各种传播增益和传播损耗。
最常见的影响是吸收、绕射、阻挡、某些折射效应和多路径干涉。
在自由空间中,当目标位于发射和接收天线波瓣图的最大值方向时,F r = F t = 1。
这些因子和方程中的其他因子将在2.3~2.7节中详细叙述。
最大作用距离方程式(2.1)不是距离方程,尽管也能写成4/13222)4(⎥⎥⎦⎤⎢⎢⎣⎡π=P F F G G P R r r t r t t λσ (2.2)式(2.2)表明,R 是在发射功率为P t ,接收回波功率为P r ,目标尺寸为σ 等确定的前提下得出的距离。
若在P r 和R 中加上下标,使之成为P r ,min 和R max ,则该式系指最大作用距离方程。
也就是说,当式(2.2)中P r 是最小可检测值时,相应的作用距离就是雷达的最大作用距离。
但是,这个最大作用距离方程只是个非常简单的式子,其用途有限。
为使方程更为有用,第一步是用更明确的表达式来代替P r 。
首先定义信噪功率比为P P N S nr = (2.3) 式中,P n 是接收系统的噪声功率,决定可检测到的最小值P r 。
依次,噪声功率能用接收系统噪声温度T s 来表示,即B T k P ns n = (2.4) 式中,k 为玻耳兹曼常数(1.380 658×10-23 Ws/K );B n 为接收机检波前滤波器的噪声带宽,单位为Hz 。
(这些参数在2.3和2.5节中有更完整的定义[17]。
)因此B T K N S P ns r )/(= (2.5) 把P t 定义为发射机的发射功率而非天线端的发射功率,如式(2.1)是较适宜的变换。
由于传输线的损耗,天线端的发射功率通常略小于发射机的发射功率。
当雷达设计师或生产者指定了发射机功率,实际的发射机输出功率是有意义的,因此要重新定义P t 。
根据这个定义,P t 必须用P t /L t 来代替。
其中,L t 是损耗因子,定义为发射机输出功率与实际传到天线端功率之比,因此,L t ≥1。