最新中考动点问题专题(教师讲义带答案)

合集下载

中考数学几何动点运动轨迹及最值专题讲义

中考数学几何动点运动轨迹及最值专题讲义

2020春中考数学几何动点运动轨迹及最值专题讲义一、动点运动轨迹——直线型(动点轨迹为一条直线,利用“垂线段最短”)Ⅰ.当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线;1.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为39(1,)44m m−−−(其中m为实数),当PM 的长最小时,m的值为__________.2.如图,在平面直角坐标系中,A(1,4),B(3,2),C(m,-4m+20),若OC恰好平分四边形...OACB....的面积,求点C的坐标.Ⅱ.当某一动点到某条直线的距离不变时,该动点的轨迹为直线;3.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为_________.【变式1】如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交边BC或CD于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为___________.ABDCEFPMABDCEFPMyxBAO【变式2】如图,在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,E 是AB 上的一个动点,连接PE ,过点P 作PE 的垂线,交BC 于点F ,连接EF ,设EF 的中点为G ,当点E 从点B 运动到点A 时,点G 移动的路径的长是_________.【变式3】在矩形ABCD 中,AB =4,AD =6,P 是AD 边的中点,点E 在AB 边上,EP 的延长线交射线CD于F 点,过点P 作PQ ⊥EF ,与射线BC 相交于点Q .(1)如图1,当点Q 在点C 时,试求AE 的长; (2)如图2,点G 为FQ 的中点,连结PG . ①当AE =1时,求PG 的长;②当点E 从点A 运动到点B 时,试直接写出线段PG 扫过的面积. 变式3图14.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB 同侧分别作等边△P AE 和等边△PBF ,M 为线段EF 的中点。

模型39 数轴上动点问题(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型39 数轴上动点问题(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.✮(4)数轴上两点间的距离公式:AB=X B-X A(即:右端点减左端点)✮(5)数轴上中点数公式:=+2(即:中点等于两端点相加除以2)例题精讲【例1】.如图,点A在数轴上表示的数为﹣3,点B表示的数为2,点P在数轴上表示的是整数,点P不与A、B重合,且PA+PB=5,则满足条件的P点表示的整数有___________.解:∵PA+PB=5,∴点P在A,B两点之间,A,B两点之间的整数有﹣2,﹣1,0,1,变式训练【变式1-1】.如图,点O为原点,A、B为数轴上两点,AB=15,且OA=2OB,点P从点B开始以每秒4个单位的速度向右运动,当点P开始运动时,点A、B分别以每秒5个单位和每秒2个单位的速度同时向右运动,设运动时间为t秒,若3AP+2OP﹣mBP的值在某段时间内不随着t的变化而变化,则m= 2.5或5.5.解:∵AB=15,OA=2OB,∴AO=AB=10,BO=AB=5,∴A点对应数为﹣10,B点对应数为5,设经过t秒,则AP==,OP=5+4t,BP=5+4t﹣(5+2t)=2t,当t≤15时,3AP+2OP﹣mBP=45﹣3t+10+8t﹣2mt=(5﹣2m)t+55,∴当5﹣2m=0,即m=2.5时,3AP+2OP﹣mBP的值在某段时间内不随着t的变化而变化,当t>15时,3AP+2OP﹣mBP=3t﹣45+10+8t﹣2mt=(11﹣2m)t﹣35,∴当11﹣2m=0,即m=5.5时,上式为定值﹣35,也不随t发生改变,故m为2.5或5.5.故答案为:2.5或5.5.【变式1-2】.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距46个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有47个、37个、10个整数点,请直接写出t1,t2的值.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=46,∴t=4,∴运动4秒,点M与点N相距46个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,由t=﹣8+6t可得t=1.6,当t<1.6时,点N在点P左侧,若MP=NP,则t﹣(﹣8+6t)=6+2t﹣t,解得t=(s);当t>1.6时,点N在点P右侧,若MP=NP,则﹣8+6t﹣t=6+2t﹣t,解得t=(s),∴运动s或s时,点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动①当t1=4s时,P在4,M在14,N在﹣32,再往前一点,MP之间的距离即包含10个整数点,NP之间有47个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣33时,此时N、M之间仍为47个整数点,若N点过了﹣33时,此时N、M之间为48个整数点故t2=+4=(s),∴t1,t2的值分别为4s,s.【例2】.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A 落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是点D.解:由图形可知,旋转一周,点B对应的数是1,点C对应的数是0,点D对应的数是﹣1,点E对应的数是﹣2,点F对应的点为﹣3,点A对应的点为﹣4,继续旋转,点B对应的点为﹣5,点C对应的点为﹣6.∵2023÷6=337…1,∴数轴上表示﹣2025的点与圆周上点D重合.故答案为:点D.变式训练【变式2-1】.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒4个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中一个点恰好是另外两点为端点的线段的一个中点,则运动时间为或或秒.解:由题知,P点对应的数为:﹣15+4t,Q点对应的数为:9+t,(1)当O为PQ中点时,根据题意得15﹣4t=9+t,解得t=,(2)当P是OQ的中点时,根据题意得2(4t﹣15)=9+t,解得t=,(3)当Q是OP的中点时,根据题意得2(9+t)=4t﹣15,解得t=,故答案为:或或.【变式2-2】.如图:在数轴上A点表示数﹣3,B点示数1,C点表示数9.(1)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(2)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动.①若t秒钟过后,A,B,C三点中恰有一点为另外两点的中点,求t值;②当点C在B点右侧时,是否存在常数m,使mBC﹣2AB的值为定值,若存在,求m的值,若不存在,请说明理由.解:(1)AB=9﹣(﹣3)=12,12÷2=6,AB的中点表示的数为:9﹣6=3,3﹣1=2,3+2=5,则点B与5表示的点重合;(2)①由题意可知,t秒时,A点所在的数为:﹣3﹣2t,B点所在的数为:1﹣t,C点所在的数为:9﹣4t,(i)若B为AC中点,则.∴t=1;(ii)若C为AB中点,则,∴t=4;(iii)若A为BC中点,则,∴t=16,∴综上,当t=1或4或16时,A,B,C三点中恰有一点为另外两点的中点;②假设存在.∵C在B右侧,B在A右侧,∴BC=9﹣4t﹣(1﹣t)=8﹣3t,AB=1﹣t﹣(﹣3﹣2t)=4+t,mBC﹣2AB=m(8﹣3t)﹣2(4+t)=8m﹣3mt﹣8﹣2t=8m﹣8﹣(3mt+2t)=8m﹣8﹣(3m+2)t,当3m+2=0即m=时,mBC﹣2AB=8×(﹣)﹣8=﹣为定值,∴存在常数m=﹣,使mBC﹣2AB的值为定值.1.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”“8cm”的刻度分别对应数轴上的是﹣3和x所表示的点,那么x等于()A.5B.6C.7D.8解:根据数轴可知:﹣3+8=5,故选:A.2.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2021次后,点B()A.对应的数是2019B.对应的数是2020C.对应的数是2021D.不对应任何数解:结合数轴,根据连续翻转可得出从原点开始,向右依次是A、B、C循环排列,2021次后共得出2022个顶点,∵2022÷3=674,∴最后一个点为C,∵最后一个点C是翻转了2021次后得到的,∴点C表示的数为2021,∴点B表示的数为2020,故选:B.3.在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.结合以上知识,下列说法中正确的个数是()①若|x﹣2022|=1,则x=2021或2023;②若|x﹣1|=|x+3|,则x=﹣1;③若x>y,则|x﹣2|>|y﹣2|;④关于x的方程|x+1|+|x﹣2|=3有无数个解.A.1B.2C.3D.4解:①若|x﹣2022|=1,可得x﹣2022=±1,则则x=2021或2023;所以①说法正确;②若|x﹣1|=|x+3|,几何意义是数轴到表示数1的点和表示数3的点的距离相等的点,即可得出x=﹣1;所以②说法正确;③当y<x<0时,则|x﹣2|<|y﹣2|,所以③说法不正确;④因为|x+1|+|x﹣2|=3的几何意义是到数轴上表示﹣1的点与表示2的点的距离和等于3的点,即﹣1≤x≤2时满足题意,所以有无数个解,故④说法正确.故选:C.4.数轴上点A表示的数是﹣3,把点A向右移动5个单位,再向左移动7个单位到A′,则A′表示的数是﹣5.解:依题意得:﹣3+5﹣7=﹣5,即则A′表示的数是﹣5.故答案为:﹣5.5.数轴上点A表示﹣8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O 和点B,C处各折一下,得到一条“折线数轴”.在“折线数轴”上,动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动.其中一点到达终点时,两点都停止运动.设运动的时间为t秒,t=4.4时,M、N两点相遇(结果化为小数).解:当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,∵M、N两点相遇时,M、N表示的数相同,∴2t﹣4=18﹣3t,解得:t==4.4,故答案为:4.4.6.如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分成①②③④四部分,点A、B、C对应的数分别是a、b、c,且ab<0.(1)原点在第②部分(填序号);(2)化简式子:|a﹣b|﹣|c﹣a|﹣|a|;(3)若|c﹣5|+(a+1)2=0,且BC=2AB,求点B表示的数.解:(1)∵点A、B、C对应的数分别是a、b、c,且ab<0,∴a<0,b>0,∴原点在点A和点B之间,又∵从左到右的点A、B、C把数轴分成①②③④四部分,∴原点在第②部分;故答案为:②(2)∵a<0,b>0,∴a﹣b<0,c>0,∴c﹣a>0,∴|a﹣b|﹣|c﹣a|﹣|a|=b﹣a﹣(c﹣a)﹣(﹣a)=b﹣a﹣c+a+a=a+b﹣c;(3)∵|c﹣5|+(a+1)2=0,又∵|c﹣5|≥0,(a+1)2≥0,∴c﹣5=0,a+1=0,∴c=5,a=﹣1,∵B对应的数是b,5>b>﹣1,∴BC=5﹣b,AB=b﹣(﹣1)=b+1,又∵BC=2AB,∴5﹣b=2×(b+1),即3b=3,解得:b=1,∴点B表示的数为1.7.已知b是最小的正整数,且(c﹣5)2与|a+b|互为相反数.(1)填空:a=﹣1,b=1,c=5;(2)若P为一动点,其对应的数为x,点P在0和2表示的点之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程);(3)如图,a,b,c在数轴上所对应的点分别为A,B,C,在(1)的条件下,若点A 以1个单位长度/s的速度向左运动,同时,点B和点C分别以2个单位长度/s和5个单位长度/s的速度向右运动.ts后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)依题意得,b=1,c﹣5=0,a+b=0,解得a=﹣1,c=5.故答案为:﹣1,1,5;(2)点P在0和2表示的点之间运动,即0≤x≤2时,当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,原式=x+1+x﹣1+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0,原式=x+1﹣x+1+2x+10=2x+12.综上可知,|x+1|﹣|x﹣1|+2|x+5|=4x+10或2x+12;(3)不变,理由:t秒后A点表示的数是﹣1﹣t,B点表示的数是1+2t,C的表示的数是5+5t,∵AB=1+2t﹣(﹣1﹣t)=3t+2,BC=5+5t﹣(1+2t)=3t+4,∴BC﹣AB=2,∴BC﹣AB的值不变,是2.8.数轴上有A、B、C三点,如图1,点A、B表示的数分别为m、n(m<n),点C在点B 的右侧,AC﹣AB=2.(1)若m=﹣8,n=2,点D是AC的中点.①则点D表示的数为﹣2.②如图2,线段EF=a(E在F的左侧,a>0),线段EF从A点出发,以1个单位每秒的速度向B点运动(点F不与B点重合),点M是EC的中点,N是BF的中点,在EF 运动过程中,MN的长度始终为1,求a的值;(2)若n﹣m>2,点D是AC的中点,若AD+3BD=4,试求线段AB的长.解:(1)①∵m=﹣8,n=2,∴AB=2﹣(﹣8)=10.∵AC﹣AB=2,∴AC=12,∴点C对应的数字为4,∵点D是AC的中点,∴CD=AC=6,设点D表示的数为x,∴4﹣x=6,∴x=﹣2.∴点D表示的数为﹣2.故答案为:﹣2;②设EF运动的时间为t秒,则点E对应的数字为t﹣8,点F对应的数字为t﹣8+a,∵点M是EC的中点,N是BF的中点,∴点M对应的数字为=,点N对应的数字为=,∵MN=1,∴||=1.解得:a=0或a=4,∵a>0,∴a=4;(2)设点C对应的数字为c,点D对应的是为d,∵点A、B表示的数分别为m、n(m<n),点C在点B的右侧,AC﹣AB=2,∴c=n+2,AB=n﹣m.∵点D是AC的中点,∴d=,∴AD=m=,BD=n﹣=,∵AD+3BD=4,∴=4,解得:n﹣m=3.∴AB=3.9.如图,数轴上点A,B分别表示数a,b,其中a<0,b>0.(1)若a=﹣7,b=3,求线段AB的长度及线段AB的中点C表示的数c;(2)该数轴上有另一点D表示数d.①若d=2,点D在点B的左侧,且AB=5BD.求整式2a+8b+2023的值;②若d=﹣2,且AB=5BD,能否求整式2a+8b+2023的值?若能,求出该值;若不能,说明理由.解:(1)∵a=﹣7,b=3,∴线段AB的中点C表示的数c=3﹣×(|﹣7|+3)=3﹣×10=3﹣5=﹣2;(2)①∵d=2,点D在点B的左侧,且AB=5BD,∴AB=b﹣a,BD=b﹣2,∴b﹣a=5(b﹣2),∴a+4b=10,∴2a+8b+2023=2(a+4b)+2023=2×10+2023=2043;②能求出代数式的值,∵d=﹣2,点D在点B的左侧,且AB=5BD,∴AB=b﹣a,BD=b+2,∴b﹣a=5(b+2),∴a+4b=﹣10,∴2a+8b+2023=2(a+4b)+2023=2×(﹣10)+2023=﹣20+2023=2003;10.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点4.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为﹣4.5和 3.5,B,C两点间的距离是8;(2)若点A表示的整数为x,则当x为﹣2时,|x+6|与|x﹣2|的值相等;(3)要使代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.解:(1)4.5的相反数是﹣4.5,即点B表示的数为﹣4.5;点C表示的数为5﹣1.5=3.5;B,C两点间的距离是3.5﹣(﹣4.5)=3.5+4.5=8;故答案为:﹣4.5,3.5,8;(2)∵|x+6|与|x﹣2|的值相等,∴x+6=x﹣2此种情况等式不成立,或x+6=﹣(x﹣2),x=﹣2,∴x=﹣2时,|x+6|与|x﹣2|的值相等;故答案为:﹣2;(3)∵|x+1|+|x﹣2|值最小,∴在数轴上可以看作表示x的到﹣1的距离与到2的距离和最小,∴数x只能在﹣1与2之间,包括﹣1与2两个端点,∴﹣1≤x≤2.故答案为:﹣1≤x≤2.11.如图,已知点O为数轴的原点,点A、B、C、D在数轴上,其中A、B两点对应的数分别为﹣1、3.(1)填空:线段AB的长度AB=4;(2)若点A是BC的中点,点D在点A的右侧,且OD=AC,点P在线段CD上运动.问:该数轴上是否存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化?(3)若点P以1个单位/秒的速度从点O向右运动,同时点E从点A以5个单位/秒的速度向左运动、点F从点B以20个单位/秒的速度向右运动,M、N分点别是PE、OF的中点.点P、E、F的运动过程中,的值是否发生变化?请说明理由.解:(1)∵A、B两点对应的数分别为﹣1、3,∴OA=1,OB=3,∴AB=OA+OB=4.故答案为:4;(2)数轴上存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化.理由:A、B两点对应的数分别为﹣1、3,∴OA=1,OB=3,∵点A是BC的中点,∴AC=AB=4.∴OC=AC+OA=5,∴C点对应的数为﹣5.又∵OD=AC,点D在点A的右侧,∴D点对应的数为4.设P点对应的数为x,①P点在射线CA上时,PA=﹣1﹣x,PB=3﹣x,∴PA+PB=﹣1﹣x+(3﹣x)=2﹣2x,∴PA+PB的值随着点P的运动而发生变化;②P点在线段AB上时,PA=x﹣(﹣1)=x+1,PB=3﹣x,∴PA+PB=x+1+(3﹣x)=4,∴PA+PB的值随着点P的运动没有发生变化;③P点在射线BD上时,PA=x﹣(﹣1)=x+1,PB=x﹣3,∴PA+PB=x+1+(x﹣3)=2x﹣2,∴PA+PB的值随着点P的运动而发生变化.综上,P点在线段AB上时,PA+PB的值没有发生变化,∴数轴上存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化;(3)在运动过程中,的值不发生变化.理由:设运动时间为t 分钟,则OP =t ,OE =5t +1,OF =20t +3,∴EF =OE +OF =25t +4,∵M 、N 分别是PE 、OF 的中点,∴EM =PM =PE =(OP +OE )=3t +,ON =OF =10t +,∴OM =OE ﹣EM =5t +1﹣(3t +)=2t +,∴MN =OM +ON =12t +2,∴.∴在运动过程中,的值不发生变化.12.如图,在数轴上,点O 表示原点,点A 表示的数为﹣1,对于数轴上任意一点P (不与点A 点O 重合),线段PO 与线段PA 的长度之比记作k (p ),即,我们称k (p )为点P 的特征值,例如:点P 表示的数为1,因为PO =1,PA =2,所以.(1)当点P 为AO 的中点时,则k (p )=1;(2)若k (p )=2,求点P 表示的数;(3)若点P 表示的数为p ,且满足p =2n ﹣1,(其中n 为正整数,且1≤n ≤7),求所有满足条件的k (p )的和.解:(1)由题意可知,当点P 为AO 的中点时点P 表示的数为,,∴,故答案为:1;(2)设点P 表示的数为x ,则PO =|x |,PA =|x ﹣(﹣1)|=|x +1|,∵k (p )=2,∴,即PO =2PA ,∴|x|=2|x+1|,∴x=2(x+1)或x=﹣2(x+1),解得:x=﹣2或;故:点P表示的数﹣2或;(3)点P表示的数为p,且满足p=2n﹣1,(其中n为正整数,且1≤n≤7),p=2n﹣1>0,此时:PO=p,PA=p﹣(﹣1)=p+1,当p=2n﹣1时∵1≤n≤7,且n为正整数,则所有满足条件的k的值分别为:(p),故所有满足条件的k的和为:=(p),令,则,②﹣①得:,∴==.13.把一根小木排放在数轴上,木棒左端点与点A重合,右端点与点B重合,数轴的单位长度为1cm,如图所示.(1)若将木棒沿数轴向右移动,当木棒的左端点移动到点B处时、它的右端点在数轴上对应的数为20;若将木棒沿数轴向左移动时,当它的右端点移动到点A处时,木棒左端点在数轴上对应的数为5,由此可得木棒的长为5cm;我们把这个模型记为“木捧摸型”;(2)在(1)的条件下,已知点C表示的数为﹣2.若木棒在移动过程中,当木棒的左端点与点C相距3cm时,求木棒的右端点与点A的距离;(3)请根据(1)的“木棒模型”解决下列问题.某一天,小字问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要41年才出生;你若是我现在这么大,我就有124岁了,世界级老寿星了,哈哈!”请你画出“木棒模型”示意图,求出爷爷现在的年龄.解:(1)由图观察可知,三根木棒长是20﹣5=15(cm),则此木棒长为:15÷3=5(cm);故答案为:5cm;(2)由题可知,点A所表示的数是5+5=10,∵木棒的左端点与点C相距3cm,点C表示的数为﹣2,当左端点在点C右侧3cm时,此时木棒左端点表示的数为:﹣2+3=1,右端点表示的数为;1+5=6,木棒的右端点与A的距离为:10﹣6=4,当左端点在点C左侧3cm时,此时木棒左端点表示的数为:﹣2﹣3=﹣5,木棒的右端点表示的数为:﹣5+5=0,木棒的右端点与点A的距离=10﹣0=10,∴木棒的右端点与点A的距离为4或10;(3)由图可知,把小红与爷爷的年龄差看作木棒AB,类似爷爷是小红现在年龄时看作当B点移动到A点时,此时A点所对应的数位﹣41,因为当A点移动到B点时,此时B点所对应的数为124,所以爷爷比小红大[124﹣(﹣41)]÷3=55(岁),所以爷爷的年龄为124﹣55=69(岁),答:爷爷现在的年龄是69岁.14.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C 所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣1,点B表示的数2,下列各数:,0,1,4,5所对应的点分别为C1,C2,C3,C4,C5,其中是点A,B的“联盟点”的是C2,C3,C5;(2)点A表示的数是﹣1,点B表示的数是3,P是数轴上的一个动点:①若点P在线段AB上,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点A的左侧,点P、A、B中有一个点恰好是其它两个点的“联盟点”,求出此时点P表示的数.解:(1)∵AC1═﹣﹣(﹣1)═,BC1═2﹣(﹣)═,∴2AC1≠BC1,∴C1不是A,B的“联盟点”.∵AC2═0﹣(﹣1)═1,BC2=2﹣0=2,∴2AC2═BC2,∴C2是A,B的“联盟点”.∵AC3═1﹣(﹣1)=2,BC3═2﹣1=1,∴AC3═2BC3,∴C3是A,B的“联盟点”.∵AC4═4﹣(﹣1)=5,BC4═4﹣2=2,∴AC4≠BC4,∴C4不是A,B的“联盟点”.∵AC5═5﹣(﹣1)=6,BC5═5﹣2=3,∴AC5═2BC5,∴C5是A,B的“联盟点”.综合上述,是点A,B的“联盟点”的是C2,C3,C5.(2)解;设点P表示的数为x,①∵P在线段AB上,∴AP=x+1,BP=3﹣x,当AP=2BP时,有x+1=2(3﹣x),解得x=,当BP=2AP时,有3﹣x=2(x+1),解得x=,综上所述,点P表示的数为,.②由题意得,AB=4,∵P在A的左侧,∴AP=﹣1﹣x,BP=3﹣x,当点A为B,P的“联盟点”时,若AB=2AP,则有4=2(﹣1﹣x),解得x=﹣3,若AP=2AB,则有﹣1﹣x=2×4,解得x=﹣9,当点B为A,P的“联盟点”时,2AB=BP,则有2×4=3﹣x,解得x=﹣5,当点P为A,B的“联盟点”时,BP=2PA,则有3﹣x=2(﹣1﹣x),解得x=﹣5,综上所述,P表示的数为﹣9,﹣3,﹣5.15.如图,点A,O,B,D在同一条直线l上,点B在点A的右侧,AB=6,OB=2,点C 是AB的中点,如图画数轴.(1)若点O是数轴的原点,则点B表示的数是2,点C表示的数是﹣1;(2)若点O是数轴的原点时,D点表示的数为x,且AD=5,求x;(3)若点D是数轴的原点,点D在点A的左侧,点A表示的数为m,且A,B,C,O 所表示的数之和等于21,求m;(4)当O是数轴的原点,动点E,F分别从A,B出发,相向而行,点E的运动速度是每秒2个单位长度,点F的运动速度是每秒1个单位长度,当EF=3时,求点A,B,E,F表示的数之和.解;(1)点B在点A的右侧,OB=2,∴点B表示的数是﹣2,故答案为:2;AB=6,点C是AB的中点,∴BC=3,∴点C表示的数是2﹣3=﹣1,故答案为:﹣1;(2)AB=6,点B在点A的右侧,点A表示的数是﹣4,AD=|﹣4﹣x|=5,x=1或x=﹣9;(3)若点D是数轴的原点,点D在点A的左侧,点A表示的数为m,∵AB=6,C是AB的中点,OB=2,∴AC=3,AO=4,∴点O表示的数是m+4,点C表示的数是m+3,点B表示的数是m+6,m+(m+6)+(m+3)+(m+4)=21,解得m=2;(4)设运动时间为t,据题意得:6﹣2t﹣t=3,解得t=1,AE=2,BF=1,点E表示的数是﹣2,点F表示的数是1,点A,B,E,F表示的数之和为:﹣4+2+(﹣2)+1=﹣3,16.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,a,c满足|a+4|+(c﹣2)2=0,b是最大的负整数.(1)a=﹣4,b=﹣1,c=2.(2)若将数轴折叠,使得点A与点C重合,则点B与数﹣1表示的点重合;(3)点A,B,C开始在数轴上运动,若点A和点B分别以每秒0.4个单位长度和0.3个单位长度的速度向左运动,同时点C以每秒0.2个单位长度的速度向左运动,点C到达原点后立即以原速度向右运动,运动时间为t秒,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,请问:5AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出5AB﹣BC的值.解:(1)∵|a+4|+(c﹣2)2=0,b是最大的负整数,a=﹣4,b=﹣1,c=2,故答案为:﹣4,﹣1,2;(2)AB=﹣1﹣(﹣4)=3,AC=2﹣(﹣4)=6,点B为AC的中点,故将数轴折叠,使得点A与点C重合,则点B与自身重合,故答案为:﹣1;(3)AB=3+0.4t=0.3t=3+0.1t,当C运动到原点时,t=2÷0.2=10(秒),点B运动到点A的位置,当t≤10秒时,BC=3+0.3t﹣0.2t=3+0.1t,5AB﹣B=5(3+0.1t)﹣(3+0.1t)=15+0.5t﹣3﹣0.1t=12+0.4t,5AB﹣BC的值随时间的变化而变化;当t>10时,BC=4+0.3t+0.2t=4+0.5t,5AB﹣BC=5(3+0.1t)﹣(4+0.5t)=15+0.5t﹣4﹣0.5t=11.这时5AB﹣BC的值不变.17.定义:对于数轴上的三点,若其中一个点与其他两个点的距离恰好满足2倍的数量关系.如下图,数轴上点A,B,C所表示的数分别为1,3,4,此时点B就是点A,C的一个“关联点”.(1)写出点A,C的其他三个“关联点”所表示的数:﹣2、2、7.(2)若点M表示数﹣2,点N表示数4,数﹣8,﹣6,0,2,10所对应的点分别是C1,C2,C3,C4,C5,其中不是点M,N的“关联点”是点C2.(3)若点M表示的数是﹣3,点N表示的数是10,点P为数轴上的一个动点.①若点P在点N左侧,且点P是点M,N的“关联点”,求此时点P表示的数.②若点P在点N右侧,且点P,M,N中,有一个点恰好是另外两个点的“关联点”,求此时点P表示的数.解:(1)2﹣1=1,4﹣2=2,2是A,C的一个“关联点”,设x是A,C的一个“关联点”,x﹣1=2(x﹣4)解得x=7,设y是A,C的一个“关联点”,2(1﹣y)=4﹣y解得y=﹣2,A,C的其他三个“关联点”所表示的数为:﹣2、2、7,故答案为:﹣2、2、7,(2)∵﹣2﹣(﹣8)=6,4﹣(﹣8)=12,∴C1是关联点,∵﹣2﹣(﹣6)=4,4﹣(﹣6)=10,∴C2不是关联点,∵0﹣(﹣2)=2,4﹣0=4,∴C3是关联点,∵2﹣(﹣2)=4,4﹣2=2,∴C4是关联点,∵10﹣(﹣2)=12,10﹣4=6,∴C5是关联点,故答案为:C2.(3)①若点P在点N左侧且在M的右侧,设点P表示的数为x,当2(x+3)=10﹣x解得,当x+3=2(10﹣x)解得,若点P在M点左侧,设点P表示的数为x,∴2(﹣3﹣x)=10﹣x解得x=﹣16,综上所述:P表示的数为:;②若点P在点N右侧,设点P表示的数为x,当PN=2MN时,则2×13=x﹣10解得x=36,当MN=2PN时,则13=2×(x﹣10)解得,当MP=2MN时,则x+3=2×13解得x=23,当MP=2PN时,则x+3=2×(x﹣10)解得x=23,综上所述:P表示的数为:,23.36.18.[知识背景]:数轴上,点A,点B表示的数为a,b,则A,B两点的距离表示为AB=|a﹣b|.线段AB的中点P表示的数为.[知识运用]:已知数轴上A,B两点对应的数分别为a和b,且(a﹣4)2+|b﹣2|=0,P 为数轴上一动点,对应的数为x.(1)a=4,b=2;(2)若点P为线段AB的中点,则P点对应的数x为3,若点B为线段AP的中点,则P点对应的数x为0;(3)若点A、点B同时从图中位置在数轴上向左运动,点A的速度为每秒1个单位长度,点B的速度为每秒3个单位长度,则经过122秒点B追上点A;(4)若点A、点B同时从图中位置在数轴上向左运动,它们的速度都为每秒1个单位长度,与此同时点P从表示﹣16的点处以每秒2个单位长度的速度在数轴上向右运动.经过多长时间后,点A、点B、点P三点中,其中一点是另外两点组成的线段的中点?解:(1)∵(a﹣4)2+|b﹣2|=0,∴a﹣4=0,b﹣2=0,∴a=4,b=2.故答案为4、2.(2)点A,B表示的数分别为4,2,P对应数为x,若点P为线段AB的中点,则P点对应的数x==3,若B为线段AP的中点时,则=2,解得x=0.故答案为1,0;(3)解:设经过x秒点B追上点A,(3﹣1)x=4﹣2,2x=2,x=1,答:经过1秒点B追上点A.(4)经过t秒后,点A,点B,点P三点中其中一点是另外两点的中点,t秒后,点A的位置为:4﹣t,点B的位置为:2﹣t,点P的位置为:﹣16+2t,当点A为PB的中点时,则有,2×(4﹣t)=2﹣t﹣16+2t,解得:t=,当点B为PA的中点时,则有,2×(2﹣t)=4﹣t﹣16+2t,解得:t=,当点P为BA的中点时,则有,2×(﹣16+2t)=4﹣t+2﹣t,解得:t=,答:经过秒,秒,秒后,点A,点B,点P三点中其中一点是另外两点的中点.故答案为:秒,秒,秒.19.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和3的两点之间的距离是2.②数轴上表示﹣1和﹣4的两点之间的距离是3.③数轴上表示﹣3和5的两点之间的距离是8.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于|a﹣b|.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=7.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=﹣1.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是3.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是a>5或a<﹣3.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.解:(1)①5﹣3=2,故答案为:2;②(﹣1)﹣(﹣4)=3,故答案为:3;③5﹣(﹣3)=8,故答案为:8;(2)根据数轴上两点间的距离得|a﹣b|,故答案为:|a﹣b|;(3)①∵表示数a的点位于﹣4与3之间,∴|a+4|+|a﹣3|=a+4+3﹣a=7,故答案为:7;②∵|a﹣1|=|a+3|∴表示数a的点在1和﹣3之间,∴|a﹣1|=|a+3|,1﹣a=a+3,a=﹣1,故答案为:﹣1;③∵|a﹣1|+|a+2|有最小值,∴表示a的点在﹣2与1之间,∴|a﹣1|+|a+2|=1﹣a+a+2=3,故答案为:3;④|a+3|+|a﹣5|>8,当﹣3<a<5时,|a+3|+|a﹣5|=a+3+5﹣a=8,不合题意舍去;当a<﹣3时,|a+3|+|a﹣5|=﹣(a+3)+5﹣a>8,a<﹣3;当a>5时,|a+3|+|a﹣5|>8,a+3+a﹣5>8,a>5,故答案为:a<﹣3或a>5;(4)设电子蚂蚁运动x秒时,P、Q相距20个单位长度,①4x+3x+20=20+100,x=,点P表示的是4×﹣20=②4x+3x﹣20=20+100,x=20,点P表示的是4×20﹣20=60,20.将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示﹣10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好函数”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为原来的一半.经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至点C需要19秒,动点Q从点C运动至点A需要23秒;(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;(3)是否存在t值,使得点P和点Q任“折线数轴”上的“友好距离”等于点A和点B 在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.解:(1)∵点A表示﹣10,点B表示10,点C表示18,∴OA=10,BO=10,BC=8,∴动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:10÷1+10÷2+8÷1=23(s),故答案为:19,23;(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q点运动到OB上时表示的数是10﹣2(t﹣8),∴t﹣5=10﹣2(t﹣8),解得t=,∴M点表示的数是﹣5=;(3)存在t值,使得点P和点Q任“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”,理由如下:∵点A表示﹣10,点B表示10,∴点A和点B在“折线数轴”上的“友好距离”是20,①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,∴点P和点Q任“折线数轴”上的“友好距离”为18﹣t+10﹣2t=28﹣3t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在OC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,∴点P和点Q任“折线数轴”上的“友好距离”为18﹣t﹣t+5=23﹣2t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,∴此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣5+t﹣13=2t﹣18,由题意可得,2t﹣18=20,解得t=19(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣13+2t﹣20=3t﹣33,由题意可得,3t﹣33=20,解得t=;⑥19<t≤23时,P点在C的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣13+2t﹣20=3t﹣33,由题意可得,3t﹣33=20,解得t=(舍);⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意;综上所述:t的值为或.21.在数轴上,点M,N对应的数分别是m,n(m≠n,mn≠0),P为线段MN的中点,同时给出如下定义:如果=10,那么称M是N的“努力点”.例如:m=1,n=,M是N的“努力点”.(1)若|m﹣10|+(n+90)2=0则m=10,n=﹣90;(2)在(1)的条件下,下列说法正确的是③(填序号);①M是P的“努力点”;②M是N的“努力点”③N是M的“努力点”;④N是P的“努力点”(3)若mn<0,且P是M,N其中一点的“努力点”,求值?解:(1)∵|m﹣10|+(n+90)2=0,∴m=10,n=﹣90,故答案为:10,﹣90;(2)∵m=10,n=﹣90,∴P点对应的数是﹣40,∵||=,∴M不是P的“努力点”,故①不符合题意;∵m=10,n=﹣90,∴||=,∴M不是N的“努力点”,故②不符合题意;∵||=10,∴N是M的“努力点”,故③符合题意;∵||=,∴N是P的“努力点”,故④不符合题意;故答案为:③;(3)∵P为线段MN的中点,∴P点对应的数为,当P是M点的“努力点”时,||=10,∴=21或=﹣19,∵mn<0,∴=﹣;当P是N点的“努力点”时,||=10,∴=21或=﹣19,∵mn<0,∴=﹣19;综上所述:的值为﹣19或﹣.22.在数轴上,O为原点,点A,B对应的数分别是a,b(a≠b,ab≠0),M为线段AB的中点.给出如下定义:若OA÷OB=4,则称A是B的“正比点”;若OA×OB=4,则称A是B的“反比点”.例如a=2,时,A是B的“正比点”;a=2,b=﹣2时,A是B的“反比点”.(1)若|a+2|+(b﹣4)2=0,则M对应的数为1,下列说法正确的是③④(填序号).。

中考动点问题专题(教师讲义带答案)

中考动点问题专题(教师讲义带答案)

中考动点型问题专题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题..动点问题量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1(2015•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A .B .C .D .A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的2能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

... D.....A.B.C.D.思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过4....例4(2015•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A .B .C .D .A.B.C.D.4.A考点三:双动点问题动态问题是近几年来中考数学的热点题型.这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理689105.(2015年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°. A .2 B .2.5或3.5 C .3.5或4.5 D .2或3.5或4.51.D2.(2015•安徽)图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正AED CB12C D 确的是( ) A .当x=3时,EC <EM B .当y=9时,EC >EMC .当x 增大时,EC•CF 的值增大D .当y 增大时,BE•DF 的值不变..C .D .3.B移动。

(含答案)中考数学复习动点专题

(含答案)中考数学复习动点专题

中考数学复习动点专题动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解。

动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X 、Y 的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。

第三,确定自变量的取值范围,画出相应的图象。

1、 如图,边长为1的正方形OABC 的顶点A 在x 轴正半轴上,将正方形OABC 绕点O 顺时针旋转30°,使点A 落在抛物线2ax y =(0<a )图像上。

(1)求抛物线方程。

(2)正方形OABC 继续顺时针旋转多少度时,点A 再次落在抛物线2ax y =的图像上?并求这个点的坐标。

解:(1)设旋转后点A 落在抛物线上点A 1处,OA 1=1,过A 1作A 1M ⊥x 轴于M ,则OM=23,211=M A ,)21,23(1-A ,由2ax y =上得2)23(21a =-,解得32-=a∴232x y -= (2)由抛物线关于y 轴对称,再次旋转后A 落在抛物线上的点A 2处,点A 2与点A 1关于y 轴对称,易见继续旋转120°,点A 2的坐标为)21,23(--2、如图,矩形ABCD 中,AB=8,BC=6,对角线AC 上有一个动点P (不包括A 和C ),设AP=x ,四边形PBCD 的面积为y ,(1)写出y 与x 的函数关系,并确定自变量x 的范围。

(2)有人提出一个判断“关于动点P ,△PBC 面积与△PAD 面积之和为常。

” 请说明此判断是否正确,并说明理由。

(完整版)初二动点问题(含答案)

(完整版)初二动点问题(含答案)

动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。

利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。

分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。

动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。

中考数学动点问题专题讲解(22页)

中考数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

九年级中考 专题01 动点与分段函数解析式题型讲义(教师版)

九年级中考 专题01 动点与分段函数解析式题型讲义(教师版)

动点与分段函数解析式一、典例解析例1.【2020·辽宁本溪】如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D .点P 从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A. 【解析】解:当点P 在AD 上运动时,0≤x ≤2时,y=PE ·CE=2x ·(2x )=2x -12x 2, 当点P 在DC 上运动时,2<x ≤4时,S= PE ·4-x )(4-x )=12(x -4)2,结合函数解析式判断选项A 符合要求. 故答案为:A.例2. 【2020·山东淄博】如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )A.12B.24C.36D.48【答案】D.【解析】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC=√BC2−BP2=√102−82=6,△ABC的面积=12×AC×BP=12×8×12=48,故答案为:D.例3. 【2020·辽阳】如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A 出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P 运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】A.【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x•sin45°=√22x,∴CE=AC﹣AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE•CE=√22x(2√2−√22x)=−12(x﹣2)2+2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x﹣2,∴CP=4﹣x,y=12(4﹣x)2=12(x﹣4)2.∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故答案为:A.例4. 【2020·上海】小明从家步行到学校需走的路程为1800米,图中的折线反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图像提供的信息,当小明从家出发去学校步行15 分钟时,到学校还需步行 米.【答案】350.【解析】解:由题意知:线段AB 的解析式为:S=70t+400(8≤t≤20)当t=15时,S=1450,还需要步行1800-1450=350米.故答案为:350.例5. 【2020·重庆A 卷】A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是 .【答案】(4,160).【解析】解: 由题意知,乙车的速度为:240÷2.4-40=60 km/h ,乙车从B 到A 需要的时间为:240÷60= 4 h ,当乙车到达A 地时,甲车行驶的路程为:40×4=160 km ,点E 坐标为(4,160)故答案为(4,160).例6.【2020·北京】有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B.【解析】解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故答案为:B.二、刻意练习1.【2020·湖北恩施州】甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/h B.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【答案】D.【解析】解:由图象知:A.甲车的平均速度为30010−5=60km/h,故A选项不合题意;B.乙车的平均速度为3009−6=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故答案为:D .2.【2020·湖北武汉】一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A .32B .34C .36D .38【答案】C. 【解析】解:由图象可知,进水的速度为:20÷4=5(L /min ),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L /min ),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L ),a =24+45÷3.75=36.故答案为:C .3.【2020·江苏连云港】快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了;②快车速度比慢车速度多;③图中;④快车先到达目的地. 其中正确的是A .①③B .②③C .②④D .①④【答案】B.【解析】解:根据题意可知,两车的速度和为:,()y km ()x h 0.5h 20/km h 340a =()3602180(/)km h ÷=相遇后慢车停留了,快车停留了,此时两车距离为,故①结论错误;慢车的速度为:,则快车的速度为,所以快车速度比慢车速度多;故②结论正确;,所以图中,故③结论正确;,,所以慢车先到达目的地,故④结论错误.所以正确的是②③.故答案为:B .4.【2020·重庆B 】周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则乙比甲晚 分钟到达B 地.【答案】12.【解析】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x 米/分.则有:7500﹣20x =2500,解得x =250,25分钟后甲的速度为250×85=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴29400−25800300=12(分钟).故答案为:12.0.5h 1.6h 88km 88(3.6 2.5)80(/)km h ÷-=100/km h 20/km h 88180(5 3.6)340()km +⨯-=340a =(360280)80 2.5()h -⨯÷=5 2.5 2.5()h -=5.【2020·浙江台州】如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(m/s)与运动时间t(s)的函数图象如图2,则该小球的运动路程y(m)与运动时间t 之间的函数图象大致是()图1 图2A B C D【答案】C.【解析】解:由图2知,小球的是先匀加速再匀减速运动,选项C符合题意.6.【2020·贵州铜仁】如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】解:由题意,当0≤x ≤4时,y =12×AD ×AB =12×3×4=6,当4<x <7时,y =12×PD ×AD =12×(7﹣x )×4=14﹣2x .故答案为:D .7.【2020·安徽】如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线l 向右移动,直至点B 与F 重合时停止移动. 在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )【答案】A.【解析】解:当0≤x ≤2时,重叠部分为边长为x 的等边三角形,y=2 当2<x ≤4时,重叠部分为边长为(4-x )的等边三角形,y=)24x - 故答案为:A.8.【2020·甘肃金昌】如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【答案】A.【解析】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故答案为:A.9.【2020·黑龙江大兴安岭】李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A.B.C.D.【答案】B.【解析】解:因为登山过程可知:先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.所以在登山过程中,他行走的路程S随时间t的变化规律的大致图象是B.故答案为:B.10.【2020·湖北黄冈】2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.【答案】D.【解析】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故答案为:D.11.【2020·湖北随州】小明从家出发步行至学校,停留一段时间后乘车返回,则下列函数图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是()A.B.C.D.【答案】B.【解析】解:①从家出发步行至学校时,为一次函数图象,是一条从原点开始的线段;②停留一段时间时,离家的距离不变,③乘车返回时,离家的距离减小至零,纵观各选项,只有B选项符合.故答案为:B.12.【2020·湖北孝感】如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】D.【解析】解:①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x﹣4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2﹣x)=(3+√3)(12﹣x),为一次函数;故答案为:D.13.【2020·湖南衡阳】如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么四边形ABCD的面积为()A.3B.3√2C.6D.6√2【答案】B.【解析】解:过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,AE =6﹣4=2,DE =7﹣6=1,BE =2,∴AB =2+1=3,∵直线BE 平行直线y =x ,∴BM =EM =√2, ∴平行四边形ABCD 的面积是:AD •BM =3×√2=3√2.故答案为:B .14.【2020·内蒙古通辽】如图①,在△ABC 中,AB =AC ,∠BAC =120°,点E 是边AB 的中点,点P 是边BC 上一动点,设PC =x ,P A +PE =y .图②是y 关于x 的函数图象,其中H 是图象上的最低点.那么a +b 的值为 .【答案】7.【解析】解:将△ABC 沿BC 折叠得到△A ′BC ,则四边形ABA ′C 为菱形,菱形的对角线交于点O ,由图②知,当点P 与点B 重合时,y =P A +PE =AB +BE =AB +12AB =3√3,解得:AB =2√3,即:菱形的边长为2√3,则该菱形的高为√32AB =3, 点A 关于BC 的对称点为点A ′,连接A ′E 交BC 于点P ,此时y 最小,∵AB =AC ,∠BAC =120°,则∠BAA ′=60°,故AA ′B 为等边三角形,∵E 是AB 的中点,故A ′E ⊥AB ,而AB ∥A ′C ,故∠P A ′C 为直角,A ′C =AB =2√3,则PC =A′C cos∠BCA′=√3√32=4, 此时b =PC ,a =A ′E =3(菱形的高),则a +b =3+4=7.故答案为7.15.【2020·青海】将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h (cm )与注水时间t (min )的函数图象大致为图中的( )A .B .C .D .【答案】B. 【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误;用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化. 故答案为:B .16.【2020·四川攀枝花】甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离与运动时间的函数关系大致如图所示,下列说法中错误的是( )()s km ()t hA .两人出发1小时后相遇B .赵明阳跑步的速度为C .王浩月到达目的地时两人相距D .王浩月比赵明阳提前到目的地 【答案】C.【解析】解:由图象可知,两人出发1小时后相遇,故答案为项A 正确;赵明阳跑步的速度为,故答案为项B 正确; 王皓月的速度为:,王皓月从开始到到达目的地用的时间为:,故王浩月到达目的地时两人相距,故答案为项C 错误; 王浩月比赵明阳提前到目的地,故答案为项D 正确; 故答案为:C .8/km h 10km 1.5h 2438(/)km h ÷=241816(/)km h ÷-=2416 1.5()h ÷=8 1.512()km ⨯=3 1.5 1.5h -=。

动点问题(讲义及答案)

动点问题(讲义及答案)

动点问题(讲义)一、知识点睛由点(___________)的运动产生的几何问题称为动点问题.动点问题的解决方法:1.研究_____________,_____________;2.分析_____________,分段;3.表达_____________,建等式.二、精讲精练1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边AD上一点,且AE=7.动点P从点B出发,沿BC向点C以每秒2个单位的速度运动,连接AP,DP.设点P运动时间为t秒.(1)当t=1.5时,△ABP与△CDE是否全等,请说明理由;(2)当t为何值时,△DCP≌△CDE.2.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发沿AD向点D以每秒1个单位的速度运动,动点Q从点C出发沿CB向点B以每秒2个单位的速度运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P运动时间为x秒,请求出当x为何值时,△PDQ≌△CQD.3.已知:如图,在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上以每秒3cm的速度由点B 向点C运动,同时点Q在线段CA上由点C向点A运动.设点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q的运动速度.4.已知:如图,正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm,点P在线段BC上以每秒2cm的速度由点B向点C运动,同时点Q在线段CD上由点C向点D运动.设点P运动时间为t秒,若某一时刻△BPE与△CQP全等,求此时t的值及点Q的运动速度.5.已知:如图,在长方形ABCD中,AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P运动时间为t秒.(1)请用含t的式子表达△ABP的面积S.(2)是否存在某个t值使得△DCP和△DCE全等,若存在,请求出所有的t值;若不存在,请说明理由.6.已知:如图,在长方形ABCD中,AB=CD=3cm,AD=BC=5cm,动点P从点B出发,以每秒1cm的速度沿BC方向向点C运动,动点Q从点C出发,以每秒2cm的速度沿CD-DA-AB 向点B运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,设点P运动时间为t秒.请回答下列问题:(1)请用含t的式子表达△CPQ的面积S,并直接写出t的取值范围.(2)是否存在某个t值使得△ABP和△CDQ全等,若存在,请求出所有的t值;若不存在,请说明理由.【参考答案】【知识点睛】速度已知1.研究基本图形,标注;2.分析运动过程,分段;3.表达线段长,建等式.【精讲精练】1.解:(1)当t =1.5时,△ABP ≌△CDE .理由如下:如图,由题意得BP =2t∴当t =1.5时,BP =3∵AE =7,AD =10∴DE =3∴BP =DE在矩形ABCD 中AB =CD ,∠B =∠CDE在△ABP 和△CDE 中AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CDE (SAS )(2)如图,由题意得BP =2t∵BC =10∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =72∴当t =72时,△DCP ≌△CDE .2.解:如图,由题意得AP =x ,CQ =2x∵AD =12∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3.解:如图,由题意得BP =3t∵BC =8∴PC =8-3t∵AB =10,D 为AB 中点∴BD =12AB =5①要使△BDP ≌△CPQ ,则需BD =CP ,BP =CQ即5=8-3t ,t =1∴CQ =3t =3则Q 的速度为Q v =s t =31=3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ .②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5∴t =43则Q 的速度为Q v =st =5×34=154(cm/s )即当t =43,Q 的速度为每秒154cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =43,Q 的速度为每秒154cm 时,△BPD 与△CQP 全等.4.解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm∴AB =BC =10∴PC =10-2t∵AE =4∴BE =10-4=6①要使△BEP ≌△CPQ ,则需EB =PC ,BP =CQ即6=10-2t ,CQ =2t∴t =2,CQ =4则点Q 的速度为Q v =s t =42=2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ .②要使△BEP ≌△CQP ,则需BP =CP ,BE =CQ即2t =10-2t ,CQ =6∴t =52则点Q 的速度为Q v =s t=6×25=125(cm/s )即当t =52,Q 的速度为每秒125cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =52,Q 的速度为每秒125cm 时,△BEP 与△CQP 全等.5.解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)1214224ABP S AB BP t t∆=⋅=⨯⨯=∴ ②当P 在CD 上时,(2.5<t ≤4.5)12145210ABP S AB BC ∆=⋅=⨯⨯=∴③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)12141422284ABP S AB AP t t∆=⋅=⨯⨯=∴--()(2)①当P 在BC 上时,如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE∵CE =2∴5-2t =2,t =1.5即当t =1.5时△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4,∴DP =2t -4-5要使△DCP ≌△CDE ,则需DP =CE即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6.解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t∴CP=5-t (0<t ≤1.5)2121 (5)225CPQ S CP CQ t t t t ∆=⋅=-⋅=-∴②当Q 在DA 上时,(1.5<t ≤4)121(5)327.5 1.5CPQ S CP CD t t∆=⋅=⨯=∴--③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5)2121(5)(112)2215522CPQ S CP BQ t t t t ∆=⋅=-⨯-=-+∴①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等②当Q在AD上时,如图,由题意得DQ=2t-3要使△ABP≌△CDQ,则需BP=DQ∵DQ=2t-3,BP=t∴t=2t-3,t=3即当t=3时,△ABP≌△CDQ.③当Q在AB上时,不存在t使△ABP和△CDQ全等综上所述,当t=3时,△ABP和△CDQ全等.11。

中考数学第二轮专题复习第38课动态专题(平移、动点)(含答案)

中考数学第二轮专题复习第38课动态专题(平移、动点)(含答案)

考点3 面动 6. 在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一 等腰直角三角板按如图1所示的位置摆放,该三角板的直角 顶点为F,一条直角边与AC边在一条直线上,另一条直角 边恰好经过点B. (1)在图1中请你通过观察、测量BF与CG的长度,猜想并写 出BF与CG满足的数量关系,证明你的猜想;
PPT课程: 第38课 动态专题(平移、动点) 主讲老师:
1. 解决动态几何问题的关键是要善于运用运动与变化 的眼光去观察和研究图形,把握图形运动与变化的全 过程,抓住变化中的不变,化动为静. 具体做法是: (1)全面阅读题目,了解运动的方式与形式,全方位考 察运动中的变与不变的量及其位置关系;
(2)运用分类讨论思想,将在运动过程中导致图形本 质发生变化的各种时刻的图形分类画出,化动为静; (3)在各类“静态图形”中运用相关的知识和方法(如 方程、相似等)进行探索,寻找各个相关几何量之间 的关系,建立相应的数学模型进行求解.
x, ,
又∵0≤x≤2,
∴当x=1时,y有最大值为
1 4

综上所述,当x=2时,y有最大值
为2.
5.(2020·聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于 点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D, 其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物 线和线段BC交于点P和点F,动直线l在抛物线的对称轴的右 侧(不含对称轴)沿x轴正方向移动到B点. (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式; (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边 形的点P的坐标; (3)连接CP,CD,在动直线l移动 的过程中,抛物线上是否存在点P, 使得以点P,C,F为顶点的三角形 与△DCE相似?如果存在,求出点 P的坐标;如果不存在,请说明理由.

中考数学复习专题讲座(精编含详细参考答案14页):动点型问题

中考数学复习专题讲座(精编含详细参考答案14页):动点型问题

中考数学复习专题讲座:动点型问题(一)应用勾股定理建立函数解析式(或函数图像)例1如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A→B→D→C→A 的路径运动,回到点A 时运动停止.设点P 运动的路程长为长为x ,AP 长为y ,则y 关于x 的函数图象大致是( )A .B .C .D .思路分析:根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到2a+2a 时分别进行分析,并写出分段函数,结合图象得出答案.解:设动点P 按沿折线A→B→D→C→A 的路径运动,∵正方形ABCD 的边长为a ,∴BD=a ,则当0≤x<a 时,y=x ,当a≤x<(1+)a 时,y=,当a (1+)≤x<a (2+)时,y=,当a (2+)≤x≤a(2+2)时,y=a (2+2)﹣x ,结合函数解析式可以得出第2,3段函数解析式不同,得出A 选项一定错误,根据当a≤x<(1+)a 时,函数图象被P 在BD 中点时,分为对称的两部分,故B 选项错误,再利用第4段函数为一次函数得出,故C 选项一定错误,故选:D .点评:此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.对应训练1.如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A .B .C .D .解:∵正△ABC 的边长为3cm ,∴∠A=∠B=∠C=60°,AC=3cm .如图,D 为AB 的中点,连结CD ,则:AD=BD=1.5(cm ),cm )。

①当0≤x≤1.5时,即点P 在线段AD 上时,AP=xcm (0≤x≤1.5),则2222223()392PC CD DP x x x =+=+-=-+,即y=x 2﹣3x+9(0≤x≤1.5); ②当1.5<x≤3时,即点P 在线段AD 上时,AP=xcm (1.5<x≤3),则2222223(()3922PC CD DP x x x =+=+-=-+,即y=x 2﹣3x+9(1.5<x≤3); 综上,当0≤x≤3时,y=x 2﹣3x+9,该函数图象是开口向上的抛物线;③当3<x≤6时,即点P 在线段BC 上时,PC=(6﹣x )cm (3<x≤6);则y=(6﹣x )2=(x ﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选C .(二)应用比例式建立函数解析式(或函数图像)例2如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )DA. B. C.D.思路分析:首先根据点D的坐标求得点A的坐标,从而求得线段OA和线段OC的长,然后根据运动时间即可判断三角形EOF的面积的变化情况.解:∵D(5,4),AD=2.∴OC=5,CD=4 OA=5,∴运动x秒(x<5)时,OE=OF=x,作EH⊥OC于H,AG⊥OC于点∴EH=x,S△EOF=OF•EH=×x×x=x2,故A、B错误;G,∴EH∥AG,∴△EHO∽△AGO,即:,当点F运动到点C时,点E运动到点A,此时点F停止运动,点E在AD上运动,△EOF的面积不变,点E在DC上运动时,如右图,EF=11﹣x,OC=5,∴S△EOF=OC•CE=×(11﹣x)×5=﹣x+是一次函数,故C正确,故选C.点评:本题考查了动点问题的函数图象,解题的关键是根据动点确定分段函数的图象.对应训练2.如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.(1)连接AO、DO.设⊙O的半径为r.在Rt△ABC中,由勾股定理得AC==4,则⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;∵CE、CF是⊙O的切线,∠ACB=90°,∴∠CFO=∠FCE=∠CEO=90°,CF=CE,∴四边形CEOF是正方形,∴CF=OF=1;又∵AD、AF是⊙O的切线,∴AF=AD;∴AF=AC﹣CF=AC﹣OF=4﹣1=3,即AD=3;(2)在Rt△ABC中,AB=5,AC=4,BC=3,∵∠C=90°,PH⊥AB,∴∠C=∠PHA=90°,∵∠A=∠A,∴△AHP∽△ACB,∴==,即=,∴y=﹣x+4,即y与x的函数关系式是y=﹣x+4;(3)如图,P′H′与⊙O相切.∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,∴四边形OMH′D是正方形,∴MH′=OM=1;由(1)知,四边形CFOE是正方形,CF=OF=1,∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;又由(2)知,y=﹣x+4,∴y=﹣y+4,解得,y=.(三)应用求图形面积的方法建立函数关系式例3 如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.思路分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.解:(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC (2分)∵AE=CF∴△AED≌△CFD(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3)解:依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135° ∴△ADF≌△BDE∴S△ADF=S△BDE∴S△EDF=S△EAF+S△ADB=∴.点评:本题考查等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.对应训练3.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A B C D解:①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=AP•QB=t2,函数图象为抛物线;②点P在AB上运动,点Q在CD上运动,此时AP=t,△APQ底边AP上的高维持不变,为正方形的边长4,故可得S=AP×4=2t,函数图象为一次函数.综上可得总过程的函数图象,先是抛物线,然后是一次增函数.选D.(四)以双动点为载体,探求函数图象问题例4 如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是(填序号).思路分析:根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.点评:本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E时点Q到达点C是解题的关键,也是本题的突破口.(五)以双动点为载体,探求函数最值问题例5如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=2.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.思路分析:(1)抛物线的解析式中,令x=0,能确定抛物线与y轴的交点坐标(即B点坐标);令y=0,能确定抛物线与x轴的交点坐标(即A、C的坐标).(2)由(1)的结果,利用待定系数法可求出直线AB的解析式.(3)欲求出反比例函数的解析式,需要先得到D点的坐标.已知A、B的坐标,易判断出△OAB是含特殊角的直角三角形,结合O、D关于直线AB对称,可得出OD的长,结合∠DOA的读数,即可得到D点的坐标,由此得解.(4)首先用t列出AQ、AP的表达式,进而可得到P到x轴的距离,以OQ为底、P到x轴的距离为高,可得到关于S、t的函数关系式,根据函数的性质即可得到S的最大值及此时t的值.解:(1)令y=0,即﹣x2+x+2=0;解得 x1=﹣,x2=2.∴C(﹣,0)、A(2,0).令x=0,即y=2,∴B(0,2).综上,A(2,0)、B(0,2).(2)令AB方程为y=k1x+2因为点A(2,0)在直线上,∴0=k1•2+2∴k1=﹣∴直线AB的解析式为y=﹣x+2.(3)由A(2,0)、B(0,2)得:,OA=2,OB=2,AB=4,∠BAO=30°,∠DOA=60°;∵D与O点关于AB对称,∠DOA=60°,∴OD=OA=2,∴D 点的横坐标为,纵坐标为3,即D(,3).因为y=过点D,∴3=,∴k=3.(4)∵AP=t,AQ=t,P到x轴的距离:AP•sin30°=t,OQ=OA﹣AQ=2﹣t;∴S△OPQ=•(2﹣t)•t=﹣(t﹣2)2+;依题意有,解得0<t≤4.∴当t=2时,S有最大值为.点评:该题考查的知识点有:函数解析式的确定、二次函数的性质、图形面积的解法等,在解答动点函数问题时,一定要注意未知数的取值范围.(六)因动点产生的最值问题因动点产生的最值问题与一般最值问题一样,一般都归于两类基本模型:1.归于函数模型2.归于几何模型(1)归于“两点两线段之和的最小值”时大都应用这一模型。

中考数学专题复习动点型问题(含详细参考答案)

中考数学专题复习动点型问题(含详细参考答案)

专题十动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1(2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O.与∠α 的两边相切,图中阴影部分的面积 S 关于⊙O 的半径 r (r >0)变化的函数图象大致 是( )A .B .C .D . 1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题 . 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题 . 这类题综合性强,能力要求 高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊 位置。

部编数学九年级下册专题15相似三角形之动点问题(解析版)含答案

部编数学九年级下册专题15相似三角形之动点问题(解析版)含答案

专题15 相似三角形之动点问题1.如图,在Rt ABC V 中,9034C AC BC Ð=°==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC V 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值;(3)当AEF △是等腰三角形时,求出此时AE 的长.∵BC AC FD ⊥,∴BC DF ∥.∴FDA BCA ∽V V ∴BC DF AB AF =,即∵EMA C Ð=Ð=∴EAM BAC ∽V V ∴AE AM AB AC=,1(6)x -同理FAN BAC ∽V V ∴FA AN AB AC=,∴16253x x -=,2.如图,在ABC V 中,90ABC а=,4AB =,3BC =,点P 从点A 出发,沿线段AB 以每秒5个单位长度的速度向终点B 运动,当点P 不与点A 、B 重合时,作点P 关于直线AC 的对称点Q ,连结PQ ,以PQ 、PB 为边作PBMQ Y .设PBMQ Y 与ABC V 重叠部分图形的面积为S ,点P 的运动时间为t 秒.(1)直接用含t 的代数式表示线段PQ 的长并写出t 的取值范围;(2)当点M 落在边AC 上时,求t 的值及此时PBMQ Y 的面积;(3)求S 与t 之间的函数关系式;(4)当PBMQ Y 的对角线的交点到ABC V 的两个顶点的距离相等时,直接写出t 的值.由意得5AP t =,PO QO =∴225AC AB BC +==,∵ABC AOP ∽△△,AC BC \=1122ABC S AB BC AC =×=Q △125AB BC BM AC ×\==∵四边形PQMB 是平行四边形,(45PQMB TQO S S S t =-=-Y △当2455t << 时,如图3﹣BT AC⊥Q 125AB BC BT AC \==g 2224AT AB BT \=-=则AK CK =,设AK CK =在Rt CBK V 中,2CK BC =∴()22234x x =+-,解得258x =,∵OL AB ∥,QO OB = ,∴直线OL 平分QP ,∴点L 在线段PQ 上,且AL ∴5t =.3.如图,在矩形ABCD 中,BC CD >,,BC CD 分别是一元二次方程214480x x -+=的两个根,连结BD ,动点P 从B 出发,以1个单位每秒速度,沿BD 方向运动,同时,动点Q 从点D 出发,以同样的速度沿射线DA 运动,当点P 到达点D 时,点Q 即停止运动,设运动时间为t 秒.以PQ 为斜边作Rt PQM D ,使点M 落在线段BD 上.(1)求线段BD 的长度;D面积的最大值;(2)求PDQ(3)当PQMD与BCDD相似时,求t的值.4.如图,在ABC V 中,10cm AB = ,20cm BC =,点P 从点A 开始沿AB 边向B 点以2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△P B Q A B C : .5.如图,在ABC V 中,90C Ð=°,6AC =,8BC =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF Ð=°,EF 交射线BC 于点F .设BE x =,BED V 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED V 相似,求BED V 的面积.【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF Ð时钝角还是锐角进行分类讨论,不要丢掉任何一种情况.6.如图,矩形ABCD 中,AD AB ==25, ,P 为CD 边上的动点,当ADP △与BCP V 相似时,求DP 长.7.如图,在ABC V 中,908C AC Ð=°=,cm ,动点P 从点C 出发沿着C B A --的方向以2cm/s 的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ V 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;V相似?(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC8.如图,在ABC V 中,8cm 10cm AB AC ==、,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t ,(1)则AP = ;AQ = ____ (用含t 的代数式表示)(2)求运动时间t 的值为多少时,以A 、P 、Q 为顶点的三角形与ABC V 相似?9.如图1,在Rt ABC △中,=90=6cm =8cm ACB AC BC а,,,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ V 与ABC V 相似,求t 的值;(2)直接写出BPQ V 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.则12BG PB ==∵=QBG ABC ÐÐ∴BGQ BCA ~V V BG BQ =5∵PM BC ACB ⊥Ð,∴PM AC ∥,10.如图1,在ABC V 中,90,3,4BCA AC BC а===,点P 为斜边AB 上一点,过点P 作射线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∶若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ;(2)问题延伸:在(1)的情况下,将若∠DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE ,若PDE V 与ABC V 相似,求BP 的值.(3)如图2,连接CP,如图3,当PDE △∽△∵90DPE ACB Ð+Ð=°∴点C 、D 、P 、E 共圆,综上所述:165BP =或【点睛】本题考查相似三角形的判定和性质.通过添加合适的辅助线证明三角形相似是解题的关键.同时,本题考查了三角形的中位线定理,以及利用四点共圆证明角相等,是一道综合题.11.如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为245∵QE⊥AO,BO⊥AO,∴QE∥BO,∴△AEQ∽△AOB,∴45QE BOAQ AB==44812.如图,在矩形ABCD中,12AB=cm,=3AD cm,点E、F同时分别从D、B两点出发,以1cm/s 的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.13.如图,在Rt △ABC 中,∠C =90°,AC =4cm ,BC =8cm ,点D ,E 分别为边AB ,AC 的中点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ⊥BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与△ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t的取值范围.14.如图,矩形ABCD 中,15AB cm =,10BC cm =,动点P 从点A 出发,沿AB 边以2/s cm 的速度cm的速度向点A匀速移动,一个动点到达端向点B匀速移动,动点Q从点D出发,沿DA边以1/s点时,另一个动点也停止运动,点P,Q同时出发,设运动时间为s t.(1)当t为何值时,APQ△的面积为216cm(2)t为何值时,以A,P,Q为顶点的三角形与ABCV相似.【点睛】本题主要考查了相似三角形的判定,一元二次方程的解法等知识,熟练掌握相似三角形的判定是解题的关键,同时注意分类讨论思想的运用.15.阅读与思考如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,直接写出t的值;若不存在,请说明理由.16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA向点A 以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当V POQ与V AOB相似时t的值.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的⊙Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与⊙Q相切;(2)若⊙Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.18.如图,在△ABC中,∠C=90°,BC=8,AC=6,点P,Q同时从点B出发,点P以每秒5个单位长度的速度沿折线BA﹣AC运动,点Q以每秒3个单位长度的速度沿折线BC﹣CA运动,当点P,Q相遇时,两点同时停止运动,设点P运动的时间为t秒,△PBQ的面积为S.(1)当P,Q两点相遇时,t= 秒;(2)求S关于t的函数关系式,并直接写出t的取值范围.90PHB C \Ð=Ð=°,B B ÐÐ=Q ,ΔΔABC PBH \∽,\PH BP AC AB=,165PC t =-,113(16522S PQ PC t t =´=´´-当833t ……时,如图,248PQ t =-,118(248)22S PQ BC t =´=´-=-19.如图,在Rt△ABC 中,∠C=90°,AC=16,BC=12.动点P 从点B 出发,沿线段BA 以每秒 2 个单位长度的速度向终点 A 运动,同时动点Q 从点 A 出发,沿折线AC—CB 以每秒 2 个单位长度的速度向点 B 运动.当点P 到达终点时,点Q 也停止运动.设运动的时间为t 秒.(1)AB= ;(2)用含t 的代数式表示线段CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与△ABC 相似,求t 的值;(4)设点O 是PA 的中点,当OQ 与△ABC 的一边垂直时,请直接写出t 的值.【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关键.20.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE V 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC V 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.【分析】(1)把()30A -,和()10B ,的坐标代入抛物线解析求出a 和b 即可求解;(2)求出直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,由三角形面积可得出1n =-或2n =-,则可得出答案;(3)分两种情况,①若AON ABC V V ∽,②若AON ACB V V ∽,由相似三角形的性质可求出ON 的长,求出N 点坐标,联立直线ON 和抛物线的解析式可求出答案.(1)解:∵抛物线y =a 2x +bx -3交x 轴于()30A -,,()10B ,两点,∴933030a b a b --=ìí+-=î ,解得12a b =ìí=î,∴该抛物线的解析式为223y x x =+-;(2)解:∵抛物线的解析式为223y x x =+-,∴0x =时,=3y -,∴()03C -,,∴AO OC =.∵=90AOC а,∴45CAO Ð=°.∵PM OA ⊥,PE AC ⊥,∴45PGM PGE GPE Ð=Ð=Ð=°,设直线AC 的解析式为y kx m =+,∴303k m m +=ìí=-î ,∴13k m =-ìí=-î,∴直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,∴94 AK=,∴93344 OK=-=,∴39,44Næö--ç÷èø,∴直线ON的解析式为3y=。

初中数学知识点复习专题讲练:函数中的动点问题(含答案)

初中数学知识点复习专题讲练:函数中的动点问题(含答案)

函数中的动点问题考点分析1.点在线段上运动:2.根据线段长或图形面积求函数关系.如:如图所示,点P在线段BC,CD,DA上运动,△ABP 的面积变化情况的图象是什么样的?解析:看清横轴和纵轴表示的量.答案:2. 双动点变化:两动点同时运动,分析图形面积变化图象.如图1,在矩形ABCD中,点E是对角线AC 的三等分点(靠近点A),动点F从点C出发沿C→A→B运动,当点F与点B重合时停止运动.设点F运动的路程为x,△BEF的面积为y,那么图2能表示y与x函数关系的大致图象吗?图1 图2解析:动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况.答案:能.3. 图形运动变化所形成的函数问题:图形整体运动时,形成的函数问题;如图,边长为1和2的两个正方形,其一边在同一水平线上,小正方形自左向右匀速穿过大正方形,设穿过的时间为t,阴影部分面积为S,那么S与t的函数图象大致是什么?解析:图形运动变化所形成的函数问题.关键是理解图形运动过程中的几个分界点.答案:4. 实际问题中的运动变化图象如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()解析:解决实际问题中的运动变化图象,要根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.答案:总结:研究在不同位置时点的运动变化所产生的线段、面积的变化关系是重点.解题技巧例题 如图,M 是边长为4的正方形AD 边的中点,动点P 自A 点起,由A ⇒B ⇒C ⇒D 匀速运动,直线MP 扫过正方形所形成面积为y ,点P 运动的路程为x ,则表示y 与x 的函数关系的图象为( )A .B .C .D .解析:分别求出P 在AB 段、BC 段、CD 段的函数解析式或判断函数的类型,即可判断.答案:解:点P 在AB 段时,函数解析式是:y =21AP •AM =21×2x =x ,是正比例函数y x =;点P 在BC 段时,函数解析式是:1()242y AM BP AB x =+⋅=-,是一次函数24y x =-;则2,1BC AB k k ==,BC AB k k ∴>.在单位时间内点P 在BC 段上的面积增长要大于点P 在AB 上的面积增长,因此函数图象会更靠近y 轴,也就是图象会比较“陡”,故A 、B 选项错误.点P 在CD 段时,面积是△ABC 的面积加上△ACP 的面积,△ABC 的面积不变,而△ACP 中CP 边上的高一定,因而面积是CP 长的一次函数,因而此段的面积是x 的一次函数,应是线段.故C 错误,正确的是D .故选D .点拨:主要考查了函数的性质,注意分段讨论是解决本题的关键.总结提升利用动点形成的函数图象求解析式例题 (翔安模拟)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x cm ,△ABP 的面积为 y cm 2,如果y 关于x 的函数图象如图2所示,则y 关于x 的函数关系式为 .解析:根据图2判断出矩形的AB 、BC 的长度,然后分点P 在BC 、CD 、AD 时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式.答案:解:由图2可知,x 从4到9的过程中,三角形的面积不变,所以,矩形的边AB =9-4=5 cm ,边BC =4 cm ,则点P 运动的总路程为9+4=13 cm ,分情况讨论:①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x cm ,y =21AB •PB =21×5x =25x ;②点P 在CD 上时,4<x <9,点P 到AB 的距离为BC 的长度4 cm ,y =21AB •BC =21×5×4=10;③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度(13-x ) cm ,y =21AB •P A =21×5(13-x )=25(13-x );综上,y 关于x 的函数关系式为504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)(). 故答案为:504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)().动点综合型问题例题 (苏州中考)如图①,在平行四边形ABCD 中,AD =9 cm ,动点P 从A 点出发,以1 cm/s 的速度沿着A →B →C →A 的方向移动,直到点P 到达点A 后才停止.已知△P AD 的面积y (单位:cm 2)与点P 移动的时间x (单位:s )之间的函数关系如图②所示,试解答下列问题:(1)求出平行四边形ABCD 的周长;(2)请你利用图①解释一下图②中线段M N 表示的实际意义; (3)求出图②中a 和b 的值.解析:(1)由图②知点P 在AB 上运动的时间为10 s ,根据路程=速度×时间列式,求出AB =10 cm ,又AD =9 cm ,根据平行四边形的周长公式即可求解;(2)由线段M N ∥x 轴,可知此时点P 虽然在运动,但是△P AD 的面积y 不变,结合图①,可知此时点P 在BC 边上运动;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,a 为点P 由A →B →C 的时间;分别过B 点、C 点作BE ⊥AD ,CF ⊥AD ,易证△BAE ≌△CDF ,由此得到AE =DF =6 cm ,AF =15 cm ,从而可求得CA =17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.答案:解:(1)由图②可知点P 从A 点运动到B 点的时间为10 s ,又因为P 点运动的速度为1 cm/s ,所以AB =10×1=10(cm ),而AD =9 cm ,则平行四边形ABCD 的周长为:2·(AB +AD )=2×(10+9)=38(cm );(2)线段M N 表示的实际意义是:点P 在BC 边上从B 点运动到C 点;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,所以a =10+9=19;分别过B ,C 两点作BE ⊥AD 于E ,CF ⊥AD 于F .由图②知S △ABD =36 cm 2,则21×9×BE =36 cm 2,解得BE =8 cm ,在Rt △ABE 中,由勾股定理,得AE =22BE AB -=6 cm.易证△BAE ≌△CDF ,则BE =CF =8 cm ,AE =DF =6 cm ,AF =AD +DF =9+6=15 cm.在Rt △ACF 中,由勾股定理,得CA 22AF CF +17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.巩固训练(答题时间:45分钟)一、选择题1. (静海中考)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是()A. B.C. D.2. (营口中考)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到()A. 点C处B. 点D处C. 点B处D. 点A处3. (绥化中考)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A. B.C. D.*4. (荆门中考)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A. B.C. D.**5.(河池中考)如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x 之间的函数关系用图象表示是()A. B.C. D.二、填空题:*6. 如图,是一辆汽车的速度随时间变化的图象,请你根据图象提供的信息填空:(1)汽车在整个行驶过程中,最高速度是km/h(2)汽车第二次减速行驶的“时间段”是;(3)汽车出发后,8 min到10 min之间的运动情况如何?.*7. 如图,在正方形ABCD中,边长为2,某一点E从B-C-D-A-B运动,且速度是1,试求:(1)△BEC的面积S和时间t的关系.**8. (随州中考)在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为x,△P AB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△P AB面积为4时,点P移动的距离是 2.你认为其中正确的结论是.(只填所有正确结论的序号例如①)**9. 已知动点P以每秒2 cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6 cm,试回答下列问题:(1)图甲中BC的长度是.(2)图乙中a所表示的数是.(3)图甲中的图形面积是.(4)图乙中b所表示的数是.图甲图乙三、解答题:10. (潜江)如图,有一边长为5的正方形ABCD与等腰三角形CEF,其中底边CF=8,腰长EF=5,若等腰△CEF以每秒1个单位沿CB方向平移,B,C,F在直线L上,请画出0<t<6时,两图形重叠部分的不同状态图(重叠部分用阴影标示),并写出对应t的范围.**11. 如图①,在矩形ABCD中,AB=30 cm,BC=60 cm.点P从点A出发,沿A→B→C→D 路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A 匀速运动,到达点A后停止.若点P,Q同时出发,在运动过程中,Q点停留了1 s,图②是P,Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义;(2)求P,Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.参考答案1. B 解析:①当P 在AB 上运动时,所求三角形底为AP ,高为M 到AB 的距离也就是AD 长度因此S △APM =21AD •AP =x ,函数关系为:y =x (0<x ≤1);②当P 在BC 上运动时,S △APM =S 梯形ABCM -S △ABP -S △PCM ,S △ABP =21AB •BP ,BP =x -1,则S △ABP =21x -21,S △PCM =21PC •CM ,CM =12AB =21,PC =3-x ,S △PCM =43x -,S 梯形ABCM =21(AB +CM )•BC =23,因此S △APM =23-21-x -43x -=-4x +45(1<x ≤3);③当P 在CM 上运动时,S △APM =21CM •AD ,CM =27-x ,S △APM =21(27-x )×2=-x +27(3<x <7/2).故该图象分三段.故选B.2. B 解析:当E 在AB 上运动时,△BCE 的面积不断增大;当E 在AD 上运动时,BC 一定,高为AB 不变,此时面积不变;当E 在DC 上运动时,△BCE 的面积不断减小.∴当x =7时,点E 应运动到高不再变化时,即点D 处.故选B .3. D 解析:∵长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 随点P 走过的路程s 之间的函数关系图象可以分为4部分,∴P 点在AB 上,此时纵坐标越来越小,最小值是1,P 点在BC 上,此时纵坐标为定值1.当P 点在CD 上,此时纵坐标越来越大,最大值是2,P 点在AD 上,此时纵坐标为定值2.故选D.4. A 解析:①当直线l 经过BA 段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l 经过AD 段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l 经过DC 段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A 选项的图象符合.故选A.5. D 解析:连接AC ,过点C 作CE ⊥AD 于点E ,过点M 作MF ⊥AB 于点F ,易得CE =2,MF =5,当点P 与点B 重合,即x =2时,y =21AP ·MF =21×2×5=5;当点P 与点C 重合,即x =6时,y =1122AD CE ⨯⋅=21×21×6×2=3;结合函数图象可判断选项D 正确.故选D.6. 100 km ,22 min -24 min ,8 min 到10 min 之间停止 解析:(1)依题意得:最高速度是100 km/h ;(2)汽车第二次减速行驶的“时间段”是22 min -24v ;(3)汽车出发后,8v 到10 min 之间是停止的.7. 0(02)2(24)2(46)8(68)t t t S t t t ≤≤⎧⎪-<≤⎪=⎨<≤⎪⎪-<≤⎩ 解析:(1)∵在正方形ABCD 中,边长为2,某一点E 从B -C -D -A -B 运动,且速度是1,∴当E 在BC 上时,B ,E ,C 无法构成三角形,此时0≤t ≤2,∴S =0,(0≤t ≤2);当E 在CD 上时,△BEC 的面积为:S =21BC ×CE =21×2×(t -2)=t -2,(2<t ≤4);当E 在AD 上时,△BEC 的面积为:S =21BC ×CD =21×2×2=2,(4<t ≤6);当E 在AB 上时,△BEC 的面积为:S =21BC ×BE =21×2×[2-(t -6)]=8-t ,(6<t ≤8). 8. ①③ 解析:∵AB 边的长为4,设动点P 沿折线B ⇒C ⇒D ⇒A 由点B 向点A 运动,点P 运动的距离为10,∴四边形ABCD 的周长为10+4=14,①成立.当点P 在BC 上运动时,面积在不断增加,当移动的距离是3,面积为6时,面积不再变化,说明CD ∥AB ,此时BC =3,△ABP 面积=21×4×高=6,那么高=3,说明BC ⊥AB .当点P 运动7时,面积停止变化,此时CD =7-3=4,那么CD =AB .根据一组对边平行且相等的四边形是平行四边形得到四边形ABCD 是平行四边形.根据有一个角是直角的平行四边形是矩形得到四边形ABCD 是矩形,③对.由图中可以看出,面积为4的点可在图中找到两处,那么就有相应的两个距离值,④不对.故答案选①③.9. 8 cm ;24;60 cm 2;17 解析:(1)动点P 在BC 上运动时,对应的时间为0到4 s ,易得:BC =2 cm/s×4s =8 cm.故题图甲中BC 的长度是8 cm ;(2)由(1)可得,BC =8 cm ,则:题图乙中a 所表示的数是:21×BC ×AB =21×8×6=24(cm 2).故题图乙中a 所表示的数是24;(3)由题图可得:CD =2×2=4 cm ,DE =2×3=6 cm ,则AF =BC +DE =14 cm ,又由AB =6 cm ,则甲中的梯形面积为AB ×AF -CD ×DE =6×14-4×6=60(cm 2).故题图甲中的图形面积为60 cm 2;(4)根据题意,动点P 共运动了BC +CD +DE +EF +F A =(BC +DE )+(CD +EF )+F A =14+6+14=34(cm ),其速度是2 cm/s ,34÷2=17(s ).故题图乙中b 所表示的数是17.故答案为8 cm ;24;60 cm 2;17.10. 解:∵等腰三角形CEF ,其中底边CF =8,腰长EF =5,∴等腰三角形底边上的高线平分底边,即分为两部分都是4,当0<t ≤4时,如图1所示;当4<t ≤5时,如图2所示;当5<t <6时,如图3所示.11. 解答:(1)图中点H 的实际意义:P 、Q 两点相遇;(2)由函数图象得出,当两点在F 点到G 点两点路程随时间变化减慢得出此时Q 点停留1秒,只有P 点运动,此时纵坐标的值由75下降到45,故P 点运动速度为:30cm/s ,再根据E 点到F 点S 的值由120变为75,根据P 点速度,得出Q 点速度为120-75-30=15(cm/s ),即P 点速度为30cm/s ,Q 点速度为15cm/s ;(3)如图所示:根据4秒后,P 点到达D 点,只有Q 点运动,根据运动速度为15cm/s ,还需要运动120-45=75(cm ),则运动时间为:75÷15=5(s ),画出图象即可;(4)如图1所示,当Q P =PC ,此时21Q C =BP ,即30-30t =21(30-15t ),解得:t =32,故当时间t =32s 时,△PC Q 为等腰三角形,如图2所示,当D 、P 重合,Q D =Q C 时,Q 为AB 中点,则运动时间为:(15+60+30)÷15+1=8(s ),故当时间t =8s 时,△PC Q 为等腰三角形.若PC =C Q 故90-30t =30-15t 解得:t =4则4+1=5(S )综上所述:t =32或t =5或t =8秒时,△PC Q 为等腰三角形.。

数轴类动点问题(讲义及答案)

数轴类动点问题(讲义及答案)

数轴类动点问题(讲义)➢知识点睛1.由点(速度已知)的运动产生的几何问题称为动点问题.动点问题的解决方法:(1)研究背景图形;(2)分析运动过程;(3)表达线段长,建方程.2.数轴上点的平移:数轴上,若点A表示的数为a,则点A向左平移2个单位得到的数为a-2,点A向右平移3个单位得到的数为a+3.3.数轴上两点的距离公式:数轴上,若点A表示的数为a,点B表示的数为b,则A,B之间的距离可表示为a b,或者表示为右边的数减去左边的数.➢精讲精练1.已知:如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请直接写出AB的中点M对应的数;(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,请求出D点对应的数是多少.AA2.如图,点A在数轴上所对应的数为-2.(1)点B在点A右边距A点6个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-4所在的点处时,求A,B两点间的距离;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左以原速运动时,经过多长时间A,B两点相距4个单位长度?(直接写出答案)A3.已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点C的距离:PC=______.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C 点运动,Q点到达C点后停止运动.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.A B CA B C4.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A,B的距离之和为6,则C叫做A,B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是_____;(2)如图2,M,N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M,N的幸福中心,则C所表示的数可以是_______(填一个即可);(3)如图3,A,B,P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?图1图2P图35. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A ,B 表示的数分别为a ,b ,则A ,B 两点之间的距离AB =|a -b |,线段AB 的中点表示的数为2a b .【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(t >0). 【综合运用】 (1)填空:①A ,B 两点之间的距离AB =_______,线段AB 的中点表示的数为______; ②用含t 的代数式表示:t 秒后,点P 表示的数为_________,点Q 表示的数为___________.(2)求当t 为何值时,P ,Q 两点相遇,并写出相遇点所表示的数.(3)求当t为何值时,PQ=12 AB.(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.A B08-2086.如图,数轴上点A,B到表示-2的点的距离都为6,P为线段AB上任一点,C,D两点分别从P,B同时向A点移动,且C点的运动速度为每秒2个单位长度,D点的运动速度为每秒3个单位长度,运动时间为t秒.(1)A点表示的数为_______,B点表示的数为________,AB=________.(2)若P点表示的数是0,①运动1秒后,求CD的长度;②当D在BP上运动时,求线段AC,CD之间的数量关系式.(3)若t=2秒,CD=1,请直接写出P点表示的数.P DC BAA B7.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P,Q均停止运动.设运动的时间为t秒.(1)用含t的代数式表示动点P在运动过程中距O点的距离.(2)P,Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少.(3)是否存在P,O两点在数轴上相距的长度与Q,B两点在数轴上相距的长度相等?若存在,请直接写出t的取值;若不存在,请说明理由.【参考答案】➢精讲精练1.(1)M对应的数为40(2)C点对应的数为28(3)D点对应的数是-2602.(1)点B对应的数为4(2)AB=12(3)4秒或8秒3.(1)34-t(2)点P表示的数为-2或84.(1)-4或2(2)1(3)1.75秒或4.75秒5.(1)①10,3;②-2+3t,8-2t(2)t=2时,P,Q两点相遇,相遇点所表示的数为4(3)当t=1或3时,12 PQ AB(4)MN的长度不变,MN=5 6.(1)-8,4,12(2)①CD=3;②AC=2CD(3)P点表示的数为1或3.7.(1)PO=t-5(2)相遇时间为232,相遇点M表示的数为132(3)t=2或132时,PO=BQ。

中考复习专题之一动点问题 【含详细答案】

中考复习专题之一动点问题 【含详细答案】

xAOQP By 图(3)ABC OEF ABCOD图(1) ABOE FC 图(2)动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线O M A D ∥.过顶点D 平行于x 轴的直线交射线O M 于点C ,B 在x 轴正半轴上,连结B C . (1)求该抛物线的解析式;O M BH ACxy 图(1)O M B H A Cxy 图(2)xy M CD PQOAB PQA BC D(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线O M 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形D A O P 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿O C 和B O 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

第2讲 动点问题(教师版)

第2讲 动点问题(教师版)

知识导航典题精练答案解析如图,若在原点处放一挡板,一小球甲从点处以个单位/秒的速度向左运动.同时另一小球乙从点处以个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时问为(秒).(3)分别表示出甲、乙两小球到原点的距离.(用表示)1求甲、乙两小球到原点的距离相等时经历的时间.21.2.(1)或(2)甲球到原点的距离:;乙球到原点的距离:或.1当甲、乙两小球到原点距离相等时,经历的时问为秒、秒.2(3)∵,∴,.∴,.(1)设数轴上点表示数,∵,∴,即.∵,∴点不可能在的延长线上,则点可能在线段上和线段的延长线上.①点在线段上,则有,∴,∴.②点在线段延长线上,则有.∴,∴.(2)运动过程中,对应的数:,.甲球到原点的距离:当时,乙球到原点的距离:.当时,乙球到原点的距离:.1当时,若.2(3)∴不存在点到点、点的距离之和是;③当点在点右侧时,,,则,解得:,故的值为或.设运动分钟时,点对应的数是,点对应的数是,点对应的数是.∵三个点中点开始在最左侧且速度最慢,∴点始终在最左侧,①当点在点、点之间时:∵,,,∴,解得,此时点对应的数是,点对应的数是,点对应的数是,符合题意;②当点在点右侧时:∵,,,∴,解得,此时点对应的数是,点对应的数是,点对应的数是,符合题意,综上所述,三点同时出发,那么经过秒或秒时,.(3)答案解析若、两点以每秒个单位的速度向右匀速运动,同时、两点以每秒个单位的速度向左匀速运动,并设运动时间为秒,问为多少时,、两点都运动在线段上(不与、两个端点重合)?(2),,,.(1)当时,、两点运动在线段上.(2)∵,∴或,若,得;若,得,∵、是方程的两解,且,∵,,∵与互为相反数,∴,又∵,,∴,,∴,,∴,.综上所述,,,,.(1)由题意,秒时:点所表示的数为,点所表示的数为,点所表示的数为,点所表示的数为,∵、两点运动在线段上,且不与、重合,∴在右侧,在左侧,即:①②,解不等式①,得:;解不等式②,得:,(2),故不等式组的解集为,∴当时,、两点运动在线段上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考动点型问题专题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2015•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.例2 (2015•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A 出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.A.B.C.D.2.A(二)线动问题例3 (2015•荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.对应训练3.(2015•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2015•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.思路分析:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.点评:解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.对应训练4.(2015•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A考点三:双动点问题动态问题是近几年来中考数学的热点题型.这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. 例5 (2015•攀枝花)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直95.(2015年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成立?试说明理由.A解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =, ∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式x y 1=成立. 四、中考真题演练一、选择题 1.(2015•新疆)如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.51.D2.(2015•安徽)图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( )A .当x=3时,EC <EMB .当y=9时,EC >EMC .当x 增大时,EC•CF 的值增大D .当y 增大时,BE•DF 的值不变2.D3.(2015•盘锦)如图,将边长为4的正方形ABCD 的一边BC 与直角边分别是2和4的Rt △GEF 的一边GF 重合.正方形ABCD 以每秒1个单位长度的速度沿GE 向右匀速运动,当点A 和点E 重合时正方形停止运动.设正方形的运动时间为t 秒,正方形ABCD 与Rt △GEF 重叠部分面积为s ,则s 关于t 的函数图象为( )A .B .C .D .3.B4.(2015•龙岩)如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y=x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是( )A .2B .3C .4D .54.B6.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。

如果P、Q同时出发,用t 秒表示移动的时间(0≤ t ≤6),那么:(1)当t 为何值时,三角形QAP 为等腰三角形? (2)求四边形QAPC 的面积,提出一个与计算结果有关的结论;(3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?分析:(1)当三角形QAP 为等腰三角形时,由于∠A 为直角,只能是AQ=AP ,建立等量关系,t t -=62,即2=t 时,三角形QAP 为等腰三角形;(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积=6)212(211221612⨯--⨯⨯-⨯x x =36,即当P 、Q 运动时,四边形QAPC 的面积不变。

(3)显然有两种情况:△PAQ ∽△ABC ,△QAP ∽△ABC ,由相似关系得61262=-xx 或12662=-x x ,解之得3=x 或2.1=x 7.(2015年南安市)如图所示,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向作匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A -B -C -D 的路线作匀速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动.⑴求P 点从A 点运动到D 点所需的时间;⑵设P 点运动时间为t (秒).当t =5时,求出点P 的坐标;若⊿OAP 的面积为s ,试求出s 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).解:(1)P 点从A 点运动到D 点所需的时间=(3+5+3)÷1=11(秒).(2)当t =5时,P 点从A 点运动到BC 上,此时OA=10,AB+BP=5,∴BP=2.过点P 作PE⊥AD 于点E ,则PE=AB=3,AE=BP=2.∴OE=OA+AE=10+2=12.∴点P 的坐标为(12,3).分三种情况:.当0<t≤3时,点P 在AB 上运动,此时OA=2t,AP=t ,∴s=×2t×t= t 2. .当3<t≤8时,点P 在BC 上运动,此时OA=2t ,∴s=×2t×3=3 t..当8<t <11时,点P 在CD 上运动,此时OA=2t,AB+BC+CP= t ,∴DP=(AB+BC+CD)-( AB+BC+CP)=11- t.∴s=×2t×(11- t)=- t 2+11 t.综上所述,s 与t 之间的函数关系式是:当0<t≤3时,s= t 2;当3<t≤8时,s=3 t ;当8<t <11时,s=- t 2+11t .8.(2014济南)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.……………………1分在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++=……………3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥∴3BG AD ==∴1037GC =-=……………4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG =……………5分 即10257t t -= 解得,5017t =……………6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =……………7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ······················································································· 8分解法二:(图①) ADCB KH(图②)A DCBG MNADCB MN(图③) (图④)AD CBM NH E∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC EC DC HC =即553t t-= ∴258t =……………8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t == 解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t = 解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MC HC DC =即1102235tt -=∴6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 9分9.(2015年锦州市)如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、N(点M 在点N 的上方). 1.求A 、B 两点的坐标;2.设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t≤6),试求S 与t 的函数表达式;3.在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少?1.分析:由菱形的性质、三角函数易求A 、B 两点的坐标. 解:∵四边形OABC 为菱形,点C 的坐标为(4,0),∴OA=AB=BC=CO=4.如图①,过点A 作AD⊥OC 于D.∵∠AOC=60°,∴OD=2,AD=.∴A(2, ),B (6, ).2.分析:直线l 在运动过程中,随时间t 的变化,△MON 的形状也不断变化,因此,首先要把所有情况画出相应的图形,每一种图形都要相应写出自变量的取值范围。

相关文档
最新文档