高中数学合格性考试习题汇编——集合含答案
高中数学学业水平考试练习题(有答案)
高中数学学业水平复习练习一 I 集合与函数(一)1. 已知 S ={1 , 2, 3, 4, 5}, A ={ 1 , 2}, B ={ 2 , 3, 6},则 A B ________ , A B _________ , (C S A) B __________ .2. 已知 A {x| 1 x 2}, B {x|1 x 3},则 A B ____________________ , A B _________3. 集合{a,b,c,d}的所有子集个数是 _____ ,含有2个元素子集个数是 _______ .4. ______________________________________ 图中阴影部分的集合表示正确的有6. ____________________________ 下列表达式正确的有7. 若{1,2} A {1,2,3,4},则满足A 集合的个数为 __________ . 8. 下列函数可以表示同一函数的有 _________ . (A)f(x) x, g(x) ( .x)2(B) f (x) x, g(x) . x 21 X 0 f — ' ------ . --------------------(C)f(x) -,g(x)(D) f(x) x x 1,g(x) x(x 1)xx9. 函数f(x) V x —2 (3 x 的定义域为 ________________ .110. 函数f (x)的定义域为 ________yl g x11. _____________________________ 若函数 f (x) x 2,则f (x 1) . 12. 已知 f (x 1) 2x 1,则f (x)______ .(A)C u (A B) (B)C U (A B)(C) (C U A) (C u B)(D) (C U A) (C u B)5.已知 A {( x, y) | xy 4}, B {( x, y) | xy 6},贝V A B =(A) A B A B A (B) A B A(C) A (C u A) A (D) A (C U A) U13. 已知f(JX) x 1,贝U f(2) _____ .X x 014. 已知f(x) ' ,贝U f(0) ____ f[ f( 1)] ____ .2, x 0215. 函数y -的值域为____________ .x16. 函数y x2 1, x R的值域为______________ .17. 函数y x2 2x,x (0,3)的值域为_______________ .118. 将函数y -的图象向左平移2个单位,再向下平移1个单位,则对应x图象的解析式为__________ .练习二|集合与函数(二)1. 已知全集1={1,2,3, 4,5,6},A={1,2,3,4},B={3,4,5,6},那么C I(A AB)=( ).A. {3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.①2. 设集合M ={1,2,3,4,5},集合N={ x| x2 9},M AN=( ).A.{x| 3x3}B.{1,2}C.{1,2,3}D.{x|1 x 3}3. 设集合M={ —2,0,2},N={0},则().A. N 为空集B. N € MC. N MD. M N4. 函数y= lg(x2 1)的定义域是______________________ .5. 已知函数f(J x)=log 3(8X+7),那么f(?等于 _____________________ .6. 与函数y= x有相同图象的一个函数是().A.y= x2B. y = —C. y= a log a x (a>0, a 丰 1)D. y= log a a x (a>0, ax7. 在同一坐标系中,函数y=log°.5X与y= log2 x的图象之间的关系是().A.关于原点对称B.关于x 轴对称C.关于直线y=1对称.D.关于y 轴对称)上是增函数的是 ).1 1C. y=( 2)xD.y= log 0.3 -B. 在区间(一s, 0)上的减函数 D. 在区间(0, + s )上的减函数B.是奇函数,但不是偶函数 D.不是奇函数,也不是偶函数11. 设函数 f(x)=(m — 1)x 2+( m+1) x+3 是偶函数,贝U m= _______ . 12. 函数 y=log 3|x| (x € R 且 x 工 0)( ).A. 为奇函数且在(—s, 0)上是减函数B. 为奇函数且在(—s, 0)上是增函数C. 是偶函数且在(0, + s )上是减函数D. 是偶函数且在(0 , + s )上是增函数13. 若f(x)是以4为周期的奇函数,且f( — 1)=a(a 工0),贝(5)的值等于( ).A. 5 aB. — aC. aD. 1 — a114. 如果函数y= log a x 的图象过点(-,2),则a= _____________ .9 2115. 实数 273 -2 g 23 • lo 旷 +lg4+2lg5 的值为 ________________ .88. 下列函数中,在区间(0 , + sA.y= — x 2B.y= x 2 — x+29. 函数 y= log 2( x)是().A.在区间(一s, 0)上的增函数 C.在区间(0, + s )上的增函数3x -1 10. 函数 f(x)= ( ).3x +1A.是偶函数,但不是奇函数 C.既是奇函数,又是偶函数16. 设a=log 26.7, b=log 0.24.3, c=log 0.25.6,则a, b, c 的大小关系为( )17•若log! x 1,则x的取值范围是().21 1 1A. xB. 0 xC.xD. x 02 2 2练习三|立体几何(一)1. 下列条件,可以确定一个平面的是():(A)三个点(B)不共线的四个点(C) 一条直线和一个点(D)两条相交或平行直线2. 判断下列说法是否正确:[](1)如果两直线没有公共点,则它们平行[](2)分别位于两个平面内的两条直线是异面直线[](3)不在任何一个平面的两条直线异面[](4)过空间中一点有且只有一条直线和已知直线平行[](5)若a//b,b ,则a//[](6)如果一直线和一平面平行,则这条直线和平面的任意直线平行[](7)如果一条直线和一个平面平行,则这条直线和这个平面内的无数条直线平行[](8)若两条直线同时和一个平面平行,则这两条直线平行[](9)若a// ,b ,且a,b共面,则a//b[](10)两个平面的公共点的个数可以是0个,1个或无数[](11)若a ,b , // ,则a//b[](12)若a// ,a// ,贝U //A. b< c< aB. a< c< bC. a< b<cD. c< b< a[](13)若一个平面内的无数条直线和另一个平面平行,则这两个平面平行[](14)若// ,a ,则a//[](15)若一个平面同两个平面相交且它们的交线平行,则两平面平行[](16)过平面外一点,有且只有一个平面和已知平面平行[](17)如果一直线垂直于一个平面内的所有直线,则这条直线垂直于这个平面[](18)过一点有且只有一条直线和已知平面垂直[](19)若,a ,b ,,则 a b[](20)若a , ,则a[](21)若,/,贝U[](22)垂直于同一条直线的两个平面平行[](23)过平面外一点有且只有一个平面与已知平面垂直练习四立体几何(二)1•已知AB为平面的一条斜线,B为斜足,AO ,O为垂足,BC为平面内的一条直线, ABC 60 , OBC 45,则斜线AB与平面所成的角的大小为__________________2. 在棱长均为a的正四棱锥S ABCD中,(1) 棱锥的高为 ______ .(2) 棱锥的斜高为 _________ .(3) SA与底面ABCD的夹角为__________ .(4) 二面角S BC A的大小为____________3. _____________________________________________________________________________ 已知正四棱锥的底面边长为4近,侧面与底面所成的角为45,那么它的侧面积为 _________________4. 在正三棱柱ABC A1BQ1中,底面边长和侧棱长均为a,取AA i的中点M,连结CM,BM,则二面角M BC A的大小为5 •已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为 ______ .6. 在正三棱锥中,已知侧面都是直角三角形,那么底面边长为a时,它的全面积是______ .7. 若球的一截面的面积是36,且截面到球心的距离为8,则这个球的体积为_________ ,表面积为_________ .8. 半径为R球的内接正方体的体积为___________ .练习五I立体几何(三)解答题:1. 在四棱锥P ABCD中,底面是边长为a的正方形,侧棱PD a ,PA PC 、2a.⑴求证:PD 平面ABCD ;⑵求证:PB AC ;(3) 求PA与底面所成角的大小;(4) 求PB与底面所成角的余弦值2. 在正四棱柱ABCD AB.CQ,中,AB=1 , AA, 2 .(1) 求BC i与平面ABCD所成角的余弦值;(2) 证明:AC i BD ;(3) 求AC i与平面ABCD所成角的余弦值.3. 在直三棱柱ABC-A i B i C i 中,D 是AB 的中点,AC = BC=2 , AA i = 2. 3 .(1)求证:A i D DC ; (2)求二面角A i CDA的正切值;⑶求二面角A i BC A的大小.住* 1\* i\ \ :\ \ :\ \ *\/ BA D4. 四棱锥P-ABCD的底面是正方形,PD丄底面ABCD,且BD = 6 , PB与底面所成角的正切值为一66(1) 求证:PB丄AC ;(2) 求P点到AC的距离.练习六解析几何1. 已知直线I的倾斜角为135,且过点A( 4,1),B(m, 3),则m的值为__________ .2. 已知直线I的倾斜角为135,且过点(1,2),则直线的方程为________________ .3. 已知直线的斜率为4,且在x轴上的截距为2,此直线方程为_______________4. 直线x J3y 2 0倾斜角为__________________ .5. 过点(2,3)且平行于直线2x y 5 0的方程为________________________.过点(2,3)且垂直于直线2x y 5 0的方程为________________________.6. 已知直线l「x ay 2a 2 O,D:ax y 1 a 0,当两直线平行时,a= __________________ 当两直线垂直时,a= ______ .7. 设直线l i: 3x 4y 2 0」2:2X y 2 0」3:3x 4y 2 0,则直线l i与J的交点到I3的距离为_____________ .8. 平行于直线3x 4y 2 0且到它的距离为1的直线方程为__________________ .练习七|不等式1. 不等式|1 2x| 3的解集是______________ .2. 不等式x2 x 2 0的解集是 _______________ .3. 不等式x2 x 1 0的解集是 _______________ .4. 不等式口0的解集是________________ .3 x5. 已知不等式x2 mx n 0的解集是{x | x 1,或x 2},则m和n的值分别为_____________6. 不等式x2 mx 4 0对于任意x值恒成立,则m的取值范围为________________ .7. _______________________________________________________ 已知2 a 5, 4 b 6,则a b的取值范围是 ____________________________________________________则b a的取值范围是 _____________ -的取值范围是 ______________a8. 已知a,b 0且a b 2,则ab的最值为.9. 已知m 0,则函数y 2m —的最值为_此时mm10 . .若x 0,则函数y1x -的取值范围是(x).A.( , 2]B. [2, )C. ( , 2] [2, )D. [ 2,2]6 211.若x 0,则函数y 4 p 3x 2有().x练习八 平面向量1.已知a,b满足|a !1,|b| 4,a b2,则a 与b 的夹角为()A. 6B. 4C. 3D. 22.已知 a (2,1), a b (1,k ),若 a b,则实数k ----------------- .3.若向量 a =(1,1), b=(i, — i ),c=( — 1,2),则 c=().1 3 1 3 3 1 31」A — _ a + _ bB _ a — _ bC _ a — _ bD — _ a + _ b2 2 ' 2 2 ' 2 2 ' 2 24. 若|a |=1 , |b|=2 , c = a + b ,且c 丄a ,则向量a 与b 的夹角为(). A.30oB.60oC.120oD150o5. 已知向量a,b 满足同1,N2, a 与b 的夹角为60 ,则b 耳 -------------------------- .数列(一)1. 已知数列{如中,去1 , an 1 2an 1,则a 1 ___________________ .2.-81是等差数列 -5 , -9 , -13 ,•的第( )项.3. 若某一数列的通项公式为an 1 4n ,则它的前50项的和为 _______________4. 等比数列2,6,18,54,…的前n 项和公式% = ______________ .5. _____________________________________________ 在等差数列{an }中,a6 5, a3 a8 5,则S9_______________________________________________A.最大值4 6、. 2B.最小值4 62C.最大值4 6.2D.最小值4 6 26.2 1与、21的等比中项为7.若a ,b ,c成等差数列,且a b c 8,则b=________________8. 等差数列{an}中,a3+ a4+ a5+ a6+ a7=150 ,则a2+a8=9. 在等差数列{an}中,若a5=2 , a10=10,则a15= _______ .1 3 9 27 8110. 数列1,5,9, 13,17,…的一个通项公式为 __________ .11. 在等比数列中,各项均为正数,且3236 9,则log 1(838485) = _________________ .312. 等差数列中,a1 24,d 2,则Sn= _____________ .13. 已知数列{ a n }的前项和为S n = 2n 2 -n,则该数列的通项公式为 ________ .14. 已知三个数成等比数列,它们的和为14,它们的积为64,则这三个数练习十数列(二)1. 在等差数列{9n}中,95 8,前5项的和S5 10,它的首项是—公差2. _____________________________________________________ 在公比为2的等比数列中,前4项的和为45,则首项为______________________________________3.在等差数列{3n}中,已知9a2 a3 a4 a5 15,则3284 =12. _____________________________________________________________在各项均为正数的等比数列中,若aia5 5,则log5(a2a3a4) ____________________________________ 练习十一三角函数(一)1. 已知角x的终边与角30的终边关于y轴对称,则角x的集合可以表示为2. 在360 ~ 720之间,与角175终边相同的角有______________________ .3. 在半径为2的圆中,弧度数为一的圆心角所对的弧长为 _________ 扇形面积为____________34. 已知角的终边经过点(3,—4),贝U sin = ___ , cos = ________ ,tan = _______ .5. 已知sin 0且cos 0,则角_______ 一定在第限.35.已知sin11,则sin4cos 46. 计算:7cos12sinO 2tanO cos2 137. 已知tan ,且,则sin3 29. 化简:旦—鯉乙丄sin ( )cos ( )练习十二三角函数(二)1. _______________________ 求值: cos165 = ____ ,tan( 15 )12. 已知cos , ________ 为第三象限角,则sin (y ),3. ___________________________________________________________ 已知tanx,tany 是方程x 26x 7 0的两个根,贝U tan(x y) ___________________________ , tan 65tan5V3 tan65 tan 5sin15 cos15 , sin 2— cos 2 —2 214.已知sin1,为第二象限角,则sin2 _sin 70 cos10 sin 20 sin 170 cos2 = _________, cos8.已知tan2,则江 cos 2cossincos <3 sin ___________ ,1 tan15 1 tan155 36•在 ABC 中'若 cos A i3,sin B 5,则 sin C7.已知tan 2, tan 3,且,都为锐角,则 8.已知sincosi ,则sin2 —-.15 14比较大小:cos 515 —cos530, sin (肓)—sin (可)6. _______________________________________________________________________ 要得到函数y 2sin (2x 才)的图象,只需将y 2sin2x 的图象上各点 ___________________________7. 将函数y cos2x 的图象向左平移-个单位,得到图象对应的函数解析式为8.已知cos ,(0 _______________________ 2 ),贝U 可能的值有 .练习十四|三角函数(四)101. 在0~2范围内,与10终边相同的角是 _________________ .3 2. 若 sin a <且 cos a <0,贝U a 为第_______ 限角.三角函数(三)1.函数ysin (x7)的图象的一个对称中心是().A. (0,0) 3 3B. G 1)C.(才°D.(才。
高中数学集合测试题(卷)(含答案解析和解析)
集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 : 1.设集合{}()(){}5,730S x x T x x x =<=+-<,那么S T ⋂=〔〕A .{75}xx -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣D .{|75}x x -<<【答案】 C 【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可. 解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S T x x =-<<,应选C 2.集合{}}{Z n n x x N x x M ∈+==<-=,12,042,那么集合N M ⋂等于〔〕A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】A3.假设集合{}{}260,10P x x x T x mx =+-==+=,且T P ⊆,那么实数m 的可取值组成的集合是〔〕A .11,32⎧⎫-⎨⎬⎩⎭B .13⎧⎫⎨⎬⎩⎭C .11,,032⎧⎫-⎨⎬⎩⎭ D .12⎧⎫-⎨⎬⎩⎭C4.假设{1,2}⊆A ⊆{1,2,3,4,5}那么满足条件的集合A 的个数是〔〕 A .6 B .7 C .8 D .9 【答案】 C5.设P={x|x ≤8},. A .a ⊆P B .a ∉P C .{a}∈P D .{a}⊂P 【答案】 D 6.集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,那么B 中所含元素的个数为〔〕A .3B .6C . 8D .10【答案】D【解析】考点:元素与集合关系的判断. 专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项 解答:解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2,综上知,B中的元素个数为10个应选D点评:此题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.集合A={x|x2-x-2<0},B={x|-1<x<1},那么〔〕A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B⊊A应选B点评:此题主要考查了集合之间关系的判断,属于根底试题8.不等式﹣x2﹣5x+6≤0的解集为〔〕A.{x|x≥6或x≤﹣1} B.{x|﹣1≤x≤6}C.{x|﹣6≤x≤1}D.{x|x≤﹣6或x≥1}D【解析】考点:一元二次不等式的解法。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2,4,6A =,{}2,3,4,5B =,则A B 中元素的个数为( ) A .1B .2C .3D .42.已知集合{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .233x x ⎧⎫≤<⎨⎬⎩⎭B .2|43x x ⎧⎫<≤⎨⎬⎩⎭C .{}04x x <≤D .{}03x x <<3.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,54.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,35.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1-- C .{}2,1,1--D .{}2,1,1,2--6.设集合{}2|230A x x x =+-<,集合{|B y y ==,则A B =( )A .()1,1-B .()0,1C .[)0,1D .()1,+∞7.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加参加径赛和田赛有3人,同时参加径赛和球类比赛有3人,没有人同时参加三项比赛.只参加球类比赛的人数为( ) A .6B .7C .8D .98.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,211.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞ D .()1,2-12.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( ) A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( )A .∅B .[)1,-+∞C .[)1,5-D .()5,+∞15.设集合{}*5,,5m M x x C m N m ==∈≤,则M 的子集个数为( )A .8B .16C .32D .64二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.18.已知(){}22,1,01M x y xy y =+=<≤,(){},,N x y y x b b R ==+∈,如果MN ≠∅,那么b 的取值范围是______.19.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.20.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 21.已知全集{}1,2,3,4,5,6,7U =,集合A 、B 均为U 的子集.若{}5A B =,{}7A B ⋂=,则A =______.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.25.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 三、解答题26.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围.条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.27.已知集合{}{}{}2|60,|15,|1A x x x B x x C x a x a =+-≥=<<=≤<+(1)求A B(2)若B C C =,求实数a 的取值范围.28.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.29.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围.30.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的定义,即可求解. 【详解】因为集合{}1,2,4,6A =,{}2,3,4,5B =,所以{}2,4A B =,故A B 中元素的个数为2. 故选:B 2.A 【解析】 【分析】在数轴上分别作出集合A ,集合B ,再由交集的概念取相交部分. 【详解】因为{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,所以2|33A B x x ⎧⎫=≤<⎨⎬⎩⎭.故答案为:A. 3.C 【解析】 【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 4.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 5.C 【解析】 【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答.【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 6.C 【解析】 【分析】化简集合A 、B ,然后利用交集的定义运算即得. 【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=, 所以[0,1)A B =. 故选:C . 7.C 【解析】 【分析】 由容斥原理求解 【详解】设同时参加球类比赛和田赛的人数为x ,由于没有人同时参加三项比赛 故281581433x =++---,得3x = 故只参加球类比赛的人数为14338--= 故选:C 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.D 【解析】 【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果. 【详解】()(){}120{2B x x x x x =-->=或1}x <,因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞. 故选:D. 10.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 11.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 12.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 13.B 【解析】 【分析】根据集合的并集计算即可. 【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤, 故选:B 14.B 【解析】【分析】先解一元二次不等式,在根据并集定义计算. 【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+,∴[)1,A B =-+∞. 故选:B. 15.A 【解析】 【分析】根据组合数的求解,先求得集合M 中的元素个数,再求其子集个数即可. 【详解】因为*5,,5m x C m N m =∈≤,由14555C C ==,235510C C ==,551C =,故集合M 有3个元素,故其子集个数为328=个. 故选:A.二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个. 故答案为:4 17.P Q ≠⊂ 【解析】 【分析】根据两个集合中的元素可判断出包含关系. 【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素,P Q ≠∴⊂.故答案为:P Q ≠⊂18.(-【解析】 【分析】数形结合,进行求解. 【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111b d ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-19.(){}2,5【解析】 【分析】由方程组可求得交点坐标,由此可得交集. 【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=.故答案为:(){}2,5. 20.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭.故答案为:1,1,22⎧⎫-⎨⎬⎩⎭21.{5,7}##{}7,5 【解析】 【分析】根据给定条件结合集合的运算性质即可计算作答. 【详解】因集合A 、B 均为U 的子集,则有U B B =⋃,于是得()()()A A U A B B A B A B =⋂=⋂⋃=⋂⋃⋂,而{}5A B =,{}7A B ⋂=, 所以{5,7}A = 故答案为:{5,7} 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:524.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.25.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}.三、解答题26.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+. 27.(1){}25A B x x ⋂=≤< (2)14a <≤ 【解析】 【分析】(1)先求出集合A 再计算A B 即可;(2)由B C C =得C B ⊆,列出不等式组,即可求解. (1){}{2603A x x x x x =+-≥=≤-或}2x ≥,故{}25A B x x ⋂=≤<;(2)由B C C =得C B ⊆,又C ≠∅,可得115a a >⎧⎨+≤⎩ ,解得14a <≤. 28.(1)[)2,A =+∞(2)(],2a ∈-∞【解析】【分析】(1)根据对数函数的单调解不等式即可;(2)先求()R ,2A =-∞,再分类讨论并满足R B A ⊆可得答案.(1) ()()2222222log log 2log log 220x x x x x x ≥⇒≥⇒≥>解得2x ≥,故[)2,A =+∞(2)由(1)()R ,2A =-∞当1a =时,B =∅,满足题意;当1a >时,()1,B a =,只需2a ≤;当1a <时,(),1B a =,满足题意.综上所述,(],2a ∈-∞.29.(1)[3,0]-(2)][(),62,∞∞--⋃+【解析】【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+≥⎧⎨=≤⎩,解得30a -≤≤,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x ∈-的值域为集合A ,()5g x ax a =+-,[1,3]x ∈-的值域为集合B .则对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立⇔A B ⊆. 因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x ∈-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-≤≤+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-≤≤+,因为A B ⊆,所以521523a a a a -≤-⎧⎨+≥+⎩,解得2a ≥;当0a <时,()g x 的值域为{|5252}B y a y a =+≤≤-,因为A B ⊆,所以521523a a a a +≤-⎧⎨-≥+⎩,解得6a ≤-.综上,实数a 的取值范围为][(),62,∞∞--⋃+30.1,2⎡⎫-+∞⎪⎢⎣⎭ 【解析】【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.。
高中数学集合习题及详解
高中数学集合习题及详解一、单选题1.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的2.设R U =,1{|2}2x A x =<,{1}B x =,则()U B A ⋂=( ) A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤3.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个 B .2个 C .3个 D .4个 4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞5.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭ 6.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x > 7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤8.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( )A .(]2,3B .[)1,+∞C .()2,+∞D .(],3-∞ 10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤ 11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)- 12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤14.设集合{}{21,2,3|50}A B x x bx =---=++=,.若{}1A B ⋂=-,则B =( ) A .(-1,-3} B .{-1,3} C .{}1,5-- D .{}1,5-15.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________. 18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,y A 是y B ∈的充分不必要条件,则m 的取值范围是______.20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.21.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.22.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A x x ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()R A B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.(1)已知U =R ,且{}|44A x x =-<<,{|1B x x =≤或}3x ≥,求A B ; (2)设{}Z|66A x x =∈-≤≤,{}1,2,3B =,{}3,4,5,6C =,求()()A A B C .29.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.30.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.【参考答案】一、单选题1.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .2.B【解析】【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂.【详解】11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1U A x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1U BA x x =>. 故选:B3.C 【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =.故选:C4.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】 因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.5.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .6.B【解析】【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可.【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}MN x x =<<.故选:B.7.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.【详解】 1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D8.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D9.B【解析】【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤,所以A B ⋃=[)1,+∞,故选:B10.B【解析】【分析】 化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.11.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.12.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.13.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.14.C【解析】【分析】根据交集结果得到1B -∈,所以150b -+=,解出6b =,从而解方程,求出B ={}1,5--.【详解】因为{1}A B ⋂=-,所以150b -+=,解得6b =,则2650x x ++=的解为1x =-或5x =-,故B ={}1,5--故选:C15.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:118. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.[)1,+∞【解析】【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求.【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞.故答案为:[)1,+∞.20.[2,+∞)【解析】【分析】根据A B ⊆结合数轴即可求解.【详解】 ∵{}22A x x =-≤≤≠∅,A B ⊆,∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:422.{0,3,6}【解析】【分析】根据给定条件直接计算作答.【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =.故答案为:{0,3,6}23.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 24.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2.故答案为:2,0,2.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){|41A B x x ⋂=-<≤或}34x ≤<;(2)()(){}6,5,4,3,2,1,0A A B C =------.【解析】【分析】(1)利用集合的交运算即可求解A B ;(2)根据已知集合的描述,应用集合的交并补混合运算求()()A AB C . 【详解】(1){}{|44|1A B x x x x ⋂=-<<⋂≤或}3{|41x x x ≥=-<≤或}34x ≤<.(2)由题意,}{6,5,4,3,2,1,0,1,2,3,4,5,6A =------,且{}1,2,3B =,{}3,4,5,6C =, 所以{}1,2,3,4,5,6B C ⋃=,则(){}6,5,4,3,2,1,0A B C =------. 所以()(){}6,5,4,3,2,1,0A A B C =------.29.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-. 30.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =。
广东省高考数学学业水平合格考试总复习 学业达标集训 集合与函数概念(含解析)-人教版高三全册数学试题
集合与函数概念一、选择题1.已知集合M={a,b},N={b,c},则M∩N=()A.{a,b}B.{b,c}C.{a,c} D.{b}D[M∩N={a,b}∩{b,c}={b}.]2.已知全集U=R,集合A={0,1,2,3,4} ,B={x|x-2>0},则A∩B=()A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}C[B={x|x>2},又由A={0,1,2,3,4},所以A∩B={3,4}.]3.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆M B.M∪N=MC.M∩N=N D.M∩N={2}D[M∩N={1,2,3,4}∩{-2,2}={2}.]4.设全集U=R,集合A={y|y=x2},B={x|y=lg(x-3)} ,则A∩∁U B=()A.(2,+∞) B.(3,+∞)C.[0,3] D.(-∞,-3]∪{3}C[∵A={y|y=x2}={y|y≥0},B={x|y=lg(x-3)}={x|x>3},∁U B={x|x≤3},∴A∩(∁U B)={x|0≤x≤3}.]5.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,3,4} D.{0,2,4}D[U={0,1,2,3,4},A={1,2,3}∴∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.]6.下列函数中,即是偶函数又是(0,+∞)上的增函数的是()A.y=x3B.y=-x2C .y =x 0.5D . y =2|x |D [y =x 3是奇函数,y =-x 2在( 0,+∞)上是减函数,y =x 0.5既不是奇函数,也不是偶函数,故选D .]7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,0<x <1,1x 2,x ≥1,f (f (2))=( ) A .2 B .-2 C .1 D .-1 B [因为f (x )=⎩⎪⎨⎪⎧log 2x , 0<x <11x 2, x ≥1,所以f (2)=14<1,所以f (f (2))=f ⎝⎛⎭⎫14=log 214=-2.] 8.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (ln x )>f (1),则x 的取值范围是( )A .(-1,0)∪(0,1)B .(0,e)C .(-e,0)∪(0,e)D .⎝⎛⎭⎫1e ,e D [根据题意,若f (x )是偶函数,且在[0,+∞)上是减函数,则f (ln x )>f (1)⇒|ln x |<1⇒-1<ln x <1,解可得:1e<x <e ,即x 的取值范围为⎝⎛⎭⎫1e ,e .] 9.下列四组函数中,表示同一函数的是( )A .y =x 2与y =xB .y =x 0与y =1C .y =x x 0 与y =x xD .y =x 与y =(x )2C [对于A ,函数y =x 2=|x |(x ∈R ),与y =x (x ∈R )的对应关系不同,不是同一函数;对于B ,函数y =x 0=1(x ≠0),与y =1(x ∈R )的定义域不同,不是同一函数;对于C ,函数y =x x 0 =x (x >0),与y =x x=x (x >0)的定义域相同,对应关系也相同,是同一函数;对于D ,函数y =x (x ∈R ),与y =(x )2=x (x ≥0)的定义域不同,不是同一函数.故选C .]10.如图是函数y =f (x )的图象,则f (f (2))的值为( )A .3B .4C .5D .6C [由图象可得,当0≤x ≤3时,y =f (x )=2x ,∴f (2)=4.当3<x ≤9时,由 y -0=6-03-9(x -9), 可得 y =f (x )=9-x ,故 f ( f (2))=f (4)=9-4=5,故选C .]11.函数f (x )=x 2-6x +7,x ∈(2,5]的值域是( )A .(-1,2]B .(-2,2]C .[-2,2]D .[-2,-1)C [由f (x )=x 2-6x +7=(x -3)2-2,x ∈(2,5].∴当x =3时,f (x )min =-2.当x =5时,f (x )max =(5-3)2-2=2.∴函数f (x )=x 2-6x +7,x ∈(2,5]的值域是[-2,2].故选C .]12.已知y =x 2+4ax -2在区间(-∞,4]上为减函数,则a 的取值范围是( )A .(-∞,-2]B .(-∞,2]C .[-2,+∞)D .[2,+∞)A [函数y =x 2+4ax -2的图象是开口朝上,且以直线x =-2a 为对称轴的抛物线,若y =x 2+4ax -2在区间(-∞,4]上为减函数,则-2a ≥4,解得a ∈(-∞,-2],故选A .]13.函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )D [因为f (-x )=⎝⎛⎭⎫-x +1x cos x =-⎝⎛⎭⎫x -1x cos x =-f (x ),故函数是奇函数,所以排除A ,B ;取x =π ,则f (π)=⎝⎛⎭⎫π-1πcos π=-⎝⎛⎭⎫π-1π<0,故选D .] 14.已知f (x )是定义在R 上的偶函数,当x ∈(-∞,0)时,f (x )=x -x 2,则当x ∈(0,+∞)时,f (x )的表达式为( )A .x +x 2B .-x +x 2C .-x -x 2D .x -x 2C [由题意,设x >0,则-x <0,代入已知式子可得f (-x )=-(-x )2+(-x )=-x 2-x ,又因为f (x )是定义在R 上的偶函数,所以f (x )=f (-x )=-x 2-x ,故选C .]15.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2,x 1<x 2),有f (x 1)-f (x 2)x 1-x 2<0,且f (2)=0,则不等式xf (x )<0的解集为( )A .(-∞,-2)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)A [因为对任意的x 1,x 2∈(-∞,0](x 1≠x 2),当x 1<x 2,有f (x 1)-f (x 2)x 1-x 2<0,所以f (x 1)-f (x 2)>0,f (x 1)>f (x 2),∴ 当x ≤0函数f (x )为减函数,又因为f (x )是偶函数,所以当x ≥0时,f (x )为增函数,因为f (2)=0,所以f (-2)=f (2)=0,作出函数f (x )的图象如图:xf (x )<0等价为⎩⎨⎧ x >0f (x )<0或⎩⎨⎧x <0f (x )>0,由图可知,0<x <2或x <-2,即不等式的解集为(-∞,-2)∪(0,2),故选A .]二、填空题16.若函数f (x )是奇函数,且f (2)=1,则f (-2)= .-1 [∵f (x )是奇函数,所以f (-x )=-f (x ),因为f (2)=1,∴f (-2)=-f (2)=-1.]17.函数y =2x -3+1x -3的定义域为 . ⎣⎡⎭⎫32 ,3∪(3,+∞) [函数y =2x -3+1x -3有意义,需满足⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3,∴函数的定义域为⎣⎡⎭⎫32 ,3∪(3,+∞).]18.当x ∈[-2,1]时,函数f (x )=x 2+2x -2的值域是 .[-3,1] [f (x )=x 2+2x -2=(x +1)2-3∈[-3,1].] 19.已知函数f (x )=⎩⎨⎧x +2,x ≤0-x +2,x >0,则不等式f (x )≥x 2的解集为 . [-1,1] [当x ≤0时,f (x )=x +2,代入不等式得:x +2≥x 2,即(x -2)(x +1)≤0,解得-1≤x ≤2,所以原不等式的解集为[-1,0];当x >0时,f (x )=-x +2,代入不等式得:-x +2≥x 2,即(x +2)(x -1)≤0,解得-2≤x ≤1,所以原不等式的解集为(0,1],综上原不等式的解集为[-1,1].]三、解答题20.已知集合A ={x |2-a ≤x ≤2+a },B ={x |x ≤1,或x ≥4}.(1)当a =3时,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.[解] (1)当a =3时,A ={x |-1≤x ≤5},B ={x |x ≤1或x ≥4}, ∴A ∩B ={x |-1≤x ≤1,或4≤x ≤5}.(2)(ⅰ)若A =∅,此时2-a >2+a ,∴a <0,满足A ∩B =∅. (ⅱ)当a ≥0时,A ={x |2-a ≤x ≤2+a }≠∅,∵A ∩B =∅,∴⎩⎪⎨⎪⎧ 2-a >1,2+a <4,∴0≤a <1. 综上可知,实数a 的取值范围是(-∞,1).21.已知函数f (x )=2x -1x +1. (1)证明:函数f (x )在区间(0,+∞)上是增函数;(2)求函数f (x )在区间[1,17]上的最大值和最小值.[解] (1)证明:f (x )=2x -1x +1=2-3x +1, 设x 1>x 2>0,则f (x 1)-f (x 2)=3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1) . ∵x 1>x 2>0,∴x 1-x 2>0,x 1+1>0,x 2+1>0,∴3(x 1-x 2)(x 1+1)(x 2+1)>0,∴f (x 1)>f (x 2), ∴f (x )在区间(0,+∞)上是增函数.(2)∵f (x )在(0,+∞)上是增函数,∴f (x )在区间[1,17]上的最小值为f (1)=12,最大值为f (17)=116.。
高中数学集合练习题含答案
高中数学集合练习题含答案一、单选题1.已知集合{A x y ==,{}2B x x =<,则A B =( ) A .RB .∅C .[]1,2D .[)1,22.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,53.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,44.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭5.设集合{}2{|1N 9|}A x x B x x =>=∈<, ,则A B = ( )A .(13),B .(31)(13)--⋃,,C .{2}D .{-2,2}6.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-7.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,28.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 9.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)10.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( )A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-11.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,212.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥14.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤15.下列关系中正确的个数是( )①13Z ∈,R , ③*0N ∈, ④Q π∉ A .1 B .2 C .3 D .4二、填空题16.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则UBA =___________.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.全集U =R ,集合{}3A x x =≤-,则 UA =______.19.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.20.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.21.已知全集{}1,2,3,4,5,6,7U =,集合A 、B 均为U 的子集.若{}5A B =,{}7A B ⋂=,则A =______.22.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________. 24.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.25.设P 、Q 为两个非空实数集合,定义集合{},,bP Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知全集U =R ,集合1{|124}x A x -=<<{}3,|log ,9B y y x x ==≥. (1)求()U A ∩B ;(2)若集合{|121}C x x a a =-<-<-,且C ⊆A ,求实数a 的取值范围.27.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由; (2){}123,,A a a a =具有性质P ,当24a =时,求集合A ; (3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.28.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<. (1)若2a =-,求()R A B ⋃; (2)若A B A =,求a 的取值范围.29.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.30.已知集合11284x A x -⎧⎫=≤≤⎨⎬⎩⎭,21log ,,164B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭.(1)求集合A 、B ;(2)若{}121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答. 【详解】由y =1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D 2.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 3.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 4.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 5.C 【解析】解一元二次不等式,求出集合B ,解得集合A ,根据集合的交集运算求得答案. 【详解】由题意解29x <得:33x -<< ,故2N 9{|}{0,1,2}B x x =∈=<,{}||11{A x x x x ==>>或1}x <- , 所以{2}A B =, 故选:C 6.C 【解析】 【分析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 7.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C 8.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 9.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;10.C 【解析】 【分析】解不等式求得集合B ,由此求得A B . 【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞. 故选:C 11.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 12.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 13.A 【解析】 【分析】由交集运算直接求出两集合的交集即可. 【详解】由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 14.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D. 15.B 【解析】 【分析】13是实数,0不是正整数,π是无理数 【详解】①13Z ∈错误R 正确③*0N ∈错误④Q π∉正确 故选:B二、填空题16.{}12x x <≤##(]1,2 【解析】 【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果. 【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤, 所以{3Ux x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12UBA x x =<≤.故答案为:{}12x x <≤.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.{}3x x >-【解析】 【分析】直接利用补集的定义求解 【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >-19.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-20.{}0,1,3【解析】 【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合. 【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆;当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m =即实数m 的取值集合为{}0,1,3. 故答案为:{}0,1,3 21.{5,7}##{}7,5 【解析】 【分析】根据给定条件结合集合的运算性质即可计算作答. 【详解】因集合A 、B 均为U 的子集,则有U B B =⋃,于是得()()()A A U A B B A B A B =⋂=⋂⋃=⋂⋃⋂,而{}5A B =,{}7A B ⋂=, 所以{5,7}A = 故答案为:{5,7} 22.7 【解析】 【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可. 【详解】因为{}2320{1,2}A xx x =-+==∣, {06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素, 集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共7个. 故答案为:723.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤<24.A B ⋂##B A ⋂【解析】【分析】根据集合的运算法则求解.【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂. 故答案为:A B ⋂.25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1)(){|3}U A B x x ⋂=≥;(2)[1,+∞).【解析】【分析】(1)解指数不等式求集合A ,由对数函数的值域得集合B ,再应用集合的交补运算求()U A ∩B 即可.(2)由题设有{|211}C x a x a =-<<+,根据集合的包含关系并讨论21,1a a -+的大小关系,列不等式求参数a 的范围(1)由已知,得:{|13}A x x =<<,{|2}B y y =≥,所以{|1U A x x =≤或3}x ≥,故(){|3}U A B x x ⋂=≥.(2)由题设,{|211}C x a x a =-<<+当211a a -≥+,即a ≥2时,C =∅满足C ⊆A ,当211a a -<+,即2a <时,由题意21113a a -≥⎧⎨+≤⎩,可得1≤a <2, 综上,实数a 的取值范围是[1,+∞).27.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证28.(1)()R A B ⋃{|2x x =≤-或1}x ≥ (2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1)解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.29.0≤m ≤4.【解析】【分析】先由一元二次不等式的解法化简集合P ,再由必要条件得到两集合间包含关系,结合非空集合S 和包含关系建立关于m 的不等关系,最后取交集解出范围.【详解】由x 2-x -20≤0,得-4≤x ≤5,∴P ={x |-4≤x ≤5}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴1415m m -≥-⎧⎨+≤⎩解得m ≤4. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0.综上,若x ∈P 是x ∈S 的必要条件,则0≤m ≤4.30.(1)[]1,4A =-,[]2,4B =- (2)5,2⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用指数函数和对数函数的单调性可分别求得集合A 、B ;(2)求出集合A B ,分C =∅、C ≠∅两种情况讨论,结合已知条件可得出关于m 的不等式(组),综合可求得实数m 的取值范围.(1) 解:{}[]11282131,44x A x x x -⎧⎫=≤≤=-≤-≤=-⎨⎬⎩⎭, 因为对数函数2log y x =在1,164⎡⎤⎢⎥⎣⎦上为增函数,则当1,164x ⎡⎤∈⎢⎥⎣⎦时,[]2log 2,4y x =∈-, 所以,[]2,4B =-.(2)解:因为[]1,4A B =-,且()C A B ⊆⋂.当121m m +>-时,即当2m <时,()C A B =∅⊆,合乎题意; 当121m m +≤-时,即当2m ≥时,C ≠∅,由题意可得11214m m +≥-⎧⎨-≤⎩,解得522m -≤≤,此时522m ≤≤. 综上所述,实数m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.。
高中数学集合练习题含答案
高中数学集合练习题含答案高中数学集合练题含答案1.单选题21.已知集合 $A=\{-2,-1,0,2,3,4\}$,$B=\{x|x-3x-4<0\}$,则 $A\cap B=$()A。
$\{-1,0,2,3,4\}$ B。
$\{0,2,3,4\}$ C。
$\{0,2,3\}$ D。
$\{2,3\}$22.设集合 $A=\{x|x-3x>0\}$,则 $A=$()A。
$(0,3)$ B。
$(-\infty,0)\cup(3,+\infty)$ C。
$[0,3]$ D。
$(-\infty,0]$3.已知集合 $A=\{x|-1<x<5,x\in N^*\}$,$B=\{x|\leq x\leq 3\}$,则 $A\cap B=$()A。
$[0,3]$ B。
$[-1,5)$ C。
$\{1,2,3,4\}$4.设集合$A=\{x|-1<x<3\}$,集合 $B=\{x|-3\leq x\leq 2\}$,则 $A\cup B=$()A。
$\{0,1,2\}$ B。
$\{1,2\}$ C。
$[-3,3)$ D。
$(-1,2]$5.集合 $A=\{x|-1<x<3\}$,集合 $B=\{x|x^2<2\}$,则$A\cap B=$()A。
$(-2,2)$ B。
$(-1,3)$ C。
$(-2,3)$ D。
$(-1,2)$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则$A\cap B=$()A。
$\{-1\}$ B。
$\{0,1\}$ C。
$\{0,1,2\}$ D。
$\{x\leq x\leq1\}$7.已知集合 $A=\{x|x<1\}$,$B=\{x|x(x-2)<0\}$,则$A\cup B=$()A。
$(0,1)$ B。
$(1,2)$ C。
$(-\infty,2)$ D。
$(0,+\infty)$8.若全集 $U=R$,集合 $A=\{0,1,2,3,4,5,6\}$,$B=\{x|x<3\}$,则图中阴影部分表示的集合为()图略)A。
2023年江苏省普通高中学业水平合格性考试数学真题试卷含详解全文
江苏省2023年普通高中学业水平合格性考试试卷数学参考公式:锥体的体积公式:13V Sh=,其中S 是底面积,h 是高.一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >3.已知3i z =-,则z =()A.3B.4C. D.104.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3B.4C.5D.65.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++< D.x ∃∈R ,210x x ++>6.已知角α的终边经过点(2,1)P -,则sin α= A.55B.5-C.255D.5-7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞8.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.6210.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.3411.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.314.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1B.2C.3D.416.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.217.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.618.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A .1B.32C.22D.3320.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx =+B.x y a b =+C.log b y a x=+ D.b y a x=+21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45C.55D.25522.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE+=B.AB AC BC-=C.12EF AB= D.12DE DF ⋅=23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面24.已知向量()(()()2,0,,a b a kb ka b ==+⊥-,则实数k =()A.1-B.0C.1D.1-或125.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30min km ,则θ=()A.30︒B.45︒C.60︒D.75︒26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A .4πB.8πC.12πD.16π28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.江苏省2023年普通高中学业水平合格性考试试卷数学一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-【答案】A【分析】根据交集定义直接计算即可.【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >【答案】A【分析】由不等式的基本性质逐一判断即可.【详解】A 选项:a b >,则33a b +>+,故A 正确;B 选项:a b >,则a b -<-,所以33a b -<-,故B 错误;C 选项:当0a b >>或0a b >>时,11a b <,则33a b<,故C 错误;D 选项:当0a b >>时,22a b <,故D 错误.故选:A .3.已知3i z =-,则z =()A.3B.4C.D.10【答案】C【分析】根据复数的模的计算公式,即可求得答案.【详解】因为3i z =-,所以z ==故选:C.4.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3 B.4C.5D.6【答案】B【分析】根据平均数的计算公式列式计算,即可求得答案.【详解】由题意可得26534,201645a a ++++=∴=-=,故选:B5.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++<D.x ∃∈R ,210x x ++>【答案】B【分析】全称命题的否定是特称命题,任意改为存在,再把结论否定.【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤故选:B .6.已知角α的终边经过点(2,1)P -,则sin α=A.5B.55-C.5D.【答案】B【分析】由题意利用任意角的三角函数的定义,求得sin α的值.【详解】解:角α的终边经过点()2,1P -,则sin α55==-,故选B .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞【答案】D【分析】函数定义域满足101x ≥-,10x -≠,解得答案.【详解】函数()f x =101x ≥-,10x -≠,解得1x >.故选:D8.要得到函数2sin 3y x π⎛⎫=+⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位【答案】A【分析】根据三角函数的图像变换中的相位变换确定结果.【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+⎪⎝⎭,故选A.【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.62【答案】C【分析】由扇形图计算参加数学类和理化类的人数,即可求得答案.【详解】由扇形统计图可知参加数学类的人数为20031%62⨯=,参加理化类的人数为20015%30⨯=,故参加数学类的人数比参加理化类的人数多623032-=,故选:C10.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.34【答案】D【分析】列举出所有的基本事件,然后得到甲被选中的情况,利用古典概型求解即可【详解】从甲、乙、丙、丁4名同学中任选3名同学共有:(甲乙丙),(甲丙丁),(甲乙丁),(乙丙丁),4种情况,甲被选中共有3种情况,故对应的概率为34故选:D11.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<【答案】A【分析】利用对数函数的单调性得到a<0,0l b <<,1c >,得到答案.【详解】331log log 102a =<=;33310log log 2l g 13ob <=<<=;22log 321logc ==>,所以a b c <<.故选:A12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直【答案】B【分析】若l 与m 相交,得到l 与α有交点,这与题设矛盾,得到答案.【详解】直线l 平面α,直线m ⊂平面α,则l 与m 可能平行,异面和垂直,若l 与m 相交,l m A = ,则∈A l ,A m ∈,直线m ⊂平面α,故A α∈,即l 与α有交点,这与题设矛盾.故选:B13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.3【答案】C【分析】()2f x x -=在()0,∞+上单调递减,A 错误,()12f x x =不是偶函数,B 错误,定义判断C 正确,()3f x x=函数为奇函数,D 错误,得到答案.【详解】对选项A :2α=-,()2f x x -=,函数在()0,∞+上单调递减,错误;对选项B :12α=,()12f x x =,函数定义域为[)0,∞+,不是偶函数,错误;对选项C :2α=,()2f x x =,函数定义域为R ,()()()2f x x f x -=-=,函数为偶函数,且在()0,∞+上单调递增,正确;对选项D :3α=,()3f x x =,函数定义域为R ,()()()3f x x f x -=-=-,函数为奇函数,错误;故选:C14.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-【答案】B【分析】根据三角函数同角的函数关系式,结合齐次式法求值,可得答案.【详解】由题意tan 3α=-,可知cos 0α≠,则sin 2cos tan 2321sin cos tan 1314αααααα++-+===----,故选:B15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1 B.2C.3D.4【答案】C【分析】计算{}0,1,1A B *=-,得到元素个数.【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C16.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.2【答案】A【分析】利用奇函数性质代入数据计算得到答案.【详解】因为函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,所以()()()311log 211f f -=-=-+=-.故选:A.17.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.6【答案】C【分析】甲乙都不能译出密码得概率为1049P =.,密码被破译的概率为11P -,得到答案.【详解】甲乙都不能译出密码得概率为()()110.310.30.49P =-⨯-=,故密码被破译的概率为110.51P -=.故选:C18.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁【答案】A【分析】分别假设甲、乙、丙、丁的预测错误,看能否推出与题意相矛盾的情况,即可判断答案.【详解】若甲预测错误,则其余三人预测正确,即丁第一,乙第二,丙第三或第四,甲第四或第三,符合题意;若乙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丁预测错误,则其余三人预测正确,则甲和乙的预测相矛盾,这样有两人预测错误,不符合题意;故选:A19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A.1B.2C.2D.33【答案】C【分析】连接BD ,1DD ⊥平面ABCD ,故1DBD ∠是1BD 与平面ABCD 所成角,计算得到答案.【详解】如图所示:连接BD ,因为1DD ⊥平面ABCD ,故1DBD ∠线1BD 与平面ABCD 所成角,设正方体棱长为1,则11,DD DB ==,112tan 2DD DBD DB ∴∠==.故选:C20.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx=+ B.x y a b =+C.log b y a x=+ D.b y a x=+【答案】B 【分析】由函数模型的增长方式以及定义域可确定选项.【详解】由散点图的定义域可排除C 、D 选项,由散点图的增长方式可知函数模型为指数型.故选:B21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45 C.55 D.255【答案】D【分析】确定sin 0A >,再利用二倍角公式计算得到答案.【详解】()0,πA ∈,sin 0A >,23cos212sin 5A A =-=-,解得25sin 5A =.故选:D22.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE += B.AB AC BC -= C.12EF AB = D.12DE DF ⋅= 【答案】D 【分析】根据向量的运算法则得到ABC 错误,12cos 60DE DF DE DF =⋅⋅︒= ,D 正确,得到答案.【详解】对选项A :AB+AC =2AE ,错误;对选项B :AB AC CB -= ,错误;对选项C :12EF BA = ,错误;对选项D :1cos 6011212DE DF DE DF =︒=⋅⋅=⨯⨯ ,正确.故选:D23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面【答案】B 【分析】易得空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,证明PA PB PC ==即可.【详解】空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,则OA OB OC ==,且,,OA OB OC ⊂平面ABC ,所以直线l OA ⊥,直线l OB ⊥,直线l OC ⊥,当点P 与点O 重合时,PA PB PC ==,即直线l 的点到ABC 的三个顶点距离相等,当点P 与点O 不重合时,由勾股定理可得PA PB PC ==,即直线l 的点到ABC 的三个定点距离相等,综上直线l 的点到ABC 的三个顶点距离相等,反之到ABC 的三个顶点距离相等的点都在直线l 上,所以空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线.故选:B24.已知向量()(()()2,0,,a b a kb ka b ==+⊥- ,则实数k =()A.1- B.0 C.1D.1-或1【答案】D 【分析】求出()(),a kb ka b +- 的坐标表示,根据向量垂直的坐标表示,可列方程,即可求得答案.【详解】由已知向量()(2,0,a b == ,可得()()(2),(21,a kb k ka b k +=+-=- ,由()()a kb ka b +⊥- 可得(2)(21,0k k +⋅-=,即(2)(21)30k k k +--=,解得1k =±,故选:D25.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30minkm ,则θ=()A.30︒B.45︒C.60︒D.75︒【答案】C【分析】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,再利用余弦定理即可得解.【详解】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,则5km,4km,AB AC BC BAC θ===∠=,则2222516211cos 22542AB AC BC AB AC θ+-+-===⋅⨯⨯,又因090θ︒<<︒,所以60θ=︒.故选:C.26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍【答案】C 【分析】代入数据计算16.8110E =,13.8210E =,计算得到答案.【详解】1lg 4.8 1.5816.8E =+⨯=,16.8110E =;2lg 4.8 1.5613.8E =+⨯=,13.8210E =,16.83113.82101010E E ==.故选:C27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A.4πB.8πC.12πD.16π【答案】B【分析】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为4πS =案.【详解】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为2242π4π4π×8π2r r S r +-=⋅==,当且仅当r =,即r =时等号成立.故选:B.28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个【答案】B 【分析】根据分段函数的解析式,讨论m 的范围,确定每段的函数最小值,由题意列方程,求得m 的值,可得答案.【详解】当3x <时,()2221(1)f x x x m x m m =--+=--≥-,当3x ≥时,()sin 1f x m x =+,若0m =,()f x 的值域为[)0,∞+,不合题意;若0m >,则3x ≥时,[]()1,1f x m m ∈-++,min ()1f x m =-+,由于1m m -+>-,由题意可知需使2,2m m -=-∴=;若0m <,则3x ≥时,[]()1,1f x m m ∈+-+,min ()1f x m =+,0m ->,故需使12,3m m +=-∴=-,即实数m 的可能值共有2个,故选:B二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.【答案】(1)证明见解析(2)1【分析】(1)利用线面平行的判定定理即可求证;(2)先证明PN ^平面ABC ,即可求出三棱锥的体积【小问1详解】因为,M N 分别是,AB BC 的中点,所以//MN AC ,因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以MN //平面PAC ;【小问2详解】因为PBC 是等边三角形,N 是BC 的中点,所以PN BC ⊥,因为PN AN ⊥,,AN BC ⊂平面ABC ,,AN BC N ⋂=所以PN ^平面ABC ,因为底面ABC 和侧面PBC 都是边长为2的等边三角形,所以1132231334P ABC ABC V S PN -=⨯=⨯⨯⨯ 30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+ ⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.【答案】(1)π(2)21,2⎡⎫-++∞⎪⎢⎪⎣⎭【分析】(1)确定πsin 23y x ⎛⎫=+ ⎪⎝⎭,再计算周期即可.(2)设1sin 2x t -=,31,22t ⎡⎤∈-⎢⎥⎣⎦,考虑0t >,0=t ,0t <三种情况,利用均值不等式计算最值得到答案.【小问1详解】3π23πsin 2y f x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,最小正周期2ππ2T ==.【小问2详解】()()211[]28f x m f x +-≥,即211sin sin 28x m x +-≥,设1sin 2x t -=,1sin 2x t =+,31,22t ⎡⎤∈-⎢⎥⎣⎦,当0t >时,即21128t mt ⎛⎫++≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥-+- ⎪⎝⎭,111182t t ⎛⎫-+-≤-=- ⎪⎝⎭,当且仅当18t t =,即24t =时等号成立,故212m ≥--;当0=t 时,不等式恒成立;当0t <时,即21128t mt ⎛⎫+-≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥--++ ⎪-⎝⎭,1211182t t ⎛⎫--++≤-=- ⎪-⎝⎭,当且仅当18t t -=-,即24t =-时等号成立,故212m ≥-+.综上所述:12m ≥-+,即1,2m ⎡⎫∈-++∞⎪⎢⎪⎣⎭。
高中数学集合练习题附答案
高中数学集合练习题附答案一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合{}22A x x =-<≤,{}10B x x =-≥,则()R A B ⋂=( ) A .{}21x x -≤≤B .{}2x x ≤-C .{}12x x ≤<D .{}2x x >3.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .84.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-5.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3]8.若全集U =R ,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6}9.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥10.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1}B .{4}C .{0,5}D .{0,1,4,5}11.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R(M ∪N )D .R(M ∩N )12.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)- 13.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,414.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,215.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.18.已知条件:212p k x -≤≤,:53q x -≤≤,p 是q 的充分条件,则实数k 的取值范围是_______.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.20.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.21.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 22.设函数()1ln 12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.23.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________24.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.25.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.三、解答题26.已知集合()(){}20A x x a x a =---≤,{}220B x x x =+-<.(1)若0a =,求()RAB ;(2)若命题P :“x A ∀∈,x B ∉”是真命题,求实数a 的取值范围.27.已知集合()3,12y A x y a x ⎧⎫-==+⎨⎬-⎩⎭与集合()()(){}2,1115,1B x y a x a y a =---=≠±,满足A B ⋂≠∅,求实数a 的值.28.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .29.已知集合{}2430M x x x =-+<,{}12N x x =-<<.(1)求()RM N ⋃;(2)若集合()(){}20P x x m x =+-≤,且“x ∈N ”是“x P ∈”的充分不必要条件,求m 的取值范围.30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦, 故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.B 【解析】 【分析】 求出集合RA ,根据集合的交集运算,求得答案.【详解】由题意,{}22A x x =-<≤,则R{|2A x x =≤-或2}x > ,{}10{|1}B x x x x =-≥=≤,故()R {|2}A B x x ⋂=≤-, 故选:B 3.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=.故选:D 4.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 5.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 6.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 7.B 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 8.A 【解析】 【分析】根据图中阴影部分表示()U A B 求解即可.【详解】由题知:图中阴影部分表示()U A B ,{}|3UB x x =≥,则(){}3,4,5,6U B A =.故选:A 9.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 10.B 【解析】 【分析】由补集、交集的概念运算 【详解】{0,4,5}UA =,则(){4}U AB ⋂=.故选:B 11.B 【解析】 【分析】根据韦恩图直接分析即可 【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂, 故选:B. 【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题12.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 13.C 【解析】 【分析】依据交集定义即可求得A B 【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C 14.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 15.B 【解析】 【分析】利用交集概念及运算,即可得到结果. 【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<, ∴{}0,1A B =, 故选:B二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.5【解析】 【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果. 【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =, 所以同时参加数学和化学小组有5人. 故答案为:5.18.[2,)-+∞【解析】 【分析】设{}212A x k x =-≤≤,{}53B x x =-≤≤,则A B ⊆,再对A 分两种情况讨论得解. 【详解】记{}212A x k x =-≤≤,{}53B x x =-≤≤, 因为p 是q 的充分条件,所以A B ⊆. 当A =∅时,212k ->,即32k >,符合题意; 当A ≠∅时,32k ≤,由A B ⊆可得215k -≥-,所以2k ≥-,即322k -≤≤.综上所述,实数的k 的取值范围是[2,)-+∞. 故答案为:[2,)-+∞.19.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.20.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 21.2 【解析】 【分析】先求P Q 后再计算即可. 【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:222.10,2⎛⎤⎥⎝⎦【解析】 【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解. 【详解】解:因为函数1()ln12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>,所以()()f x f x -=-,即1112ln ln ln 12121mx mx xx x mx-+-=-=+-+, 所以112121mx xx mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln 12x f x x+=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦.故答案为:10,2⎛⎤⎥⎝⎦.23.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.24.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:4 25.0或1. 【解析】 【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意;若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.三、解答题26.(1){}12x x ≤≤(2)41a a ≤-≥或【解析】【分析】①由一元二次不等式的解,得出集合A,B ,然后根据集合的交和补运算即可求解. ②将命题P 为真,转化为集合之间的包含关系.(1)当0a =时,(){}{}2002A x x x x x =-≤=≤≤,{}{}22021B x x x x x =+-<=-<<,则{}21R C B x x x =≤-≥或,(){}12R A B x x ⋂=≤≤ (2){}21B x x =-<<,{}21R C B x x x =≤-≥或, 由命题P :“x A ∀∈,x B ∉”是真命题可知:()R A B ⊆()(){}{}202A x x a x a x a x a =---≤=≤≤+ 故221a a +≤-≥或,解得:41a a ≤-≥或.实数a 的取值范围为:41a a ≤-≥或27.2-或72 【解析】【分析】由题意,可得两直线有交点,再由直线平行公式可判断得两直线重合,从而列式求解.【详解】因为A B ⋂≠∅,A ≠∅,B ≠∅,所以直线()121,2a x y a x +-=-≠与()()21115,1a x a y a ---=≠±有交点,因为21111a a a --=+,所以两直线重合, 所以15121a a =--,得223140a a --=, 解得2a =-或72a =28.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<29.(1){1x x ≤-或}3x ≥(2)[)1,+∞【解析】【分析】(1)求出集合M ,再根据补集和并集的定义求解;(2)由题意得N P ,再根据包含关系列不等式求解. (1) 由已知{}{}243013M x x x x x =-+<=<<, 所以{}13M N x x ⋃=-<<,则(){1R M N x x ⋃=≤-或}3x ≥.(2)由题意得N P , 则1m -≤-,解得1m ≥.故m 的取值范围是[)1,+∞.30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或 【解析】【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况.(1)选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5R A x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致;(2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤- 综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .42.设集合104x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()R A B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x > 3.已知集合{1A x x =≤-或}2x >,则R A =( ). A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥4.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N5.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的6.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( )A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦7.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =8.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞9.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{|4}A x x =<,{0,1,2,3,4}B =,则A B =( )A .{0,1,2}B .{1,2,3}C .{2,3}D .{0,1,2,3}11.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .712.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a 的取值范围是( )A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞13.设全集U =R .集合{A x y ==∣,则U A ( ) A .()(),12,-∞-+∞ B .[]1,2-C .(][),12,-∞-⋃+∞D .()1,2- 14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2 B .1- C .2- D .5-二、填空题16.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.17.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 18.设全集{}0,1,2U =,集合{}0,1A =,在U A ______19.已知A ,B 为非空集,I 为全集,且A B ≠,用适当的符号填空:(1)A B ______A B ; (2)A ______()I A A ⋃;(3)A B ______A ; (4)∅______A B ;(5)A A ⋂______A A ⋃; (6)A ∅______A ;(7)A ∅____()I A A ⋂____∅; (8)A B ____A ____A B .20.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.21.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.22.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.23.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.24.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω.(2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃.(3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213x g x x =<<的值域为N .求:(1)M ,N ;(2)M N ⋂,M N ⋃.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =,所以{0,1,2}A B ⊗=--,故集合A B ⊗中的元素个数为3,故选:C.2.C【解析】【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<,所以{}1B y y =<, 所以{}4A B x x ⋃=<,所以(){}R 4A B x x ⋃=≥,故选:C3.B【解析】【分析】利用补集的概念求解R A . 【详解】 因为{1A x x =≤-或}2x >,所以R A ={}12x x -<≤,故选:B4.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】 {}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.5.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .6.A【解析】【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<,因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得:()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤, 所以,实数m 的取值范围为510,23⎛⎤ ⎥⎝⎦. 故选:A7.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C8.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.9.B【解析】【分析】化简集合A ,求出R A 后,再根据交集的概念运算可得解. 【详解】{}220A x x x =->{|0x x =<或2}x >,R {|02}A x x =≤≤,所以()R {0,1}A B =.故选:B10.D【解析】【分析】根据集合交集运算方法计算即可.【详解】因为{|4}A x x =<,{0,1,2,3,4}B =,∴A B ={0,1,2,3}.故选:D.11.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.12.A【解析】【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围.【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z , ∵M N ⋂有且只有2个元素,∴0<a ≤1.故选:A.13.D【解析】【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可.【详解】因为{[2,)(,1]A x y ===+∞-∞-∣,所以U A ()1,2-,故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.二、填空题16.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.17.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 18.{2}【解析】【分析】利用集合的补运算求U A 即可. 【详解】由{}0,1,2U =,{}0,1A =,则{2}U A =.故答案为:{2}.19. ⊆ ⊆ ⊆ ⊆ = = = = ⊆ ⊆【解析】【分析】根据集合的交集,并集,补集的性质及子集、集合相等的概念求解.【详解】由交集,并集,补集的运算及性质,结合子集、集合相等求解,直接写出答案即可. 故答案为:⊆,⊆,⊆,⊆,=,=,=,=,⊆,⊆ 20.1【解析】【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.21.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:522.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 23.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<24.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾.所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)(2,)+∞(2)[0,2)【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1)将3a =代入集合A 中的不等式得:{}15A x x =-≤≤, ∵{|1B x x =≤或4}x ≥, ∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<, 则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅,当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞ 30.(1)(],4e(2)1,22⎡⎤⎢⎥⎣⎦【解析】【分析】(1)先化简集合A ,B ,再利用交集运算求解;(2)根据0a >,化简集合[],2C a a =,再根据C A ⊆求解.(1)解:∵12x -≤≤,∴1242x ≤≤, ∴集合1,42A ⎡⎤=⎢⎥⎣⎦. ∵1ln 2x <≤,∴2e x e <≤,∴集合(2,B e e ⎤=⎦. ∴(],4A B e ⋂=.(2)∵0a >,∴{}()(){}[]2232020,2C x x ax a x x a x a a a =-+≤=--≤=. ∵C A ⊆, ∴01224a a a >⎧⎪⎪≥⎨⎪≤⎪⎩,解得122a ≤≤. ∴实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦.。
高中数学集合练习题及答案
集 合1 集合与集合的表示方法1.下列各组对象①接近于0的数的全体; ②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体; ⑤2的近似值的全体.其中能构成集合的组数有( )A .2组B .3组C .4组D .5组2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数},P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( )A .M 、N 、PB .M 、P 、QC .N 、P 、QD .M 、N 、Q3.下列命题中正确的是( )A .{x |x 2+2=0}在实数范围内无意义B .{(1,2)}与{(2,1)}表示同一个集合C .{4,5}与{5,4}表示相同的集合D .{4,5}与{5,4}表示不同的集合4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( )A .第一象限内的点B .第三象限内的点C .第一或第三象限内的点D .非第二、第四象限内的点5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( )A .x +y ∈MB .x +y ∈XC .x +y ∈YD .x +y ∉M6.下列各选项中的M 与P 表示同一个集合的是( )A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z }7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个.8.集合{3,x ,x 2-2x }中,x 应满足的条件是______.9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______.10.用符号∈或∉填空:①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②21______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______.12.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______.13.用描述法表示下列各集合: ①{2,4,6,8,10,12}________________________________________________. ②{2,3,4}___________________________________________________________. ③}75,64,53,42,31{______________________________________________________.14.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______.15.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5 B ,求实数a 的值.16.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.2 集合间的基本关系1.集合{a ,b}的子集有( )A .1个B .2个C .3个D .4个2.下列各式中,正确的是( )A .23∈{x|x ≤3}B .23∉{x|x ≤3}C .23⊆{x|x ≤3}D .{23}{x|x ≤3}3.集合B ={a ,b ,c},C ={a ,b ,d},集合A 满足A ⊆B ,A ⊆C.则集合A 的个数是________.4.已知集合A ={x|1≤x<4},B ={x|x<a},若A ⊆B ,求实数a 的取值集合.5.集合A ={x|0≤x<3且x ∈Z }的真子集的个数是( )A .5B .6C .7D .86.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .A BC .B AD .A ⊆B7.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA ,则A ≠Ø.其中正确的有( )A .0个B .1个C .2个D .3个8.已知Ø{x|x 2-x +a =0},则实数a 的取值范围是________.9.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.10.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.11.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.12.(10分)已知集合M ={x|x =m +16,m ∈Z },N ={x|x =n 2-13,n ∈Z },P ={x|x=p 2+16,p ∈Z },请探求集合M 、N 、P 之间的关系.3 集合的基本运算1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B)中的元素共有( )A .3个B .4个C.5个D.6个2.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()3.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁B)等于________.U4.设集合A={x|-5≤x≤3},B={x|x<-2或x>4},求A∩B,(∁R A)∪(∁R B).5.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()A.{5,7} B.{2,4}C.{2,4,8} D.{1,3,5,6,7}6.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x <3},则下列关系正确的是()A.∁U A=B B.∁U B=CC.(∁U B)⊇C D.A⊇C7.设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}8.设全集U=A∪B={x|1≤x<10,x∈N+},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.9.设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.10.集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=Ø,A∪B=R,求实数a,b.集合习题答案一、选择题1.A 2.B 3.C 4.D 5.A6.C 解析:在选项A 中,M =φ,P ={0},是不同的集合;在选项B 中,有M ={(x ,y )|y =x 2+1≥1,x ∈R },P ={(x ,y )|x =y 2+1≥1,y ∈R },是不同的集合,在选项C 中,y =t 2+1≥1,t =(y -1)2+1≥1,则M ={y |y ≥1},P ={t |t ≥1},它们都是由不小于1的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和P 是同一个集合,在选项D 中,M 是由…,0,2,4,6,8,10,…组成的集合,P 是由…,2,6,10,14,…组成的集合,因此,M 和P 是两个不同的集合.答案:C .二、填空题7.2 8.x ≠3且x ≠0且x ≠-1根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧=/-=/-=/.2,32,322x x x x x x解之得x ≠3且x ≠0且x ≠-1.9.2或4 10.①∈,∈,∈,∉,∈.②∈,∉,∈,∉. 11.m =3,n =2.12.Q ={0,2,3,4,6,8,12}13.①{x |x =2n ,n ∈N *且n ≤6},②{x |2≤x ≤4,x ∈N },或{x |(x -2)(x -3)(x -4)=0} ③}6,2|{*<∈+=n n n n x x 且N 14.B ={0,1,2}解析:∵y ∈A ,∴y =-2,-1,0,1,∵x =|y |,∴x =2,1,0,∴B ={0,1,2}15.解:∵5 ∈A ,且5∉B .∴⎩⎨⎧=/+=-+,53,5322a a a 即⎩⎨⎧=/=-=.2,24a a a 或 ∴a =-416.解:①∵A 是空集∴方程ax 2-3x +2=0无实数根∴⎩⎨⎧<-=∆=/,089,0a a 解得⋅>89a ②∵A 中只有一个元素, ∴方程ax 2-3x +2=0只有一个实数根. 当a =0时,方程化为-3x +2=0,只有一个实数根32=x ; 当a ≠0时,令∆=9-8a =0,得89=a ,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或89=a 时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形,A 中有且仅有一个元素,A 是空集,由①、②的结果可得a =0,或89≥a .1. 【解析】 集合{a ,b}的子集有Ø,{a},{b},{a ,b}共4个,故选D.2.【解析】 23表示一个元素,{x|x ≤3}表示一个集合,但23不在集合中,故23∉{x|x ≤3},A 、C 不正确,又集合{23}{x|x ≤3},故D 不正确.【答案】 B3.【解析】 若A =Ø,则满足A ⊆B ,A ⊆C ;若A ≠Ø,由A ⊆B ,A ⊆C 知A 是由属于B 且属于C 的元素构成,此时集合A 可能为{a},{b},{a ,b}.【答案】 44.【解析】将数集A 表示在数轴上(如图所示),要满足A ⊆B ,表示数a 的点必须在表示4的点处或在表示4的点的右边,所以所求a 的集合为{a|a ≥4}.5.【解析】 由题意知A ={0,1,2},其真子集的个数为23-1=7个,故选C.6.【解析】 如图所示,,由图可知,B A.故选C.7. 【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.8.【解析】 ∵Ø{x|x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.9.【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m =1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.【答案】 110.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.11.【解析】 由x 2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时N M ;若a =-3,则N ={2,-3},此时N =M ;若a ≠2且a ≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.12. 【解析】 M ={x|x =m +16,m ∈Z }={x|x =6m +16,m ∈Z }.N ={x|x =n 2-13,n ∈Z } =⎩⎨⎧⎭⎬⎫x|x =3n -26,n ∈ZP={x|x=p2+16,p∈Z}={x|x=3p+16,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴M N=P.1.【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8},故选A. 2.【解析】∵M={-1,0,1},N={0,-1},∴N M,故选B.3.【解析】由图1易得∁U B={x|-1≤x≤4},则A∩(∁U B)={x|-1≤x≤3}.4.【解析】A∩B={x|-5≤x≤3}∩{x|x<-2或x>4}={x|-5≤x<-2},∁R A={x|x<-5或x>3},∁R B={x|-2≤x≤4}.∴(∁R A)∪(∁R B)={x|x<-5或x>3}∪{x|-2≤x≤4}={x|x<-5或x≥-2}.5.【解析】M∪N={1,3,5,6,7},∴∁U(M∪N)={2,4,8},故选C.6.【解析】B={-1,3},∁U A={-1,3},∴∁U A=B.【答案】 A7.【解析】由Venn图可知阴影部分表示的集合为B∩(∁U A)={2,4}.【答案】D 8.【解析】∵x∈N*,∴U=A∪B={1,2,3,…,9}.又∵A∪B=U,∴∁U B=A,∴A∩(∁U B)=∁U B={1,3,5,7,9},∴B={2,4,6,8}.【答案】{2,4,6,8}9.【解析】把全集R和集合A、B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10}.∵∁RA={x|x<3或x≥7},∴(∁RA)∩B={x|2<x<3或7≤x<10}.10.集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=Ø,A∪B=R,求实数a,b.【解析】∵A∩B=Ø,A∪B=R.∴A与B互为补集.故B=∁R A={x|-2<x<3},又B={x|a<x<b},∴a=-2,b=3.。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( ) A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,2.已知集合{A x y =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅4.若集合{A y y ==,{}3log 2B x x =≤,则A B =( )A .(]0,9B .[)4,9C .[]4,6D .[]0,9 5.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}2 6.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 7.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C = 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,39.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4B .5C .6D .7 10.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3] 11.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( ) A .[0,2] B .[0,4] C .[2,2]- D .∅ 12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( )A .(]0,1B .[)1,2C .()0,1D .()0,2 13.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( ) A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤ B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤14.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6} B .{0,9} C .{1,9} D .∅15.设(){}2log 1A x y x ==+,{}24B x x =≥,则()R A B =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).19.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 20.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.23.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________. 24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.27.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线. (1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围28.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣. (1)求A B ;(2)若A C C =,求实数m 的值取范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题1.D【解析】【分析】先化简集合A 、B ,再去求A B【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥ 则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃故选:D2.C【解析】【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥,所以{}1,2,3A B =,故选:C3.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.6.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A7.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.10.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .11.A【解析】【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得.【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥则{|02}A B x x =≤≤.故选:A12.A【解析】【分析】根据集合的交集概念即可计算.【详解】 ∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1.故选:A ﹒13.B【解析】【分析】化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.14.B【解析】【分析】根据集合的交运算和补运算求解即可.因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A ,则{0,1,4,6,7,8,9,10},{0,3,5,9}U A B ==,故(){0,9}U A B =. 故选:B .15.A【解析】【分析】 根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果.【详解】 因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R {|22}x x =-<<,则()R A B ={}()|121,2x x -<<=-.故选:A.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.1或3-##3-或1【解析】由题意可得223m m +=,求出m ,【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3-故答案为:1或3-18.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.19.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 20.{}10x x -<<【解析】【分析】由交集运算求解即可.【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<21.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂22.()5,1-【解析】【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解.【详解】 由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A , 即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-.23.±1【解析】【分析】根据给定条件可得1B ∈,由此列式计算作答.【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±.故答案为:±124.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集.【详解】因为B ={x x 是6的正因数}{1,2,3,6}=,所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件. 若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 27.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解; (2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+. 因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.28.(1)[]1,2-(2)()(),45,-∞-+∞ 【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解; (2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =, ∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】(1)先求不等式解集,再利用集合的补集、交集运算即可 (2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222559b a a b a b a b a b ⎛⎫+=+⋅+=++≥= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
高中数学集合测试题(含答案和解析)
集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 :1.设集合,则( ) A .{75}x x -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣ D .{|75}x x -<< 【答案】C【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}ST x x =-<<, 故选C2.已知集合,则集合等于( )A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】 A3.若集合,且,则实数m 的可取值组成的集合是( )A .B .C .D . {}()(){}5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆11,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭11,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭C4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )A .6B .7C .8D .9【答案】C5.设P={x|x ≤8},,则下列关系式中正确的是( ).A .a PB .a PC .{a}PD .{a}P【答案】D6.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C . 8D .10 【答案】 D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,⊆⊆⊆∉∈⊂综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()【答案】D【解析】考点:一元二次不等式的解法。
高中数学集合测试题(卷)(含答案解析和解析)
集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 : 1.设集合{}()(){}5,730S x x T x x x =<=+-<,那么S T ⋂=〔〕A .{75}xx -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣D .{|75}x x -<<【答案】 C 【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可. 解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S T x x =-<<,应选C 2.集合{}}{Z n n x x N x x M ∈+==<-=,12,042,那么集合N M ⋂等于〔〕A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】A3.假设集合{}{}260,10P x x x T x mx =+-==+=,且T P ⊆,那么实数m 的可取值组成的集合是〔〕A .11,32⎧⎫-⎨⎬⎩⎭B .13⎧⎫⎨⎬⎩⎭C .11,,032⎧⎫-⎨⎬⎩⎭ D .12⎧⎫-⎨⎬⎩⎭C4.假设{1,2}⊆A ⊆{1,2,3,4,5}那么满足条件的集合A 的个数是〔〕 A .6 B .7 C .8 D .9 【答案】 C5.设P={x|x ≤8},. A .a ⊆P B .a ∉P C .{a}∈P D .{a}⊂P 【答案】 D 6.集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,那么B 中所含元素的个数为〔〕A .3B .6C . 8D .10【答案】D【解析】考点:元素与集合关系的判断. 专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项 解答:解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2,综上知,B中的元素个数为10个应选D点评:此题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.集合A={x|x2-x-2<0},B={x|-1<x<1},那么〔〕A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B⊊A应选B点评:此题主要考查了集合之间关系的判断,属于根底试题8.不等式﹣x2﹣5x+6≤0的解集为〔〕A.{x|x≥6或x≤﹣1} B.{x|﹣1≤x≤6}C.{x|﹣6≤x≤1}D.{x|x≤﹣6或x≥1}D【解析】考点:一元二次不等式的解法。
高中数学集合练习题含答案
高中数学集合练习题含答案一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅B .()2,8C .()3,8D .()8,+∞2.已知集合(){}2log 12A x x =-<,{}260B x x x =--≤,则A B =( )A .{}03x x <≤B .{}02x x <≤C .{}13x x <≤D .{}12x x <≤3.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3}B .{1,2,3,5}C .{1,2,5}D .{1,5}7.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,58.()Z M 表示集合M 中整数元素的个数,设{}24A x x =-<<,{}723B x x =-<<,则()Z A B =( )A .5B .4C .3D .29.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5-10.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2} B .{2,3} C .{1,2,3,4} D .{0,1,2,3,4} 11.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4]D .[1,3]12.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()RA B =( )A .(2,2)-B .(1,2)C .[)1,2D .(1,2]13.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( )A .{}1x x <-B .{}12x x -<<C .{}8x x >-D .{}28x x <≤14.下列关系中正确的个数是( )①13Z ∈,②2∈R , ③*0N ∈, ④Q π∉ A .1 B .2 C .3 D .4 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.23.已知函数()f x A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.24.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.设2n ≥且N n ∈,集合{1,2,3,4,,2}U n =,若对U 的任意k 元子集k V ,都存在,,k a b c V ∈,满足:a b c <<,a b c +>,且a b c ++为偶数,则称k V 为理想集,并将k 的最小值记为K .(1)当2n =时,是否存在理想集?若存在,求出相应的K ;若不存在,请说明理由; (2)当3n =时,是否存在理想集?若存在,直接写出对应的k V 以及满足条件的,,a b c ;若不存在,请说明理由; (3)证明:当4n =时,6K =.27.已知集合{}220A x x x =+-≤,{}11B x m x m =-≤≤+.(1)若A B B ⋃=,求m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分不必要条件,求m 的取值范围.28.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).29.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .30.已知全集{}N 05U x x =∈<<,集合{}21,2,A m =,{}2540B x x x =-+=.(1)求UB ;(2)若21Ua B +∈且a U ∈,求实数a 的值;(3)设集合()U C A B =⋂,若C 的真子集共有3个,求实数m 的值.【参考答案】一、单选题 1.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =, 故选:B . 2.C【分析】对于集合A 利用对数函数单调性以及对数函数定义域可得014x <-<,集合B 直接用二次不等式求解,最后求A B . 【详解】由题意可得:{}15A x x =<<,{}23B x x =-≤≤,则{}13A B x x ⋂=<≤. 故选:C . 3.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 4.B 【解析】 【分析】根据元素与集合的关系判断. 【详解】集合A 有两个元素:{}∅和∅, 故选:B 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.B 【解析】 【分析】依据并集的定义去求M N ⋃即可解决. 【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B 7.B 【解析】化简集合B ,然后利用交集的定义运算即得. 【详解】∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 8.C 【解析】 【分析】首先求出集合B ,再根据交集的定义求出A B ,即可得解; 【详解】解:因为{}7372322B x x x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,{}24A x x =-<<,所以3|22A B x x ⎧⎫=-<<⎨⎬⎩⎭,则()1A B -∈,()0A B ∈,()1A B ∈,所以()3Z A B =; 故选:C 9.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 10.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 11.B 【解析】 【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.由已知{|03}A x x =≤≤,所以{}1,2,3A B =. 故选:B . 12.B 【解析】 【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可. 【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=,{}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R,∴()RAB =(1,2).故选:B. 13.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 14.B 【解析】 【分析】13是实数,0不是正整数,π是无理数 【详解】①13Z ∈错误R 正确③*0N ∈错误④Q π∉正确 故选:B 15.D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+ ⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z ,∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n n f n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-,当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.3或-1##-1或3 【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1. 20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:521.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂22.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞ 23.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】 【分析】根据()f x =. 【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =,{,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭.()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 24.2【解析】【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案.【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根,所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍; 当2m =时,{}{}224201B x x x =-+==,满足条件. 故答案为:225.{}|10x x -<≤ 【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)不存在,理由见解析;(2)存在,6{1,2,3,4,5,6}V =,3,4,5或3,5,6;(3)证明见解析.【解析】【分析】(1)根据理想集的定义,分3元子集、4元子集分别说明判断作答.(2)根据理想集的定义,结合(1)中信息,说明判断5元子集,6元子集作答.(3)根据理想集的定义,结合(1)(2)中信息,判断U 的所有6元子集都符合理想集的定义作答.(1)依题意,k V 要为理想集,3k ≥,当2n =时,{1,2,3,4}U =,显然{2,3,4}U ⊆,有234,234<<+>,而234++不是偶数,即存在3元子集不符合理想集定义,而{1,2,3,4}U ⊆,在{1,2,3,4}中任取3个数,有4种结果,1,2,3;1,2,4;1,3,4;2,3,4,它们都不符合理想集定义,所以,当2n =时,不存在理想集.(2)当3n =时,{1,2,3,4,5,6}U =,由(1)知,存在3元子集{2,3,4}、4元子集{1,2,3,4}均不符合理想集定义,5元子集{1,2,3,4,6},在此集合中任取3个数,满足较小的两数和大于另一个数的只有2,3,4与3,4,6两种,但这3数和不为偶数,即存在5元子集{1,2,3,4,6}不符合理想集定义,而U 的6元子集是{1,2,3,4,5,6},345,345,345<<+>++是偶数,356,356,356<<+>++是偶数,即U 的6元子集{1,2,3,4,5,6}符合理想集定义,{1,2,3,4,5,6}是理想集,所以,当3n =时,存在理想子集6{1,2,3,4,5,6}V =,满足条件的,,a b c 可分别为3,4,5或3,5,6.(3)当4n =时,{1,2,3,4,5,6,7,8}U =,由(1),(2)知,存在U 的3元子集、4元子集、5元子集不满足理想集定义,k V 要为理想集,6k ≥,显然{1,2,3,4,5,6}符合理想集的定义,满足条件的,,a b c 分别为3,4,5或3,5,6,U 的6元子集中含有3,5,6的共有25C 10=个,这10个集合都符合理想集的定义,U 的6元子集中含有3,5不含6的有5个,其中含有4的有4个,这4个集合都符合理想集的定义,不含4的为{1,2,3,5,7,8},显然有578,578,578<<+>++为偶数,即U 的6元子集中含有3,5不含6的5个都符合理想集的定义,U 的6元子集中含有36,不含5的有5个,它们是{1,2,3,4,6,7},{1,2,3,4,6,8},{1,2,3,6,7,8},{1,3,4,6,7,8},{2,3,4,6,7,8},它们对应的,,a b c 可依次为:3,6,7;4,6,8;3,6,7;3,6,7;3,6,7,即U 的6元子集中含有36,不含5的5个都符合理想集的定义, U 的6元子集中含有5,6不含3的有5个,它们是{1,2,4,5,6,7},{1,2,4,5,6,8},{1,2,5,6,7,8},{1,4,5,6,7,8},{2,4,5,6,7,8},它们对应的,,a b c 可依次为:5,6,7;4,6,8;5,6,7;5,6,7;5,6,7,即U 的6元子集中含有5,6不含3的5个都符合理想集的定义,U 的6元子集中含有3,5,6之一的有3个,它们是{1,2,3,4,7,8},{1,2,4,5,7,8},{1,2,4,6,7,8},对应的,,a b c 可依次为:3,7,8;5,7,8;4,6,8,即U 的6元子集中含有3,5,6之一的3个都符合理想集的定义,因此,U 的所有68C 28=个6元子集都符合理想集的定义,6V 是理想集,U 的7元子集有78C 8=个,其中含有3,5,6的有5个,这5个集合都符合理想集的定义,不全含3,5,6的有3个,它们是{1,2,3,4,5,7,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},对应的,,a b c 可依次为:3,7,8;3,7,8;4,6,8,即U 的所有8个7元子集都符合理想集的定义,7V 是理想集,U 的8元子集是{1,2,3,4,5,6,7,8},对应的,,a b c 可以为:3,7,8,因此,8V 是理想集, 因此,U 的6元子集,7元子集,8元子集都是理想集,6K =,所以当4n =时,6K =.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1)[)3,+∞(2)(],0-∞【解析】【分析】(1)先求出{}21A x x =-≤≤,由A B B ⋃=得到A B ⊆,得到不等式组,求出m 的取值范围;(2)根据充分不必要条件得到B 是A 的真子集,分B =∅与B ≠∅两种情况进行求解,求得m 的取值范围.(1)220x x +-≤,解得:21x -≤≤,故{}21A x x =-≤≤,因为A B B ⋃=,所以A B ⊆,故1211m m -≤-⎧⎨+≥⎩,解得:3m ≥, 所以m 的取值范围是[)3,+∞.(2)若“x ∈B ”是“x ∈A ”的充分不必要条件, 则{}11B x m x m =-≤≤+是{}21A x x =-≤≤的真子集,当B =∅时,11m m ->+,解得:0m <,当B ≠∅时,需要满足:111211m m m m -≤+⎧⎪-≥-⎨⎪+<⎩或111211m m m m -≤+⎧⎪->-⎨⎪+≤⎩, 解得:0m =综上:m 的取值范围是(],0-∞28.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.29.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 30.(1){}2,3U B = (2)1a =(3)m =【解析】【分析】(1)解出集合U 、B ,利用补集的定义可求得U B ;(2)由已知可得出关于a 的等式,结合a U ∈可求得实数a 的值; (3)分23m ≠、23m =两种情况讨论,求出集合C ,根据集合C 的真子集个数可求得实数m 的值.(1) 解:因为{}{}N 051,2,3,4U x x =∈<<=,{}{}25401,4B x x x =-+==, 因此,{}2,3U B =.(2)解:若21Ua B +∈,则212a +=或213a +=,解得1a =±或 又a U ∈,所以1a =.(3)解:{}21,2,A m =,{}2,3U B =,当23m ≠时,{}2C =,此时集合C 共有1个真子集,不符合题意, 当23m =时,{}2,3C =,此时集合C 共有3个真子集,符合题意,综上所述,m =。
高中数学集合练习题及答案
集 合1 集合与集合的表示方法1.下列各组对象①接近于0的数的全体; ②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体; ⑤2的近似值的全体.其中能构成集合的组数有( )A .2组B .3组C .4组D .5组2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数},P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( )A .M 、N 、PB .M 、P 、QC .N 、P 、QD .M 、N 、Q3.下列命题中正确的是( )A .{x |x 2+2=0}在实数范围内无意义B .{(1,2)}与{(2,1)}表示同一个集合C .{4,5}与{5,4}表示相同的集合D .{4,5}与{5,4}表示不同的集合4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( )A .第一象限内的点B .第三象限内的点C .第一或第三象限内的点D .非第二、第四象限内的点5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( )A .x +y ∈MB .x +y ∈XC .x +y ∈YD .x +y ∉M6.下列各选项中的M 与P 表示同一个集合的是( )A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z }7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个.8.集合{3,x ,x 2-2x }中,x 应满足的条件是______.9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______.10.用符号∈或∉填空:①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②21______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______.12.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______.13.用描述法表示下列各集合: ①{2,4,6,8,10,12}________________________________________________. ②{2,3,4}___________________________________________________________. ③}75,64,53,42,31{______________________________________________________.14.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______.15.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5 B ,求实数a 的值.16.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.2 集合间的基本关系1.集合{a ,b}的子集有( )A .1个B .2个C .3个D .4个2.下列各式中,正确的是( )A .23∈{x|x ≤3}B .23∉{x|x ≤3}C .23⊆{x|x ≤3}D .{23}{x|x ≤3}3.集合B ={a ,b ,c},C ={a ,b ,d},集合A 满足A ⊆B ,A ⊆C.则集合A 的个数是________.4.已知集合A ={x|1≤x<4},B ={x|x<a},若A ⊆B ,求实数a 的取值集合.5.集合A ={x|0≤x<3且x ∈Z }的真子集的个数是( )A .5B .6C .7D .86.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .A BC .B AD .A ⊆B7.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA ,则A ≠Ø.其中正确的有( )A .0个B .1个C .2个D .3个8.已知Ø{x|x 2-x +a =0},则实数a 的取值范围是________.9.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.10.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.11.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.12.(10分)已知集合M ={x|x =m +16,m ∈Z },N ={x|x =n 2-13,n ∈Z },P ={x|x=p 2+16,p ∈Z },请探求集合M 、N 、P 之间的关系.3 集合的基本运算1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B)中的元素共有( )A .3个B .4个C.5个D.6个2.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()3.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁B)等于________.U4.设集合A={x|-5≤x≤3},B={x|x<-2或x>4},求A∩B,(∁R A)∪(∁R B).5.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()A.{5,7} B.{2,4}C.{2,4,8} D.{1,3,5,6,7}6.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x <3},则下列关系正确的是()A.∁U A=B B.∁U B=CC.(∁U B)⊇C D.A⊇C7.设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}8.设全集U=A∪B={x|1≤x<10,x∈N+},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.9.设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.10.集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=Ø,A∪B=R,求实数a,b.集合习题答案一、选择题1.A 2.B 3.C 4.D 5.A6.C 解析:在选项A 中,M =φ,P ={0},是不同的集合;在选项B 中,有M ={(x ,y )|y =x 2+1≥1,x ∈R },P ={(x ,y )|x =y 2+1≥1,y ∈R },是不同的集合,在选项C 中,y =t 2+1≥1,t =(y -1)2+1≥1,则M ={y |y ≥1},P ={t |t ≥1},它们都是由不小于1的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和P 是同一个集合,在选项D 中,M 是由…,0,2,4,6,8,10,…组成的集合,P 是由…,2,6,10,14,…组成的集合,因此,M 和P 是两个不同的集合.答案:C .二、填空题7.2 8.x ≠3且x ≠0且x ≠-1根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧=/-=/-=/.2,32,322x x x x x x解之得x ≠3且x ≠0且x ≠-1.9.2或4 10.①∈,∈,∈,∉,∈.②∈,∉,∈,∉. 11.m =3,n =2.12.Q ={0,2,3,4,6,8,12}13.①{x |x =2n ,n ∈N *且n ≤6},②{x |2≤x ≤4,x ∈N },或{x |(x -2)(x -3)(x -4)=0} ③}6,2|{*<∈+=n n n n x x 且N 14.B ={0,1,2}解析:∵y ∈A ,∴y =-2,-1,0,1,∵x =|y |,∴x =2,1,0,∴B ={0,1,2}15.解:∵5 ∈A ,且5∉B .∴⎩⎨⎧=/+=-+,53,5322a a a 即⎩⎨⎧=/=-=.2,24a a a 或 ∴a =-416.解:①∵A 是空集∴方程ax 2-3x +2=0无实数根∴⎩⎨⎧<-=∆=/,089,0a a 解得⋅>89a ②∵A 中只有一个元素, ∴方程ax 2-3x +2=0只有一个实数根. 当a =0时,方程化为-3x +2=0,只有一个实数根32=x ; 当a ≠0时,令∆=9-8a =0,得89=a ,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或89=a 时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形,A 中有且仅有一个元素,A 是空集,由①、②的结果可得a =0,或89≥a .1. 【解析】 集合{a ,b}的子集有Ø,{a},{b},{a ,b}共4个,故选D.2.【解析】 23表示一个元素,{x|x ≤3}表示一个集合,但23不在集合中,故23∉{x|x ≤3},A 、C 不正确,又集合{23}{x|x ≤3},故D 不正确.【答案】 B3.【解析】 若A =Ø,则满足A ⊆B ,A ⊆C ;若A ≠Ø,由A ⊆B ,A ⊆C 知A 是由属于B 且属于C 的元素构成,此时集合A 可能为{a},{b},{a ,b}.【答案】 44.【解析】将数集A 表示在数轴上(如图所示),要满足A ⊆B ,表示数a 的点必须在表示4的点处或在表示4的点的右边,所以所求a 的集合为{a|a ≥4}.5.【解析】 由题意知A ={0,1,2},其真子集的个数为23-1=7个,故选C.6.【解析】 如图所示,,由图可知,B A.故选C.7. 【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.8.【解析】 ∵Ø{x|x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.9.【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m =1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.【答案】 110.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.11.【解析】 由x 2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时N M ;若a =-3,则N ={2,-3},此时N =M ;若a ≠2且a ≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.12. 【解析】 M ={x|x =m +16,m ∈Z }={x|x =6m +16,m ∈Z }.N ={x|x =n 2-13,n ∈Z } =⎩⎨⎧⎭⎬⎫x|x =3n -26,n ∈ZP={x|x=p2+16,p∈Z}={x|x=3p+16,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴M N=P.1.【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8},故选A. 2.【解析】∵M={-1,0,1},N={0,-1},∴N M,故选B.3.【解析】由图1易得∁U B={x|-1≤x≤4},则A∩(∁U B)={x|-1≤x≤3}.4.【解析】A∩B={x|-5≤x≤3}∩{x|x<-2或x>4}={x|-5≤x<-2},∁R A={x|x<-5或x>3},∁R B={x|-2≤x≤4}.∴(∁R A)∪(∁R B)={x|x<-5或x>3}∪{x|-2≤x≤4}={x|x<-5或x≥-2}.5.【解析】M∪N={1,3,5,6,7},∴∁U(M∪N)={2,4,8},故选C.6.【解析】B={-1,3},∁U A={-1,3},∴∁U A=B.【答案】 A7.【解析】由Venn图可知阴影部分表示的集合为B∩(∁U A)={2,4}.【答案】D 8.【解析】∵x∈N*,∴U=A∪B={1,2,3,…,9}.又∵A∪B=U,∴∁U B=A,∴A∩(∁U B)=∁U B={1,3,5,7,9},∴B={2,4,6,8}.【答案】{2,4,6,8}9.【解析】把全集R和集合A、B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10}.∵∁RA={x|x<3或x≥7},∴(∁RA)∩B={x|2<x<3或7≤x<10}.10.集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=Ø,A∪B=R,求实数a,b.【解析】∵A∩B=Ø,A∪B=R.∴A与B互为补集.故B=∁R A={x|-2<x<3},又B={x|a<x<b},∴a=-2,b=3.。