农业生产规划模型数学建模
农场生产计划 数学建模
农场生产计划 数学模型问题重述某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为0.12 吨、0.20吨、0.15 吨.预计秋后玉米每亩可收获500千克,售价为0.24 元/千克,大豆每亩可收获200千克,售价为1.20 元/千克,小麦每亩可收获350 千克,售价为0.70 元/千克.农场年初规划时考虑如下几个方面:第一目标:年终收益不低于350万元;第二目标:总产量不低于1.25万吨;第三目标:玉米产量不超过0.6万吨,大豆产量不少于0.2万吨,小麦产量以0.5 万吨为宜,同时根据三种农作物的售价分配权重;第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好.模型假设与建立模型假设:1、假设农作物的收成不会受天灾的影响2、假设农作物不受市场影响,价格既定用321,,x x x 分别表示用于种植玉米、大豆、小麦的农田(单位:亩)++---++++++=6455433_22_11*)10735*10735*10760*10712(**min d p d d d d p d p d p z 模型建立约束条件(1)刚性约束30000321<=++x x x (2)柔性约束第一目标:年终收益不低于350万元;{}⎪⎩⎪⎨⎧=-++++--3500000245240120min 113211d d x x x d第二目标:总产量不低于1.25万吨;{}⎪⎩⎪⎨⎧=-++++--12500000350200500min 223212d d x x x d 第三目标:玉米产量不超过0.6万吨,大豆产量不少于0.2万吨,小麦产量以0.5 万吨为宜,{}⎪⎩⎪⎨⎧=-++-+6000000500min 3313d d x d {}⎪⎩⎪⎨⎧=-++--2000000200m in 4424d d x d{}⎪⎩⎪⎨⎧=-+++-+-500000035min 55255d d x d d第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好.{}⎪⎩⎪⎨⎧=-++++-+500000015.02.012.0min 663216d d x x x d 模型求解:(见附件)种植面积:玉米:5915.714亩土豆:9798.571亩小麦:14285.71亩能够得到一个满足条件的种植计划附件:model :sets :L/1..4/:p,z,goal;V/1..3/:x;HN/1..1/:b;SN/1..6/:g,dp,dm;HC(HN,V):a;SC(SN,V):c;Obj(L,SN):wp,wm;endsetsdata:p=;goal=0;b=30000;g=3500000 12500000 6000000 2000000 5000000 5000000;a=1,1,1;c=120 240 245500 200 350500 0 00 200 00 0 350120 200 150;wp=0 0 0 0 0 00 0 0 0 0 00 0 0.24 0 0.7 00 0 0 0 0 1;wm=1 0 0 0 0 00 1 0 0 0 00 0 0 1.2 0.7 00 0 0 0 0 0;enddatamin=@sum(L(i):p(i)*z(i));@for(L(i):z(i)=@sum(SN(j):wp(i,j)*dp(j)+wm(i,j)*dm(j)));@for(HN(i):@sum(V(j):a(i,j)*x(j))<=b(i));@for(SN(i):@sum(V(j):c(i,j)*x(j))+dm(i)-dp(i)=g(i));@for(L(i)|i#lt#@size(L):@bnd(0,z(i),goal(i)));No feasible solution found.Total solver iterations: 10Variable Value Reduced CostP( 1) 0.000000 0.000000P( 2) 0.000000 0.000000P( 3) 0.000000 0.000000P( 4) 1.000000 0.000000Z( 1) 0.000000 0.000000Z( 2) 0.000000 -0.1250000E+09 Z( 3) 2417143. -3125000.Z( 4) 0.000000 0.000000GOAL( 1) 0.000000 0.000000GOAL( 2) 0.000000 0.000000GOAL( 4) 0.000000 0.000000X( 1) 5915.714 0.000000X( 2) 9798.571 0.000000X( 3) 14285.71 0.000000B( 1) 30000.00 0.000000G( 1) 3500000. 0.000000G( 2) 0.1250000E+08 0.000000G( 3) 6000000. 0.000000G( 4) 2000000. 0.000000G( 5) 5000000. 0.000000G( 6) 5000000. 0.000000DP( 1) 3061543. 0.000000DP( 2) -2582429. 0.1250000E+09 DP( 3) 0.000000 0.3750000E+08 DP( 4) 0.000000 0.1875000E+09 DP( 5) 0.000000 0.1629464E+09 DP( 6) 0.000000 1.000000DM( 1) 0.000000 0.000000DM( 2) 0.000000 0.000000DM( 3) 3042143. 0.000000DM( 4) 40285.72 0.000000DM( 5) 0.000000 0.5580357E+08 DM( 6) 187542.9 0.000000A( 1, 1) 1.000000 0.000000A( 1, 2) 1.000000 0.000000A( 1, 3) 1.000000 0.000000C( 1, 1) 120.0000 0.000000C( 1, 2) 240.0000 0.000000C( 1, 3) 245.0000 0.000000C( 2, 1) 500.0000 0.000000C( 2, 2) 200.0000 0.000000C( 2, 3) 350.0000 0.000000C( 3, 1) 500.0000 0.000000C( 3, 2) 0.000000 0.000000C( 3, 3) 0.000000 0.000000C( 4, 1) 0.000000 0.000000C( 4, 2) 200.0000 0.000000C( 4, 3) 0.000000 0.000000C( 5, 1) 0.000000 0.000000C( 5, 2) 0.000000 0.000000C( 5, 3) 350.0000 0.000000C( 6, 1) 120.0000 0.000000C( 6, 2) 200.0000 0.000000WP( 1, 1) 0.000000 0.000000 WP( 1, 2) 0.000000 0.000000 WP( 1, 3) 0.000000 0.000000 WP( 1, 4) 0.000000 0.000000 WP( 1, 5) 0.000000 0.000000 WP( 1, 6) 0.000000 0.000000 WP( 2, 1) 0.000000 0.000000 WP( 2, 2) 0.000000 0.000000 WP( 2, 3) 0.000000 0.000000 WP( 2, 4) 0.000000 0.000000 WP( 2, 5) 0.000000 0.000000 WP( 2, 6) 0.000000 0.000000 WP( 3, 1) 0.000000 0.000000 WP( 3, 2) 0.000000 0.000000 WP( 3, 3) 12.00000 0.000000 WP( 3, 4) 0.000000 0.000000 WP( 3, 5) 35.00000 0.000000 WP( 3, 6) 0.000000 0.000000 WP( 4, 1) 0.000000 0.000000 WP( 4, 2) 0.000000 0.000000 WP( 4, 3) 0.000000 0.000000 WP( 4, 4) 0.000000 0.000000 WP( 4, 5) 0.000000 0.000000 WP( 4, 6) 1.000000 0.000000 WM( 1, 1) 1.000000 0.000000 WM( 1, 2) 0.000000 0.000000 WM( 1, 3) 0.000000 0.000000 WM( 1, 4) 0.000000 0.000000 WM( 1, 5) 0.000000 0.000000 WM( 1, 6) 0.000000 0.000000 WM( 2, 1) 0.000000 0.000000 WM( 2, 2) 1.000000 0.000000 WM( 2, 3) 0.000000 0.000000 WM( 2, 4) 0.000000 0.000000 WM( 2, 5) 0.000000 0.000000 WM( 2, 6) 0.000000 0.000000 WM( 3, 1) 0.000000 0.000000 WM( 3, 2) 0.000000 0.000000 WM( 3, 3) 0.000000 0.000000 WM( 3, 4) 60.00000 0.000000 WM( 3, 5) 35.00000 0.000000 WM( 3, 6) 0.000000 0.000000 WM( 4, 1) 0.000000 0.000000WM( 4, 3) 0.000000 0.000000WM( 4, 4) 0.000000 0.000000WM( 4, 5) 0.000000 0.000000WM( 4, 6) 0.000000 0.000000Row Slack or Surplus Dual Price1 161401.8 -1.0000002 0.000000 0.0000003 0.000000 -0.1250000E+094 0.000000 -3125000.5 0.000000 -1.0000006 0.000000 0.6250000E+117 0.000000 0.0000008 0.000000 -0.1250000E+099 0.000000 0.00000010 0.000000 -0.1875000E+0911 0.000000 -0.5357143E+0812 0.000000 0.000000。
农场计划 数学建模
摘要本文是对农场生产计划进行最优化建模,首先要求制订未来五年的生产计划,计划应贷款的金额、应卖的小母牛、以及用来种植粮食的土地,使成本降到最低。
种粮食和甜菜均有利可图,种粮食平均盈利比种甜菜平均盈利大,故可以先满足粮食产量再考虑甜菜的产量。
根据题目可设第四年不饲养刚出生的小奶牛,第五年不饲养小奶牛,假设各年龄段的牛损失都是均匀的,使得答案更接近理想值,把贷款算为支出部分,使用穷举法求解,先不考虑贷款及还款做出最优解,然后通过每年运营所需费用以及农场主之前所欠的金额计算出贷款金额,这样使模型更简单化,并建立了最优线性规划模型,计算得出的最优结论。
关键词:穷举法最优线性规划农场计划均匀问题重述英国某农场主有200英亩土地的农场,用来饲养奶牛。
现要为五年制定生产计划。
现在他有120头母牛,其中20头为不到2岁的幼牛,100头为产奶牛,但他手上已无现金,且欠别人帐20000英镑须尽早用利润归还。
每头幼牛需用2/3英亩土地供养,每头奶牛需用1英亩。
产奶牛平均每头每年生1.1头牛,其中一半为公牛,出生后不久即卖掉,平均每头卖30英镑;另一半为母牛,可以在生出后不久卖掉,平均每头40英镑,也可以留下饲养,养至2岁成为产奶牛。
幼牛年损失5%;产奶牛年损失2%。
产奶牛养到满12岁就要卖掉,平均每头卖120英镑。
现有的20头幼牛中,0岁和1岁各10头;100头奶牛中,从2岁至11岁各有10头。
应该卖掉的小牛都已卖掉。
所有20头要饲养成奶牛。
一头牛所产的奶提供年收入370英镑。
现在最多只能养160头牛,超过此数每多养一头,每年要多花费90英镑。
每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜。
粮食和甜菜可以由农场种植出来。
每英亩产甜菜1.5吨。
只有80英亩的土地适合于种粮食,且产量不同。
按产量可分作4组:第一组20英亩,亩产1.1吨;第二组30英亩,亩产0.9吨;第三组20英亩,亩产0.8吨;第四组10英亩,亩产0.65吨。
数学建模-农场资源配置问题
数学建模-农场资源配置问题农场资源配置最优化【摘要】资源是社会经济活动中⼈⼒、物⼒和财⼒的总和,是经济发展的基本物质条件。
资源配置是对相对稀缺的资源在各种不同⽤途上加以⽐较做出的选择。
由于农业⽣产资源的稀缺性,建设现代农业的过程中,必须对有限的资源进⾏合理配置,⽤最少的资源耗费得到最⼤的⽣产产出,获得最佳的经济效益,实现资源配置的最优化。
避免农业⽣产资源的闲置和浪费。
按照市场配置⽅式,努⼒发挥市场在资源配置中的指导作⽤,依托组织、产业和技术优势,⼤⼒开发境外资源,全⾯整合和优化配置资源。
应充分利⽤产业发展,合理调配各种资源实现资源的最优配置。
本⽂以某农户拥有100亩⼟地和25000元可供投资为前提,建⽴数学模型,确定每种农作物应该种植多少亩,以及奶⽜和母鸡应该各蓄养多少,使年净现⾦收⼊最⼤。
在此⽂中我们通过对农户投资的合理设置及其分配使得收⼊最⼤化问题⽽进⾏研究,通过精密细致的理论研究和数据分析,和LINGO 软件的运作求解,寻求农户的⼟地和劳作时间的最优化设置,试图从⼩⾓度透视农户投资的最优化。
数模⽅法及主要结果:在本题中,我们先进⾏问题重述,接着进⾏问题假设,排除了外部变化对结果的影响,然后对符号进⾏设定,由于涉及的未知量较多,并没有使⽤常规的图解法,于是建⽴基于⽬标函数与约束条件的线性规划模型,从⽽转化到对该线性模型最优解的探讨,接着进⾏问题分析和建⽴模型及运⽤了LINGO软件进⾏模型求解,得到了问题所需的最优解——农民出去打⼯才能获得最⼤利润。
【关键字】资源优化配置;农户投资;数学建模⼀、问题重述某农户拥有100亩⼟地和25000元可供投资,每年冬季(9⽉份中旬⾄来年5⽉中旬),该家庭的成员可以贡献 3500h的劳动时间,⽽夏季为4000h。
如果这些劳动时间有富余,该家庭中的年轻成员将去附近的农场打⼯,冬季每⼩时6.8元,夏季每⼩时7.0元。
现⾦收⼊来源于三种农作物(⼤⾖、⽟⽶和燕麦)以及两种家禽(奶⽜和母鸡)。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
数学建模的常用模型和方法
数学建模的常用模型和方法嘿,朋友们!今天咱来聊聊超厉害的数学建模哦!那数学建模里常用的模型和方法可多啦,就像一个百宝箱,每个都有独特的魅力和用处呢!先来说说线性规划模型吧。
步骤呢,就是先明确目标函数和约束条件。
你得清楚自己想要最大化或最小化什么,然后把各种限制因素用数学式子表达出来。
就好比你要规划一次旅行,预算就是约束条件,你想在有限的预算内让旅行体验最好,这就是目标函数啦!注意事项嘛,要仔细检查约束条件有没有遗漏,数据是不是准确。
在这个过程中,安全性就体现在它的逻辑严谨性上,只要你按照正确的步骤来,一般不会出大错,稳定性也不错,因为它的算法和理论都比较成熟。
它的应用场景可广啦,比如生产安排、资源分配等。
优势就是能帮你在复杂的条件下找到最优解,让资源得到最合理的利用。
比如说一个工厂要安排生产不同产品的数量,用线性规划就能算出怎样安排能让利润最大。
实际应用中,效果那是杠杠的,能大大提高生产效率和经济效益呢!再讲讲层次分析法。
它的步骤是先构建层次结构,把问题分成不同层次,像搭积木一样一层一层的。
然后通过专家打分或者数据统计确定各因素的权重。
这就好像给一个球队的球员打分,不同位置的球员重要性不一样嘛。
要注意的是,专家的选择要合理,打分要尽量客观。
它的安全性在于整个过程有一套系统的方法,不容易跑偏。
稳定性也还可以,只要层次结构合理,结果一般比较可靠。
应用场景呢,比如选方案、做决策的时候就很管用。
它的优势是能综合考虑多个因素,把复杂的问题简单化。
比如说要选一个投资项目,用层次分析法就能综合考虑风险、收益等各种因素,选出最合适的。
实际案例中,很多企业在做战略决策时都用到它,效果很不错,能让决策更科学合理。
还有个很有趣的模型叫聚类分析。
步骤是先确定聚类的指标,然后选择合适的聚类算法,把数据分成不同的类。
就好像把一堆水果按照种类分堆一样。
注意要选对指标和算法哦,不然分出来的类可能就不靠谱啦。
它的安全性体现在能对数据进行合理分类,帮助我们更好地理解数据的结构。
数学模型在农业生产中的应用
数学模型在农业生产中的应用作者:刘金霞来源:《广东蚕业》 2020年第7期DOI:10.3969/j.issn.2095-1205.2020.07.34刘金霞(衡水学院图书馆河北衡水 053000)作者简介:刘金霞(1971- ),女,汉族,河北衡水人,本科,副教授,研究方向:高等数学教育理论。
摘要传统的农业生产和作业效率的高低更多由自然条件决定,每一年自然条件不同,我国农业生产效率也会存在差异。
但是,在现阶段农业生产当中,自然条件对农业生产的影响力正在逐步降低,各种先进理论知识的应用效果在农业生产中则越来越显著。
文章就数学模型在农业生产中的应用进行了分析。
关键词农业生产;数学模型;应用分析中图分类号:F224 文献标识码:A 文章编号:2095-1205(2020)07-71-02在社会科学技术水平日益提高的大背景下,现代农业生产的科技含量变得越来越高。
其中,最具代表性的一项内容便是数学模型的应用。
在农业生产中,数学模型的应用不仅仅有效提升了农业生产效率,而且更为我国未来农业生产提供了一个全新的发展方向。
众所周知,数学是一门应用性和实践性都非常强的学科,数学模型在农业生产中的应用正是体现了数学知识的价值和作用,其在进一步优化我国农业生产结构,提高农业生产的安全性和高效性方面发挥着不可替代的重要作用。
以下是笔者结合自己多年相关工作经验,就此议题提出的几点看法和建议。
1 数学模型介绍1.1 数学模型技术何为数学模型技术,顾名思义,就是将现实生活中存在或者遇到的真实问题,从数学理论知识层面来进行简化处理,将实际问题转化成为数学问题,对其中所涉及的参数和变量进行进一步确定,然后根据既定的数学原理或者规律来建立数学模型,进而寻找到问题的解决答案。
此外,数学模型技术的价值还体现在通过各种数学原理解决问题之后还会进一步地讨论和验证,会从理论层面对实际问题解决方式的可行性和正确性进行验证,只有确定验证结果没问题之后才会继续作用于生产实践。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。
线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。
其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。
在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。
例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。
二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。
整数规划模型常用于离散决策问题,如项目选择、设备配置等。
例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。
三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。
该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。
动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。
例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。
在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。
四、图论模型图论是研究图和网络的数学理论。
图论模型常用于解决网络优化、路径规划、最短路径等问题。
例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。
可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。
五、回归分析模型回归分析是研究变量之间关系的一种统计方法。
回归分析模型通常用于预测和建立变量之间的数学关系。
例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。
可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。
六、排队论模型排队论是研究排队系统的数学理论。
排队论模型常用于优化服务质量、降低排队成本等问题。
基于线性规划模型的农业种植业结构优化研究
基于线性规划模型的农业种植业结构优化研究1. 研究背景和意义随着全球经济的快速发展,农业种植业在国家经济中的地位日益重要。
传统的农业生产方式已经难以满足现代社会对农产品多样化、高效化、可持续发展的需求。
对农业种植业结构进行优化调整,提高农业生产效率和经济效益具有重要的现实意义。
基于线性规划模型的农业种植业结构优化研究,旨在通过运用数学建模方法,对农业种植业的结构进行优化设计,以实现农业生产的高效、可持续和环保发展。
这种方法可以帮助政府和企业更好地了解农业生产的现状和未来发展趋势,为农业政策制定和产业升级提供科学依据。
研究背景中的“全球经济快速发展”表明了农业种植业在全球经济体系中的重要地位。
在这种背景下,优化农业种植业结构对于提高国家经济竞争力具有重要意义。
研究背景中的“传统农业生产方式难以满足现代需求”说明了当前农业生产面临的挑战。
为了应对这些挑战,需要寻求新的方法和技术来提高农业生产效率和经济效益。
研究背景中的“高效、可持续和环保发展”是当今世界各国普遍关注的问题。
基于线性规划模型的农业种植业结构优化研究,正是为了解决这些问题而展开的探索。
基于线性规划模型的农业种植业结构优化研究具有重要的研究背景和现实意义,对于推动农业种植业的可持续发展和提高国家经济竞争力具有积极的作用。
1.1 农业种植业结构优化的重要性优化农业种植业结构有助于提高农业生产效率,通过调整作物种植比例、科学施肥、合理灌溉等手段,可以降低生产成本、提高资源利用率,从而提高农业生产的整体效益。
优化农业种植业结构有助于保障粮食安全,合理的作物种植结构可以在保证粮食总产量稳定的同时,满足市场需求多样性。
在面临自然灾害、气候变化等不确定因素的情况下,优化农业种植业结构可以提高粮食生产系统的抗风险能力,确保国家粮食安全。
优化农业种植业结构有助于促进农民增收,通过调整产业结构,发展特色农业、绿色农业等新兴产业,可以提高农产品的附加值,增加农民收入来源,提高农民生活水平。
数学建模之规划问题
一、线性规划1.简介1.1适用情况用现有资源来安排生产,以取得最大经济效益的问题。
如: (1)资源的合理利用(2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题(7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件(1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。
1.3线性规划模型的构成决策变量、目标函数、约束条件。
2、一般线性规划问题数学标准形式:目标函数:1max ==∑ njjj z cx约束条件:1,1,2,...,,..0,1,2,...,.=⎧==⎪⎨⎪≥=⎩∑nij j i j ja xb i m s t x j nmatlab 标准形式:3、可以转化为线性规划的问题例:求解下列数学规划问题解:作変量変换1||||,,1,2,3,4,22+-===i i i ii x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,⎡⎤==⎢⎥⎣⎦L L Tu y u u v v v ,则可把模型转化为线性规划模型其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2⎡⎤=---⎢⎥⎣⎦Tb 111111131 - - ⎡⎤⎢⎥= - -⎢⎥⎢⎥ -1 -1 3⎣⎦A 。
利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。
程序如下:略二、整数规划1.简介数学规划中的变量(部分或全部)限制为整数时称为整数规划。
目前流行求解整数规划的方法一般适用于整数线性规划。
1.1整数规划特点1)原线性规划有最优解,当自变量限制为整数后,出现的情况有①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
③有可行解(存在最优解),但最优解值变差。
数学在农业中的应用
数学在农业中的应用数学是一门研究数量、结构、变化以及空间关系的学科,它广泛应用于各个领域,包括农业。
农业作为人类最主要的生产活动之一,也离不开数学的辅助和应用。
本文将探讨数学在农业中的应用,并展示它如何帮助提高农业生产的效率和质量。
一、农田规划与设计在农业生产中,合理的农田规划与设计是农民获得高产量和高质量农产品的重要保障。
数学在农田规划中发挥着巨大的作用。
农民可以通过测量和调查,收集大量的地理、气象和土地数据,然后使用数学模型进行分析和计算,以确定最佳的农田规划方案。
例如,利用数学模型可以计算出地块的合理面积和边界长度,并确定最佳的种植方案,以最大限度地提高作物的产量。
此外,农民还可以使用数学模型来模拟土地的自然变化,如水流、土壤侵蚀等,以制定相应的防治措施,保护农田的可持续利用。
二、农产品配送与物流管理在现代农业中,农产品的配送与物流管理是非常重要的环节。
数学在这一领域的应用主要体现在路线规划和运输成本控制方面。
通过数学模型,可以分析不同配送点之间的距离、道路状况和交通流量等因素,然后确定最优的配送路径,从而减少运输时间和成本。
此外,数学还可以帮助农业企业评估不同运输方案的效益和可行性,以便做出科学决策。
三、气象预测与灾害防控天气和气候对农业生产有着至关重要的影响。
数学在气象预测和灾害防控方面的应用,可以帮助农民准确预测未来的天气状况,及时采取相应的措施,保护庄稼和农田。
数学模型可以分析大量的气象数据,比如温度、湿度、降水量等,来推断出未来的气候趋势和变化。
通过精确的气象预测,农民可以调整种植时间、施肥和灌溉等操作,以适应不同的气候条件,提高农作物的产量和质量。
此外,在灾害防控方面,数学也扮演着重要的角色。
通过建立数学模型,可以模拟和预测自然灾害的发生概率和影响范围,以便采取预防措施,减少损失。
例如,利用数学模型可以模拟洪水、干旱、冰雹等灾害的发生规律,并提前进行预警,提醒农民采取相应的安全措施。
2023研究生数学建模竞赛各题题目
主题:2023研究生数学建模竞赛各题题目一、序号:A001题目:城市人口增长预测与规划内容:选定某一特定城市,基于历史人口数据和相关影响因素,建立数学模型预测未来该城市的人口增长情况,并提出相应的城市规划建议。
二、序号:A002题目:交通流量优化与调度内容:针对某一大型城市的交通拥堵情况,利用数学建模方法,优化道路交通流量分配和车辆调度,提高城市交通效率。
三、序号:A003题目:气候变化对农作物产量的影响内容:选取特定地区的气候数据和农作物产量数据,建立气候变化对农作物产量的数学模型,分析气候变化对农业生产的影响,提出相关的应对措施。
四、序号:A004题目:环境污染与健康风险评估内容:利用数学建模方法,分析某一地区的环境污染情况,评估环境污染对居民健康的影响,并提出相关的环境治理建议。
五、序号:A005题目:金融风险管理与预测内容:基于金融市场数据和相关经济指标,建立金融风险管理的数学模型,预测市场变化趋势并制定相应的风险管理策略。
六、序号:A006题目:大规模数据处理与挖掘内容:针对海量数据的处理和分析,利用数学建模技术,提出相应的数据挖掘方法,解决实际问题中的数据处理难题。
七、序号:A007题目:企业生产调度与优化内容:选取某一生产企业,基于生产流程和资源配置情况,建立企业生产调度与优化的数学模型,提高生产效率和资源利用率。
以上是2023研究生数学建模竞赛的各题题目,每道题目都涉及到实际的问题,需要参赛选手们充分发挥数学建模的能力,结合实际情况进行分析和解决,展现数学建模在解决现实问题中的重要作用。
希望各位选手能够认真对待比赛,不断提升自身的数学建模能力,为解决社会问题贡献自己的智慧和力量。
八、序号:A008题目:供应链优化与管理内容:选择某一行业的供应链环节,建立数学模型,优化供应链各个环节的管理与协调,提高供应链效率,降低成本,提升企业竞争力。
九、序号:A009题目:医疗资源分配与优化内容:针对某一地区医疗资源的配置情况,建立数学模型,优化医疗资源分配与利用,平衡医疗资源间的差异,提高医疗服务的公平性和效率。
数学建模c题常用模型
数学建模c题常用模型第一种常用模型是线性规划模型。
线性规划模型是一种优化模型,可以用于解决最大化或最小化的问题。
该模型的目标函数和约束条件都是线性的,可以通过线性规划算法求解。
线性规划模型广泛应用于生产调度、资源分配、运输问题等领域。
例如,在生产调度中,可以利用线性规划模型确定最优的生产计划,以最大化产量或最小化成本。
第二种常用模型是整数规划模型。
整数规划模型是在线性规划模型的基础上加上了整数变量的限制条件,即决策变量必须取整数值。
整数规划模型适用于需要做出离散决策的问题,如旅行商问题、装箱问题等。
例如,在旅行商问题中,整数规划模型可以用于确定旅行商的最短路径,以便在有限的时间内访问所有城市。
第三种常用模型是动态规划模型。
动态规划模型适用于具有重叠子问题和最优子结构特征的问题。
通过将问题分解为多个子问题,并保存子问题的解,可以避免重复计算,提高求解效率。
动态规划模型广泛应用于路径规划、资源分配、序列比对等问题。
例如,在路径规划中,可以利用动态规划模型确定最短路径或最优路径。
第四种常用模型是随机模型。
随机模型是一种考虑不确定性因素的模型,可以用于分析风险和制定决策策略。
随机模型通常使用概率分布描述不确定性,并通过概率方法进行求解。
随机模型广泛应用于金融风险管理、供应链管理、环境管理等领域。
例如,在金融风险管理中,可以利用随机模型对投资组合的风险进行评估和优化。
第五种常用模型是图论模型。
图论模型是一种用图来表示和解决问题的模型。
通过将问题抽象为图的结构和关系,可以利用图论算法求解最优解或最优路径。
图论模型广泛应用于网络优化、社交网络分析、物流路径规划等领域。
例如,在网络优化中,可以利用图论模型确定最短路径、最小生成树等问题。
以上是数学建模中常用的几种模型,每种模型都有其独特的应用场景和解决问题的方法。
在实际应用中,可以根据具体问题的特点选择合适的模型,并利用数学建模的方法进行求解。
数学建模模型的使用不仅能够提高问题的求解效率和准确性,还可以帮助分析问题的本质和规律,为决策提供科学依据。
数学建模所有模型用途总结
数学建模所有模型用途总结数学建模是一种将实际问题转化为数学模型并通过数学方法求解的方法和技巧。
它在各个领域都有广泛的应用,可以帮助我们更好地理解和解决现实世界中的问题。
本文将总结数学建模的所有模型用途。
1.优化模型优化模型是数学建模中最常见的一种模型。
它通过建立数学模型来寻找使目标函数达到最大或最小的最优解。
优化模型可以应用于生产调度、资源分配、运输路线规划等问题。
例如,在生产调度中,我们可以利用优化模型来确定最佳的生产计划,以最大化产量或最小化成本。
2.预测模型预测模型是根据已有的数据和规律来预测未来的发展趋势。
它可以应用于经济预测、天气预报、股票市场预测等领域。
例如,在经济预测中,我们可以利用预测模型来预测未来的经济增长率,以帮助政府制定相应的宏观经济政策。
3.决策模型决策模型是用于辅助决策的一种模型。
它可以帮助人们在面对复杂的决策问题时做出科学合理的决策。
决策模型可以应用于投资决策、风险评估、市场营销策略等问题。
例如,在投资决策中,我们可以利用决策模型来评估各种投资方案的风险和收益,以帮助投资者做出明智的投资决策。
4.模拟模型模拟模型是通过建立仿真模型来模拟和分析现实世界中的复杂系统。
它可以帮助人们更好地理解系统的运行规律,并提供决策支持。
模拟模型可以应用于交通流量模拟、气候模拟、环境模拟等领域。
例如,在交通流量模拟中,我们可以利用模拟模型来评估不同的交通管理策略对交通流量的影响,以优化交通系统的运行效率。
5.网络模型网络模型是一种描述和分析网络结构和功能的数学模型。
它可以帮助人们研究和优化网络的布局、传输效率、容错性等问题。
网络模型可以应用于电力网络、通信网络、社交网络等领域。
例如,在电力网络中,我们可以利用网络模型来评估不同的电网布局方案,以提高电力系统的可靠性和稳定性。
6.随机模型随机模型是一种描述和分析随机现象的数学模型。
它可以帮助人们研究随机事件的概率分布、统计特性等问题。
随机模型可以应用于风险评估、信号处理、金融风险管理等领域。
数学建模——规划模型
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
常见数学建模模型
常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。
常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。
下面将分别介绍这些常见数学建模模型的基本原理和应用领域。
一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。
其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。
线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。
二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。
常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。
回归分析模型在市场预测、金融风险评估等领域有广泛的应用。
三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。
该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。
离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。
四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。
常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。
优化模型广泛应用于生产调度、资源分配、路径规划等领域。
以上是常见数学建模模型的基本原理和应用领域。
数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。
在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模之农场规划问题
农场规划问题问题重述:某农户拥有100亩土地和15000元可供投资,每年冬季(9月中旬至来年5月中旬),该家庭的成员可以贡献3500小时的劳动时间,而夏季为4000小时。
如果这些劳动时间有富裕,该家庭中的年轻成员将去附近的农场打工,冬季每小时6.8元,夏季每小时7.0元。
现金收入来源于三中农作物(大豆、玉米和燕麦)以及奶牛和母鸡。
农作物不需要付出投资,但每头奶牛需要400元的初始投资,可产奶3年,每只母鸡需要3元的吃食投资,只饲养1年。
每头奶牛需要1.5亩的土地,并且冬季需要付出100小时劳动时间,夏季付出50小时劳动时间,每年产生的净现金收入为1350元;每只母鸡的对应数字为:不占用土地,冬季0.6小时,夏季0.3小时,年净现金收入10.5元。
养鸡厂房最多容纳3000只母鸡,栅栏的大小限制了最多能饲养32头奶牛。
根据统计,三种农作物每种植一亩所需要的劳动时间和收入数据分别为:大豆:冬季20小时,夏季30小时,年净收入360.0元;玉米:冬季35小时,夏季75小时,年净收入600.0元;燕麦:冬季10小时,夏季40小时,年净收入400.0元。
基本假设:1、假设该农户每年都能及时获得现金收入,即本年度所获得的利润可及时用于下一年的投资;2、第五年的投资也考虑到计算中。
问题分析:这个问题的目标是使得5年内净现金收入最大,要做的决策是生产规划,即确定每种农作物应该种植多少亩,奶牛和鸡各应蓄养多少只,决策受到6个变量的限制,即土地总面积、投资资金、劳动力时间(夏季和冬季)以及奶牛和鸡的总饲养量。
模型建立:决策变量:设用i=0,1,2,3,4,5表示年数,用j=1,2,3,4,5分别表示三种农作物(大豆、玉米、燕麦)及奶牛和母鸡。
可表示第i年种植三种农作物的亩数或者蓄养奶牛和母鸡的个数,表示第i 年的总现金收入。
目标函数:设第i年的总获利为元,因农作物不用投资,则第i年种植大豆为亩,每亩收入360元,获利360元;第i年种植玉米亩,每亩收入600元,获利600;第i年种植燕麦亩,每亩收入400元,获利400元;第i年买奶牛头,每头收入1350元,获利1350(++)元;第i年鸡购买只,每只收入10.5元,获利10.5元;若劳动力有剩余,则第i年夏季劳动力收入[4000-(3075)]元,冬季劳动力收入[3500-(2035)]元。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长江学院课程设计报告课程设计题目:农业生产规划模型姓名1:袁珍珍学号: 08354230 姓名2:倪美丹学号: 08354213 姓名3:阮鹏娟学号: 08354216 专业土木工程班级083542指导教师邱淑芳2010年4月11号摘要:通过对题目的分析可以看出本题是关于线性规划的问题,解决此类问题要找出决策变量,目标函数,约束条件等,在解题中我们建立了两种模型,通过比较来使问题更加的具有科学性。
中国是一个农业大国,农民的生产生活可以直接影响到国家的经济,优化农业生产模型是一个不可忽视的问题。
本题就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。
以现有标准为参考,采用假设分析法提出了优化模型,计算出农民在农业生产中合理规划农作物的种植和畜牧业养殖的分配问题。
让拥有有限经济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。
这不仅可以发展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。
本文根据题目给出的数据和条件,假设出必要未知量,再列出必要方程式,运用Lingo等数学软件分析提出合理的数学模型。
关键字:线性规划、数学建模、Lingo、农业生产、合理分配、最大净收益阐述题目某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。
如果这些劳动时间有赋予,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。
现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。
农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季,夏季,年净现金收入元。
养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。
根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。
建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。
模型条件假设1)只有在劳动力有剩余时才能出去在农场打工,即追求在土地和资金资源充分利用下获取最大年净现金收入,同时在这基础上如果还有劳动力剩余则出去打工,保证土地的利用;2)上述数据能正确反映实际生产,在养殖和种植过程中成本能够保持不变,同时最后的年净收入能保持不变;3)养殖奶牛和母鸡的数量是整数只;种植大豆、玉米和燕麦每项的土地是整数亩;而打工时间也是整数个小时;4)在生产过程中不考虑物价起落、自然灾害和流行性动物流感等无法估计的灾害;分析数据年净现金收入来源A:家禽的养殖和农作物的种植;B:剩余劳动力在附近农场打工所得。
1)为了便于A项的年净现金收入的分析,现在将一只奶牛、一只母鸡、一亩大豆、一亩玉米、一亩燕麦生产需要的土地,资金投入,冬季劳动时间,夏季劳动时间,年净现金收入列表如下(表1):表12)A 项收入的约束条件: a .土地使用不超过100亩; b 资金投入不超过25000元; c .奶牛养殖数量不超过32只; d .母鸡的养殖不超过3000只; e .冬季劳动时间不超过3500h ; f .夏季劳动时间不超过4000h ;3)现在B 项收入的相应数据(表2)表24)B 项收入的约束条件:a .只有在A 项收入满足最大的情况下,如果有劳动力剩余则出去打工,获取额外收入。
建立模型1)iA 代表养殖家禽和种植农作物的项目编号,A 为养殖奶牛的项目,1A 为养殖母鸡的项目,2A 为种植大豆的项目,3A 为种植玉米的项目,4A 为种植燕麦的项目。
iB 代表冬季和夏季打工的项目编号,B 为冬季打工的项目,1B 为夏季打工的项目。
设总的年净收入为R ,家禽和农作物的总年净收入1R ,剩余劳动力打工所得总年净收入2R ,建立总模型如下:max R =1R +2R 2)设xi 为项目iA 的养殖数量或种植亩数,H 为资金总数,L 为土地总数,Tw 为冬季总共劳动时间,Ts 为夏季总共劳动时间,i l 为项目i A 所需的土地,i s 为项目iA 的所需的夏季劳动时间,iw 为项目iA 的所需冬季劳动时间,mi 表示项目Ai 的投资数量上限,ic 为项目iA 的投入资金、ib 为项目iA 的所获得年净收入则家禽和农作物的总年净收入:1R =∑=4i ii x b ,资金总额约束:Hxc i ii≤∑=4,土地总数约束:Lxl i ii≤∑=4,冬季劳动时间约束:Twxw i ii≤∑=4,夏季劳动时间约束:Tsxs i ii ≤∑=4,各项目的养殖和种植上限:)4,3,2,1,0(=≤i m x i i ,从而建立关于1R 的模型:max 1R =∑=4i ii x bHxc i ii ≤∑=40 Lxl i ii ≤∑=4Twxw i ii ≤∑=4Tsxs i ii≤∑=404,3,2,1,0,=<i m x i i4,3,2,1,0,=∈i N x i3)再设有一组)4,3,2,1,0(=i X i (i X 为iA 的养殖数量或种植亩数)能使家禽和农作物的总年净收入1R 达到最大,则可设wt 表示冬季总剩余劳动时间,s t表示夏季总剩余劳动时间,wf 为冬季劳动一小时的收入,sf 为夏季打工一小时的收入,i y 为i B 的投入时间,则一年后出去打工所得总年净收入:2R =10y f y f s w +,冬季总剩余劳动时间约束:∑=-=4i ii w X w Tw t ,夏季总剩余劳动时间约束:∑=-=4i ii s X s Ts t 。
冬季劳动时间约束:w t y ≤≤00,夏季劳动时间约束:st y ≤≤10则可建立关于2R 的模型: max 2R =10y f y f s w +∑=-=4i ii w X w Tw t∑=-=40i ii s X s Ts tw t y ≤≤00st y ≤≤101,0,=∈i N y i4)综上所述:故总的年净收入R =1R +2R 达到最大 当1R 和2R 都达到最大时,农户所获得的年净收入最大。
模型求解1)应用Lindo 软件,所编程序如下:max=450*x0+*x1+175*x2+300*x3+120*x4; !土地上的家禽养殖和农作物的种植的年净收入目标函数;*x0+x2+x3+x4<=100; !总的土地约束; 400*x0+3*x1<=25000; !总的资金的约束; 100*x0+*x1+20*x2+35*x3+10*x4<=3500; !冬季总共劳动时间约束; 50*x0+*x1+30*x2+75*x3+40*x4<=4000; !夏季总共劳动时间约束; x0<=32; !奶牛养殖限制; x1<=3000; !母鸡养殖限制; @gin(x0); !奶牛数取整; @gin(x1); !母鸡数取整; @gin(x2); !大豆亩数取整; @gin(x3); !玉米亩数取整;@gin(x4); !燕麦亩数取整;f1=3500-(100*x0+*x1+20*x2+35*x3+10*x4); !冬季剩余劳动力时间;f2=4000-(50*x0+*x1+30*x2+75*x3+40*x4); !夏季剩余劳动力时间;s0=450*x0; !奶牛净收入;s1=*x1; !母鸡净收入;s2=175*x2; !大豆净收入;s3=300*x3; !玉米净收入;s4=120*x4; !燕麦净收入;r2=*y0+7*y1; !剩余劳动力获得的年净收入;y0<=f1; !限制冬季打工时间;y0>f1-1; !;y1<=f2; !限制夏季打工时间; y1>f2-1; !;z=r2+450*x0+*x1+175*x2+300*x3+120*x4; !一年总的净收入;@gin(y0); !冬季打工时间取整;@gin(y1); !夏季打工时间取整;end !结束;2)程序输入运行所得结果Global optimal solution found.Objective value:Objective bound:Infeasibilities:Extended solver steps: 18Total solver iterations: 1101Variable Value Reduced CostX1X2X3X4F1F2S0S1S2S3S4R2Y0Y1Z Row Slack or Surplus Dual Price1234567810111213141516171819203)求得结果,如表3所示表3过高的和养殖时间过长,所以没有养殖奶牛。
虽然每只母鸡的年净收入是最小的,但它不需要土地,投入成本低,养殖时间短,所以母鸡的养殖数量相当大,相对来说在同样的资源下家禽的的养殖价值小于弄农作物的种植价值,,所以农作物的种植土地,能种植100亩,而在三种农作物中,花费同样的时间,大豆的净收入最大,因此93亩全部种植大豆,其次为玉米。
为了最大的利用劳动力剩余时间创造收入,可将冬季和夏天剩余劳动时间都去打工。
2)如果劳动力不是束缚在土地上,即去打工的优先级等同于土地上的家禽养殖和农作物的种植,打工的劳动力不是剩余劳动力。
则模型可改为如下所示总的年净收入为R =∑=4i iixb +10y f y f s w +Hxc i ii ≤∑=4Lxl i ii ≤∑=4Twxw i ii≤∑=40 Tsxs i ii ≤∑=4∑=-≤40i ii x w Tw y∑=-≤41i ii x s Ts y4,3,2,1,0,=<i m x i i4,3,2,1,0,=∈i N x i1,0,=∈i N y i应用Lindo 软件包,以题中所给数据为例,所编程序为:max=450*x0+*x1+175*x2+300*x3+120*x4+r2; !一年总净收入目标函数;*x0+x2+x3+x4<=100; !总的土地约束; 400*x0+3*x1<=25000; !总的资金的约束; 100*x0+*x1+20*x2+35*x3+10*x4<=3500; !冬季总共劳动时间约束; 50*x0+*x1+30*x2+75*x3+40*x4<=4000; !夏季总共劳动时间约束; x0<=32; !奶牛养殖限制;x1<=3000; !母鸡养殖限制;@gin(x0); !奶牛数取整;@gin(x1); !母鸡数取整;@gin(x2); !大豆亩数取整;@gin(x3); !玉米亩数取整;@gin(x4); !燕麦亩数取整; y0<=3500-(100*x0+*x1+20*x2+35*x3+10*x4); !冬季剩余劳动力时间;y1<=4000-(50*x0+*x1+30*x2+75*x3+40*x4); !夏季剩余劳动力时间;s0=450*x0; !奶牛净收入;s1=*x1; !母鸡净收入;s2=175*x2; !大豆净收入;s3=300*x3; !玉米净收入;s4=120*x4; !燕麦净收入;r2=*y0+7*y1; !剩余劳动力获得的年净收入;@gin(y0); !冬季打工时间取整;@gin(y1); !夏季打工时间取整;s5=*y0; !冬季打工净收入;s6=7*y1;end !结束程序输入运行所得结果为:Global optimal solution found.Objective value:Objective bound:Infeasibilities:Extended solver steps: 0Total solver iterations: 6Variable Value Reduced CostX0X1X2X3X4R2Y0Y1S0S1S2S3S4S5S6 Row Slack or Surplus Dual Price1234567891011121314151617求的结果如表4:表4结果分析比较表4和表3,我们知道养殖家禽和农作物的种植收入远不如出去打工,因此现在的农村的青年人大多数都是出去打工。