人教A版高中数学必修五正、余弦定理练习题

合集下载

人教A版高中数学必修五同步练测:1.1正弦定理和余弦定理

人教A版高中数学必修五同步练测:1.1正弦定理和余弦定理

1.1正弦定理和余弦定理(人教实验A版必修5)建议用时实际用时满分实际得分45分钟100分一、选择题(本大题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列各式中符合余弦定理的是()(1)c2=a2+b2-2ab cos C;(2)c2=a2-b2-2bc cos A;(3)b2=a2-c2-2bc cos A;(4)cos C=a2+b2+c2-2ab.A.(1)B.(2)C.(3)D.(4)2.在△ABC中,a=15,b=10,A=60°,则cos B=()A.B.C.D.3.在△ABC中,已知a=4,b=6,C=120°,则边c的长是()A.B.C.2D.24.已知锐角A是△ABC的一个内角,a,b,c是三角形中各内角的对应边,若sin2A-cos2A=12,则下列各式正确的是()(1)b+c=2a;(2)b+c2a;(3)b+c≤2a;(4)b+c≥2a.A.(1)B.(2)C.(3)D.(4)5.在△ABC中,D点为BC上一点,BD=12DC,∠ADB=120°,AD=2.若△ADC的面积为3-3,则∠BAC =()A.30°B.60°C.45°D.90°6.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.B.C.D.7.在△ABC中,已知2sin A cos B=sin C,那么△ABC的形状是()三角形.A.锐角B.直角C.等边D.等腰二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)8.如图,在四边形ABCD中,已知AD CD,AD=10,AB=14,∠BDA=60︒,∠BCD=135︒,则BC= .9.如图,AA1与BB1相交于点O,AB∥A1B1且AB=1A1B1.若△AOB的外接2圆的直径为1,则△A1OB1的外接圆的直径为_______.10.在△ABC中,若B=60°,2b=a+c,则△ABC的形状是.(填锐角三角形、直角三角形、钝角三角形)11.在△ABC中,下列关系式:①a sin B=b sin A;②a=b cos C+c cos B;③a2+b2-c2=2ab cos C;④b=c sin A+a sin C,一定成立的个数是 .12.△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c= .三、解答题(共47分,解答应写出文字说明,证明过程或演算步骤)13.(11分)在△ABC中,b=a sin C,c=a cos B,试判断△ABC的形状.14.(12分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2a sin B=b.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.15.(12分)在△ABC中,sin cosA A+=,2AC=,3AB=,求tan A的值和△ABC的面积.16.(12分)在△ABC中,角A,B,C所对的边分别为a ,b ,c ,且tan 21tan A cB b+=. (1)求角A ;(2)若m (0,1)=-,n ()2cos ,2cos 2C B =,试求|m +n |的最小值.1.1正弦定理和余弦定理(人教实验A 版必修5)答题纸得分:一、选择题二、填空题8. 9. 10. 11. 12. 三、解答题 13.14.15.16.1.1正弦定理和余弦定理(人教实验A 版必修5)参考答案1.A 解析:注意余弦定理的形式,特别是正负号问题.2.A 解析:依题意得0°60°,由正弦定理得sin sin a b A B=得sin B =sin b A a =33,cos B ==63,故选A. 3.D 解析:根据余弦定理,得c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos120°=76,所以c =故选D.4.C 解析:由sin 2A -cos 2A =12,得cos2A =-12,又因为A 是锐角,所以A =60°,于是B +C =120°.所以2b c a+=sin sin 2sin B C A+2sincos B C B C +-cos2B C -≤1,即b +c ≤2a .故选C.5.B 解析:由∠ADB =120°,知∠ADC =60°.又因为AD =2,所以S △ADC =12AD ·DC ·sin60°=3-3,所以DC =2(3-1).又因为BD =12DC ,所以BD =3-1.过A 点作AE ⊥BC 于E 点,则S △ADC =12DC ·AE =3-3,所以AE = 3.又在直角三角形AED 中,DE =1,所以BE = 3.在直角三角形ABE 中,BE =AE ,所以△ABE 是等腰直角三角形,所以∠ABC =45°. 在直角三角形AEC 中,EC =23-3,所以tan ∠ACE =AE EC =323-3=2+3, 所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°.故选B.6.C 解析:设等腰三角形的底边长为a ,则由题意知等腰三角形的腰长为2a ,故顶角的余弦值为22244222··a a a a a+-=78.故选C. 7.D 解析:由2=,知2=, ∴+,即=0. ∴0,∴.故选D.8.ABD 中,设BD =x ,则2222cos BA BD AD BD AD BDA =+-⋅⋅∠, 即ο60cos 1021014222⋅⋅-+=x x ,整理得096102=--x x ,解得161=x ,62-=x (舍去). ∵∠ADC =90°,∠BDA =60°,∴∠CDB =30°.由正弦定理得BCD BDCDB BC ∠=∠sin sin , ∴2830sin 135sin 16=⋅=οοBC . 9.2解析:在△AOB 中,由正弦定理得=1,∴sin ∠AOB =AB . ∵∠AOB =∠,∴.在△A 1OB 1中,由正弦定理得2R ===2.10.锐角三角形解析一:根据余弦定理得b 2=a 2+c 2-2ac cos B . ∵B =60°,2b =a +c ,∴2a c +⎛⎫⎪⎝⎭2=a 2+c 2-2ac cos60°, 整理得(a -c )2=0,∴a =c .∴△ABC 是正三角形.∴△ABC 是锐角三角形. 解析二:根据正弦定理得,2b =a +c 可转化为2sin B =sin A +sin C . 又∵B =60°,∴A +C =120°,∴C =120°-A ,∴2sin60°=sin A +sin(120°-A ),整理得sin(A +30°)=1, ∴A =60°,C =60°.∴△ABC 是正三角形.∴△ABC 是锐角三角形. 11.3解析:由正、余弦定理知①③一定成立.对于②,由正弦定理知sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立. 对于④,由正弦定理知sin B =sin C sin A +sin A sin C =2sin A sin C ,不一定成立.12.2解析:∵B =2A ,a =1,b =,∴由正弦定理=得: ===, ∴cos A =.由余弦定理得a 2=b 2+c 2-2bc cos A ,即1=3+c 2-3c , 解得c =2或c =1(经检验不合题意,舍去),则c =2.故填2.13.解:由余弦定理知cos B =2222a c b ac+-,将c =a cos B 代入,得c =2222a c b ac +-,∴c 2+b 2=a 2,∴△ABC 是以A 为直角顶点的直角三角形. 又∵b =a sin C ,∴b =a •ca,∴b =c , ∴△ABC 是等腰三角形.综上所述,△ABC 是等腰直角三角形. 14.解:(1)由2a sin B =b ,利用正弦定理得:2sin A sin B =sin B .∵sin B ≠0,∴sin A =. 又A 为锐角,∴A =.(2)由余弦定理得:a 2=b 2+c 2-2bc cos A ,即36=b 2+c 2-bc =(b +c )2-3bc =64-3bc ,∴bc =. 又sin A =,则=bc sin A =.15.解法一:先解三角方程,求出角A 的值..21)45cos(,22)45cos(2cos sin =-∴=-=+οοΘA A A A又0180οο<<A ,4560,105.A A ∴-==oootan tan(4560)2A ∴=+=-o o .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+==οοοοοοοA )62(434623221sin 21+=+⨯⨯⨯=•=∴∆A AB AC S ABC . 解法二:由sin cos A A +计算它的对偶关系式sin A -cos A 的值. 22cos sin =+A A Θ,①.0cos ,0sin ,1800.21cos sin 2.21)cos (sin 2<>∴<<-=∴=+∴A A A A A A A οοΘ又23cos sin 21)cos (sin 2=-=-A A A A Θ, 26cos sin =-∴A A .② ①+②,得sin A =+264. ①-②,得cos A =-264.从而sin tan 2cos A A A ===-以下解法同解法一.16.解:(1)由正弦定理得,tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=, 即sin cos sin cos 2sin sin cos sin B A A B CB A B +=, ∴sin()2sin sin cos sin A B CB A B+=, ∴1cos 2A =.∵0πA <<,∴π3A =.(2)∵m +n 2cos ,2cos1(cos ,cos )2C B B C ⎛⎫=-= ⎪⎝⎭, ∴|m +n |222222π1πcos cos cos cos 1sin 2326B C B B B ⎛⎫⎛⎫=+=+-=--⎪ ⎪⎝⎭⎝⎭. ∵π3A =,∴2π3B C +=, ∴2π0,3B ⎛⎫∈ ⎪⎝⎭.从而ππ7π2666B -<-<. ∴当πsin 26B ⎛⎫-⎪⎝⎭=1,即π3B =时,|m +n |2取得最小值12. ∴|m +n|min =。

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os C
3222232co1s2o0 19
AC 19
答:岛屿A与岛屿C的距离为 19 km.
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形。
cosA<0,A为钝角,△ABC为钝角三角形。 练习2:在锐角△ABC中,边长a=1,b=2,
求边长c的取值范围。
解:∵coCsa2b2c2 0
a2c2b2
coBs
0
2bc
2ac
3c 5

余弦定理:
推论:
a2b2c22bcco As
cos
b2 A
c2 a2 2bc
b2a2c22acco BscosBc2 a2 b2
例2、已知△ABC的三边为 7 、2、1,
求它的最大内角。
解:设三角形的三边分别为a= 7 ,b=2,c=1
则最大内角为∠A
由余弦定理得coAs b2 c2 a2
2bc
22 12
2
7
221
120
练习1:在△ABC中,已知a=12,b=8,c=6, 判断△ABC的形状。
a2b2c2

C a B ,C b A ,A c B
由向量减法的三角形法则得
c ab
c 2 cc (a b )(a b )

aa 2a b b2b22a ab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,

人教A版数学高二必修5课时作业4正、余弦定理在三角形中的应用

人教A版数学高二必修5课时作业4正、余弦定理在三角形中的应用
∴ab=6,∴S△ABC= absinC= ×6× = .
答案:C
5.在△ABC中,∠BAC=120°,AD为∠BAC的平分线,AC=3,AB=6,则AD的长是()
A.2 B.2或4
C.1或2 D.5
解析:如图,由已知条件可得∠DAC=∠DAB=60°.
因为AC=3,AB=6,S△ACD+S△ABD=S△ABC,
所以 ×3×AD× + ×6×AD× = ×3×6× ,
解得AD=2.
答案:A
二、填空题(每小题5分,共15分)
6.在△ABC中,已知a=3 ,cosC= ,S△ABC=4 ,则b=________.
解析:因为cosC= ,C∈(0,π),所以sinC= ,
所以 absinC=4 ,所以b=2 .
答案:2
由余弦定理得
CD2=BC2+BD2-2BC·BD·cos =1+ -2× × = ,
故CD= .
又AB=AD+BD=CD+BD= + = ,
故边AB的长为 .
即sin(A+B)=sin2C,
因为sinC≠0,所以sinC=1,
故C=90°,
又S= bcsinA= (b2+c2-a2),
所以sinA= =cosA,
所以tanA=1,
故A=45°,所以B=45°,故选C.
答案:C
12.在△ABC中,AB= ,点D是BC的中点,且AD=1,∠BAD=30°,则△ABC的面积为________.
(2)当△ABC的面积为3时,求a+c的值.
解析:(1)因为cosB= >0,B∈(0°,90°),所以sinB= .
由正弦定理 = 可得 = ,
所以a= .
(2)因为△ABC的面积S= ac·sinB,

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

高考数学 专题3.3 正弦定理和余弦定理同步单元双基双测(A卷)理-人教版高三全册数学试题

高考数学 专题3.3 正弦定理和余弦定理同步单元双基双测(A卷)理-人教版高三全册数学试题

专题3.3 正弦定理和余弦定理(测试时间:120分钟满分:150分)一、选择题(共12小题,每题5分,共60分)1. 已知ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,222a b c bc =+-,4bc =,则ABC ∆的面积为( ) A .12B .1C .3D .2 【答案】C . 【解析】试题分析:由222a b c bc =+-,可得 60=A ,则所求面积3sin 21==A bc S ,故选C . 考点:余弦定理.2. 【2018全国名校联考】已知,,a b c 分别是ABC ∆的三个内角所对的边,满足cos cos cos a b cA B C==,则ABC ∆的形状是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形 【答案】C故选C3. 在ABC ∆中,角C B A ,,的对边分别为c b a ,,.已知 45,3,2===A b a ,则角B 大小为A .60 B .120 C .60或120 D .15或75【来源】【百强校】2017届某某某某市高三9月摸底考试数学(文)试卷(带解析) 【答案】C 【解析】试题分析:由正弦定理可得:B sin 345sin 20=,由此可得23sin =B ,因a b >,故=B 60或 120,所以应选C .考点:1、正弦定理在解三角形中的应用.4.【2018某某永州一模】在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若2sin sin sin B A C =+,3cos 5B =,且6ABC S ∆=,则b =( ) A. 2 B. 3 C. 4 D. 5 【答案】C5. 某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30,灯塔B 在观察站C 南偏东30处,则两灯塔A 、B 间的距离为:( ) A .400米 B .500米 C .700米 D .800米 【答案】C 【解析】试题分析:根据题意,在ABC 中,300AC =米,500BC =米,120ACB ∠=︒,则利用余弦定理得:2223005002300500cos120AB =+-⨯⨯⨯︒,所以700AB =米,答案为C.考点:1.数学模型的建立;2.三角形中的余弦定理.6.∆ABC 外接圆半径为R ,且2R (22sin sin A C -)=(3)sin a b B -,则角C=( ) A .30° B .45° C .60° D .90° 【答案】A 【解析】试题分析:根据正弦定理变形:sin 2a A R =,sin 2b B R =,sin 2c C R=,所以原式可转化为:()223a c a b b -=-,所以得:2223a c b ab -+=,根据余弦定理:2223cos 22a b c C ab +-==,又0180C <<,所以30C =。

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
第一章 §1.1 正弦定理和余弦定理
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教A版必修5达标检测:1.1第3课时正、余弦定理的综合应用含解析A级基础巩固一、选择题1.已知三角形的三边长分别是a,b,错误!,则此三角形中最大的角是()A.30°B.60°C.120°D.150°解析:因为错误!>a, 错误!>b,所以最大边是错误!,设其所对的角为θ,则cos θ=错误!=-错误!,所以θ=120°.答案:C2.△ABC的内角A,B,C所对的边分别为a,b,c。

若B=2A,a=1,b=错误!,则c=()A.2错误!B.2 C.错误!D.1解析:由asin A=错误!,得错误!=错误!,所以错误!=错误!,故cos A=错误!,因为A∈(0,π),所以A=错误!,所以B=错误!,C=错误!,c=错误!=错误!=2.答案:B3.已知△ABC的三边长分别为AB=7,BC=5,AC=6。

则错误!·错误!的值为()A.19 B.14 C.-18 D.-19解析:由余弦定理的推论知:cos B=AB2+BC2-AC22AB·BC=1935。

所以错误!·错误!=|错误!|·|错误!|·cos(π-B)=7×5×错误!=-19.答案:D4.锐角三角形ABC中,sin A和cos B的大小关系是()A.sin A=cos B B.sin A<cos BC.sin A>cos B D.不能确定解析:在锐角三角形ABC中,A+B>90°.所以A>90°-B,所以sin A>sin (90°-B)=cos B.答案:C5.在△ABC中,b=8,c=3,A=60°,则此三角形外接圆面积为()A.错误!B.错误!C。

错误!D。

错误!解析:a2=b2+c2-2bc cos A=82+32-2×8×3×错误!=49,所以a=7,所以2R=错误!=错误!=错误!,所以R=错误!,所以S=π错误!错误!=错误!π.答案:D二、填空题6.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案:错误!7.在△ABC中,AB=错误!,D为BC的中点,AD=1,∠BAD =30°,则△ABC的面积S△ABC=________.解析:因为AB=3,AD=1,∠BAD=30°,所以S△ABD=错误!·错误!·1·sin 30°=错误!,又D是BC边中点,所以S△ABC=2S ABD=错误!.答案:错误!8.(2018·浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60°,则sin B=________,c=________.解析:本小题考查正弦定理、余弦定理.由错误!=错误!得sin B=错误!sin A=错误!,由a2=b2+c2-2bc cos A,得c2-2c-3=0,解得c=3(舍负).答案:错误!3三、解答题9.已知△ABC中,角A,B,C的对边分别为a,b,c,2cos C·(a cos C+c cos A)+b=0.(1)求角C的大小;(2)若b=2,c=2错误!,求△ABC的面积.解:(1)由正弦定理可得2cos C (sin A cos C +sin C cos A )+sin B =0,所以2cos C sin(A +C )+sin B =0,即2cos C sin B +sin B =0, 又0<B <π,所以sin B ≠0,所以cos C =-错误!,即C =错误!。

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案

..人教版高中数学必修 5 正弦定理和余弦定理测试题及答案一、选择题1.在△ ABC 中,三个内角A, B, C 的对边分别是a, b,c,若 a= 2, b=3, cosC=-1 ,则 c 等于 ()4(A)2(B)3(C)4(D)52.在△ ABC 中,若 BC=2, AC= 2, B= 45°,则角 A 等于 ()(A)60 °(B)30 °(C)60 °或 120°(D)30 °或 150°3.在△ ABC 中,三个内角 A,B,C 的对边分别是 a,b,c,已知 B= 30°,c= 150,b= 50 3 ,那么这个三角形是 ()(A) 等边三角形(B) 等腰三角形(C) 直角三角形(D) 等腰三角形或直角三角形4.在△ ABC 中,已知cosB 32) ,sin C,AC =2,那么边 AB 等于 (53(A) 5(B)5(C)20(D)12 43955.在△ ABC 中,三个内角A,B, C 的对边分别是a, b, c,如果 A∶ B∶ C= 1∶ 2∶3,那么 a∶b∶ c 等于 ()(A)1 ∶ 2∶3(B)1∶3∶2(C)1 ∶ 4∶ 9(D)1 ∶ 2 ∶ 3二、填空题6.在△ ABC 中,三个内角A,B, C 的对边分别是a, b, c,若 a= 2, B= 45°, C= 75°,则 b=________.7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b,c,若 a= 2, b= 2 3 ,c=4,则A= ________.8.在△ ABC 中,三个内角A,B,C 的对边分别是a,b,c,若 2cosBcosC= 1-cosA,则△ABC 形状是 ________三角形 .9.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a=3, b= 4,B= 60°,则c= ________.10.在△ ABC 中,若 tanA= 2, B= 45°, BC = 5 ,则AC=________.三、解答题11.在△ ABC 中,三个内角A,B, C 的对边分别是 a, b, c,若 a=2, b= 4, C=60°,试解△ ABC...12.在△ ABC 中,已知AB= 3, BC= 4,AC=13 .(1)求角 B 的大小;(2)若 D 是 BC 的中点,求中线AD 的长 .13.如图,△ OAB 的顶点为O(0, 0),A(5, 2)和 B(- 9, 8),求角 A 的大小 .14.在△ ABC 中,已知BC =a, AC= b,且 a, b 是方程 x2- 23 x+2=0的两根,2cos(A +B)=1.(1)求角 C 的度数;(2)求 AB 的长;(3)求△ ABC 的面积 ...参考答案一、选择题 1. C 2.B3.D4. B5.B提示:4.由正弦定理,得 sinC =3,所以 C =60°或 C = 120°,2当 C = 60°时,∵ B =30°,∴ A = 90°,△ ABC 是直角三角形;当C = 120°时,∵ B = 30°,∴ A = 30°,△ ABC 是等腰三角形 . 5.因为 A ∶ B ∶C = 1∶2∶ 3,所以 A =30°, B = 60°, C = 90°,由正弦定理a b csin A sinB= k ,sin C得 a =k ·sin30°= 1k , b =k · sin60°=3k ,c = k · sin90°= k ,22所以 a ∶ b ∶ c = 1∶ 3 ∶ 2.二、填空题6. 2 67.30°8.等腰三角形9.3 37 10. 5 2324提示:8.∵ A +B + C =π,∴- cosA =cos(B + C). ∴ 2cosBcosC =1- cosA =cos(B + C)+1,∴ 2cosBcosC = cosBcosC - sinBsinC +1,∴ cos(B -C)= 1,∴ B - C = 0,即 B = C. 9.利用余弦定理 b 2= a 2+c 2-2accosB.10.由 tanA =2,得 sin A2,根据正弦定理,得AC BC,得 AC = 5 2 .5sin Bsin A 4三、解答题11. c =2 3 , A = 30°, B = 90° .12. (1)60°; (2)AD =7 .13.如右图,由两点间距离公式,得 OA = (5 0)2 (2 0)229 ,同理得 OB145, AB232 . 由余弦定理,得cosA = OA 2AB 2 OB 2 2 ,2OAAB2..∴ A = 45° .14. (1) 因为 2cos(A +B)= 1,所以 A +B = 60°,故 C = 120° .(2)由题意,得 a + b = 2 3 , ab = 2,又 AB 2= c 2= a 2+ b 2- 2abcosC = (a +b) 2- 2ab - 2abcosC= 12-4- 4× (1)= 10.2所以 AB =10 .(3)S △ ABC =1absinC =1· 2·3 = 3 . 2 222。

高中数学《1.1.2 余弦定理》评估训练 新人教A版必修5

高中数学《1.1.2 余弦定理》评估训练 新人教A版必修5

1.1.2 余弦定理双基达标 限时20分钟1.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ).A.39B .8 3C .10 2D .7 3解析 c 2=a 2+b 2-2ab cos C =92+(23)2-2×9×23cos 150°=147=(73)2,∴c =7 3. 答案 D2.在△ABC 中,若a =7,b =43,c =13,则△ABC 的最小角为( ).A.π3B.π6C.π4D.π12解析 ∵c <b <a ,∴最小角为角C .∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=32.∴C =π6,故选B.答案 B3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC( ).A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析 ∵c 2-a 2-b 22ab>0,∴c 2-a 2-b 2>0.∴a 2+b 2<c 2.∴△ABC 为钝角三角形.故选C. 答案 C4.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120°=a 2+c 2+ac . ∴原式为0. 答案 05.在△ABC 中,若(a -c )(a +c )=b (b +c ),则A =________. 解析 ∵(a -c )(a +c )=b (b +c ), ∴a 2-c 2=b 2+bc ,即b 2+c 2-a 2=-bc .∴cos A =b 2+c 2-a 22bc =-12.∵0°<A <180°,∴A =120°. 答案 120°6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =14,a =4,b +c =6,且b <c ,求b ,c 的值.解 由余弦定理a 2=b 2+c 2-2bc cos A , ∴16=(b +c )2-2bc -12bc∴bc =8,又∵b +c =6,b <c ,解方程组⎩⎪⎨⎪⎧b +c =6,bc =8,得b =2,c =4或b =4,c =2(舍). ∴b =2,c =4.综合提高 限时25分钟7.在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 解析 由余弦定理b 2=a 2+c 2-ac , ∴a 2+c 2-2ac =0,∴(a -c )2=0,∴a =c . ∵B =60°,∴A =C =60°. 故△ABC 为等边三角形. 答案 B8.在△ABC 中,AB =5,AC =3,BC =7,则AB →·A C →等于 ( ).A.152 B .-152 C.1532D .15 解析 ∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴AB →·AC →=|AB →|·|AC →|·cos∠BAC =5×3×⎝ ⎛⎭⎪⎫-12=-152,故选B. 答案 B9.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________. 解析 ∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C .又∵0<C <π2,∴cos C ∈(0,1).∴c 2∈(1,5).∴c ∈(1,5). 答案 (1,5)10.已知等腰△ABC 的底边BC =2,腰AB =4,则腰上的中线长为________.解析 ∵cos A =b 2+c 2-a 22bc =42+42-222×4×4=78.设其中一腰中线长为x ,则x 满足:x 2=42+22-2×4×2cos A =20-16×78=6.∴x = 6.答案611.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边,且a 2+c 2-b 2=ac . (1)求角B 的大小;(2)若c =3a ,求tan A 的值.解 (1)由余弦定理,得cos B =a 2+c 2-b 22ac =12.∵0<B <π,∴B =π3.(2)法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A <π,∴sin A =1-cos 2A =2114. ∴tan A =sin A cos A =35.法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a . 由正弦定理,得sin B =7sin A . ∵B =π3,∴sin A =2114.又∵b =7a >a ,则B >A , ∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.12.(创新拓展)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sinB +(2c +b )sinC .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 解 (1)由已知,根据正弦定理得 2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A , 故cos A =-12.又A ∈(0,π),∴A =2π3.(2)由(1)中a 2=b 2+c 2+bc 及正弦定理,可得 sin 2A =sin 2B +sin 2C +sin B sin C , 即⎝⎛⎭⎪⎫322=sin 2B +sin 2C +sin B sin C , 又sin B +sin C =1,得sin B =sin C =12,又0<B ,C <π3,∴B =C ,∴△ABC 为等腰的钝角三角形.。

数学1.1.2余弦定理强化作业成才之路(人教A版必修5)

数学1.1.2余弦定理强化作业成才之路(人教A版必修5)

1.1.2一、选择题1.在△ABC 中,若a <b <c ,且c 2<a 2+b 2,则△ABC 为( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不存在[答案] B[解析] ∵c 2<a 2+b 2,∴∠C 为锐角.∵a <b <c ,∴∠C 为最大角,∴△ABC 为锐角三角形. 2.在钝角三角形ABC 中,若sin A <sin B <sin C ,则( ) A .cos A ·cos C >0 B .cos B ·cos C >0 C .cos A ·cos B >0 D .cos A ·cos B ·cos C >0[答案] C[解析] 由正弦定理得,a <b <c ,∴角C 是最大角, ∴角C 为钝角,∴cos C <0,cos A >0,cos B >0.3.在△ABC 中,a =3,b =7,c =2,那么B 等于( ) A .30° B .45° C .60° D .120°[答案] C[解析] cos B =a 2+c 2-b 22ac =9+4-712=12∴B =60°.4.在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ) A .无解 B .一解 C .两解 D .不能确定[答案] B[解析] 已知两边和夹角,三角形唯一确定.5.(2010~2011·醴陵二中、四中期中)在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A.π3 B.π6 C.2π3 D.π3或2π3[答案] C[解析] a 2=b 2+c 2+bc 变形为b 2+c 2-a 22bc =-12∴cos A =-12,∴A =2π3.6.(2010~2011·福建福州高二期中)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a cos A =b cos B =ccos C ,则△ABC 是( ) A .正三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形[答案] A[解析] 由正弦定理及条件式可得sin A cos A =sin B cos B =sin Ccos C (*)由sin A cos A =sin Bcos B得,sin(A -B )=0, ∵0<A <π,0<B <π,∴-π<A -B <π, ∴A -B =0,同理B -C =0,∴A =B =C .[点评] (*)式即tan A =tan B =tan C ,∵0<A ,B ,C <π,∴A =B =C .7.如果等腰三角形的周长是底边边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32D.78[答案] D[解析] 设等腰三角形的底边边长为x ,则两腰长为2x (如图),由余弦定理得cos A =4x 2+4x 2-x 22·2x ·2x =78,故选D.8.在△ABC 中,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633D.3926[答案] B[解析] 由正弦定理及等比定理知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R . ∵S △ABC =12bc sin A =12·1·c ·32=3,∴c =4.根据余弦定理,a 2=b 2+c 2-2bc cos A =12+42-2×1×4×12=13∴a =13,∴原式=a sin A =2393,故选B.9.已知△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,且a =4,b +c =5,tan B +tan C +3=3tan B ·tan C ,则△ABC 的面积为( )A.34B .3 3 C.334D.34[答案] C[解析] ∵tan B +tan C +3=3tan B ·tan C , ∴tan B +tan C =-3(1-tan B ·tan C ) ⇒tan B +tan C1-tan B ·tan C=-3⇒tan(B +C )=-3,∴B +C =120°,∴A =60°,由a =4,b +c =5及余弦定理得,a 2=b 2+c 2-2bc cos A , ∴a 2=(b +c )2-2bc -2bc cos A , ∴16=25-2bc -2bc ·12,∴bc =3.∴S △ABC =12bc sin A =334,故选C.10.(2010~2011·山东苍山高二期中)在△ABC 中,若sin A a =cos Bb ,则角B 等于( )A .30°B .45°C .60°D .90°[答案] B[解析] 由正弦定理知sin A a =sin B b ,∵sin A b =cos Bb ,∴sin B =cos B ,∵0°<B <180°,∴B =45°. 二、填空题11.在△ABC 中,已知A >B >C ,且A =2C ,b =4,a +c =8,则a 、c 的长分别为________. [答案]245,165[解析] 由正弦定理得:a sin A =csin C∵A =2C ,∴a sin2C =c sin C ,即a 2sin C cos C =csin C ,∴cos C =a2c.①又由已知a +c =8=2b 及余弦定理知: cos C =a 2+b 2-c22ba =a 2+(a +c 2)2-c2a (a +c )=(5a -3c )(a +c )4a (a +c )=5a -3c4a ,②由①②可知:a 2c =5a -3c4a ,整理得:(2a -3c )(a -c )=0,∵A >B >C ,∴a ≠c ,∴2a =3c . 又∵a +c =8,∴a =245,c =165.12.在△ABC 中,已知sin A =2cos B ·sin C ,则三角形形状为__________. [答案] 等腰三角形[解析] 由正弦定理得sin A =a 2R ,sin C =c2R ;由余弦定理得cos B =a 2+c 2-b 22ac .所以a =2·a 2+c 2-b 22ac ·c ,即b 2=c 2.所以b =c .因此三角形为等腰三角形.13.在△ABC 中,a =b +2,b =c +2,又最大角的正弦等于32,则三边长为__________. [答案] 3,5,7[解析] ∵a -b =2,b -c =2,∴a >b >c , ∴最大角为A .sin A =32,∴cos A =±12, 设c =x ,则b =x +2,a =x +4 ∴x 2+(x +2)2-(x +4)22x (x +2)=±12,∵x >0,∴x =3,故三边长为3,5,7.14.(08·湖北)在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为________.[答案]612[解析] ∵bc cos A +ca cos B +ab cos C =b 2+c 2-a 22+c 2+a 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=612. 15.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.[答案]33[解析] 由正弦定理得(3sin B -sin C )cos A =sin A cos C ,即3sin B cos A =sin A cos C +sin C cos A ,即3sin B cos A =sin(A +C )=sin B ,故cos A =33. 三、解答题16.在△ABC 中,已知AB =102,A =45°,在BC 边的长分别为20,2033,5的情况下,求相应角C .[解析] 由正弦定理得sin C =AB sin A BC =10BC(1)当BC =20时,sin C =12∵BC >AB ,∴A >C ,∴C =30°. (2)当BC =2033时,sin C =32∵AB ·sin45°<BC <AB ,∴C 有两解,∴C =60°或120°,(3)当BC =5时,sin C =2>1,∴C 不存在.17.在△ABC 中,BC =a ,AC =b ,a 、b 是方程x 2-23x +2=0的两个根,且2cos(A +B )=1.求:(1)角C 的度数; (2)AB 的长度.[解析] (1)cos C =cos[π-(A +B )] =-cos(A +B )=-12,∴C =120°.(2)由题设:⎩⎨⎧a +b =23ab =2,∴AB 2=AC 2+BC 2-2AC ·BC cos C=b 2+a 2-2ab cos120°=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10.*18.在四边形ABCD 中,已知BC =a ,DC =2a ,四个内角A 、B 、C 、D 的度数之比为3∶7∶4∶10,求AB 的长.[解析] 设四个角A 、B 、C 、D 的度数依次为3x,7x,4x,10x 则3x +7x +4x +10x =360°,∴x =15°, ∴A =45°,B =105°,C =60°,D =150°. 在△BCD 中,由余弦定理:BD 2=a 2+(2a )2-2×a ×2a cos60°=3a 2, ∴BD =3a .此时有DC 2=BD 2+BC 2,∴△BCD 为直角三角形,∠CDB =30°,∴∠ADB =120°. 在△ABD 中,由正弦定理:AB =BD ·sin ∠ADB sin A =3a sin120°sin45°=32a 2.高ο考я试╓题╬库。

正弦定理-高二数学人教版(必修5)

正弦定理-高二数学人教版(必修5)

第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即____________.正弦定理对任意三角形都成立.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的____________.已知三角形的几个元素求其他元素的过程叫做____________.K 知识参考答案:1.sin sin sin a b c ==A B C2.元素 解三角形K —重点 正弦定理的变形和推广、正弦定理在解三角形中的应用 K —难点 三角形解的个数的探究、三角形形状的判断K —易错 解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++. (3)::sin :sin :sin a b c A B C =. (4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (1)已知△ABC 中,sin :sin :sin =1:2:3A B C ,则a:b:c =_____________;(2)已知△ABC 中,∠A =60︒,3a ,则++sin +sin +sin a b cA B C=_____________.【答案】(1)1:2:3;(2)2.【解析】(1)根据正弦定理的变形,可得=sin :sin :sin =1:2:3a:b:c A B C . (2)方法1:设=sin sin a b A B ==(>0)sin ck k C,则有sin sin sin a k Ab k Bc k C ===,,, 从而sin sin sin sin sin sin sin sin sin a b c k A k B k C k A B C A B C ++++++++==,又32sin sin60a k A ===︒,所以sin sin sin a b c A B C ++++=2. 方法2:根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++++==.【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.在ABC △中,求证:22sin 2sin 22sin a B b A ab C +=.【答案】证明见解析.【解析】设ABC △外接圆的半径为R ,则2sin ,2sin ,a R A b R B == 于是222222sin 2sin 2(2sin )sin 2(2sin )sin 28sin sin (sin cos cos sin )8sin sin sin 22sin 2sin sin 2sin ,a Bb A R A B R B A R A B A B A B R A B CR A R B C ab C +=+=+==⋅⋅⋅=所以22sin 2sin 22sin a B b A ab C +=. 【解题技巧】===2sin sin sin a b c R A B C的两种变形的应用: (1)(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; (2)(角化边)sin ,sin ,sin 222a b cA B C R R R===. 正弦定理在解三角形中的应用、三角形解的个数的探究1.正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看①若sin sin 1b AB=a >,则满足条件的三角形的个数为0,即无解; ②若sin sin 1b AB=a=,则满足条件的三角形的个数为1;③若sin sin 1b AB=a<,则满足条件的三角形的个数为1或2. 注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180°”等进行讨论. (2)从几何角度来看①当A 为锐角时:一解一解 两解 无解②当A 为钝角或直角时:一解 一解 无解 无解(1)已知在ABC △中,10,45,30c A C ==︒=︒,则a =_______,b =_______,B =_______;(2)已知在ABC △中,3,60,1b B c ==︒=,则a =_______,A =_______,C =_______; (3)已知在ABC △中,6,45,2c A a ==︒=,求b 和,B C .【答案】(1)102,5652+,105︒;(2)2,90︒,30︒;(3)见解析. 【解析】(1)10,45,30180()105c A C B A C ==︒=︒∴=︒-+=︒,,由sin sin a c A C =,得sin 10sin 45102sin sin 30c A a C ⨯︒===︒, 由sin sin b c B C =,得sin 10sin10562205652sin sin 304c B b C ⨯︒+===⨯=+︒.(2)∵sin 1sin 601,sin sin sin 23b c c B C B C b ⨯︒=∴===, ,60,b c B C B >=︒∴<,C 为锐角,30,90C A ∴=︒=︒,∴222=+=c b a .(3)sin 6sin 453,sin sin sin 22a c c A C A C a ⨯︒=∴===, sin ,60c A a c C <<∴=︒或120︒,∴当60C =︒时,sin 6sin 7575,31sin sin 60c B B b C︒=︒===+︒,当120C =︒时,sin 6sin1515,31sin sin 60c B B b C ︒=︒===-︒. 31,75,60b B C ∴=+=︒=︒或31,15,120b B C =-=︒=︒.【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边.(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,①当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;②当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;③然后由三角形内角和定理求出第三个角;④最后根据正弦定理求出第三条边.三角形形状的判断判断三角形形状的常用方法——边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状.一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形.在ABC △中,已知sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【答案】B【解析】设ABC △的外接圆半径为R ,由正弦定理的推广,得sin 2a A R =,sin 2bB R=,代入sin sin sin a b B a B A +=-,可得a b ba b a+=-,即22b a ab -=. 因为cos()cos 1cos 2A B C C -+=-,所以2cos()cos()2sin A B A B C -++=, 即2sin sin sin A B C =. 由正弦定理的推广可得2()222a b cR R R⋅=,所以2ab c =, 由22b a ab -=及2ab c =可得222b a c =+,所以ABC △是直角三角形. 故选B .【名师点睛】注意到a ,b ,c 在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角.通过角的特征或者关系来判断三角形的形状.忽略角的取值范围而出错在ABC △中,若3C B =,求cb的取值范围. 【错解】由正弦定理,可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 220cos 1,14cos 13B B ≤<∴-≤-<,由0,0b c >>,可得03cb<<. 故cb的取值范围为(0,3). 【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为(0,180)︒︒. 【正解】由正弦定理可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 2180,3,045,cos 12A B C C B B B ++=︒=∴︒<<︒<<, 214cos 13B ∴≤-<,即13cb<<, 故cb的取值范围为(1,3). 【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意.忽略对角的讨论而出错已知在ABC △中,4,22,30,a b B ===︒ 求角,A C 和边c .【错解】由正弦定理sin sin a b A B =可得422sin sin 30A =︒, 2sin ,452A A ∴==︒,1803045105C ∴=︒-︒-︒=︒,62,sin105sin sin 4c b C B +=︒=,sin 232sin b C c B ∴==+. 【错因分析】错解中由正弦定理求出角A 的正弦值后误认为角A 是锐角,从而导致错误. 【正解】由正弦定理,sin sin a b A B =得422sin sin 30A =︒, 2sin ,2A ∴=,45a b A >∴=︒或135︒.当45A =︒时,1803045105C =︒-︒-︒=︒,62sin ,sin105,232sin sin 4sin c b b Cc C B B+=︒=∴==+;当135A =︒时,1803013515C =︒-︒-︒=︒,62sin ,sin15,232sin sin 4sin c b b Cc C B B-=︒=∴==-. 综上,45,105,232A C c =︒=︒=+或135,15,232A C c =︒=︒=-.【名师点睛】在ABC △中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,83,6,60a b A ===︒,则sin B = A .2B 6C 2D 32.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =45B =︒,2b =,则A =A .30︒或150︒B .30︒C .150︒D .45︒3.在ABC △中,若∠A =60°,∠B =45°,BC =AC =A .B .CD 4.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知A :B :C =1:2:3,则a :b :c =A .1:2:3B .C .D .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,b =,4B π∠=,tan A =,则a =A .210B .C .10D .26.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,15,18,30a b A ===︒,则此三角形解的个数为 A .0 B .1 C .2D .不能确定8.已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A :cos B =b :a ,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若8a =,60B =︒,75C =︒,则b =______________.10.在ABC △中,角A ,C 的对边分别为a ,c ,其中1=a ,33=c 3A π=,则角=C ______________.11.在ABC △中,若B =30°,AB =23,AC =2,则ABC △的周长为______________. 12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,己知A −C =90°,a +c =2b ,求C .13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B = A 5 B 5C 5 D 5 14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π,3,23A a b ===,则B = A .π6 B .π4 C .π3D .π215.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π3,6,3a b A ===,则角B 等于 A .π4B .3π4C .π4或3π4D .以上都不正确16.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若cos (2)cos c a B a b A -=-,则ABC △是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos cos A B Ca b c==,则ABC △是 A .有一内角是30°的三角形 B .等边三角形C .等腰直角三角形D .有一内角是30°的等腰三角形18.在ABC △中,已知31,6,15b c B =-==︒,则边长a =A .31+或2B .31+C .2D .2319.在ABC △中,已知2AB AC =,30B =︒,则A =______________.20.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=︒,沿山坡前进50m 到达B 处,又测得45DBC ∠=︒.根据以上数据计算可得cos θ=______________.21.如图,在ABC △中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=,,. (1)求sin C 的值;(2)若5BD =,求AD 的长.22.(2017山东理)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =23.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12 B .π6 C .π4D .π324.(2017新课标全国Ⅱ文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =______________.25.(2017新课标全国Ⅲ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =______________.26.(2018北京理)在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ∠;(2)求AC 边上的高.1.【答案】D【解析】∵83,6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D . 2.【答案】B【解析】在ABC △中,由sin sin a b A B =得21sin sin sin 4522a A Bb ===︒,由于a b <,所以A B <,所以30A =︒,故选B . 3.【答案】B【解析】由正弦定理得23sin 60sin 45AC =︒︒,所以AC =23sin 452 2.sin 60︒=︒故选B .4.【答案】C【解析】因为在ABC △中,A +B +C =π,且A :B :C =1:2:3,所以A =6π,B =3π,C =2π,由正弦定理的变形,得a :b :c =sin A :sin B :sin C 13=1=22::1:3:2.故选C .6.【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴2sin()sin B C A +=,∴sin 1A =,∴π2A =,三角形为直角三角形.故选B . 7.【答案】C【解析】由正弦定理可得sin 18sin 303sin 155b A B a ︒===,因为b a >,所以30B A >=︒,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C .8.【答案】D【解析】由正弦定理可得cos sin cos sin A b BB a A==,即sin A cos A =sin B cos B ,所以sin2A =sin2B ,即2A =2B 或2A +2B =π,即A =B 或A +B =2π,故ABC △是等腰或直角三角形.故选D .9.【答案】46【解析】∵60B =︒,75C =︒,∴45A =︒,∵sin sin a bA B=,∴82322b=,∴46b =. 10.【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.12.【答案】o =15C .【解析】由正弦定理可得sin sin 2A C B +=,又由于o o90=180()A C B A C -=-+,,故cos sin 2)C C A C +=+o 22)22C C =+=,即22sin cos 2,22C C C +=o cos(45)cos 2C C -=. 因为o o 090C <<,所以o 2=45C C -,即o =15C . 13.【答案】B【解析】由正弦定理,得sin sin a A b B =,所以a =52b 可化为sin sin A B =52.又A =2B ,所以sin 2sin B B =52,所以cos B =54.故选B . 14.【答案】D【解析】在ABC △中,由正弦定理可得2πsin sin sin 133b B A a ==⨯=,又0πB <<,所以B =π2,故选D . 15.【答案】 A【解析】在ABC △中,∵π3,6,3a b A ===,∴36πsin sin sin sin 3a b A B B =⇒=2sin 2B ⇒=,又63b a =<=,∴π03B A <<=,∴π4B =,故选A .16.【答案】D【解析】由正弦定理和已知条件可得sin sin cos 2sin cos sin cos C A B A A B A -=-, 所以sin()sin cos 2sin cos sin cos ,A B A B A A B A +-=- 即cos (sin sin )0A B A -=,所以cos 0A =或sin sin 0B A -=,即90A =︒或=A B .故ABC △是等腰三角形或直角三角形. 故选D .18.【答案】A【解析】由正弦定理可得,sin 63sin 231c B C b ===-, 在ABC △中,c b >,60C ∴=或120.当60C =时,105A =︒,sin 6sin10531sin c A a C ︒∴===; 当120C =时,45A =︒,此时sin 6sin 452sin c A a C ︒∴===. 综上,可得31a =或2.故选A .19.【答案】105︒或15︒【解析】由正弦定理得sin sin AB AC C B =,得sin 2sin 2sin 302AB B C AC ==︒=, 由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.21.【答案】(1)45;(2)22. 【解析】(1)因为2cos ADB ∠=72sin ADB ∠= 又π4CAD ∠=,所以π4C ADB =∠-, 所以πππ722224sin sin()sin coscos sin 4445C ADB ADB ADB =∠-=∠⋅-∠⋅==. (2)在ACD △中,由sin sin AD ACC ADC =∠,可得sin 22sin AC C AD ADC⋅==∠. 22.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A . 23.【答案】B【解析】由sin()sin (sin cos )0A C A C C ++-=可得sin cos cos sin sin sin A C A C A C ++-sin cos 0A C =,即πsin (sin cos )2sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =可得223πsin sin 4C =,即1sin 2C =,因为c a <,所以C A <,所以π6C =,故选B . 24.【答案】π3【解析】由正弦定理可得12sin cos sin cos sin cos sin()sin cos 2B B A C C A A C B B =+=+=⇒=π3B ⇒=. 25.【答案】75︒【解析】由正弦定理sin sin b c B C=,可得36sin 22sin 32b C Bc ⨯===,结合b c <可得45B =︒,则18075A B C =︒--=︒. 26.【答案】(1)π3A ∠=;(2)AC 边上的高为332. 【解析】(1)在△ABC 中,因为1cos 7B =-,所以π(,)2B ∈π,所以243sin 1cos 7B B =-=. 由正弦定理7sin sin sin a b A B A =⇒=8437,所以3sin 2A =. 因为π(,)2B ∈π,所以π(0,)2A ∈,所以π3A ∠=(2)在△ABC 中,3114333sin sin()sin cos sin cos ()272714C A B A B B A =+=+=⨯-+⨯=. 如图所示,在△ABC 中,sin h C BC =,所以3333sin 7142h BC C =⋅=⨯=, 所以AC 边上的高为332.。

1.1.2余弦定理-人教A版高中数学必修五课件

1.1.2余弦定理-人教A版高中数学必修五课件

试一试
若三角形的三边为7,8,3,试判断此三角形的形
状.
钝角三角形
四.小结
四类解三角形问题:
(1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和 角。 (3)已知两边和它们的夹角,求第三边和其他两 个角; (4)已知三边,求三个角。
五、题型探究
题型一 余弦定理的简单应用
解:由余弦定理知,有 cos B a 2 c 2 b2 , 2ac
代入c a cos B, 得c a a 2 c 2 b2 , b2 c 2 a 2 2ac
△ABC是以A为直角的直角三角形,sin C c a
又 b a sin C, b a c c. a
△ ABC也是等腰三角形
又 2cos Asin B sin C,且sin B 0 cos A sin C c . 2sin B 2b
由余弦定理,有 cos A b2 c 2 a 2 , 2bc
c b2 c 2 a 2 ,即c 2 b2 c 2 a 2 , a b
2b
2bc
又 (a b c)(a b c) 3ab,且a b
例3、在△ABC中,a2>b2+c2,那么A是( A )
A、钝角
B、直角
C、锐角
D、不能确定
结论:一般地,判断△ABC是锐角,直角还是钝角
三角形,可用如下方法.
设a是最长边,则由 cos
A
b2
c2
a2
可得
2bc
(1)A为直角⇔a²=b²+c²
(2)A为锐角⇔a²<b²+c²
(3)A为钝角⇔a²>b²+c²
又 2cos Asin B sin C,

人教课标版高中数学必修5《解三角形》章末总结

人教课标版高中数学必修5《解三角形》章末总结

人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr (S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A>90° A=90° A<90° a>b 一解 一解 一解 a=b无解 无解 一解a<ba>bsinA 两解 无解 无解 a=bsinA 一解a<bsinA无解9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1..(2011江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c例2..(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==。

2020年高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

2020年高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

文库 精品课时训练2 余弦定理一、利用余弦定理解三角形1.在△ABC 中,a=1,B=60°,c=2,则b 等于( )A.1B.√2C.√3D.3答案:C解析:b 2=a 2+c 2-2ac cos B=1+4-2×1×2×12=3,故b=√3. 2.在△ABC 中,c 2-a 2-b 2=√3ab ,则角C 为( ) A.60° B.45°或135° C.150° D.30°答案:C解析:∵cos C=a 2+b 2-c 2=-√3ab =-√3,∴C=150°.3.在△ABC 中,已知sin A ∶sin B ∶sin C=3∶5∶7,则此三角形的最大内角的度数等于 . 答案:120°解析:由正弦定理可得a ∶b ∶c=3∶5∶7,不妨设a=3,b=5,c=7,则c 边最大,∴角C 最大.∴cos C=a 2+b 2-c 2=32+52-72=-1. ∵0°<C<180°,∴C=120°.4.(2015河南郑州高二期末,15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A=√3sin C ,B=30°,b=2,则边c= . 答案:2解析:∵在△ABC 中,sin A=√3sin C ,∴a=√3c.又B=30°,由余弦定理,得cos B=cos 30°=√32=a 2+c 2-b22ac=22√3c 2,解得c=2.二、判断三角形形状5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b+c=2c cos 2A2,则△ABC 是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形答案:A解析:∵b+c=2c cos 2A2,且2cos 2A2=1+cos A ,∴b+c=c (1+cos A ),即b=c cos A.由余弦定理得b=c ·b 2+c 2-a 22bc ,文库 精品化简得a 2+b 2=c 2,∴△ABC 是直角三角形.6.在△ABC 中,若sin 2A+sin 2B<sin 2C ,则△ABC 的形状是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案:A解析:由sin 2A+sin 2B<sin 2C ,得a 2+b 2<c 2,所以cos C=a 2+b 2-c 2<0,所以∠C 为钝角, 即△ABC 为钝角三角形.7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=2b cos C ,试判断△ABC 的形状.解法一:∵cos C=a 2+b 2-c 2,代入a=2b cos C ,得a=2b ·a 2+b 2-c 2,∴a 2=a 2+b 2-c 2,即b 2-c 2=0. ∴b=c.∴△ABC 为等腰三角形.解法二:根据正弦定理asinA =bsinB =csinC =2R ,得a=2R sin A ,b=2R sin B ,代入已知条件得2R sin A=4R sin B cos C , 即sin A=2sin B cos C ,∵A=π-(B+C ),∴sin A=sin(B+C ). ∴sin B cos C+cos B sin C=2sin B cos C. ∴sin B cos C-cos B sin C=0.∴sin(B-C )=0.又-π<B-C<π,∴B-C=0,即B=C.∴△ABC 是等腰三角形.三、正弦定理、余弦定理的综合应用8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b-c=14a ,2sin B=3sin C ,则cos A 的值为( ) A.-14 B.14C.12D.-13答案:A解析:∵2sin B=3sin C ,∴2b=3c.又b-c=a4,∴a=2c ,b=32c.∴cos A=b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c×c=-14. 9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=√3bc ,sin C=2√3sin B ,则A= . 答案:π6解析:∵sin C=2√3sin B ,∴由正弦定理得c=2√3b. ∵a 2-b 2=√3bc ,∴cos A=b 2+c 2-a 2=c 2-√3bc=2√3bc -√3bc2bc=√32,∴A=π6.10.(2015山东威海高二期中,17)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B-b cos C=c cos B.(1)求cos B 的值;(2)若ac=12,b=3√2,求a ,c.解:(1)已知等式4a cos B-b cos C=c cos B ,利用正弦定理,得4sin A cos B-sin B cos C=sin C cos B ,整理,得4sin A cos B=sin(B+C ), 即4sin A cos B=sin A ,∵sin A ≠0,∴cos B=14.(2)∵ac=12,b=3√2,cos B=14,∴由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=24,联立a 2+c 2=24与ac=12,解得a=c=2√3.(建议用时:30分钟)1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=1,b=2,cos C=14 ,则sin B=( )A.15B.√15C.√15D.7答案:B解析:由已知根据余弦定理得c 2=a 2+b 2-2ab cos C=4,∴c=2,即B=C , ∴sin B=√1-116=√154.2.(2015河北邯郸三校联考,3)在△ABC 中,如果sin A ∶sin B ∶sin C=2∶3∶4,那么cos C 等于( ) A.23B.-23C.-13D.-14答案:D解析:由正弦定理可得sin A ∶sin B ∶sin C=a ∶b ∶c=2∶3∶4,可设a=2k ,b=3k ,c=4k (k>0), 由余弦定理可得cos C=a 2+b 2-c 2=4k 2+9k 2-16k 2=-1,故选D .3.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c=√2a ,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 答案:A解析:由余弦定理c 2=a 2+b 2-2ab cos C 得2a 2=a 2+b 2+ab ,∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b. 4.△ABC 的三边长分别为AB=7,BC=5,AC=6,则BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A.19 B.14 C.-18 D.-19答案:A解析:cos B=72+52-62=19,∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=7×5×1935=19. 5.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B+C )<sin 2B+sin 2C ,则角A 的取值范围为( ) A.(0,π2)B.(π4,π2) C.(π6,π3) D.(π3,π2) 答案:D解析:由题意得sin 2A<sin 2B+sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0, 则cos A=b 2+c 2-a 22bc >0,∵0<A<π,∴0<A<π.又a 为最大边,∴A>π3.因此得角A 的取值范围是(π3,π2).6.已知在△ABC 中,2B=A+C ,b 2=ac ,则△ABC 的形状为 .答案:等边三角形解析:∵2B=A+C ,又A+B+C=180°,∴B=60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 60°=a 2+c 2-ac ,∴有a 2+c 2-ac=ac ,从而(a-c )2=0, ∴a=c ,故△ABC 为等边三角形.7.(2015北京高考,12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC = . 答案:1解析:在△ABC 中,由正弦定理知,sin2AsinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.8.在△ABC 中,角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值为 . 答案:612解析:由余弦定理得bc cos A+ac cos B+ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.9.在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cos A sin B=sin C ,试判定△ABC 的形状. 解:由(a+b+c )(a+b-c )=3ab ,得(a+b )2-c 2=3ab , 即a 2+b 2-c 2=ab.∴cos C=a 2+b 2-c 22ab=ab 2ab =12.∵0°<C<180°,∴C=60°. ∵A+B+C=180°, ∴sin C=sin(A+B ).又∵2cos A sin B=sin C ,∴2cos A sin B=sin A cos B+cos A sin B , ∴sin(A-B )=0.∵A ,B 均为△ABC 的内角,∴A=B.因此△ABC 为等边三角形.10.在△ABC 中,C=2A ,a+c=10,cos A=34,求b.解:由正弦定理得c a =sinC sinA=sin2AsinA=2cos A , ∴c a =32.又a+c=10,∴a=4,c=6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+20=3,∴b=4或b=5.当b=4时,∵a=4,∴A=B. 又C=2A ,且A+B+C=π,∴A=π4,与已知cos A=34矛盾,不合题意,舍去.当b=5时,满足题意,∴b=5......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

人教A版高中数学必修五正弦定理、余弦定理课时练习

人教A版高中数学必修五正弦定理、余弦定理课时练习

正弦定理、余弦定理●作业导航能运用正弦定理、余弦定理求解三角形问题和进行解的判断.一、选择题(本大题共5小题,每小题3分,共15分)1.在△ABC中,根据下列条件解三角形,其中有一解的是() A.b=7,c=3,C=30°B.b=5,c=42,B=45°C.a=6,b=63,B=60°D.a=20,b=30,A=30°2.在△ABC中,AB=5,BC=7,AC=8,则⋅的值为() A.79 B.69C.5 D.-53.在△ABC中,A=60°,b=1,其面积为3,则CBAcbasinsinsin++++等于()A.33B.3392C.338D.2394.在△ABC中,已知a=x cm,b=2 cm,B=45°,如果利用正弦定理解三角形有两解,则x的取值范围是()A.2<x<22B.2<x≤22C.x>2 D.x<25.已知锐角三角形的边长分别为2、3、x,则x的取值范围是()A.135<<x B.13<x<5C.2<x<5D.5<x<5二、填空题(本大题共5小题,每小题3分,共15分)1.已知△ABC的面积为3,B=60°,b=4,则a=________;c=________.2.化简a·cos A+b·cos B-c·cos(A-B)的结果是________.3.若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________,外接圆半径等于________.4.已知△ABC的三边分别是a、b、c,且面积S=4222cba-+,则角C=________.5.在△ABC中,||=3,||=2,与的夹角为60°,则|-|=________;|+AC|=________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC中,b=10,A=30°,问a取何值时,此三角形有一个解?两个解?无解?2.已知钝角三角形ABC中,B>90°,a=2x-5,b=x+1,c=4,求x的取值范围.3.在△ABC中,cos210922=+=ccbA,c=5,求△ABC的内切圆半径.4.R是△ABC的外接圆半径,若ab<4R2cos A cos B,则外心位于△ABC的外部.5.半径为R的圆外接于△ABC,且2R(sin2A-sin2C)=(3a-b)sin B.(1)求角C;(2)求△ABC面积的最大值.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.C分析:A中b sin C>c,无解;B中c sin B<b<c,有两解;C中a sin B<a<b,有一解;D中b sin A<a<b,有两解.2.D分析:∵·=-·,∵·=||||cos B=21(||2+||2-||2)=21(52+72-82)=5∴·=-·=-53.B分析:∵S△ABC=21×1×c×sin60°=3,∴c=4,∴a2=b2+c2-2bc cos A=13∴R=339 sin2=Aa∵a=2R sin A,b=2R sin B,c=2R sin C∴33922sinsinsin==++++RCBAcba4.A分析:若解此三角形有两解,则a sin B<b<a,即22x<2<x,∴2<x<22.5.A分析:由三角形三边的关系,得1<x<5,(1)当1<x<3时,由22+x2>32解得5<x<3;(2)当3≤x<5时,由22+32>x2解得3≤x<13,由(1)(2)可知5<x<13.二、填空题(本大题共5小题,每小题3分,共15分)1.7±37±3分析:∵S△ABC=21acsin B=3,∴ac=4 ①∵b2=a2+c2-2ac cos B,∴a2+c2=20 ②由①②解得a=7±3;c=7μ32.0分析:∵a=b cos C+c cos B,b=a cos C+c cos A,c=b cos A+a cos B,∴a·cos A+b·cos B-c·cos(A-B)=(b cos C+c cos B)cos A+(a cos C+c cos A)cos B-c·(cos A cos B+sin A sin B)=b cos C cos A+c cos B cos A+a cos C cos B+c cos A cos B-c cos A cos B-c sin A sin B =cos C(b cos A+a cos B)+c(cos A cos B-sin A sin B)=c cos C+c cos(A+B)=c cos C-c cos C=03.3337分析:设60°的角的对边长为x,外接圆半径为R,内切圆半径为r,则x2=82+52-2×8×5×cos60°=49,∴x=7∵7=2R sin60°,∴R=33 7∵S△ABC=21×8×5×sin60°=21×r×(8+5+7),∴r=34.45°分析:S△ABC=21ab sin C=21224222222=⋅-+=-+ababcbacbaab cos C∴sin C=cos C,∴tan C=1,∴C=45°5.719分析:由三角形法则知|-|2=||2=||2+|AC|2-2||·|AC|·cos A=32+22-2×3×2×cos60°=7∴|-|=7类似地由平行四边形及余弦定理可知|+AC|2=32+22-2×3×2×cos120°=19∴|+|=19三、解答题(本大题共5小题,每小题6分,共30分)1.解:∵A=30°,b=10(1)当0<a<b sin A时无解,即0<a<5时,无解.(2)当a=b sin A时,有一解,即a=5时,有一解.(3)当b sin A<a<b时,有两解,即5<a<10时,有两解.(4)当a≥b时,有一解,即当a≥10时,有一解.综上(1)、(2)、(3)、(4)得当0<a<5时,无解;a=5或a≥10时,有一解;5<a<10时,有两解.2.解:∵B>90°∴A、C皆为锐角,应有43104310630402232360)1(4)52(14524152102222222<<∴⎪⎩⎪⎨⎧<<<<∴⎪⎪⎩⎪⎪⎨⎧<+->><∴⎪⎪⎩⎪⎪⎨⎧<+-+++>+->+->+∴⎪⎪⎩⎪⎪⎨⎧<-+>+>>x x x x x x x x x x x x x x x b c a b c a c b a b∴ x 的取值范围是310<x <4.3.解:∵ c =5,1092=+cc b ,∴ b =4又cos2c c b A A 22cos 12+=+=∴ cos A =c b又cos A =bc a c b 2222-+∴c bbc a c b =-+2222∴ b 2+c 2-a 2=2b 2 ∴ a 2+b 2=c 2∴ △ABC 是以角C 为直角的三角形.a =22b c -=3∴ △ABC 的内切圆半径r =21(b +a -c )=1.4.证明:∵ ab <4R 2cos A cos B由正弦定理得a =2R sin A ,b =2R sin B ∴ 4R 2sin A sin B <4R 2cos A cos B ∴ cos A cos B >sin A sin B ∴ cos A cos B -sin A sin B >0 ∴ cos(A +B )>0∵ cos(A +B )=-cos C∴ -cos C >0 ∴ cos C <0 ∴ 90°<C <180°∴ △ABC 是钝角三角形∴三角形的外心位于三角形的外部.5.解:(1)∵ R C cB b A a 2sin sin sin === RbB R cC R a A 2sin ,)2(sin ,)2(sin 2222===∴∵ 2R (sin 2A -sin 2C )=(3a -b )sin B∴2R [(R a 2)2-(R c 2)2]=(3a -b )·R b 2∴ a 2-c 2=3ab -b 2∴232222=-+ab c b a∴ cos C =23,∴C =30°(2)∵S =21ab sin C=21·2R sin A ·2R sin B ·sin C=R 2sin A sin B=-22R [cos(A +B )-cos(A -B )]=22R [cos(A -B )+cos C ]=22R [cos(A -B )+23]当cos(A -B )=1时,S 有最大值。

人教A版高中数学必修五正、余弦定理练习题.docx

人教A版高中数学必修五正、余弦定理练习题.docx

正、余弦定理练习题一、单项选择题1.△ABC 中,a (sin B -sin C )+b (sin C -sin A )+c (sin A -sin B )= ( )(A )1 (B )0 (C )21 (D )π 2.△ABC 中,sin A =2sin Cc os B ,那么此三角形是 ( )(A )等边三角形 (B )锐角三角形 (C )等腰三角形 (D )直角三角形3.△ABC 中,sin A :sin B :sin C =3:2:4,那么c os C = ( )(A )-41 (B )-32 (C ) 32 (D ) 41 4.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是( ) A .锐角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形5、在△ABC 中,一定成立的等式是 ( )A.a sinA=b sinBB.a cosA=b cosB C .a sinB=b sinA D.a cosB=b cosA6、若c C b B a A cos cos sin ==则△ABC 为 ( )A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形7、在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .35.8、△ABC 的三边分别是a 、b 、c ,且其面积S=a b c 2224+-,角C=( )度 A .30 B .45 C .60 D .不确定9、在△ABC 中,已知22tan tan A a B b =,判断此三角形的类型为.( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形10. 在△ABC 中,已知sin B ·sin C =cos 22A,判断此三角形的类型为.( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形二、填空题 11、已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c , 若31sin =A ,B b sin 3=,则a = . 12、△ABC 中,a =1,B =3π,S △ABC =3,那么tan C = . 13、在△ABC 中,已知边10c =, cos 4cos 3A b B a ==,则边长a= b= 14、∆ABC 中,已知BC=15,AB :AC=7:8,sinB=734,求BC 边上的高AD 的长= 15、△ABC 中,化简: (a 2-b 2-c 2)tan A +(a 2-b 2+c 2)tan B = 三、解答题16、在∆ABC 中,32π=∠A ,a=7,b+c=8,求边b,c17、锐角△ABC 中,若a=2bsinA (1)求角B (2)33,5a c ==,求边长b18、△ABC 中,tan 37C =(1)求cosC (2)5,9,2CA CB a b c =+=u u u r u u u r g 且求边19、在四边形ABCD 中,AD ⊥CD ,AD=10,AB=14,ο60=∠BDA ,ο135=∠BCD ,求BC20、△ABC 中,已知274sincos 222B C A +-=,(1)求角A (2)若3,3,,a b c b c =+=求边的值21、如图,在平面四边形ABCD 中,已知1AD AB ==,BAD θ∠=,且△BCD 为正三角形.(Ⅰ)将四边形ABCD 的面积S 表示为θ的函数;(Ⅱ)求S 得最大值及此时θ的值.22、已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ; (Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.θD CB A。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、余弦定理练习题
一、单项选择题
1.△ABC 中,a (sin B -sin C )+b (sin C -sin A )+c (sin A -sin B )=()
(A )1(B )0(C )2
1(D )π 2.△ABC 中,sin A =2sin Cc os B ,那么此三角形是()
(A )等边三角形(B )锐角三角形(C )等腰三角形(D )直角三角形
3.△ABC 中,sin A :sin B :sin C =3:2:4,那么c os C =()
(A )-
41(B )-32(C )32(D )4
1 4.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是() A .锐角三角形 B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
5、在△ABC 中,一定成立的等式是()
A.a sinA=b sinB
B.a cosA=b cosB C .a sinB=b sinAD.a cosB=b cosA
6、若
c C b B a A cos cos sin ==则△ABC 为 ()
A .等边三角形
B .等腰直角三角形
C .有一个内角为30°的直角三角形
D .有一个内角为30°的等腰三角形
7、在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,
则cos cos cos bc A ca B ab C ++的值为
A .38
B .37
C .36
D .35.
8、△ABC 的三边分别是a 、b 、c ,且其面积S=a b c 222
4
+-,角C=()度 A .30B .45C .60D .不确定
9、在△ABC 中,已知2
2tan tan A a B b
=,判断此三角形的类型为.() A .等腰直角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
10.在△ABC 中,已知sin B ·sin C =cos 22A
,判断此三角形的类型为.()
A .等腰直角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
二、填空题 11、已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c , 若3
1sin =
A ,
B b sin 3=,则a = . 12、△AB
C 中,a =1,B =3
π,S △ABC =3,那么tan C = . 13、在△ABC 中,已知边10c =,cos 4cos 3A b B a ==,则边长a= b= 14、∆ABC 中,已知BC=15,AB :AC=7:8,sinB=
734,求BC 边上的高AD 的长= 15、△ABC 中,化简:(a 2-b 2-c 2)tan A +(a 2-b 2+c 2)tan B = 三、解答题
16、在∆ABC 中,3
2π=
∠A ,a=7,b+c=8,求边b,c
17、锐角△ABC 中,若a=2bsinA(1)求角B (2)5a c ==,求边长b
18、△ABC 中,tan C =(1)求cosC(2)5,9,2
CA CB a b c =+=u u u r u u u r g 且求边
19、在四边形ABCD 中,AD ⊥CD ,AD=10,AB=14,ο60=∠BDA ,ο135=∠BCD ,求BC
20、△ABC 中,已知274sin
cos 222B C A +-=,(1)求角A
(2)若3,,a b c b c =
+=求边的值
21、如图,在平面四边形ABCD 中,已知1AD AB ==,
BAD θ∠=,且△BCD 为正三角形.
(Ⅰ)将四边形ABCD 的面积S 表示为θ的函数;
(Ⅱ)求S 得最大值及此时θ的值.
22、已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若2
1sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.
θD C
B A。

相关文档
最新文档