期末考试试卷A答案—弹性力学

合集下载

弹性力学复习重点+试题及答案【整理版】

弹性力学复习重点+试题及答案【整理版】

)))))))弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

弹性力学试题含答案

弹性力学试题含答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L M T。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。

&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。

9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

《弹性力学》试题(2003级)参考答案

《弹性力学》试题(2003级)参考答案

《弹性力学》试题(A )参考答案(2003级)一、填空题(每小题4分)1.最小势能原理等价于弹性力学方程中: 平衡微分 方程和 应力 边界条件。

2.将平面应力情况下物理方程中的E 、μ分别换成21μ-E 、μμ-1, 即得到平面应变情况下的物理方程。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰ϕ2的物理意义是 端部边界条件 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ及yx ∂∂∂∂ϕϕ,在边界上值的物理意义分别是 面力对某一点的矩 , 面力的主矢量(合力投影) 。

5.对无限大多连体,解析函数)(),(11z z ψϕ中常数C i B B '+',的物理意义为: 无穷远处的主应力及其方向 。

二、简述题(每小题6分)1.试简述力学中圣维南原理的要点及在弹性力学分析中作用。

圣维南原理的要点:(1)静力等效;(2)一小部分边界(次要边界);(3)近处的应力明显受影响而远处应力的影响可忽略不计。

圣维南原理在弹性力学分析中作用:(1)近似列出复杂面力的应力边界条件;(2)将一小部分位移边界条件转化为应力边界条件问题。

2.材料的泊松比为μ,试根据三向拉伸时体积膨胀,单向拉伸时产生横向收缩的性质,证明:在线弹性情况下有,210<<μ。

证明:(1)当物体处于三向等拉应力状态时,其任意方向的线应变有:σμεE21-=因为,0>σ,0>E ,0>ε ,所以有:021>-μ,即21<μ (2)当物体处于单向拉伸时,其横向线应变有:μεε-='因为,物体发生横向收缩变形,应有:0<'ε。

考虑到拉伸轴向应变0>ε,由上式可得0>μ综合以上讨论,得在弹性阶段,材料的泊松比μ,有210<<μ 3.下面给出平面应力问题(单连通域,无体力)一组应力分量和一组应变分量,试判断它们是否可能。

(1),21y C x C x +=σ,43y C x C y -=σy C x C xy 14-=τ;(2)),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

本科弹性力学试题及答案

本科弹性力学试题及答案

本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。

答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程.它们揭示的是那些物理量之间的相互关系?在应用这些方程时.应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx .因此.决定应力分量的问题是超静定的.还必须考虑形变和位移.才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时.形变量即完全确定。

反之.当形变分量完全确定时.位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同.弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同.弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的.也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中.物体在全部边界上所受的面力是已知的.即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中.物体的一部分边界具有已知位移.因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定.它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正.沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正.沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时.采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时.采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

天津大学弹性力学试卷A

天津大学弹性力学试卷A

学院专业年级学号姓名2019〜2020学年第2学期期末考试试卷《弹性力学1》(A卷共3页)(考试时间:2020年6月12日)4.矩形薄板受到如图1所示的外力作用,若要分析板内的应力分布情况,应该采用下列()作为应力函数。

A. p = ax2 + bxy + cy+dB.中=ay + bxy+ cx+ dC.中=ax3 + bxy + cy2D.中=ax2 + bxy2 + cy题号一二三四成绩核分人签字得分一、判断题(下面各小题正确的划",错误的划X,每小题3分,共18分)1.弹性力学是从微分体dV入手分析弹性体,而材料力学是从有限体A V入手分析,因此弹性力学的计算结果相比材料力学更为精确。

()2.不同坐标系下,应力分量的值不同,但是描述的一点受力的应力状态是确定的。

()3.对于承受均布荷载的简支梁来说,弹性力学的应力分量解答与材料力学的相应解答均不相同。

()4.用应力分量表示的相容方程等价于几何方程和物理方程。

()5.为了保证平面有限元离散模型的连续性,应使所选择的位移模式以及相应的应变、应力等函数在单元内部以及相邻单元的边界上均满足连续性条件。

()6.平面六结点三角形单元在其自重作用下的等效结点荷载是将总重W平均分配到各个结点上,方向向下。

()二、选择题(下面各小题仅有一个答案是正确的,每小题4分,共32分)1.在常体力情况下,用应力函数中表示的相容方程是()。

A.泊松方程B.重调和方程C.欧拉方程D.调和方程2.无限长的圆筒承受均布内压力q作用时,其内部任意点沿圆筒轴向方向处于()。

A.受拉状态B.受压状态C.无受力状态D.三种情况都有可能3.半空间体在边界上受竖直向下的集中力F作用,其边界上的沉陷量随着与集中力F的距离的增大而呈现()。

A.指数型函数衰减B.自然对数型函数衰减B.常用对数型函数衰减 D.反比例型函数衰减£b标rrrnzdrrrn10X1-5.两个等截面直杆,如图2所示,一个横截面为椭圆,a = 2b;另一个横截面为长方形,l = 2m,p = 0.246,p广0.229。

弹性力学试题及答案

弹性力学试题及答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及答案

弹性力学试题及答案

弹性⼒学试题及答案《弹性⼒学》试题参考答案(答题时间:100分钟)⼀、填空题(每⼩题4分)1.最⼩势能原理等价于弹性⼒学基本⽅程中:平衡微分⽅程,应⼒边界条件。

2.⼀组可能的应⼒分量应满⾜:平衡微分⽅程,相容⽅程(变形协调条件)。

3.等截⾯直杆扭转问题中, M dxdy D=??2?的物理意义是杆端截⾯上剪应⼒对转轴的矩等于杆截⾯的扭矩M 。

4.平⾯问题的应⼒函数解法中,Airy 应⼒函数?在边界上值的物理意义为边界上某⼀点(基准点)到任⼀点外⼒的矩。

5.弹性⼒学平衡微分⽅程、⼏何⽅程的量表⽰为:0,=+i j ij X σ,)(21,,i j j i ij u u +=ε。

⼆、简述题(每⼩题6分)1.试简述⼒学中的圣维南原理,并说明它在弹性⼒学分析中的作⽤。

圣维南原理:如果物体的⼀⼩部分边界上的⾯⼒变换为分布不同但静⼒等效的⾯⼒(主⽮与主矩相同),则近处的应⼒分布将有显著的改变,但远处的应⼒所受影响可以忽略不计。

作⽤:(1)将次要边界上复杂的⾯⼒(集中⼒、集中⼒偶等)作分布的⾯⼒代替。

(2)将次要的位移边界条件转化为应⼒边界条件处理。

2.图⽰两楔形体,试分别⽤直⾓坐标和极坐标写出其应⼒函数?的分离变量形式。

题⼆(2)图(a )=++= )(),(),(222θθ??f r r cy bxy ax y x (b )?=+++= )(),(),(33223θθ??f r r dy cxy y bx ax y x 3.图⽰矩形弹性薄板,沿对⾓线⽅向作⽤⼀对拉⼒P ,板的⼏何尺⼨如图,材料的弹性模量E 、泊松⽐ µ 已知。

试求薄板⾯积的改变量S ?。

题⼆(3)图设当各边界受均布压⼒q 时,两⼒作⽤点的相对位移为l ?。

由q E)1(1µε-=得,)1(2222µε-+=+=?Eb a q b a l设板在⼒P 作⽤下的⾯积改变为S ?,由功的互等定理有:l P S q ??=??将l ?代⼊得:221b a P ES +-=µ显然,S ?与板的形状⽆关,仅与E 、µ、l 有关。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,考试作弊将带来严重后果!华南理工大学2011年期末考试试卷(A )卷《弹性力学》1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷;20分)、五个基本假定在建立弹性力学基本方程时有什么用途?(10分)答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

(2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。

(4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。

因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。

(6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。

进一步地说,就是物体的弹性常数也不随方向而变化。

(8分)5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。

同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。

在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

(10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分)解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。

简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。

而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。

例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。

所以,严格来说,不成立。

3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分)解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。

这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。

将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。

如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。

教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。

三、计算题(80分)2.1 已知薄板有下列形变关系:,,,23Dy C By Axy xy y x -===γεε式中A,B,C,D 皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。

(10分)1、 相容条件:将形变分量带入形变协调方程(相容方程)其中所以满足相容方程,符合连续性条件。

(4分)2、 在平面应力问题中,用形变分量表示的应力分量为(10分)2.2如图所示水坝,试写出其边界条件。

(10分)左侧面:(2分) 由应力边界条件公式,有(4分)(6分)右侧面:(8分)(10分)2.3 图示悬臂梁,梁的横截面为矩形,其长度为L,宽度取为1,高度为2h,右端固定、左端自由,荷载分布在其右端上,其合力为P (不计体力),求梁的应力分量。

(20分)解:这是一个平面应力问题,采用半逆解法求解。

(1)选取应力函数。

由材料力学可知,悬臂梁任一截面上的弯矩方程M (x )与截面位置坐标x 成正比,而该截面上某点处的正应力又与该点的坐标y 成正比,因此可设(a) (3分)式中的为待定常数。

将式(a )对y 积分两次,得(b)αββsin ,cos -=-=m l βtan y x -=βγcos y X =βγsin y Y =Yl m X m l s xy s y s xy s x =+=+)()()()(τστσβγβτβσcos )sin ()cos (y xy x =-⋅+-⋅βγβτβσsin )cos ()sin (y xy y =-⋅+-⋅ααsin ,cos -==m l αtan y x =0==Y X 0sin cos =⋅-⋅xy x τασα0cos sin =⋅+⋅-xy yx τασα式中的,为x的待定函数,可由相容方程确定。

将式(b)代入相容方程,得(5分)上式是y的一次方程,梁内所有的y值都应是满足它,可见它的系数和自由项都必须为零,即,积分上二式,得式中为待定的积分常数。

将,代入式(b),得应力函数为.(c) (8分)(2)应力分量的表达式(10分)(3)考察应力边界条件:以确定各系数,自由端无水平力;上、下部无荷载;自由端的剪力之和为P,得边界条件,自然满足;,得; (12分)上式对x的任何值均应满足,因此得,,即(14分),得X取任何值均应满足,因此得. (16分)将式(e)代入上式积分,得计算得,(18分)其中,横截面对Z轴的惯性矩。

最后得应力分量为(20分)2.4如题下图所示的悬臂梁,长度为l,高度为h, l>>h,在上边界受均布荷载q,试检验应力函数能否成为此问题的解?如可以,试求出应力分量。

(10分)解(1)相容条件将代入相容方程,得,若满足相容方程,有(2分)(2)应力分量表达式(4分)(3)考察边界条件;主要边界上,应精确满足应力边界条件(6分)在次要边界上x=0上,主矢和主矩为零,应用圣维南原理,用三个积分的应力边界条件代替(e)联立求解式(a),(b),(c),(d)和(e),得(8分)将各系数代入应力分量表达式,得(10分)2.5楔形体在两侧面上受有均布剪力q,如下图所示,试求其应力分量。

(10分)【解】(1)应用应力函数)2sin 2cos (2D C B A +++=Φϕϕϕρ,进行求解。

由应力函数Φ得应力分量CB A DC B AD C B A --=∂Φ∂∂∂-=+++=∂Φ∂=--+-=∂Φ∂+∂Φ∂=ϕϕϕρρτϕϕϕρσϕϕϕϕρρρσρϕϕρ2cos 22sin 2)1(),2sin 2cos (2),2sin 2cos (21122222 (2分)(2)考察边界条件:根据对称性,得();02=αϕσ (a )();2q =αρϕτ (b)();02=-αϕσ (c)()q -=-2αρϕτ (d) (4分)同式(a )得 0;2D C 2Bsin 2Acos =+++ϕϕϕ (e)同式(b )得 ;C 2Bcos 2Asin q =--ϕϕ (f) 同式(c )得 0;2D C 2Bsin 2Acos =+--ϕϕϕ (g)同式(d )得 ;C 2Bcos 2Asin q -=---ϕϕ (h) (6分) 式(e) 、(f) 、(g)、 (h)联立求解,得ααcot 2,0,sin 2q D C B q A -==== (8分)将以上各系数代入应力分量,得αϕτααϕσααϕσρϕϕρsin 2sin ,cot sin 2cos ,cot sin 2cos qq q =⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+-= (10分)2.6 设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M ,如下图所示,试求应力分量。

(20分)【解】应用半逆解法求解。

(1) 按量纲分析方法,单位宽度上的力偶矩与力的量纲相同。

应力应与ϕρ,,M 有关,由于应力的量纲是单位面积上的力,即L -1MT -2,应力只能以2ρM 形势组合。

(2分)(2) Φ应比应力的长度量纲高二次幂,可假设()ρΦ=Φ。

(3) 将Φ代入相容方程,得04122444=⎪⎪⎭⎫⎝⎛Φ+Φϕϕρd d d d (4分) 删去因子41ρ,得一个关于()ρΦ的常微分方程。

令其解为λ2e =Φ,代入上式,可得到一个关于λ的特征方程,(),0422=+λλ (a )(6分)其解为0,0,2,2i i -=λ,于是得到Φ的四个解d c beae i i ,,,22ϕϕϕ-;前两项又可以组合为正弦、余弦函数。

由此得D C B A +++=Φϕϕϕ2sin 2cos (b)(8分)本题中结构对称于0=ϕ的x 轴,而M 是反对称荷载,因此,应力应反对称于x 轴,为ϕ的奇函数,从而得A=D=0。

ϕϕC B +=Φ2sin (c )(10分) (4)由应力函数Φ得应力分量的表达式()c B B +==-=ϕρτσϕρσρϕϕρ2cos 21,0,2sin 4122(12分)(5)考察边界条件。

由于原点O 有集中力偶作用,应分别考察大边界上的条件和原点附近的条件。

在2,0πϕρ±=≠的边界上,有()()0,02,02,0==±=≠±=≠πϕρρϕπϕρϕτσ前一式自然满足,而第二式成为2B=C (d) (14分) 为了考虑原点O 附近有集中力偶的作用,取出以O 为中心,ρ为半径的一小部分脱离体,并列出其平衡条件()[]()[](),0,0cos )(sin ,0,0sin )(cos ,02222222=+==-==-==--==-==⎰∑⎰∑⎰∑M d Md d Fy d d FOxϕρτϕϕρτϕϕρσϕϕρτϕϕρσρρππρϕππρρρϕρρρππρρρϕρρρ (16分)上式中前两式自然满足,而第三式成为,2πMB -= (e)将式(e)代入式(d),得,πM C -= (18分)将各系数代入应力分量的表达式,得2212cos ,0,2sin 2ρϕπτσρϕπσρκϕρ+-===M M (20分)。

相关文档
最新文档