西安电子科技大学线性代数试卷及参考答案
西安电子科技大学线性代数试卷及参考答案
试 题 二 (考试时间:120分钟)一、填空(每小题4分,共32分) 1.若矩阵A 相似于矩阵{}2,1,1−diag ,则31−A= 。
2.设33)(×=ij a A 是实正交矩阵且111=a ,Tb )0,0,1(=,则方程组A X =b 的解为 3.设n 阶方阵A 满足2340A A E −+=,则1)4(−+E A = 。
4.设A 为4×3阶矩阵,且R (A )=2,又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=301020204B ,则R (A B)- R (A )=5.若二次型31212322213212224),,(x x x tx x x x x x x f ++++=是正定的,则t 满足 。
6.已知三阶方阵A 的特征值为2,3,4,则A 2= 。
7.已知五阶实对称方阵A 的特征值为0,1,2,3,4,则R (A )= 。
8.设⎟⎟⎠⎞⎜⎜⎝⎛=1201A 则=kA 。
(k 为正整数)。
二、(10分)计算行列式:11223000000000000011111n n a a a a a D a a −−−=−L L L M M M O M M L L 三、(10分)设线性方程组⎪⎩⎪⎨⎧=+−+=+−+=+−+32343242432143214321x x x x x x x x x x x x λ讨论λ为何值时,方程组无解,有解?在有解的情况下,求出全部解。
四、(10分)已知二次型322322213214332),,(x x x x x x x x f +++=(1)把二次型f 写成Ax x x x x f T=)(321,,的形式; (2)求矩阵A 的特征值和特征向量;(3)求正交阵Q,使f 通过正交变换X QY =化为标准形。
五、(10分)已知向量组T)2,0,4,1(1=α,T)3,1,7,2(2=α,T a ),1,1,0(3−=α,Tb )4,,10,3(=β,试讨论(1)a,b 取何值时,β不能由331,,ααα线性表出;(2)a,b 取何值时,β可以由331,,ααα线性表出。
西科大网络教育线性代数指导书练习题参考答案
西科大网络教育《线性代数》指导书练习题参考答案1、计算排列3,2,1,4,5和3,4,1,2,5的逆序数,并说明奇偶性。
答:3>2,3>1,2>1,所以3,2,1,4,5逆序数为3,是奇数;同理,3>1,3>2,4>1,4>2,所以3,4,1,2,5逆序数为4 ,是偶数。
2、由行列式性质2(P26)知a 11 a12 a13 a11 a12 a1310a21 10a2210a23=10a21a22a23=10×2=20a31 a32a33a31a32a333、答: 1 -2 5 0 1 -2 5 0 1 -2 5 0 1 -2 5 0D= -2 3 -8 -1 = 0 -1 2 -1 = 0 -1 2 -1 = 0 -1 2 -13 1 -24 0 7 -17 4 0 0 -3 -3 0 0 -3 -31 42 -5 0 6 -3 -5 0 0 9 -11 0 0 0 -20=1×(-1)×(-3)×(-20)=60(用行列式性质化上三角行列式)4、答: 1 0 -1 2 0 1 0 1 2D= 1 2 0 ,M11= 3 2 =4,M12= -1 2 =2,M13= -1 3 =5-1 3 2 1A11=(-1)1+1M11=4,A12=(-1)1+2M12=-2,A13=(-1)1+3M13=51 1 1 1 1 4 16 645、答:D4= 4 3 7 -5 1 3 9 2716 9 49 25 = 1 7 49 343 =(-5-4)(-5-3)(-5-7)(7-4)64 27 343 -125 1 -5 25 -125 (7-3)(3-4)=10368P426、答: 1 2 -1 2 1 2 -1 2 1 2 -1 -8 1 2 -8D= 3 0 1 5 = 3 0 1 5 =3 0 1 15 =(-1)4+3(-1) 3 0 15 1-2 0 3 0 -4 1 1 0 -4 1 11 0–4 11-2 -4 1 6 0 0 –1 10 0 0 -1 01 2 -13 2 -13 2 -13= 3 0 0 =3×(-1)2+1 =-3 =3×2×(-15)=900 -4 11 -4 11 0 -15(尽可能出现较多0,注意行列变换时,要在前自加“-”号)7、答:0 1 1 1 3 1 1 1 1 1 1 1 1 0 0 0D= 1 0 1 1 = 3 0 1 1 =3 1 0 1 1 =3 1 -1 0 01 1 0 1 3 1 0 1 1 1 0 1 1 0 -1 01 1 1 0 3 1 1 0 1 1 1 0 1 0 0 -1=3×1×(-1)×(-1)×(-1)=-38、答:x+y-2z=-4 1 1 -2 1 0 0 -7 –31 -7 -31 5x-2y-7z=-7 A= 5 -2 -7 = 5 -7 –31 = = =14 2x-5y-3z=1 2 -5 -3 2 -7 -13 -7 –13 0 -2-4 1 -2 0 -19 -14 -19 -14 19 14 19 14A 1 = -7 -2 -7 = 0 -37 -28 = = = =14 1 -5 -3 1 -5 -3 -37 -28 37 28 -1 01 -4 -2 1 -2 -2 1 -2 -2 5 -7 5 -7A 2 = 5 -7 -7 = 5 0 -7 = 5 0 -7 =(-2)(-1)1+2=2 =-14 2 1 -3 2 4 -3 4 0 -7 4 -7 -1 01 1 -4 1 0 -4 1 0 -4 1 -4 1 -4A 3 = 5 -2 -7 = 5 -7 -7 = 5 -7 -7 =(-7)(-1)2+2=-7 =28 2 -5 1 2 -7 1 -3 0 8 -3 8 -3 0 由克莱姆法则x =A A 1 =1, y =A A 2 =-1, z = AA1 =2x=1∴线性方程组解为 y=-1 z=29、答:设f(x)=ax3+bx2+cx+d (a ≠0),由f(0)=0,f(1)=-1,f(2)=4,f(-1)=1 0+0+0+d=0 d=0得: a+b+c+d=-1 a+b+c=-1 ① 8a+4b+2c+d=4 ∴ 8a+4b+2c=4 ② ①+③得2b=0∴b=0 -a+b-c+d=1 -a+b-c=1 ③a+c=-1 a=1∴ 8a+2c=4 ∴ c=-2 ∴f(x)=x 3-2x10、答: 1 a 1 a 12…a 1n-11 a2 a 22…a 2n-1范得蒙行列式 ∏(a i -a j )≠0系数行列式A= …………… 1≤j ≤i ≤n1 a n a n 2…a n n-1∵ a i ≠a j (i ≠j;i,j=1,2,…,n)1 a 1 … a 1n-1 1 1 a 12 … a 1n-1A 1= 1 a 2 … a 2n-1 =A, A 2= 1 1 a 22 … a 2n-1=0, 同理,A 3=A 4=…=A n =0…………… ………………1 a n … a n n-1 1 1 a n2 … a n n-1∴由克莱姆法则x 1=A A 1=AA =1,x 2 =A A 2= 0=x 3=…=x n =0 ∴线性性方程组解为 x 1=1x 2=0 … x n =02 1 -1 -43 3 2 1 -1 -4 3 -311、答:由 -3 1 1 -2x= 1 -1 -3 得 -3 -1 1 - 1 -1 -3 =2x 6 –2 2 3 -1 1∴2x= -4 0 4 ∴x= -2 0 2 1 2 3 1 2 0 1×1+2×0+3×3 4 -1 10 4 -1 12 、答:AB= -2 1 2 0 1 1 = 4 -3 -1 = 4 –3 -1 3 0 -11 -1 3 -1 123 2 7 6 8 13、答:AB= 1 -2 1 3 0 -1 1 = -5 3 5 3 2 2 1 2 2 -5 2 -5(AB)T = 7 3 B T A T =(AB)T= 7 3 6 5 6 5 8 3 8 3 a b 2 -1 0 1 1 2 a=1,b=2 14、答:由 = = 得 c d b -c 1 0 -c b c=-c,d=b∴a=1,b=2,c=0,d=215、答:∵A 为任一方阵 ∴(A+A T )T =A T +(A T )T =A T +A=A+A T(AA T )T =(A T )T A T =AA T (矩阵性质)∴A+A T ,AA T均为对称阵16、答:∵n 阶方阵可逆∴ A ≠0,且AA -1=I n =1 ∴ A -1A = n I ∴A *AA=I n∴(A *)-1=A A[同时可证明(A *)-1=(A -1)*]17、答: 3 -2 | 0 05 -3 | 0 0 A 1 03 -2A= --------|-------- =A1=0 0 |3 4 0 A 25 -30 0 | 1 2A 1*=-3 2 A 1 =1∴A 1 = 11A A*=A 1*= -3 2-5 3, -5 33 42 -42 -4 1 -2A 2 = 1 2 A 2*= -1 3 A 2 =2, A 2-1=21 -1 3 = 21-23A 1-10 -3 2 0 0∴A -1= P 90 –5 3 0 00 A 20 0 1 -20 0 21-2318、答:方法1:P80方法方法2: 1 –4 -3|1 0 0 1 -4 -3 1 0 0 1 –5 -3|0 1 0 0 -1 0 -1 1 0 -1 6 4|0 0 1 0 0 1 -1 2 11 -4 0 -2 63 1 0 0|2 2 3 0 1 0 1 -1 0 0 1 0|1 –1 0 0 0 1 -1 2 1 0 0 1|-1 2 1 2 2 3∴A -1= 1 -1 0-1 2 1P107-108,注意:用初等变换方法求逆矩阵时只用行初等或只用列初等变换,不能行列初等变换混用,即一直用行初等或列初等变换使(A ,I ) (I ,A -1)19、答:AX=B ,若A -1存在,则A -1AX=A -1B 即X=A -1B 1 1 -1 1 1 -1|1 0 0 1 1 -1 1 0 0A= 0 2 2 0 2 2 |0 1 0 0 2 2 0 1 0 1 -1 0 , 1 -1 0|0 0 1 0 –2 1 -1 0 11 1 -1 1 0 0 1 1 0 32 31 31 0 2 2 0 1 0 0 2 0 32 31 32-0 0 3 -1 1 1 0 0 3 -1 1 11 1 0 32 31 31 1 0 0|31 61 321 0 0 31 61 31- 0 1 1 |31 6131-0 0 1 31- 31 31 0 0 1|31- 31 3131 61 32 31 61 321 -1 ∴A -1= 31 61 31- ∴X=A -1B= 31 61 31- 1 1 3131- 31- 31- 31 312 1=35 21 61- 21-3211 0 2|1 0 0 1 02 1 0 020、答:(A ,I )= 0 3 4|0 1 0 0 3 4 0 1 0 -1 1 0|0 0 1 0 1 2 1 0 1 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 0 1 2 1 0 1 0 1 2 1 0 1 0 1 2 1 0 12321- 23 1 0 0| -2 1 -3 -2 1 -30 1 0| -2 1 -2 ∴A -1= -2 1 -20 0 1|23 21- 23 2321- 23此题也可只用么列初等变换使 A II A -1用A -1=A1 A *求也方便。
线性代数期末试卷及解析(4套全)2019科大
线性代数期末试卷(一)一、填空题(每小题3分)(4)设12243311t -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,B 为3阶非零矩阵,=AB 0,则t =_________.解:3-.若||0≠A ,则A 可逆,由=AB 0知,=B 0,与B 为非零矩阵矛盾, 故 有||0=A . 122||0811(8)77117(3)077t t t -==-=-⋅+⋅=+-A 行,所以 3t =-.二、选择题(每小题3分)(4)设111122232333,,a b c a b c a b c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,则三条直线1110a x b y c ++=2220a x b y c ++= (其中220,1,2,3i i a b i +≠=)3330a x b y c ++=交于一点的充要条件是(A )123,,ααα线性相关; (B )123,,ααα线性无关;(C )秩123(,,)r =ααα秩12(,)r αα; (D )123,,ααα线性相关,12,αα线性无关. 解:(D )正确.11221233(,)a b a b a b ⎛⎫⎪== ⎪ ⎪⎝⎭A αα,111222123333(,,)a b c a b c a b c -⎛⎫ ⎪=-=- ⎪ ⎪-⎝⎭A ααα 三条直线交于一点的充要条件是方程组3x y ⎛⎫=- ⎪⎝⎭A α有唯一解,当且仅当()()r r =A A ,且r n =时成立,即()()2r r ==A A ,这说明12,αα线性无关,123,,-ααα线性相关,也就是123,,ααα线性相关,12,αα线性无关,故选(D ).仅123,,ααα线性相关,不足以保证()()r r =A A ,可能无解,故(A )不对. 123,,ααα线性无关,()2()3r r =<=A A ,无解,(B )不对.当12312(,,)(,)r r =ααααα,说明方程组有解,但无法确保解唯一,故(C )不对.七、(本题共2小题,第(1)题5分,第(2)题6分,满分11分)(1)设B 是秩为2的54⨯的矩阵,T T12(1,1,2,3),(1,2,4,1),==--αα T 3(5,1,8,9)=--α是齐次线性方程组=Bx 0的解向量,求x =B 0的解空间的一个标准正交基.解:因秩()2r =B ,故解空间的维数为422-=. 又 12,αα线性无关,故12,αα是解空间的基. 取 T11(1,1,2,3)==βα,2122111(,)(,)=-αββαβββT T 1(1,1,4,1)(1,1,2,3)3=---T 4210(,,,2)333=--,故T T 122,3),2,1,5,3)==--εε 即是所求的一个标准正交基.(2)已知111⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ是矩阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量.(i )试确定参数,a b 及特征向量ξ所对应的特征值;(ii )问A 是否相似于对角阵?说明理由. 解:(i )由2121()5310.121a b --⎛⎫⎛⎫ ⎪⎪-=---= ⎪⎪ ⎪⎪-+-⎝⎭⎝⎭I A ξλλλλ即 2120,530,120,a b -++=⎧⎪-+-+=⎨⎪---=⎩λλλ解得 3,0,1a b =-==-λ.(ii )由3212212533,||533(1),102102---⎛⎫⎪=--=-+-=+ ⎪ ⎪--+⎝⎭A I A λλλλλ 知1=-λ是A 的三重特征值.但 秩312()5232101r r --⎛⎫⎪--=--= ⎪ ⎪⎝⎭I A ,从而1=-λ对应的线性无关特征向量只有一个,故A 不能相似于对角阵.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1)证明B 可逆; (2)求1-AB .解 (1)因||0≠A 及||||0=-≠B A ,故B 可逆.(2)记ij E 是由n 阶单位矩阵的第i 行和第j 行对换后所得到的初等矩阵,则ij =B E A . 因而 11111()ij ij ij ij -----====ABA E A AA E E E .线性代数期末试卷(二)试卷(二)一、填空题(每小题3分)(5)已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)t =-==-ααα的秩为2,则t =__________. 解: 3 .13212111211045204522000422t t --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-⎝⎭⎝⎭⎝⎭行ααα121104520030t -⎛⎫ ⎪−−→-- ⎪ ⎪-⎝⎭行 由向量组123,,ααα秩为2,知3t =.三、(6)(本题满分5分)已知111011001-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,且2-=A AB I ,其中I 是三阶单位矩阵,求矩阵B .解:由2()-=-=A AB A A B I ,及||10=-≠A ,知1--=A B A ,即 1-=-B A A ,又 1112011001---⎛⎫ ⎪= ⎪ ⎪-⎝⎭A .从而 111112021011011000001001000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭B .四、(本题满分8分)λ取可值时,方程组12312312321,2,4551x x x x x x x x x +-=⎧⎪-+=⎨⎪=-=-⎩λλ无解,有唯一解或有无究多解?并在有无穷多解时写出方程组的通解.解法1 原方程组的系数行列式2211154(1)(54),455-∆=-=--=-+-λλλλλλ 故当1≠λ,且45≠-λ时,方程组有唯一解. 当1=λ原方程组为12312312321,2,455 1.x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=-⎩对其增广矩阵施行行初等变换:211103331112111245510999---⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭111201110000-⎛⎫⎪→-- ⎪ ⎪⎝⎭,因此,当1=λ时,原方程组有无穷多解,其通解为1231,1,().x x k x k k =⎧⎪=-+⎨⎪=⎩为任意实数[或T T T123(,,)(1,1,0)(0,1,1)x x x k =-+(k 为任意实数)].当45=-λ时,原方程组的同解方程组为 12312312310455,45510,4551,x x x x x x x x x --=⎧⎪+-=-⎨⎪+-=-⎩对其增广矩阵施行行初等变换:1045510455455104551045510009----⎛⎫⎛⎫⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 由此可知当45=-λ时,原方程组无解.解法2 对原方程组的增广矩阵施行行初等变换:2112111122103455165506--⎛⎫⎛⎫ ⎪ ⎪-→+-→ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭λλλλλλ211210354009-⎛⎫ ⎪+- ⎪ ⎪+⎝⎭λλλλ.于是,当45=-λ时,原方程组无解,当1≠λ且45≠-λ时,原方程组有唯一解,因此,当1=λ时,原方程组有无穷多解,其通解为1231,1,().x x k x k k =⎧⎪=-+⎨⎪=⎩为任意实数[或T T T123(,,)(1,1,0)(0,1,1)x x x k =-+(k 为任意实数)].线性代数期末试卷(三)一、填空题(每小题3分)(4)若二次型2221231231223(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是__________.二次型的矩阵为210112012t t ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 1阶顺序主子式为1, 2阶顺序主子式为2110,311=>阶顺序主子式为21021111022201122tt tt =2202t -=>,故220t ->,即t <<二、选择题(每小题3分)(3)设向量组123,,ααα线性无关,则下列向量组中,线性无关的是 (A )122331,,++-αααααα (B )1223123,,2++++ααααααα (C )1223212,2,3+++αααααα(D )123123123,2322,355++-++-ααααααααα解:(C )正确对于(A )向量组:考虑线性式112223331()()()k k k ++++-=αααααα0即 112233123(,,)k k k ⎛⎫ ⎪++-= ⎪ ⎪⎝⎭αααααα0112323101()110011k k k -⎛⎫⎛⎫ ⎪⎪++= ⎪⎪ ⎪⎪⎝⎭⎝⎭ααα0因为123,,ααα线性无关,所以123101110011k k k -⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭0.因为101110011-⎛⎫ ⎪⎪ ⎪⎝⎭不可逆,故上式有非零解,故(A )向量组线性相关,故(A )不正确. 因此向量组是否线性无关由对应的矩阵是否可逆而定,对于(B )有1223123(,,2)++++=ααααααα123101(,,)112011⎛⎫ ⎪ ⎪ ⎪⎝⎭ααα,因为101112011⎛⎫⎪⎪ ⎪⎝⎭不可逆,故(B )向量组线性相关. 对于(C )有122321(2,2,3)+++=αααααα 123101(,,)220033⎛⎫ ⎪⎪ ⎪⎝⎭ααα,对于(D )有123123123(,2322,355)++-++-=ααααααααα 123123(,,)1351225⎛⎫ ⎪- ⎪ ⎪-⎝⎭ααα. 因为(D )中矩阵1231351225⎛⎫⎪- ⎪⎪-⎝⎭不可逆,而(C )中矩阵101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭是可逆阵,故(C )正确. (4)设,A B 为同阶可逆矩阵,则(A )=AB BA ;(B )存在可逆矩阵P ,使1-=P AP B ; (C )存在可逆矩阵C ,使T=C AC B ; (D )存在可逆矩阵P 和Q ,使=PAQ B . 解:(D )正确因为,A B 是同阶可逆矩阵,不妨设阶数为n ,于是它们都与n 阶单位阵E 等价,故A 与B 等价. (A )说的是,A B 可交换; (B )说的是,A B 相似 (C )说的是,A B 合同显然,A B 同阶且可逆不能保证上述三种结论成立. (D )说的恰是,A B 等价,故选(D ).九、(本题满分6分)设A 为n 除非奇异矩阵,α为n 维列向量,b 为常数,记分块矩阵 T *T 0,,||b ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭IA P Q AA ααα 其中*A 是矩阵A 的伴随矩阵,I 为n 阶单位矩阵。
组合数学(西安电子科技大学(第二版))习题3
习题三(递推关系)1.解下列递推关系:(1)120171000,1n n n a a a a a ---+=⎧⎨==⎩ (2)12016900,1n n n a a a a a --++=⎧⎨==⎩ (3)20100,2n n a a a a -+=⎧⎨==⎩ (4)120121n n n a a a a a --=-⎧⎨==⎩ (5)123012990,1,2n n n n a a a a a a a ---=+-⎧⎨===⎩ 解:(1)对应的特征方程为:27100x x -+=,解得122,5x x ==。
所以齐次递推方程的通解为:25n n n a A B =+,代入初始条件,得:00a A B =+=,1251a A B =+=,解得:11,33A B =-=, 故 112533n n n a =-+。
(2)对应的特征方程为:2690x x ++=,解得:123x x ==-,所以,齐次递推方程的通解为:()(3)n n a A Bn =+-,代入初始条件,00a A ==,1()(3)1a A B =+-=,解得:10,3A B ==-,故1(3)3n n a n =--。
(3)对应的特征方程为:210x +=,解得:12,x i x i ==-,所以,齐次递推方程的通解为:()()n n n a A i B i =+-,代入初始条件,00a A B =+=,12a A i B i =-=,解得:,A i B i =-=,故 11()()n n n a i i --=+-。
(4)对应的特征方程为:2210x x -+=,解得:121x x ==,所以,齐次递推方程的通解为:n a A Bn =+,代入初始条件,01a A ==,11a A B =+=,解得:1,0A B ==,故 1n a =。
(5)对应的特征方程为:32990x x x --+=,解得:1231,3,3x x x ===-,所以,齐次递推方程的通解为:3(3)n n n a A B C =++-,代入初始条件,00a A B C =++=,1331a A B C =+-=,2992a A B C =++=, 解得,111,,4312A B C =-==-,故 1113(3)412n n n a -=-+--2.求由A ,B ,C ,D 组成的允许重复的排列中AB 至少出现一次的排列数。
西安电子科技大学硕士研究生入学考试试题(含答案)
也可利用不进位乘法或列表法计算。 11、已知 H ( s ) 的零极点分布图如下图所示,单位冲激响应 h(t ) 的初始值 h(0 ) = 2 ,则该 系统的系统函数 H (s) = 。
+
jω
×
j2
2 σ
−j2
−2 ×
解:由零极点分布图可写出
s →∞
H ( s) =
H 0 ( s − 2) ( s + 2) 2 + 4
对应原函数为
−3 1 −1 1 × = + , − 1 < Re[ s ] < 2 s − 2 s +1 s − 2 s +1
e2 t ε (−t ) + e − t ε (t )
3 1 1 1 × = , Re[ s ] > 2 s − 2 s +1 s − 2 s +1
−t
3e 2t ε (t ) ∗ e − t ε (t ) ↔
5
π
H ( jω )
ϕ (ω )
5
−10
0 (a)
10ω
−5 0 −5
5
ω
(b)
A C
、 f (t ) = cos t + cos(8t )
B
、 f (t ) = sin(2t ) + sin(4t )
2
、 f (t ) = sin(2t ) sin(4t ) D、 f (t ) = cos (4t ) 解:选 B。由系统的幅频特性和相频特性可知:若输入信号的频率均处于 ω = −5 ∼ 5 之间, 既不产生幅度失真又不产生相位失真。只有 B 满足这一条件。 d 6、信号 f (t ) = [e ε (t )] 的傅里叶变换 F ( jω ) 等于 dt
西安电子科技大学线性代数试卷及参考答案3
α1 = (1,1, 0 ) ,
T
α 2 = ( 0, 0,1)
T
同理,当 λ2 = 0 时,得线性无关的特征向量为 α 3 = ( −1,1, 0 ) .
T
将 α1 , α 2 , α 3 单位化得
η1 =
1 1 T T T (1,1, 0 ) ,η2 = ( 0, 0,1) ,η3 = ( −1,1, 0 ) 2 2
n
0 0
L
0 0
L L
n −1 1− n
L
三、 (12 分)问 a, b 为何值时,线性方程组
⎧ x1 + x2 + 2 x3 + 3 x4 = 1; ⎪ x + 3 x + 6 x + x = 3; ⎪ 1 2 3 4 ⎨ ⎪3 x1 − x2 − ax3 + 15 x4 = 3; ⎪ ⎩ x1 − 5 x2 − 10 x3 + 12 x4 = b.
故 λ1 = −1 为 A 的三重特征值.
⎛ −3 1 −2 ⎞ ⎛ 1 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ 解 (λ1 E − A) X = 0 .因 − E − A = −5 2 −3 → 0 1 1 ⎜ ⎟ ⎜ ⎟ ⎜ 1 0 1 ⎟ ⎜ 0 0 0⎟ ⎝ ⎠ ⎝ ⎠
得其基础解系中只含一个解向量 α = (−1, −1,1) ,从而属于 λ1 = −1 的线性无关的特征向
⎛1 ⎜ 0 初等行 三 解: A ⎯⎯⎯ →⎜ ⎜0 ⎜ ⎜0 ⎝
( −1) 或
2
n −1
( n + 1)! )
1 2 3 −1 1 2 0 2−a 2 0 0 3
1 ⎞ ⎟ 1 ⎟ = A1 4 ⎟ ⎟ b+5 ⎟ ⎠
西安电子科技大学线性代数试卷及参考答案1
{
x1 + x2 + x3 = 0, 2 x1 + 2 x2 + x3 = 0, xi ∈ R} ,则 dim V =
3.已知向量组 α1 , α 2 , α 3 , α 4 线性无关,而向量组 β 1 = 4α 1 + α 2 , β 2 = α 2 + α 3 ,
β 3 = α 3 + α 4 , β 4 = α 4 + 2λα 1 线性相关,则 λ =
经正交变换化为标准形
2
2
2
f ( y1 , y 2 , y3 ) = 2 y1 + 5 y 2 + 5 y3
2
2
2
, 求参数 a ,b 及用的正交变换。
⎛2 ⎜ ⎜1 六、 (6 分) 已知四阶方阵 A ,X 满足关系式 AXA − 2 A = XA , 且A=⎜ 0 ⎜ ⎜0 ⎝
2
5 3 0 0
0 0 4 7
(1) a ≠ −2 且 a ≠ 1 时,有唯一解 (2) a = −2 时,因为: R ( A) ≠ R( B) ,所以方程组无解。 (3) a = 1 时,因为: R ( A) = R( B) =1<3,所以方程组有无穷多解。
⎛ − 1⎞ ⎛ − 1⎞ ⎛ x1 ⎞ ⎛ 2 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 其通解为 ⎜ x 2 ⎟ = ⎜ 0 ⎟ + k1 ⎜ 1 ⎟ + k 2 ⎜ 0 ⎟ ⎜1⎟ ⎜0⎟ ⎜ x ⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ 3⎠ ⎝ ⎠
3n + 1 3 L 3 3 3n + 1 3 L 3 3 c1 + c 2 3n + 1 4 L 3 3 r2 − r1 0 1 L 0 0 c1 + c3 L L L L L r3 − r1 L L L L L = 3n + 1 二 解: Dn 3n + 1 3 L 4 3 0 0 L 1 0 M M 0 L 0 1 c1 + c n 3n + 1 3 L 3 4 rn − r1 0
2016年电子科技大学835线性代数真题
1 2 22 四(20分) 设 A , 规定2阶实矩阵线性空间 R 上的线性变换 A 为: 3 4
A : R 22 R 22 , B AB BA, B R 22 .
1 0 0 1 0 0 0 0 (1) 试计算线性变换 A 在 R 22 的标准基 , , , 下的矩阵. 0 0 0 0 1 0 0 1
T T
用写求解过程).
(2) 设非零向量 , R n . 证明: 存在正交矩阵 A 使得 A 当且仅当 T T 0 .
八(20 分). 设 A 是 3 阶实对称矩阵, 各行元素之和均为 0, 且 R 2 I A 2 , A 3I 不可逆.
电子科技大学 2016 年攻读硕士学位研究生入学考试试题 考试科目:835 线性代数
注意事项:所有答案必须写在答卷纸上,否则答案无效。 符号说明: I 表示单位矩阵, A* 表示伴随矩阵, R 表示实数域.
一(15 分) 已知 3 阶矩阵 A 1 , 2 , 1 , B 2 , 1 , 2 , 其中 1 , 2 , 1 , 2 都是 3 维列向量. 若 A 4, B 5 , 求 3 A 2 B . 二(20 分) 是否存在满足如下条件的矩阵? 如果有, 请写出一个或一对这样的矩阵(不必说明 理由). 如果没有, 请说明理由. (1) 两个秩为 2 的矩阵 A43 与 B34 使得 AB O . (2) 3 阶矩阵 C 使得 C 3 O , 但是 C 4 O . (3) 2 阶正交矩阵 F 和 G 使得 F G 也是正交矩阵. (4) 2 阶矩阵 U, W 使得 UW WU I . 三(20 分) 设 2 阶矩阵 A, B 满足 AB 3 A 2 B . (1) 证明: AB BA .
西安电子科技大学_2012-2013学年_高等数学期末考试A试卷及解答
西安电子科技大学2012级《高等数学》第二学期期末考试(试题A )及解答一、单项选择题(每小题3分,共15分)1. 设2(,)()()x yx y u x y x y x y t dt ψ+-=++-+⎰,其中:()t ψ具有一阶导数,则( )(A )2222u ux y ∂∂=∂∂; (B )2222u u x y ∂∂=-∂∂;(C )222u u x y x ∂∂=∂∂∂; (D )222u ux y y ∂∂=∂∂∂.解 2()1()(x u x y x y x y ψψ=++++--,2()()xx u x y x y ψψ''=++--,2()1()(y u x y x y x y ψψ=+-+++-,2()()yy u x y x y ψψ''=++--,答案:A2. 函数(3)z xy x y =--的极值点是 ( ) (A )(0,0); (B )(1,1); (C )(3,0); (D )(0,3). 解1 232x z y xy y =--,232y z x xy x =--,A 、B 、C 、D 都是驻点,2xx z y =-,322xy z x y =--,2yy z x =-,224(322)0AC B xy x y -=--->,仅当(1,1)满足 答案:B解2 ,x y 对称,C 对,D 也对,单选题,故排除C ,D ,(3)3z xy x y xy =--≈,(,)(0,0)x y ≈,3z xy ≈可正可负,不是极值点,答案:B3. 设有空间区域22221:,0x y z R z Ω++≤≥与22222:,0,0,0x y z R x y z Ω++≤≥≥≥,则 ( )(A )124xdV xdV ΩΩ=⎰⎰⎰⎰⎰⎰; (B )124ydV ydV ΩΩ=⎰⎰⎰⎰⎰⎰;(C )124zdV zdV ΩΩ=⎰⎰⎰⎰⎰⎰; (D )124xyzdV xyzdV ΩΩ=⎰⎰⎰⎰⎰⎰.解 答案:C4. 一个形如1sin n n b nx ∞=∑的级数,其和函数()S x 在(0,)π上的表达式为1()2x π-,则()S x 在32x π=处的值3()2S π= ( ) (A )4π; (B )4π-; (C )2π; (D )2π-.解 33111()(2)()()()2222224S S S S ππππππππ=-=-=-=--=- 答案:B5. 若级数2(1)(1)na nn n ∞=-+-∑收敛,则a 的取值范围是 ( ) (A )0a >; (B )13a >; (C )12a >; (D )1a >. 解 22(1)(1)[(1)](1)[(1)][(1)]nn a n a n an a nn n n n n n ∞∞==----=+-+---∑∑22(1)11n a a n n n ∞=--=-∑ 2222(1)(1)11n a a naan n n n nn∞∞==-=---∑∑,0a >时收敛,2211an n ∞=--∑,21a >,即12a >时收敛, 答案:C二、填空题(每小题3分,共15分)6. 设{(,)||||1}D x y x y =+≤,则二重积分(||)Dx y dxdy +=⎰⎰__________解 1(||)4DD x y dxdyydxdy +=⎰⎰⎰⎰ 11100044(1)ydy ydx y y dy -==-=⎰⎰⎰237. 向量场222(2)(2)(2)A x y i y z j z x k =-+-+-,则rotA =__________.解 r o t A=222222ij k x y z x yy zz x∂∂∂=∂∂∂---(2,2,2) 8.曲面z =在点(1,9,4)处的切平面方程是:________________. 解(,,1)(x y n z z =--=,(1,9,4)11|(,,1)26n =--,或(3,1,6)-,切平面:3(1)(9)6(4)0x y z -+---=,或 36120x y z +-+=9. 设C 为球面2222x y z a ++=与平面0x y z ++=的交线,则2Cx ds ⎰=____解222222111()2333CCCx d sx y zd s ad s aa π=++==⋅=⎰⎰⎰323π 10. 级数212n n n x∞=∑的收敛域为 :___________ 解 210,||1||1||,||1222,||1nnn nx x x x x <⎧⎪⎪=→=⎨⎪+∞>⎪⎩,收敛域为:[1,1]- 三、计算下列各题(第1小题6分,第2小题8分, 共14分)11. 设(,)z z x y =由方程(23,2)0F x z y z --=所确定,其中:F 是可微函数,求dz .解1 x y dz z dx z dy =+1212122233F F dx dy F F F F =-+-----1212223F dx F dyF F +=+ 解2 12(23)(2)0F dx dz F dy dz ⋅-+⋅-=1212223F dx F dydz F F +=+12.求二重积分:11211422x x y y x dx dy dx dy +⎰⎰.解 2112x yyy I dy e dx =⎰⎰112()yy e e dy =-⎰123182e e =-四、计算下列各题(每小题10分,共30分)13. 设曲面∑为柱面221x z +=介于平面0y =和2x y +=之间部分,求zdS ∑⎰⎰.分析: 求柱面221x z +=部分的面积 1.用公式:xyD I =⎰⎰,用:S z =√2.用公式:yzD I =⎰⎰,用:S x =3.不能用公式:xzD I =⎰⎰,用???求导解12::z z ∑=∑={(,)02,11}xy D x y y x x =≤≤--≤≤12zdS zdS zdS ∑∑∑=+⎰⎰⎰⎰⎰⎰12∑∑=+⎰⎰⎰⎰0=2()1x=-]14. 计算:331Cx y dx dy r r --+⎰,其中C为上半圆周2y x x =-,方向从()1,0到()0,0,r =解1()522232(1)2[1]P x y y x y ∂-=-⋅∂+-=()522232(1)2[1]Q x y x x y ∂-=-⋅∂+-,(0,0)33(1,0)3311Cx y xy dx dy dx dy rrrr----+=+⎰⎰3122(1)x dx x -=+⎰(1=-解2 111:cos ,sin 222C x t y t =+=,:0t π→, 330321sin cos 112231(cos sin )22C t tx y dx dy dt r r t t π+--+=+-⎰⎰ 12031(cos sin )|22t t π-=+-(1=-15. 计算:22(2)(1)()xy y dydz y dzdx x z dxdy ∑--+-++⎰⎰,其中,∑为曲面2z =-xoy 平面上方部分的上侧。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
电子科技大学 线性代数试题
一. 填空题(21 分): 1. 设 3 阶矩阵 A 满足| A | = 2, 则 | −(3A* )−1 |= ________.
→
→
2. 设三角形的顶点为原点 O 及 A = (1, 2, − 1), B = (1, 1, 0), 则 OA× OB = _____
___,
面积 SΔOAB = ________.
⎛ 0 1 0 ⎞2005 ⎛ 1 2 3 ⎞ ⎛ 0 0 1 ⎞2006
3.
⎜ ⎜
1
0
0
⎟ ⎟
⎜ ⎜
4
5
6
⎟ ⎟
⎜ ⎜
0
1
0
⎟ ⎟
=_______.
⎜⎝ 0 0 1 ⎟⎠ ⎜⎝ 7 8 9 ⎟⎠ ⎜⎝ 1 0 0⎟⎠
4. R3 中, 方程 z − x2 − y2 = 0 所确定的曲面形状称为____ 22
第 2 页 共 3页
电子科技大学
学院
姓名
学号
任课老师
选课号
………密………封………线………以………内………答………题………无………效……
注意: 在第七、第八题中任选做一题!
七 (7 分 ). 在 R3 中 , 求 线 性 变 换 σ (x1, x2 , x3 ) = (2x1 − x2 , x2 + x3, x1) 在 基 ε1 = (1, 0, 0),
_____.
⎛k 1 1⎞
5.
设矩阵A
=
⎜ ⎜
1
k
1 ⎟⎟的秩R( A) < 3, 则 k = _________.
⎜⎝ 1 1 k ⎟⎠
6. 若二次型 2x12 + x22 + x32 + 2x1x2 + tx2 x3 是正定的, 则 t 的取值范围是________.
西安电子科技大学2021数电期末试题
考试时间 120 分钟一、基础部分(共40分)1.(2分)完成下列数制转换:(25.25)10 = ( )2= ( )16 2.(2分)将十进制数转换为相应的编码表示。
(12)10 = ( )8421BCD= ( )余3码3.(4分)按照反演规则和对偶规则分别写出下列函数的反函数和对偶函数。
F =AB +E̅̅̅̅̅̅̅̅̅̅̅∙D +BC F̅ =__________________________________ F ∗=_________________________________4.(3分)按照要求写出下列函数的等价形式:5.(9分)已知某逻辑函数F 表达式如下,试完成下列内容:F =A̅C ̅+A ̅B ̅+BC +A ̅C ̅D ̅(1)在下图基础上完成该逻辑函数的卡诺图(下画线处也需要填写)(3分)。
===+=BC B A F (或与式) (与非与非式) (与或非式)(2)用卡诺图化简,写出该逻辑函数的最简与或式(2分)。
(3)根据化简结果,列出函数F的真值表(2分)。
(4)根据最简与或式画出该逻辑函数的电路图(2分)。
6.(6分)下图所示电路用于产生2相时钟信号,按照要求完成下述内容。
CQ1Q2(1)分别写出该电路的输出Q1和Q2的逻辑表达式(2分)。
(2)完成下列波形图,并说明在A 取不同值的情况下电路功能(初态为0)(4分)。
C Q Q2AQ1该电路的功能:_______________________________________________________ ____________________________________________________________________。
7.(6分)74194是双向移位寄存器,试判断下列电路的功能,并画出其状态表和状态图。
1(1)在下表中填写电路的状态表,并画出状态图(4分)状态图如下:(2)该电路的功能是:__________________________;(2分)装 订 线8.(8分)阅读如下电路,完成各项以下内容。
西安电子科技大学高等代数机算与应用作业题参考答案
高等代数机算与应用作业题学号:姓名:成绩:一、机算题1.利用函数rand和函数round构造一个5×5的随机正整数矩阵A和B。
>> a=round(rand(5))a =0 0 1 1 11 1 0 1 01 0 1 0 10 1 1 0 00 0 1 0 1>> b=round(rand(5))b =0 0 0 0 00 1 1 0 10 1 1 1 01 1 0 1 00 1 1 1 0(1)计算A+B,A-B和6A>> a+bans =0 0 1 1 11 2 1 1 11 12 1 11 2 1 1 00 1 2 1 1>> a-bans =0 0 1 1 11 0 -1 1 -1 1 -1 0 -1 1 -1 0 1 -1 0 0 -1 0 -1 1 >> 6*a ans =0 0 6 6 6 6 6 0 6 0 6 0 6 0 6 0 6 6 0 0 0 0 6 0 6 (2)计算()TAB ,TTB A 和()100AB>> (a*b)' ans =1 1 0 0 0 32 2 2 2 2 1 2 2 23 1 2 1 2 0 1 0 1 0 >> b'*a' ans =1 1 0 0 0 32 2 2 2 2 1 2 2 23 1 2 1 2 0 1 0 1 0 >> (a*b)^100 ans = 1.0e+078 *1.4732 7.6495 6.1764 5.52252.1271 1.0117 5.2535 4.24183.7927 1.4608 0.92294.7921 3.8692 3.4596 1.3325 0.9229 4.7921 3.8692 3.4596 1.3325 0.9229 4.7921 3.8692 3.4596 1.3325 (3)计算行列式A ,B 和AB >> det(a) ans =1 >> det(b) ans = 0 >> det(a*b) ans = 0(4)若矩阵A 和B 可逆,计算1A -和1B - >> inv(a) ans =0 0 1.0000 0 -1.0000 -1.0000 1.0000 -1.0000 0.0000 2.0000 1.0000 -1.0000 1.0000 1.0000 -2.0000 1.0000 0.0000 -0.0000 -0.0000 -1.0000 -1.0000 1.0000 -1.0000 -1.0000 3.0000 b 不存在逆矩阵(5)计算矩阵A 和矩阵B 的秩。
线性代数
学习中心/函授站_ 汉中学习中心姓 名 粟深波 学 号 7016140241001西安电子科技大学网络与继续教育学院2015学年上学期《线性代数》期末考试试题(综合大作业)考试说明:1、大作业于2015年4月3日公布,2015年5月9日前在线提交;2、考试必须独立完成,如发现抄袭、雷同、拷贝均按零分计。
一、填空题(每空2分,合计50分) 1、=-===ij n ij n a D a a D 则若, (1) ;2、()的系数是中在函数321112x xx x xxx f ---= (2) 3、对于方程⎪⎩⎪⎨⎧=-+-=-++-=+-.,,013222321321321x x x x x x x x x ,其系数矩阵A = (3) ;4、排列()()32121 --n n n 的逆序数等于 (4) ;5、n 阶行列式共有 (5) 项,正负号由 (6) 决定.6、对于行列式|A |,当i=j ,时,=∑=nk kj kiA a1(7) .7、用克拉默法则解方程组的两个条件:系数行列式不等于0和 (8) .8、若n 元线性方程组有解,且其系数矩阵的秩为r ,则当 (9) 时,方程组有无穷多解. 9、矩阵与行列式有本质的区别,一个数字行列式经过计算可求得其值,而矩阵仅仅是 (10) ,它的行数和列数可以不同.10、333231232221131211a a a a a a a a a = (11) ; 11、最少可经排列n n i i i i 121 - (12) ; 121i i i i n n -次对换后变为排列12、对于方程⎪⎩⎪⎨⎧=-+-=-++-=+-.,,013222321321321x x x x x x x x x ,其增广矩阵B = (13) ;13、=+=*-A A A A 32,1,1且为三阶矩阵设 (14) ;14、n 阶行列式每项都是位于不同行、不同列的 (15) 个元素的乘积.15、行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于(16). 16、用克拉默法则解方程组的两个条件: (17) 和方程组中未知数个数与方程个数相等. 17、若n 元线性方程组有解,且其系数矩阵的秩为r ,则当 (18) 时,方程组有唯一解. 18、矩阵与行列式有本质的区别,行列式是 (19) ,数字行列式经过计算可求得其值. 19、只有当两个矩阵是 (20) 矩阵时,才能进行加法运算.20、若A 、B 为同阶方阵且均可逆,则AB 亦可逆,且(AB )-1= (21) . 21、若A 方阵可逆,则矩阵方程AX =B 的解X = (22) .22、矩阵等价具有的三个性质为: (23) 、 对称性 、 (24) .23、矩阵的初等行变换包括j i r r ↔、 (25) 、j i kr r +三种. 二、选择题(每题2分,合计20分)1、设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231332221131211a a a a a a a a a ,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++133312321131131211232221a a a a a a a a a a a a P 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001,则必有( ).A .AP 1P 2=B B .AP 2P 1=BC .P 1P 2A=BD .P 2P 1A=B2、设A 是三阶矩阵,A*是其转置伴随矩阵,又k 为常数k ≠0,1±,则(kA)*=( ). A .kA* B .k 2A* C .k 3A* D .31A* 3、若r(A)=r<n,则n 元线性代数方程Ax=b( ).A .有无穷多个解B .有唯一解C .无解D .不一定有解 4、下列说法中正确的是( ).A .对向量组k αα,,1 ,若有全不为零的数k c c ,,1 使011=++k k c c αα ,则k αα,,1 线性无关B .若有全不为零的数k c c ,,1 使011≠++k k c c αα ,则k αα,,1 线性无关C .若向量组k αα,,1 线性相关,則其中每个向量皆可由其余向量线性表示D .任何n+2个n 维向量必线性相关5、设A 为n 阶矩阵,x 为n 维向量,则以下命题成立的是( )。
西安电子科技大学《线性代数》2020试题A及答案
西安电子科技大学考试时间 120 分钟试 题1.考试形式闭卷□√ 开卷□ ;2.本试卷共八大题,满分100分一、单项选择题(每小题3分,共15分)1.方程0184211111111132=--x x x 的根是( )(A )1,-1(B )1,2,-2(C )0,1,2(D )1,-1,22.设A 为n 阶方阵,且25A A E O +-=,则1(2)A E -+=( )(A)A E -, (B)E A +, (C)1()3A E +, (D)1()3A E -. 3.设矩阵,AB 都是n 阶矩阵,且0AB=,则矩阵A 和B 的秩( )(A )至少有一个为0 , (B)都小于n,(C )一个是0一个是n, (D)它们的和不大于n. 4.若向量组123,,ααα线性无关,124,,ααα线性相关,则( )(A )1α必不可由234,,ααα线性表示, (B )1α必可由234,,ααα线性表示, (C )4α必不可由123,,ααα线性表示, (D )4α必可由123,,ααα线性表示. 5. 二次型()22212312313,,224f x x x x x x x x =++-的正惯性指数为( ) (A )0, (B )1 , (C )2 , (D )3.二、填空题(每小题4分,共20分)1.若⎥⎦⎤⎢⎣⎡=9491A ,⎥⎦⎤⎢⎣⎡=0110P ,则矩阵=20212020AP P2.向量空间(){}123123123,,|0,,,Tx x x x x x x x x ==-+=∈V x R 的维数是3.已知R(B )=2,且矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9-75654321A ,则R(AB )= 4.向量()T23,=β在2R 的一组基()1=1,1Tα()2=0,1T-α下的坐标为5.已知三阶矩阵A 的特征值为1,3,-2,那么 |A 2+2A -2E | = 三、(10分)计算n 阶行列式5333353333533335 =n D四、(15分)当b a ,为何值时,线性方程组()⎪⎩⎪⎨⎧-=-+--+=++=++bx a x x b x x x x x x 22428852432321321321有唯一解、无解、无穷多解?在有无穷多解时求其通解。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
西安电子科技大学2020 学年下学期《线性代数》
0 学习中心/函授站_姓 名学 号西安电子科技大学网络与继续教育学院2020 学年下学期《线性代数》期末考试试题(综合大作业)考试说明:1、大作业试题于 2020 年 10 月 15 日公布:(1) 毕业班学生于 2020 年 10 月 15 日至 2020 年 11 月 1 日在线上传大作业答卷;(2) 非毕业班学生于 2020 年 10 月 22 日至 2020 年 11 月 8 日在线上传大作业答卷;(3) 上传时一张图片对应一张A4 纸答题纸,要求拍照清晰、上传完整;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院标准答题纸》手写完成,要求字迹工整、卷面干净。
如需答案+ 3171126054一、简算题(25 分)1、按自然数从小到大为标准次序,求下列各排列的逆序数:(5 分)1 3 ⋅ ⋅ ⋅ (2n -1)2 4 ⋅ ⋅ ⋅ (2n )2、计算下列行列式:(10 分)(1) - a b bd bf ac -cd cf ae de -efa (2) -1 0 1 0 0b 1 0 -1c 1 0 -1 d3、试利用矩阵的初等变换,求下列方阵的逆矩阵:(10 分)3 3 ⎪ ⎭ ⎛3 2 1⎫(1) 3 1 5⎪ ⎝ 2 ⎪ ⎛ 3 0 (2) ⎝- 2 0 2 2 - 2 -3 1 2 -1⎫ 1⎪- 2⎪ ⎭ 二、计算题(每小题 10 分,共 30 分)1、用克莱姆法则解方程组.⎧x 1 + x 2 + x 3 + x 4 =5 ⎪x 1 + 2x 2 - x 3 + 4x 4 =-2 ⎨2x -3x - x -5x =-2 ⎪ 1 2 34 ⎩3x 1 + x 2 + 2x 3 +11x 4 =02、求以下非齐次方程组的一个解及对应的齐次线性方程组的基础解系:⎧⎪x 1 + x 2 =5 ⎨2x 1 + x 2 + x 3 + 2x 4 =1 ⎪⎩5x 1 +3x 2 + 2x 3 + 2x 4 =33、设 v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求 v 1-v 2 及 3v 1+2v 2-v 3.三、证明题(每小题 15 分,共 45 分) a 2 1、 2a 1 ab a +b 1 b 22b =(a -b )312、由 a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是 R 3.3、举例说明下列命题是错误的: 若向量组 a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则 a 1 可由 a 2, ⋅ ⋅ ⋅, a m 线性表示.0 1 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试 题 二 (考试时间:120分钟)
一、填空(每小题4分,共32分) 1.若矩阵A 相似于矩阵{}2,1,1−diag ,则3
1−A
= 。
2.设33)(×=ij a A 是实正交矩阵且111=a ,T
b )0,0,1(=,则方程组A X =b 的解为 3.设n 阶方阵A 满足2
340A A E −+=,则1
)4(−+E A = 。
4.设A 为4×3阶矩阵,且R (A )=2,又⎟⎟⎟
⎠
⎞
⎜⎜⎜⎝⎛=301020204B ,则R (A B)- R (A )=
5.若二次型
31212
322213212224),,(x x x tx x x x x x x f ++++=是正定的,则
t 满足 。
6.已知三阶方阵A 的特征值为2,3,4,则A 2= 。
7.已知五阶实对称方阵A 的特征值为0,1,2,3,4,则R (A )= 。
8.设⎟⎟⎠
⎞⎜
⎜⎝⎛=1201A 则=k
A 。
(k 为正整数)。
二、(10分)计算行列式:112230000000
00000011
1
1
1
n n a a a a a D a a −−−=
−L L L M M M O M M L L 三、(10分)设线性方程组⎪⎩⎪
⎨⎧=+−+=+−+=+−+3
23432424321
43214321x x x x x x x x x x x x λ
讨论λ为何值时,方程组无解,有解?在有解的情况下,求出全部解。
四、(10分)已知二次型322
32
22
13214332),,(x x x x x x x x f +++=
(1)把二次型f 写成Ax x x x x f T
=)(321,,的形式; (2)求矩阵A 的特征值和特征向量;
(3)求正交阵Q,使f 通过正交变换X QY =化为标准形。
五、(10分)已知向量组T
)2,0,4,1(1=α,T
)3,1,7,2(2=α,T a ),1,1,0(3−=α,
T
b )4,,10,3(=β,试讨论(1)a,b 取何值时,β不能由331,,ααα线性表出;
(2)a,b 取何值时,β可以由331,,ααα线性表出。
此时写出具体的表达式。
六、(10分)设3阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值,
()T
0,1,11=α,()T 1,1,22=α,()T 3,2,13−−=α都是A 的属于特征值6的特征向量。
(1)求A 的另一个特征值和对应的特征向量; (2)求矩阵A 。
七、(12分)已知R 3
中两组基T
)
0,0,1(1=εT )0,1,0(2=ε,T )1,0,0(3=ε;及()T 0,0,11=α,
()T 0,1,12=α,T )1,1,1(3=α。
(1) 求由基321,,εεε到基331,,ααα的过渡矩阵A ;
(2) 设由基331,,ααα到基321,,βββ的过渡矩阵为⎟
⎟⎟⎠⎞
⎜⎜⎜
⎝
⎛−−=100001111B ,求321,,βββ;
(3) 已知向量ξ在基321,,βββ的坐标为()T
3,2,1,求ξ在基331,,ααα的坐标。
八、设T uu E A −=,E 为n 阶单位阵,u 为n 维非零向量,T u 为u 的转置,
证明: (1)A A =2
的充要条件是1=u u T ;
(2)当1=u u T
时,A 是不可逆的。
试题二参考答案
一、填空
1、 – 1/8 2 、(1,0,0)T
3、 –( A-7E)/31
4、0
5、22<<−t
6、192
7、4
8、⎟
⎟⎠
⎞
⎜
⎜⎝⎛1201k 二 解:提示,第i 列加至第i+1列,i=1,…,n,则D=
1
21000
021+−−n a a L M M M M L L =(-1)n
(n+1)∏=n
i i a 1. 三 解:增广矩阵B=⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡−−→⎥
⎥⎥⎦⎤⎢⎢
⎢⎣⎡−−−110 404 000010101332 44 121131121λλ (1) 当λ=4时,R(B)=3,R(A)=2,所以无解。
(2) 当4≠λ时,R(B)=R(A)=3<4,方程组有无穷解。
令03=x , 得一特解T
),0,1,(41440−−−=λλη;易得方程组的基础解系 T
)0,1,0,1(=η。
所以方程组的通解为0ηη+=k x 。
四 解:(1)⎟
⎟⎟⎠⎞
⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝
⎛==321321*********),,(x x x x x x Ax x f T
.
(2) 由03
2
23
00
02
=−−−−−=
−λλλλA E ,得5,2,1321===λλλ。
当11=λ 时,得对应的特征向量T
)110(1−=α; 当22=λ时,得对应的特征向量T )00
1(2=α;
当53=λ时,得对应的特征向量T
)110(3=α;
(3) 将321,,ααα正交化后得正交阵Q=⎥⎥⎥⎦
⎤
⎢⎢⎢
⎣
⎡−2121212100
010,相应的正交变换为X=QY,使得 2
3
222152y y y f ++=。
五 解:令 A=(321,,ααα),X=),,(321x x x T
,B=β,既讨论方程组AX=B 是否有解。
由 ⎥
⎥
⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡−−−−→⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡−=200001002110302143211010174
3021)(b a a b AB
(1) 当≠b 2时,方程组无解,故β不能由321,,ααα线形表出。
(2) 当b=2时且1≠a 时方程组有唯一解,且β=212αα+−, 当b=2时且1=a 时方程组有无穷解,由⎩⎨⎧+=−−= 221 32
3
1x x x x ,R x ∈3
得β=321)2()21(αααk k k +++−−。
六 解:(1) 由621==λλ是A 的2重特征值,所以A 的属于特征值6的线性无关的特征向量有2个,由题设可得的一个极大无关组是,,21αα故21,αα为A 的属于特征值6的线性无关的特征向量。
由R(A)=2可得|A|=0.所以03=λ。
设03=λ所对应的特征向量为α=),,(321x x x T
,则0,021==ααααT
T ,即
⎩⎨
⎧=++=+
0 2032121x x x x x 得基础解系α=(-1,1,1)T
,所以属于03=λ的特征向量为c α. (2) 令),,(321ααα=P ,则⎟⎟⎟
⎠
⎞⎜⎜
⎜⎝
⎛=−06
61
AP P ,所以
⎟⎟⎟⎠⎞⎜⎜⎜
⎝
⎛−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−4222422240661P P A 。
七 解: (1) (321,,ααα)=),,(321εεεA=),,(321εεε⎟⎟⎟⎠
⎞⎜⎜⎜
⎝
⎛10011
0111. (2) ),,(321βββ=(321,,ααα)B=),,(321εεε A B
=),,(321εεε⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100110111⎟
⎟⎟⎠⎞⎜⎜⎜
⎝
⎛−−100001111=)
,,(321εεε⎟⎟⎟⎠
⎞
⎜⎜⎜⎝⎛100101010。
所以1β=(0,1,0)T
, 2β=(1,0,0)T
,3β=(0,1,1)T。
(3) ξ= ),,(321βββ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛321= (321,,ααα)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−100001111⎟⎟⎟
⎠
⎞⎜⎜⎜⎝⎛321=(321,,ααα)⎟⎟⎟⎠⎞
⎜⎜⎜⎝⎛−312
所以ξ在321,,ααα下的坐标为(-2,1,3)T。
八 证明:当ξ是n 维列向量时,ξ
ξT 是n 阶方阵,ξT ξ是数。
(1) 因为 T T T T T
T
T
T
I I I I A ξξξξξξξξξξξξξξξξ)(22))((2
+−=+−=−−=
=T T
T I ξξξξ
ξξ)(2+−。
从而 由A 2
=A 可写为:T T T
T
I I ξξξξξξξξ−=+−)(2,化简得:
(1−ξξ
T
)T ξξ=0.
因为 ξ是非零向量所以T
ξξ0≠,故A 2
=A 当且仅当ξξT
=1。
(2) 用反证法:ξξ
T
=1时,由(1)知A 2=A。
如果A 可逆,则有A A A A 121−−=,从而有A=I,
这与已知矛盾。
从而A 不可逆。