PCB与信完整性工程设计原理及方法
ADS 的设计系统克服信号和电源完整性的10种方法
是德科技ADS 克服信号和电源完整性挑战的10 种方法技术概述Keysight EEsof EDA 的先进设计系统(ADS)软件是全球闻名的电子设计自动化软件,是射频、微波和高速数字应用的理想选择。
为了提高效率,ADS 采用了一系列新技术,其中包括两个电磁(EM)软件解决方案,专门用于帮助信号和电源完整性工程师提高 PCB 设计中的高速链路性能。
以下列出了 ADS 帮助工程师克服信号和电源完整性挑战的 10 种方法。
1. ADS 为您的 SI EM 表征提供出色的速度和准确性.....................................................第 2 页2. ADS 简化部件 S 参数文件的使用................................................................................第 4 页3. ADS 提供先进的通道仿真器技术................................................................................第 6 页4. ADS 立身于技术(如 PAM-4)潮头 .............................................................................第 9 页5. ADS 加速 DDR4 仿真方法 ...........................................................................................第 12 页6. ADS 将电源交到设计人员(PI 分析)手中 ...................................................................第 15 页7. ADS 可实现平坦的 PDN 阻抗响应 ..............................................................................第 18 页8. ADS 提供电热仿真 .......................................................................................................第 21 页9. ADS 有一个互连工具箱(Via Designer 和 CILD)..............................................................第 22 页10. ADS 传递是德科技理念:人力资源、硬件和软件资源的结合,开启测量新视野..................................................第23 页1. ADS 为您的 SI EM 表征提供出色的速度和准确性在精确表征高速通道的损耗和耦合时,通常会使用电磁(EM)技术。
pcb工程师前景
pcb工程师前景PCB(Printed Circuit Board)工程师是电子行业中的关键职位之一。
随着电子产品的快速发展,PCB工程师的需求也日益增长。
本文将着重讨论PCB工程师的前景,并介绍该职位所涵盖的技能和职责。
一、PCB工程师的职责PCB工程师负责设计和开发电子产品中的印刷电路板。
他们需要理解电子电路原理,并将电子设备的功能转化为适用于印刷电路板的布局和设计。
PCB工程师的职责包括但不限于以下几个方面:1. PCB设计:根据产品规格书和客户要求,进行电路板的设计和布局。
他们需要选择合适的材料、元件和连接方式,并考虑电磁兼容性和信号完整性等因素。
2. PCB制造:与PCB制造商合作,确认电路板的制造流程并监督样板板的制作。
他们还需要进行可行性分析,以确保电路板的生产符合成本和质量标准。
3. 故障排除:在电子产品开发和生产过程中,可能会出现电路故障和问题。
PCB工程师需要运用相关工具和方法,进行故障排查并提供解决方案。
二、PCB工程师的技能要求成为一名优秀的PCB工程师需要具备以下几项核心技能:1. 电子电路设计与分析:熟悉各种电子元器件及其特性,并能理解电路图纸和原理图。
掌握常见电路分析软件和EDA(Electronic Design Automation)工具的使用。
2. PCB设计软件:熟练使用主流的PCB设计软件,如Altium Designer、Cadence Allegro等。
能够根据设计要求进行电路板的绘制、布局和打样。
3. 电磁兼容性(EMC)和信号完整性(SI):了解EMC和SI的基本原理,具备电磁场和信号传输特性的分析能力。
掌握规避EMC和SI 问题的方法。
4. 制造工艺和工程技术:理解PCB的制造工艺和生产流程,熟悉常见的表面贴装技术和多层板工艺。
具备解决制造问题和提高工艺效率的能力。
三、PCB工程师的发展前景1. 就业市场需求旺盛:随着电子产品的快速发展,PCB工程师的需求量逐年增加。
信号完整性工程设计原理
SI设计是系统工程
解决一个问题需要多种措施相互辅佐,共同作用 解决一个问题可能恶化其他问题 一套好的SI设计规则就象一个好的中医药方
直觉 理性的艺术
SI设计是平衡的艺术
平衡各种解决措施的冲突,平衡性能与成本 最终的技术指标不能动摇,各个措施要有弹性
基础理论为“本”,工程解决方法为“标”。 固本培元,标本兼治。
电源噪声 信号回流路径 不同频率成 分影响不同
各个频率分量的反射
工程直通车
为什么串联端接阻值影响信号延迟?如何理解这种现象?
工程直通车
通道的优化:仅关注带宽内的频率?
Tr 35 ps BW 0.35 Tr 10GHz Bitrate 10Gbps FFE=9dB
Z out
变化的电磁场引起的
I
信号路径
参考路径
电压:浪头般前进,斜坡占据一定空间跨度。
电路角度
电容 互感
如何理解电容、电感参数? 电流两个方向:电流环路方向、电流传播方向,相互独立。
SI设计的特点
SI设计是个性化的
每个工程都不同,对症下药,没有包治百病的药方
基础的重要性
应急式的解决方法导致支离破碎的知识,似是而非。 长期无法入门 没有基础,无法预判可能的风险 没有基础, SI仿真会变成盲目的试验 没有基础,无法正确解读结果 没有基础,无法进行综合权衡 没有基础,找不到解决措施
SI设计的误区 NO.2
没有针对性,不分轻重 电平?边沿? 前仿仿什么? 后仿仿那些? 问题怎么解决? 一种常见错误观点: 种常见错误观点: 无论是什么电路板,只要把能想到的全做了,就不会有问题?
嵌入式ARM系统PCB设计中信号完整性的研究
两 个 区域 ( 区域 1 区域 2 的交 界 面 时 , 信 号 / 、 ) 在 返 回路径 的导 体 中 , 存 在 一 个 电压 和 一 个 电 流 回 仅
2 0 . 1 , 08  ̄ 1 q q
第1 1期
电 子 测 豇 c
EL CTR0N2 D
No 1 .1
嵌 入 式 ARM 系统 P B设计 中信 号 完 整性 的研 究 C
晁富邦, 潘英俊 , 魏 彪, 解启瞻, 蒋树庆
重庆 4 04 ) 0 0 4
嵌入 式技术
整性 问题 , 确保嵌入式 系统 的安全可靠性 , 也便 成 为嵌入式系统设计 的重中之重 。其 中,C P B布线的 不合理及不适当的端接所造成的信号完整性问题 , 变化时会发生反射 , 这主要缘于信号进入到瞬态阻 抗未尽 匹配的区域 , 信号到达 瞬态阻抗不同的 即,
Altium Designer信号完整性分析
在图4所示的模型配置界面下,能够看到每个器件所对应的信号完整性模型,并且每 个器件都有相应的状态与之对应,关于这些状态的解释见图8:
图8
19
Altium Designer的信号完整性分析
修改器件模型的步骤如下:
1、双击需要修改模型的器件(U1)的Status部分,弹出相应的窗口如图9 2、在Type选项中选择器件的类型, 3、在Technology选项中选择相应的驱动类型, 4、也可以从外部导入与器件相关联的IBIS模型,点击 Import IBIS,选择从 器件厂商那里得到的IBIS 模型即可。 5、模型设置完成后选择OK,退出。
四、图11为分析后的网络状态窗口,通过此窗口中左侧部分可以看到网络是 否通过了相应的规则,如过冲幅度等,通过右侧的设置,可以以图形的方式 显示过冲和串扰结果。
选择左侧其中一个网络TXB,右键点击,在下拉菜单中选择Details…,在弹 出的如图12所示的窗口中可以看到针对此网络分析的详细信息。
22
图20
33
Altium Designer的信号完整性分析
11
Altium Designer的信号完整性分析
布线后(即PCB版图设计阶段)SI分析概述 - 用户如需对项目PCB版图设计进行SI仿真分析, Altium Designer要求 必须在项目工程中建立相关的原理图设计。此时,当用户在任何一个原 理图文档下运行SI分析功能将与PCB版图设计下允许SI分析功能得到相 同的结果。
- 当建立了必要的仿真模型后,在PCB编辑环境的菜单中选择Tools -> Signal Integrity命令,运行仿真。
- 当遇到个别原理图元器件符号并未放置在PCB版图设计,用户可以利用 Altium Designer提供的器件关联功能,即菜单Project -> Component Links命令;在PCB版图设计SI分析中,未布线的网络将采用曼哈顿 (Manhattan)长度算法计算引脚间的传输线长度。
Allegro原理图和PCB设计流程学习指南
Allegro原理图和PCB设计流程学习指南一、非电气引脚零件的制作1、建圆形钻孔:1)、parameter:没有电器属性(non-plated)2)、layer:只需要设置顶层和底层的regular pad,中间层以及阻焊层和加焊层都是null。
注意:regular pad要比drill hole大一点。
二、Allegro建立电路板板框步骤:1、设置绘图区参数,包括单位,大小。
2、定义outline区域3、定义route keepin区域(可使用Z-copy操作)4、定义package keepin区域5、添加定位孔三、Allegro定义层叠结构对于最简单的四层板,只需要添加电源层和底层,步骤如下:1、Setup –> cross-section2、添加层,电源层和地层都要设置为plane,同时还要在电气层之间加入电介质,一般为FR-43、指定电源层和地层都为负片(negtive)4、设置完成可以再Visibility看到多出了两层:GND和POWER5、铺铜(可以放到布局后再做)6、z-copy –> find面板选shape(因为铺铜是shape)–> option面板的copy to class/subclass选择ETCH/GND(注意选择create dynamic shape)完成GND 层覆铜7、相同的方法完成POWER层覆铜四、Allegro生成网表1、重新生成索引编号:tools –> annotate2、DRC检查:tools –> Design Rules Check,查看session log。
3、生成网表:tools –> create netlist,产生的网表会保存到allegro文件夹,可以看一下session log内容。
五、Allegro导入网表1、file –> import –> logic –> design entry CIS(这里有一些选项可以设置导入网表对当前设计的影响)2、选择网表路径,在allegro文件夹。
Altium Designer 14原理图与PCB设计
Altium Designer 14原理图与PCB设计本文将介绍《Altium Designer 14原理图与PCB设计》的大纲,提供背景信息和目的。
在本文中,将介绍Altium Designer 14软件的基本原理图与PCB设计功能,并深入探讨其使用方法和技巧。
Altium Designer 14简介原理图设计界面概述元件库管理连接和布线信号捕获和逻辑判别设计规则检查输出文件生成PCB设计界面概述元件布局和走线层次设计和分层规划信号完整性与电磁兼容性考虑设计规则检查输出文件生成实例分析原理图设计实例PCB设计实例注意事项和常见问题解答结论Altium Designer 14是一款专业的电子设计自动化工具,广泛应用于电子工程师和PCB设计师的原理图与PCB设计过程中。
在本文中,我们将重点介绍Altium Designer 14软件中原理图与PCB设计的相关功能和特点,以帮助读者更好地理解和使用该软件。
本文的目的旨在提供关于《Altium Designer14原理图与PCB设计》的详细大纲,以引导读者逐步研究和掌握使用Altium Designer 14进行原理图与PCB设计的基本知识和技能。
通过阅读本文,读者将了解到Altium Designer 14软件在电子设计中的核心功能和应用方法,并能够应用这些知识进行实际工程项目的设计和开发工作。
概述Altium Designer 14的主要功能和特点,如原理图设计、PCB设计、仿真等本文档为使用Altium Designer 14进行原理图与PCB设计提供指南。
其中包括软件界面介绍、操作步骤、常见问题解答等内容。
Altium Designer 14是一款强大的电子设计自动化软件,为电路原理图和PCB设计提供了全面的支持。
下面是软件界面的主要组成部分:工具栏:包含了常用的工具和命令,可以快速访问并执行相应的操作。
项目导航器:显示当前项目的文件结构和层次关系,方便管理和导航文件。
protel dxp 原理图以及PCB设计
在原理图中放置电源和接地符号,为电路提 供稳定的电源和接地。
原理图的检查与修改
检查原理图的完Leabharlann 性检查原理图是否完整,是否包含了所 有必要的元件和功能模块。
检查连接关系
检查元件之间的连接关系是否正确, 是否有遗漏或错误的连接。
检查电气规则
根据设定的电气规则,检查原理图中 的错误和潜在问题。
06
案例分析
案例一
总结词:简单实用
详细描述:小型电路板通常用于简单的电子设备,如遥控器、计算器等。在 Protel DXP 中,可以使用标准元件库和封装库进 行原理图和 PCB 设计。设计过程相对简单,主要考虑元件布局和布线规则。
案例二
总结词:高集成度
详细描述:复杂多层板通常用于高集成度的电子设备,如手机、平板电脑等。在 Protel DXP 中,需 要使用高级元件库和封装库进行原理图和 PCB 设计。设计过程需要考虑多层布线、信号完整性、电源 完整性等问题,以确保电路性能和可靠性。
高速电路设计规则检查
高速规则检查
Protel DXP 支持高速电路设计规则检查,确保电路板在高速 条件下具有良好的性能表现。通过规则检查,用户可以发现 潜在的信号完整性问题,并进行相应的优化。
信号完整性分析
Protel DXP 还提供信号完整性分析功能,通过仿真分析电路 板的信号质量,帮助用户预测和解决潜在的信号问题。
原理图设计流程
创建新项目
在Protel DXP中创建一个新的 项目,为原理图和PCB设计提 供一个统一的管理环境。
添加注释和说明
在原理图中添加必要的注释和 说明,以清晰地表达设计意图。
确定设计目标
明确原理图设计的目的和要求, 确定所需元件和功能模块。
PCB设计基础教程
PCB设计基础教程PCB设计是电子工程师必须掌握的基本技能之一,它在电子产品开发中扮演着重要的角色。
在PCB设计中,每一个元件都有它自己的位置和连接方式,因此,在电子系统中,PCB设计往往决定着电子产品的性能以及稳定性。
本文将向您介绍基础的PCB设计知识。
一、概述PCB的全称是Printed Circuit Board,中文名叫印制电路板。
它是一种载有电子元件的平面板,用于连接各种电子元件和部件,组成一个完整的电子电路系统。
在PCB设计中,主要是通过连接各个元件实现电路功能的设计。
二、PCB设计流程1.确定电路要求:在进行PCB设计之前,需要先明确电路的具体要求,包括电压、电流、容量、频率、负载和噪声等要素。
在明确这些参数后,才有助于进行后续的PCB设计。
2.电路结构设计:在确定完电路的要求之后,接下来需要进行电路结构设计。
这个过程主要是决定元件和部件的安置和连接方式,以及布局的排列顺序和位置。
同时还需关注元件与板面的距离、线宽、线间距、孔径和阻抗等设计要素。
3.部件封装设计:电气部件的外形不同,对应的封装也不同,因此需要进行部件封装的设计。
部件封装的设计要素主要包括引脚、位置和大小等。
在PCB设计过程中,通过确定部件的封装大小和引脚位置等因素,来决定元件的安装位置和方向。
4.电路原理图:PCB设计的最后一步就是进行电路原理图的设计。
在进行电路原理图设计时,需要将PCB部件与设计原理图分离,以便于进行布局、连线的设计和元件的检查。
三、PCB常用工具及其使用方法1. PCB绘图软件:为进行PCB设计,需要使用一款专业的PCB绘图软件。
常用的PCB绘图软件包括Altium Design、Mentor Graphics、Eagle、Pads等。
这些软件提供了各种工具和功能,使得PCB设计变的更加简单、灵活。
2. PCB元件库管理:PCB元件库管理工具使得元件的选取和管理更加方便。
通过这个工具,可以进行元件查找、封装的选择以及导入和导出等操作。
PCB工程的制作
PCB工程的制作PCB(Printed Circuit Board)工程制作是电子技术中非常重要的一环,它通过设计和制造电子电路的载体,为电子产品的功能实现提供支持。
下面将详细介绍PCB工程制作的过程及相关技术。
一、PCB工程制作的流程1.原理图设计:根据电路的需求,制定电路的原理图。
在设计中需要考虑电路的功能实现,电路之间的连接方式,以及电源、地线的布局等。
2.PCB布局设计:将电路原理图转换为PCB板的布局。
首先根据电路元件和连接的需求确定PCB板的尺寸,然后在PCB板上放置电路元件,根据元件之间的连接关系进行布线,同时考虑布局的紧凑性和辐射噪声的抑制。
3.路线布线设计:根据布局设计好的PCB板,进行具体的线路布线设计。
按照电路原理图中元件之间的连接关系,在PCB板上绘制出连接线路。
要考虑信号传输的速度、稳定性和抗干扰等因素,避免布线冲突和交叉干扰。
4.元件布局设计:在完成布线设计后,重新进行元件布局调整,主要是根据布线的情况,调整元件的位置,以提高布线的效果。
5.元件库设计:制定PCB板所需元件的库,包括封装库和符号库。
封装库是描述元件的物理外观和引脚布线情况,符号库是描述元件的电路符号和编码。
6.PCB板制造:根据布局和布线的设计文件,进行PCB板的制造。
制造过程包括制版、镀铜、蚀刻、打孔、焊接和测试等步骤。
7.元件安装:将元件按照布局设计好的位置进行安装。
通过手工或自动化设备精确地将元件安装在PCB板上。
8.焊接连接:使用焊锡将元件与PCB板相连接,形成电路的物理连接。
焊接可以手工进行,也可以使用自动化设备。
9.测试与调试:对安装好的PCB板进行测试和调试,确保电路的功能正常和稳定。
测试包括电路测量、信号波形分析、功能验证等。
10.封装与包装:经过测试和调试后,将PCB板进行封装和包装。
根据产品的需求,选择适当的封装材料,如塑料、金属等,对PCB板进行包装。
二、PCB工程制作的技术要点1.PCB布局设计:在进行PCB布局设计时,要合理安排电路元件的位置,以缩短信号路径,减小电磁辐射和干扰。
一本信号完整性分析的好书
第一章互连设计的重要性光速已经太慢了,当前大规模生产的普通数字电路要求时序控制达到皮秒的范围。
光从人的鼻子传输到耳朵所需要的时间大概为100ps(在100ps的时间里,光将传输1.2英寸)。
这样级别的时序控制不但要维持在硅芯片里,而且还必须在级别更大的系统板上实现,比如一个计算机的主板。
在这些系统中,将器件互连的导体不应再被看作一根简单的导线,而是呈现了高频效应的传输线。
如果这些传输线没有被合理的设计,他们将在不经意间毁灭系统时序。
有些数字设计(并非全部)的复杂程度已经达到甚至超过了模拟电路设计。
数字技术经历了令人瞩目的空前发展。
确实,在技术公司的市场部存在着这样的信条:如果让市场来告诉你公众需要什么,那已经太迟了!本书将要解决由于数字电路的迅速发展而而带来的技术瓶颈。
这要求现代数字电路设计者们掌握以前不需要的知识,而很多人却没有。
相关知识的缺乏导致了大量的错误信息在工程师中流行起来,高速设计的概念经常成为了谬论,由于知识的缺乏,这些谬论一直没有得到解决。
事实上,许多相同的概念已经在电子工程的其他学科被用了几十年。
例如射频设计和微波设计。
问题是阐述相关主题的参考书都太抽象而不能立即的被电子工程师接受,又或者工程师们太注重实际而没有足够多的理论知识来完全理解相应的主题。
本书将直接针对数字设计领域,以一种让工程师或学生能够理解的方式来讲解一些必要的概念,以使他们能理解并解决目前及将来的问题。
值得注意的是,本书所讲的内容已经被成功的运用到了现代设计当中。
1.1 基础知识读者应该知道,数字设计的基本思想是进行信号通讯,这些信号以0s或1s来表达并传递信息。
典型的数字电路是发送或接受一系列的梯形电压波(如图1.1所示)来进行通讯,这里,高电平代表1,低电平代表0,数字电路之间用来传输信号的路径被称作互连。
互连是从发送信号的芯片到接收信号芯片间的完整的电子路径,它包括芯片封装、连接器,插座及许多其他的结构。
pcb实验报告总结600字
pcb实验报告总结600字
PCB实验报告总结
PCB(Printed Circuit Board)实验是电子工程领域中非常重要的一项实践技能。
通过这次实验,我们学习了PCB设计的基本原理和操作步骤,掌握了PCB设计软件的使用技巧,并成功实现了一个简单的电路板的设计与制作。
在实验过程中,我们首先学习了PCB设计的基本原理,了解了电路板的结构组成和设计规范。
我们学习了如何选择合适的材料、尺寸和布线规则,并了解了阻抗匹配、信号完整性等关键问题。
通过这些知识的学习,我们对PCB设计有了更深入的理解。
接着,我们学习并掌握了PCB设计软件的操作技巧。
我们学会了如何创建一个新的项目,进行元件的布局、连线和标注。
我们还学习了如何进行网络分析和电路仿真,以确保设计的正确性和优化性能。
在软件的辅助下,我们能够更加高效地完成电路板的设计。
在实验过程中,我们还实际进行了电路板的制作。
我们通过学习贴片式元件的焊接技巧,了解了贴片元件的特点及焊接方法。
我们还学会了如何使用钢网和印刷颜料制作电路板的印刷层,以及如何进行静电擦拭和爆烁处理。
通过这些步骤,我们成功制作出了一个简单的功能电路板。
通过这次实验,我们不仅学会了PCB设计的基本原理和操作技巧,还提高了我们的团队合作能力和实践能力。
我们深刻体会到了PCB设计在电子工程中的重要性和应用价值。
总结起来,PCB实验是一次非常有意义的实践活动。
通过这次实验,我们不仅掌握了PCB 设计的基本原理和操作技巧,还提高了我们的实践能力和团队合作能力。
我相信这次实验对我们今后的学习和工作都有着积极的影响。
国外pcb书籍
国外pcb书籍
在国外,有几本PCB相关的经典书籍值得一读:
1. 《印制电路手册》(英文名:《Printed Circuits Handbook》)作者:(美)Clyde F. Coombs Jr.主编。
这本书是PCB行业的设计宝典,对印刷
电路设计原理、材料分析和工程设计、分析和测试进行了详细讲解,对PCB 设计和制造中的诸多关键问题,给出了详尽的要点分析及测试。
2. 《高速电路设计与仿真分析:Cadence实例设计详解》作者:邵鹏。
作者有多年的高速电路设计与仿真的工作经验,从信号完整性基本理论着手,并结合当今流行的DDRx和高速串行信号设计实例,为我们剖析了高速数字电路设计与仿真的常用设计方法和技巧。
3. 《PCB电流与信号完整性设计》(英文原版书名:PCB Currents How They Flow,How They React)作者:(美国)道格拉斯·布鲁克斯(Doulas Brooks)。
本书着重物理概念,避免复杂的数学推导,阐述了基本电路的电流源、电流造成的信号完整性问题,以及如何解决串扰和电磁干扰问题。
主要内容包括:温度、PCB传输线、反射、耦合电流、功率分配、趋肤效应、介电损耗和通孔等,并给出了每个常见问题的实用设计方案。
如果想要阅读这些书籍,可以通过一些网站或者电子书平台进行购买或下载。
另外,如果您正在寻找有关PCB方面的最新书籍或参考资料,建议您可以
搜索一些知名的科技出版社或在线书店,如Springer、Elsevier、Amazon 等,这些平台通常会发布最新的科技书籍,包括PCB方面的专业书籍。
SI信号完整性设计
【摘要】随着微电子技术和计算机技术的不断发展,信号完整性分析的应用已经成为解决高速系统设计的唯一有效途径。
借助功能强大的Cadence公司SpecctraQuest 仿真软件,利用IBIS模型,对高速信号线进行布局布线前信号完整性仿真分析是一种简单可行行的分析方法,可以发现信号完整性问题,根据仿真结果在信号完整性相关问题上做出优化的设计,从而缩短设计周期。
本文概要地介绍了信号完整性(SI)的相关问题,基于信号完整性分析的PCB 设计方法,传输线基本理论,详尽的阐述了影响信号完整性的两大重要因素—反射和串扰的相关理论并提出了减小反射和串扰得有效办法。
讨论了基于SpecctraQucst的仿真模型的建立并对仿真结果进行了分析。
研究结果表明在高速电路设计中采用基于信号完整性的仿真设计是可行的, 也是必要的。
【关键字】高速PCB、信号完整性、传输线、反射、串扰、仿真AbstractWith the development of micro-electronics technology and computer technology,application of signal integrity analysis is the only way to solve high-speed system design. By dint of SpecctraQuest which is a powerful simulation software, it’s a simple and doable analytical method to make use of IBIS model to analyze signal integrity on high-speed signal lines before component placement and routing. This method can find out signal integrity problem and make optimization design on interrelated problem of signal integrity. Then the design period is shortened.In this paper,interrelated problem of signal integrity, PCB design based on signal integrity, transmission lines basal principle are introduced summarily.The interrelated problem of reflection and crosstalk which are the two important factors that influence signal integrity is expounded. It gives effective methods to reduce reflection and crosstalk. The establishment of emulational model based on SpecctraQucst is discussed and the result of simulation is analysed. The researchful fruit indicates it’s doable and necessary to adopt emulational design based on signal integrity inhigh-speed electrocircuit design.Key WordsHigh-speed PCB、Signal integrity、Transmission lines、reflect、crosstalk、simulation目录第一章绪论 (5)第二章Candence Allegro PCB简介 (6)2.1 高速PCB的设计方法 (6)2.2 SpecctraQuest Interconnect Designer在高速信号印刷板设计中的应用.72.3 PCB板的SI仿真分析 (8)第三章信号完整性分析概论 (12)3.1 信号完整性(Signal Integrity)概念 (12)3.2 信号完整性的引发因素 (12)3.3 信号完整性的解决方案 (14)第四章传输线原理 (15)4.1 传输线模型 (15)4.2 传输线的特性阻抗 (16)第五章反射的理论分析和仿真 (19)5.1 反射形成机理 (19)5.2 反射引起的振铃效应 (20)5.3 端接电阻匹配方式 (23)5.4 多负载的端接 (28)5.5 反射的影响因素 (29)第六章串扰的理论分析和仿真 (34)6.1 容性耦合电流 (34)6.2 感性耦合电流 (35)6.3 近端串扰 (36)6.4 远端串扰 (38)6.5 串扰的影响因素 (41)第七章结束语 (46)参考文献 (47)致谢 (47)附录:A/D、D/A 采样测试板原理图和PCB板图 (61)第一章绪论随着信息宽带化和高速化的发展,以前的低速PCB已完全不能满足日益增长信息化发展的需要,人们对通信需求的不断提高,要求信号的传输和处理的速度越来越快,相应的高速PCB的应用也越来越广,设计也越来越复杂。
信号完整性揭秘:于博士SI设计手记
电源完整性是信号完整性的重要组成部分。本书最后介绍了电源完整性的基 础知识,包括电源分配网络的设计、电源噪声的来源和抑制方法等。这些知识将 帮助读者在解决电源问题时更加得心应手。
通过对于博士SI设计手记的深入剖析,我们可以看到,《信号完整性揭秘: 于博士SI设计手记》不仅提供了丰富的理论知识,还通过实例和设计指南帮助读 者更好地理解和应用这些知识。这本书无疑为电子工程领域的专业人员提供了一 本宝贵的参考书籍,无论是在学术研究还是在工程实践中,都将发挥重要的作用。 这本书也适合作为本科生和研究生的教材或参考书籍,帮助他们在学习过程中掌 握信号完整性的关键知识。
“信号完整性设计就像是侦探破案,我们需要收集线索,分析证据,然后找 出问题的真正原因。在这个过程中,我们需要有敏锐的观察力和扎实的专业知 识。”
“电子系统的设计是一个不断迭代和优化的过程。只有经过反复的实验和验 证,我们才能找到最佳的设计方案。”
这些摘录不仅展示了于博士对于信号完整性设计的深入理解,也为我们提供 了一种全新的视角来看待电子系统设计中的问题。这本书不仅适合电子设计工程 师阅读,也适合于对电子系统设计感兴趣的读者。通过这本书,我们可以更深入 地理解信号完整性的重要性以及如何解决信号完整性问题的过程。
本书接着探讨了信号完整性问题及其对系统性能的影响。反射、串扰、地弹 等问题是信号完整性的主要挑战。通过实例和理论分析,本书帮助读者理解这些 问题产生的原因和解决方法。还讨论了这些问题对系统性能的影响,包括可能导 致的数据错误和系统故障。
在高速串行互连设计中,需要了解许多复杂的知识,包括S参数、差分互连、 阻抗不连续性、抖动、均衡等。本书深入浅出地解释了这些复杂的概念,并提供 了实用的设计指南。还通过实例说明了这些知识在实际设计中的应用。
电子工程师_面试题目(3篇)
第1篇一、基础知识1. 问题:请简述基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)的内容。
解析:基尔霍夫电流定律指出,在任何电路节点,流入节点的电流之和等于流出节点的电流之和。
基尔霍夫电压定律指出,在任何闭合回路中,各段电压之和等于零。
2. 问题:什么是电容?请给出平板电容的公式。
解析:电容是电路中存储电荷的能力。
平板电容的公式为 C = ε₀εrA/d,其中C是电容,ε₀是真空电容率,εr是介电常数,A是平板面积,d是平板间距。
3. 问题:三极管有哪些主要类型?请简述NPN型和PNP型三极管的工作原理。
解析:三极管主要有NPN型和PNP型两种类型。
NPN型三极管在基极正电压作用下,电流从发射极流向集电极;PNP型三极管则相反,在基极负电压作用下,电流从发射极流向集电极。
4. 问题:什么是反馈电路?请列举反馈电路的应用。
解析:反馈电路是将放大器的输出部分(部分或全部)送回输入端,以改变放大器性能的电路。
应用包括:稳定放大器增益、改善频率响应、实现信号处理功能等。
5. 问题:负反馈有哪些种类?负反馈的优点是什么?解析:负反馈有电压并联反馈、电流串联反馈、电压串联反馈和电流并联反馈四种类型。
负反馈的优点包括:降低放大器的增益灵敏度、改善放大器的线性失真、扩展放大器的通频带、自动调节作用等。
二、模拟电路6. 问题:放大电路的频率补偿的目的是什么?有哪些方法?解析:放大电路的频率补偿的目的是为了改善放大器的频率响应,防止电路产生自激振荡。
方法包括:串联补偿、并联补偿、密勒补偿等。
7. 问题:频率响应如何判断稳定性?如何改变频响曲线?解析:频率响应的稳定性可以通过波特图来判断,如果增益裕度和相位裕度均大于零,则电路稳定。
改变频响曲线的方法包括:调整电路元件参数、引入频率补偿电路等。
8. 问题:请给出一个查分运放,如何相位补偿,并画补偿后的波特图。
解析:查分运放是一种具有较高开环增益和带宽的运放。
相位补偿可以通过串联电容来实现,以改善电路的相位裕度。
信号完整性分析的重要性
信号完整性分析的重要性信号完整性分析的重要性2009-09-10 11:27信号完整性分析的重要性今非昔比随着电子、通信技术的飞速发展,高速系统设计(HSSD)在以下几个主要方面的挑战越来越突出,且与以往绝然不同:--集成规模越来越大,I/O 数越来越多,单板互连密度不断加大;--时钟速率越来越高,信号边缘速率越来越快,导致系统和单板信号完整性(SI)问题更加突出;--产品研发以及推向市场的时间不断减少,一次性设计的成功显得非常重要;以上种种,导致高速电路中的信号完整性问题变得越来越突出。
反射、串扰、传输时延、地/电层噪声等,可以严重影响设计的功能正确性。
若在电路板设计时不考虑其影响,逻辑功能正确的电路在调试时往往会无法正常工作。
信号完整性分析的重要作用这时就越发清晰地呈现出来,如以下几个方面:(1)优化硬件原理设计--包括负载拓扑的分析、信号匹配的选型、连接器信号的分布等等;(2)解决高速PCB设计难题--不同频率和沿速率的信号质量前期分析及设计指导;针对阻抗、反射、串扰等传输线效应的控制和设计方案;信号时序的分析和设计指导等等;(3)提供信号质量问题的定位分析和诊断--产品出现的信号质量问题的分析和解决、SI测试验证等。
以上说明信号完整性分析的应用已经成为解决高速系统设计(HSSD)的唯一有效途径。
大势所趋现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的元件使得设计师的工作更加困难。
采用SI分析方法及相关技术的应用,可在PCB设计前期进行信号规则的分析(如时序和关键信号的分析),然后将分析所得的电气规则输入布线工具进行具体布线设计,这样既可在设计过程中保证信号质量,又可解放人力、提高设计效率,满足市场要求。
而这也正是现今国际领先的PCB设计方法和流程,脱离了SI分析技术就无法作到这点。
将SI深入地融入到产品开发尤其是高速PCB设计当中,最终为产品设计提供优化的解决方案,已经成了产品成功的关键一环。
PCB设计规范大全
PCB设计规范大全PCB设计规范大全1,目的规范印制电路板(以下简称PCB)设计流程和设计原则,提高PCB设计质量和设计效率,保证PCB 的可制造性、可测试、可维护性。
2,范围所有PCB 均适用。
3,名词定义3.1原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。
3.2网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。
3.3布局:PCB 设计过程中,按照设计要求,把元器件放置到板上的过程。
3.4模拟:在器件的IBIS MODEL 或SPICE MODEL 支持下,利用EDA 设计工具对PCB 的布局、布线效果进行模拟分析,从而在单板的物理实现之前发现设计中存在的EMC 问题、时序问题和信号完整性问题,并找出适当的解决方案。
3.5 SDRAM :SDRAM 是Synchronous Dynamic Random Access Memory(同步动态随机内存)的简称,同步是指时钟频率与CPU 前端总线的系统时钟频率相同,并且内部的命令的发送数据和数据的传输都以它为准;动态是指存储数组需要不断刷新来保证数据不丢失;随机是指数据不是线性一次存储,而是自由指定地址进行数据的读写。
3.6 DDR :DDR SDRAM 全称为Double Data Rate SDRAM ,DDR SDRAM 在原有的SDRAM 基础上改进而来。
DDR SDRAM 可在一个时钟周期内传送两次数据。
3.7 RDRAM :RDRAM 是Rambus 公司开发的具有系统带宽的新型DRAM ,它能在很高的频率范围内通过一个简单的总线传输数据。
RDRAM 更像是系统级的设计,它包括下面三个关键部分:3.7.1 基于DRAM 的Rambus(RDRAM );3.7.2 Rambus ASIC cells (专用集成电路单元);3.7.3 内部互连的电路,称为Rambus Channel(Rambus 通道);3.8 容性耦合:即电场耦合,引发耦合电流,干扰源上的电压变化在被干扰对象上引起感应电流而导致电磁干扰。
pcb课程设计实验
pcb课程设计实验一、教学目标本课程的教学目标是让学生掌握PCB(印刷电路板)设计的基本原理和技能,能够使用相关软件进行PCB设计,了解PCB制作的整个流程。
知识目标包括:掌握PCB的基本概念、设计原理和制作流程;了解常见的PCB设计软件和制作设备;理解PCB设计中的信号完整性、电源完整性和热设计等关键问题。
技能目标包括:能够使用至少一种PCB设计软件进行原理图绘制、PCB布局和布线;能够进行PCB设计文件的检查和修改;能够进行PCB制作的初步操作。
情感态度价值观目标包括:培养学生对电子技术的兴趣和热情,提高学生解决实际问题的能力,培养学生的创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括PCB的基本概念、设计原理、制作流程和相关软件的使用。
具体包括以下几个方面:1. PCB的基本概念和分类;2. PCB设计原理,包括信号完整性、电源完整性、热设计等;3. PCB制作流程,包括原理图绘制、PCB布局和布线、设计文件检查和修改等;4. 常见的PCB设计软件的使用,如Altium Designer、Eagle等;5. PCB制作的初步操作,如钻孔、雕刻、焊接等。
三、教学方法本课程采用多种教学方法,包括讲授法、案例分析法、实验法等。
讲授法用于讲解PCB的基本概念、设计原理和制作流程;案例分析法用于分析实际设计中的问题,如信号完整性、电源完整性等;实验法用于让学生亲手操作,掌握PCB设计的实际操作技能。
通过多样化的教学方法,激发学生的学习兴趣和主动性,提高学生的实践能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材和参考书用于提供理论知识,多媒体资料用于辅助讲解和展示,实验设备用于让学生进行实际操作。
教学资源的选择和准备应充分支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。
平时表现主要评估学生在课堂上的参与程度、提问和回答问题的积极性和表现,占总评的20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB与信号完整性分析基础目录前言Array信号完整性(Signal Itegrity)概念信号完整性(Signal Itegrity)原理信号完整性仿真技术信号完整性工程设计应用高速系统带来的挑战Digital Clock Frequencies are Increasing: doubling every 2 years!All noise effects increase as rise times decrease and clock frequencies increase现在的设计有成百上千的高速信号。
各种工艺、器件和信号类型有不同的信号质量要求:3.3V 器件由不同于5V器件的噪声裕量时钟信号由不同于总线的时序要求PCI总线由不同于ISA总线的过冲限制印制板上的互连线对信号有明显的影响,必须加以分析。
没有任何一种设计指南完全覆盖现在的所有设计。
对标准设计指南的强制应用,必将造成过头的设计,增加了制造成本和复杂程度。
关键信号和总线必须基于实际情况加以设计和分析。
现实世界的现状信号完整性设计工程就是解决以上问题50 MHzNO5MHz 20MHz 随着系统速度的提高问题将更加复杂何时判断是否高速设计今天电子设计师们正在从事100MHz 以上的电路设计,总线的工作频率也已经达到或者超过50MHz,有的甚至超过100MHz。
这类型的电子系统要求高速、高效、高度集成且具备高可靠性,这是一个新的领域,称为高速系统设计(HssD,High Speed System Design)。
高速电路有两个方面的含义:一是频率高,通常认为如果数字逻辑电路设计的频率达到或者超过45MHz~50MHz,而且工作在这个频率的电路已经占整个电子系统一定的份量(例如三分之一),则称为高速电路设计。
另外一个含义是指数字信号的上升与下降(或称信号的跳变)非常之快,当信号的上升时间小于6倍(一说4倍)信号传输延时(电长度)时即认为信号是高速信号,而与信号的频率无关。
SI:新概念,旧方法SI应用的是传统的传输线、电磁学等理论,以及复杂的算法,解决以下几个方面的问题:*反射;*串扰;*过冲、振铃、地弹、多次跨越逻辑电平错误;*阻抗控制和匹配*EMC; *热稳定性;*时序分析 *芯片封装设计;.............必须注意,信号完整性设计不仅是PCB上如何走线,它是一个逻辑的、机械的和电气的元素的有机整体,信号完整性工程师要具有"系统的概念"。
信号完整性分析作用提高系统性能、可靠性与稳定性优化验证,减少投板次数减少与简化,有效降低成本缩短开发周期提高产品竞争力解决高速系统设计(HSSD)的唯一有效途径目录前言信号完整性(Signal Integrity)原理信号完整性仿真技术信号完整性工程设计应用信号完整性(SI)定义SI(SIGNAL INTEGRITY),即信号完整性,是近几年发展起来的新技术。
SI解决的是信号传输过程中的质量问题,尤其是在高速领域,数字信号的传输不能只考虑逻辑上的实现,物理实现中数字器件开关行为的模拟效果往往成为设计成败的关键。
信号完整性问题分类传输延时(Propagation Delay)信号失真(反射、振铃、损耗、散射)串扰(Crosstalk)电源/地弹(Ground Bounce)EMC目录前言信号完整性(Signal Itegrity)概念信号完整性(Signal Itegrity)原理信号完整性仿真技术信号完整性工程设计应用为什么用传输线进行SI分析PCB板上的信号传输速率越来越高,PCB走线已经表现出传输线的性质,在集总电路中视为短路线的连线上,在同一时刻的不同位置的电流电压已经不同,所以不能再用集总参数来表示,必须采用分布参数传输线理论来处理。
传输线的模型可以表示如下图:图一:单根传输线模型单根传输线的分析方法对于(图一)传输线的性质可以用电报方程来表达,电报方程如下: dU/dz = ( R + jwL) I dI/dz = ( G +jwC) U电报方程的解为:U=Ae rz+Be−rzI=Ae rz/Zo−Be−rz/Zo通解中的为传播常数r=(R+jwL)(G+jwC)为特征阻抗Zo=(R+jwL)+(G+jwC)由于R, G 远小于 jwL、jwC,所以通常所说的阻抗是指:Zo=L/C从通解中可以看到传输线上的任意一点的电压和电流都是入射波和反射波的叠加,传输因此传输线上任意一点的输入阻抗值都是时间、位置、终端匹配的函数,再使用输入阻抗来研究传输线已经失去意义了,所以引入了特征阻抗、行波系数、反射系数的概念描述传输线。
特征阻抗的物理意义就是:入射波的电压和入射波的电流的比值,或反射波的电压和反射波电流的比值。
电磁波在介质的中的传输速度只与介质的介电常数或等效介电常数有关。
FR4带状线的典型传输速度为180ps/inch单根传输线的分析方法(续)耦合传输线分析由于信号之间存在耦合,就引出了有效特征阻抗的概念:若传输线加相反激励,则有效特征阻抗为:Zo= Z(1-K),即奇模阻抗;若传输线加相同激励,则有效特征阻抗为:Ze= Z(1+K),即偶模阻抗。
差分阻抗就是奇模阻抗的两倍。
K为两根传输线之间的耦合系数。
t 导线介质地平面导线介质地平面A、微带线:B、嵌入式微带线:几种PCB设计常用的传输线结构(一)几种PCB 设计常用的传输线结构(二)导线介质地平面地平面导线介质地平面地平面h h 1t C 、对称带状线:D 、:不对称带状线几种PCB设计常用的传输线结构(三)导线介质地平面导线介质地平面地平面E、微带线边对边耦合:F、带状线边对边耦合:几种PCB 设计常用的传输线结构(四) G、对称上下耦合:H 、不对称上下耦合:导线介质地平面地平面导线介质地平面地平面阻抗的控制1、为什么要进行阻抗控制?阻抗匹配不但可以消除信号的反射,还可以降低串扰、EMI问题的发生。
而阻抗匹配的前提是良好的阻抗控制。
2、哪些因素对阻抗有影响?走线类型、介质厚度、线宽、线间距、介质材料等都对阻抗有贡献,需要综合考虑这些影响。
简单的讲,就是所有影响信号耦合的因素3、现在能够进行阻抗控制的工具有哪些?现在我们所有的分析工具都可以进行阻抗控制。
基本上都是用二维场提取的方式进行阻抗计算。
阻抗的测试1、阻抗测试的原理:现在比较常用的阻抗测试仪采用TDR原理,即向被测走线输出一个阶跃信号,由于信号在阻抗变化点发生反射,测试仪通过采集到的不同点的反射,计算出各点的阻抗。
为了保证阻抗测试的准确性,必须保证被测线段的足够长度2、阻抗测试设备:11801C采样示波器+SD24采样/TDR/TDT探头反射·产生的原因:电磁波沿信号路径传播,在阻抗不连续点产生反射阻抗不连续点产生反射反射的计算:·信号在始端和末端来回反射·由于损耗的存在,反射信号逐渐减弱,最后达到平衡(Zs-Zo)/(Zs+Zo)(ZL-Zo)/(ZL+Zo)常见匹配方法串联端接匹配接收端开路或输入阻抗很大时放置RS=Z0 -R0(一般要小一点)在源端。
优点:没有直流通路,因此不用备用的电源和没有高电平衰减,RS可以集成在芯片内部。
缺点:典型的情况下只能用于单负载结构;如果时序允许的话,增加的负载要放在线的末端附近。
当Z0 和R0不好控制或者当一些过冲和下冲能够被容忍的时候,通常RS<<Z0 -R0。
)常见匹配方法(续并联端接匹配匹配电阻在负载端连接到电源或地,优点:和串联匹配相比只有一半的容性延迟。
缺点:增加了直流功耗;输出摆幅不再是全摆幅。
改进方式是thevenin等效匹配,对TTL 3V 偏置的匹配R1/R2=2/3; R1||R2=Z0。
交流并联匹配是通过牺牲信号质量来换取直流功耗的减小。
常见匹配方法(续)二极管端接匹配在接受端放置肖特基二极管到电源或地优点:二极管限制了过冲(小于或等于1V);二极管可以集成在每一个接受器的芯片内部;不需要直流通路来消耗直流功耗。
缺点:二极管匹配的缺点之一就是在线路上存在多径反射而影响到下一个数据的开始,因此需要在变化频率下校对二极管的响应。
为了很好地的利用这种匹配的优点,你必须选择Ton,Vf,Trr时间小的肖特基二极管。
常见匹配方法(续)AC匹配(RC匹配)优点:在于终端电容阻止直流电流,因此节省了相当可观的功率。
选择适当的电容值会使得终端的波形具有最小的过冲和下冲并且是一个接近理想的方波。
缺点:一是要求了两个器件,在高密板时布局时无放置空间;二是在传输线上的数据会有时间的抖动,依赖于前一个数据的模式串扰与耦合当两个网络靠近时,一个网络的电流变化会引起另外一个网络的电流变化,即产生串扰。
也就是两个网络之间的电磁场耦合产生。
串扰只在上升、下降沿电流变化时产生。
串扰与耦合机理串扰模型:电感耦合模型(感性串扰)和电容耦合模型(容性串扰)。
串扰与耦合机理感性串扰的特点:受害网络与侵害网络之间互感的影响象一个变压器,侵害网络上的电流在受害网络上诱导出与侵害电流相反极性的电流。
这个电流在受害网络上向两个方向扩散。
受害网络向远端和近端流动的电流的相位相同,且信号跳变方向与侵害网络相反。
串扰与耦合机理容性串扰的特点:受害网络向远端和近端流动的电流的相位相反,向远端传播的电流与侵害网络的跳变方向一致。
串扰与耦合机理前向串扰: 1/2Ic-IL后向串扰: 1/2Ic+IL在理想情况下,前向串扰是相抵消的,通常IL比Ic大。
后向串扰脉冲幅度饱和,宽度是信号在平行耦合线长度上传输时间的两倍,前向串扰脉冲宽度与驱动信号上升时间相同,幅度随耦合长度增加而增加,最终达到饱和。
串扰与耦合机理危害:波形畸变噪声余量减少上升时间变化。
串扰与耦合机理容性串扰电流和感性串扰电流在远端相消。
所以平行走线的网络,如果驱动源都在网络的同一端,则串扰很小;如果驱动源在不同端,则串扰很大。
对于平行走线的网络,容性串扰和感性串扰在近端相加,并从近端反射到远端。
所以对于受害网络的负载来说,最大的串扰来自从近端反射回去的串扰(后向串扰),而不是直接入射的串扰(前向串扰)。
因为源端匹配元件能够较好地吸收后向串扰,所以能够更好地消除总串扰。
影响串扰的因素信号的跃变时间(Tr ,Tf)与频率器件的电压扇出PCB上的线耦合电源、地层与信号层间距相邻信号层间距线间距与并行走线长度回流耦合路径PCB材料信号的耦合模式串扰的控制选择慢变化边沿信号的器件。
选择输出电流小的器件。
为了减少PCB上的线间耦合,可采取以下措施:1)减少电源地层与信号层间距2)提高相邻信号层间距3)减少并行走线长度4)当线长增加到一定限度时串扰饱和,可增加线间距抑制5)增加干扰源上的信号上升时间6)在受害线上采用匹配技术(通过仿真决定)7)关键信号线走STRIPLINE把噪声裕量大的信号放在耦合大的区域(在布局是进行控制)尽量避免信号的同时变化,特别是反向同步变化(在实际中可能性不大)。