3.2.2导数的计算
3.2.2导数的运算法则
3.2.2 导数运算法则一、学习目标:1.掌握两个函数的和、差、积、商 求导法则.2.熟练运用导数的四则运算法则求含有和、差、积、商综合运算的函数的导数.(重难点)二、自主学习:2.阅读课本P84完成下列填空:(1). ()()f x g x '⎡⎤±=⎣⎦____________________________________.(2). ()()f x g x '⎡⎤⋅=⎣⎦_____________________________________. (3). ()()f x g x '⎡⎤=⎢⎥⎣⎦___________________________________________. 3.利用导数的运算法则求出()y cf x =的导数.三、课堂练习:1.求下列函数的导数.(1)log y x x =+32;(2)n x y x e =;(3)y xx x =-+-522354; (4)sin cos x y x=.2.已知函数()f x x =-2138,且()f x '=04,求x 0.3.已知函数ln y x x =.(1)求这个函数的导数;(2)求这个函数的图象在点x =1处的切线方程四、课堂小结:我的收获:______________________________________________.我的疑惑:______________________________________________.五、课后练习:1.求下列函数的导数.(1)sin y x x =+33;(2)cos x y =22;(3)log x y e x =+2.2. 曲线sin sin cos x y x x =+在点,π⎛⎫ ⎪⎝⎭06处的切线斜率为___________. 3.已知曲线y x x x =-+-32329在x x =0处的导数为11,则x =0_____________.4. 若曲线()sin f x x x =⋅+1在x π=2处的切线与直线ax y ++=210互相垂直,求实数a 的值.。
3.2.2基本初等函数的导数公式及导数的运算法则(课件)
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .
3.2.2 导数的运算法则
导数的求导法则
例题
1、求下列函数的导数 3 y x sin x 1)y=x -2x+3 2) 2 x 3)y (2 x 5x 1) e
x 4)y x 4
(1) y
log2 x (2) y 2e 3 2 y 2x 3x 4 (3) y 3cos x 4sin x ln x ( 4) y ( 6 ) y x ln x ( 5) x
x
2 y = x (7) +tanx
练习 1、求下列函数的导数
例题
2、(2013年高考大纲卷(文))已知曲线
4 2
y x ax 1在点 -1,a 2 处切线的
斜率为8,a=
3、(2013年高考北京卷(文))已知函数 2 f ( x) x x sin x cos x . (Ⅰ)若曲线 y f ( x) 在点 (a, f (a)) 处与直线 y b 相切,求 与 的值.
b
a
练习
1、(2013年高考课标Ⅰ卷(文))已知函数 ,曲线 处切线方程为 在点 .
(Ⅰ)求
a 与b 的值.
练习
2、(2013年高考福建卷(文))已知函数 ( , 为自然 对数的底数). 处 在点 (1)若曲线 的切线平行于 轴,求 的值;
例题
1.已知 f (x) =(x2+1)2+(x+1)2+1,则 f ′ (x) 等于( ) (A) 2(x2+1)+2(x+1) (B)(2x+1)2+22 (C) 2(2x+1)+2×2 (D) 4x3+6x+2 2.设 f (x) = (2x-1)(3-x),则 f ′(0) =________.
3.2.2基本初等函数的导数公式及导数的运算法则(第1课时)
托克旗高级中学高二年级数学科导学案 文科选修1-1 第三章导数及其应用§3.2.2基本初等函数的导数公式及导数的运算法则 苏海霞 编写 第20周 第 1页(共 2 页) 第 2页(共 2 页)主动 自信 合作 探究 发展自己 成就未来 安全是幸福家庭的保证,事故是人生悲剧的祸根姓名: 班级: 小组: 小组评价: 教师评价:§3.2.2基本初等函数的导数公式及导数的运算法则第1 课时 上课时间:【教学目标】1. 熟练的记忆导数的计算公式;学会用导数的计算公式计算的函数的导数.2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 3理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 【重点难点】1.导数的计算公式,导数的计算公式的应用2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;3.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 一、知识链接1.函数()y f x c ==的导数2.函数()y f x x ==的导数;3.函数1()y f x x==的导数; 4.函数2()y f x x ==的导数二、独立预习1.基本初等函数的导数公式:①='C ②=)'(nx ③=)'(sin x ④=)'(cos x⑤=')(x a ⑥=')(x e ⑦='][log x a ⑧=')(ln x2.导数的运算法则:①()()[]=±'x g x f ②()()[]='x g x f③()()=⎥⎦⎤⎢⎣⎡'x g x f ④ ()[]='x cf 三、合作交流探究任务一、基本初等函数的导数公式: 根据常见函数的导数公式计算下列导数(1)6y x = (2)y =(3)21y x =(4)y =四、探究展示探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±; [()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'=; 例1.根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.变式:(1)522354y x x x =-+-; (2)3cos 4sin y x x =-.五、反馈总结1、 求下列函数的导数:(1)2log y x =; (2)2xy e =; (3)32log y x x =+; (4)n xy x e =; (5)31sin x y x-=2、(1)323y x x =-+ (2)sin y x x =⋅; (3)2(251)x y x x e =-+⋅; (4)4xx y =;3. 函数1y x x =+的导数是( ) A .211x - B .11x - C .211x + D .11x+4. 函数sin (cos 1)y x x =+的导数是( ) A .cos 2cos x x - B .cos 2sin x x + C .cos 2cos x x + D .2cos cos x x +5. cos xy x =的导数是( )A .2sin x x-B .sin x -C .2sin cos x x x x +- D .2cos cos x x x x +- 6. 函数2()138f x x =-,且0()4f x '=,则0x =7. 已知2()f x x =,则(3)f '=( )A .0B .2xC .6D .9[小结] 六、课后反思。
3.2.2基本初等函数的导数公式及倒数的运算法则 课件
[解] (1)y′=12x3-6x2-18x,y′|x=1=-12, 所以曲线过点(1,-4)的切线斜率为-12, 所以所求切线方程为 y+4=-12(x-1), 即 y=-12x+8.
=6x3-4x2+9x-6, ∴y′=18x2-8x+9.
(3)解法一:y′=(xx+-11)′ =x-1′x+1x+-1x2-1x+1′ =x+1x+-1x2-1=x+212. 解法二:∵y=xx-+11=x+x+1-1 2=1-x+2 1,
∴y′=(1-x+2 1)′=(-x+2 1)′ =-2′x+1x+-122x+1′=x+212.
(8)若 f(x)=lnx,则 f′(x)=___x_____.
2.导数运算法则
(1)[f(x)±g(x)]′=__f′___x__±_g_′___x___________.
(2)[f(x)·g(x)]′=__f′___x__g__x_+___f_x__g_′___x_ __. f (x)g(x)-f (x)g(x)
[点拨] (2)是存在性问题,先假设存在,通过推理、计 算,看能否得出正确的结果,然后下结论,本题的难点在于 对式子的恒等变形.
练 3 在曲线 y=x3+3x2+6x-10 的切线中,求斜率最 小的切线方程.
[解] y′=3x2+6x+6=3(x+1)2+3,∴当 x=-1 时, 切线的斜率最小,最小斜率为 3,此时,y=(-1)3+3×(- 1)2+6×(-1)-10=-14,切点为(-1,-14).∴切线方程 为 y+14=3(x+1),即 3x-y-11=0.
3.2.2基本初等函数的导数公式及导数的运算法则(2)
§3.2.2根本初等函数的导数公式及导数的运算法那么课前预习学案一. 预习目标1.熟练掌握根本初等函数的导数公式; 2.掌握导数的四那么运算法那么;3.能利用给出的根本初等函数的导数公式和导数的四那么运算法那么求简单函数的导数二. 预习内容1.根本初等函数的导数公式表 2.(2 )推论:[]'()cf x =(常数与函数的积的导数 ,等于: )三. 提出疑惑同学们 ,通过你的自主学习 ,你还有哪些疑惑 ,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一. 学习目标1.熟练掌握根本初等函数的导数公式; 2.掌握导数的四那么运算法那么;3.能利用给出的根本初等函数的导数公式和导数的四那么运算法那么求简单函数的导数二. 学习过程(一 ) .【复习回忆】复习五种常见函数y c =、y x =、2y x =、1y x=、y x = (二 ) .【提出问题 ,展示目标】我们知道,函数*()()ny f x x n Q ==∈的导数为'1n y nx-= ,以后看见这种函数就可以直接按公式去做 ,而不必用导数的定义了 .那么其它根本初等函数的导数怎么呢 ?又如何解决两个函数加 .减 .乘 .除的导数呢 ?这一节我们就来解决这个问题 . (三 )、【合作探究】 1. (1 )分四组比照记忆根本初等函数的导数公式表函数导数 y c = y x =2y x =1y x=y x =*()()n y f x x n Q ==∈函数导数y c ='0y = *()()n y f x x n Q ==∈'1n y nx -=sin y x = 'cos y x = cos y x ='sin y x =-()x y f x a =='ln (0)x y a a a =⋅>(2 )根 据根本初等函数的导数公式 ,求以下函数的导数.(1 )2y x =与2xy =(2 )3xy =与3log y x =2. (1 )记忆导数的运算法那么 ,比拟积法那么与商法那么的相同点与不同点导数运算法那么1.[]'''()()()()f x g x f x g x ±=±2.[]'''()()()()()()f x g x f x g x f x g x ⋅=±3.[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 推论:[]''()()cf x cf x =(常数与函数的积的导数 ,等于: )提示:积法那么,商法那么, 都是前导后不导, 前不导后导, 但积法那么中间是加号, 商法那么中间是减号.(2 )根据根本初等函数的导数公式和导数运算法那么 ,求以下函数的导数. (1 )323y x x =-+ (2 )sin y x x =⋅;(3 )2(251)xy x x e =-+⋅; (4 )4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数 ,必须细心、耐心. (四 ).典例精讲例1:假设某国|家在20年期间的年均通货膨胀率为5% ,物价p (单位:元 )与时间t(单位:年 )有如下函数关系0()(15%)tp t p =+ ,其中0p 为0t =时的物价.假定某种商品()xy f x e == 'xy e =()log a f x x ='1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x ='1()f x x=的01p = ,那么在第10个年头 ,这种商品的价格上涨的速度大约是多少 (精确到0.01 ) ?分析:商品的价格上涨的速度就是: 解:变式训练1:如果上式中某种商品的05p = ,那么在第10个年头 ,这种商品的价格上涨的速度大约是多少 (精确到0.01 ) ?例2日常生活中的饮水通常是经过净化的.随着水纯洁度的提高 ,所需净化费用不断增加.将1吨水净化到纯洁度为%x 时所需费用 (单位:元 )为求净化到以下纯洁度时 ,所需净化费用的瞬时变化率: (1 )90% (2 )98%分析:净化费用的瞬时变化率就是: 解:比拟上述运算结果 ,你有什么发现 ? 三.反思总结:(1 )分四组写出根本初等函数的导数公式表: (2 )导数的运算法那么:四.当堂检测1求以下函数的导数(1 )2log y x = (2 )2xy e =(3 )32234y x x =-- (4 )3cos 4sin y x x =- 2.求以下函数的导数(1 )ln y x x = (2 )ln xy x=课后练习与提高1.函数()f x 在1x =处的导数为3 ,那么()f x 的解析式可能为: A ()2(1)f x x =- B 2()2(1)f x x =- C 2()(1)3(1)f x x x =-+- D ()1f x x =-2.函数21y ax =+的图像与直线y x =相切 ,那么a =A18 B 14 C 12D 1 3.设函数1()n y x n N +*=∈在点 (1,1 )处的切线与x 轴的交点横坐标为n x ,那么12n x x x ••⋅⋅⋅•=A l nB l 1n +C 1n n + D 14.曲线21xy xe x =++在点 (0,1 )处的切线方程为 - - - - - - - - - - - - - - - - - - -5.在平面直角坐标系中 ,点P 在曲线3103y x x =-+上 ,且在第二象限内 ,曲线在点P 处的切线的斜率为2 ,那么P 点的坐标为 - - - - - - - - - - - -6.函数32()f x x bx ax d =+++的图像过点P (0,2 ) ,且在点(1,(1))M f --处的切线方程为670x y -+= ,求函数的解析式 .课后练习与提高答案:1.C 2.B 3.B 4.310x y -+= 5. ( -2,15 )6.由函数32()f x x bx cx d =+++的图像过点P (0,2 ) ,知2d = ,所以32()2f x x bx cx =+++ ,由在点(1,(1))M f --处的切线方程为670x y -+=知:/(1)1(1)6f f -=⎧⎨-=⎩所以321126b c b c -+=⎧⎨-+-+=⎩解得:3b c ==- 故所求函数的解析式是32()332f x x x x =--+3.2.2根本初等函数的导数公式及导数的运算法那么 (教案 )教学目标:1.熟练掌握根本初等函数的导数公式; 2.掌握导数的四那么运算法那么;3.能利用给出的根本初等函数的导数公式和导数的四那么运算法那么求简单函数的导数 . 教学重难点: :根本初等函数的导数公式、导数的四那么运算法那么 教学过程:检查预习情况:见学案 目标展示: 见学案 合作探究:(1 )根本初等函数的导数公式表(2 )根据根本初等函数的导数公式 ,求以下函数的导数.(1 )2y x =与2xy = (2 )3x y =与3log y x = 2. (1 )导数的运算法那么导数运算法那么函数 导数y c = '0y = *()()n y f x x n Q ==∈ '1n y nx -=sin y x = 'cos y x = cos y x ='sin y x =-()x y f x a == 'ln (0)x y a a a =⋅>()x y f x e == 'x y e =()log a f x x ='1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x ='1()f x x=1.[]'''()()()()f x g x f x g x ±=±2.[]'''()()()()()()f x g x f x g x f x g x ⋅=±3.[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 推论:[]''()()cf x cf x =(常数与函数的积的导数 ,等于常数乘函数的导数 )提示:积法那么,商法那么, 都是前导后不导, 前不导后导, 但积法那么中间是加号, 商法那么中间是减号.(2 )根据根本初等函数的导数公式和导数运算法那么 ,求以下函数的导数. (1 )323y x x =-+ (2 )sin y x x =⋅;(3 )2(251)xy x x e =-+⋅; (4 )4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数 ,必须细心、耐心.典型例题例1 假设某国|家在20年期间的年均通贷膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+ ,其中0p 为0t =时的物价.假定某种商品的01p = ,那么在第10个年头 ,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据根本初等函数导数公式表 ,有'() 1.05ln1.05tp t =所以'10(10) 1.05ln1.050.08p =≈ (元/年 )因此 ,在第10个年头 ,这种商品的价格约为0.08元/年的速度上涨.例 2 日常生活中的饮用水通常是经过净化的. 随着水纯洁度的提高 ,所需净化费用不断增加. 将1吨水净化到纯洁度为%x 时所需费用 (单位:元 )为5284()(80100)100c x x x=<<-. 求净化到以下纯洁度时 ,所需净化费用的瞬时变化率:(1 )90%; (2 )98%.解:净化费用的瞬时变化率就是净化费用函数的导数.(1)因为'25284(90)52.84(10090)c ==- ,所以 ,纯洁度为90%时 ,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==- ,所以 ,纯洁度为98%时 ,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知 ,''(98)25(90)c c =.它表示纯洁度为98%左右时净化费用的瞬时变化率 ,大约是纯洁度为90%左右时净化费用的瞬时变化率的25倍.这说明 ,水的纯洁度越高 ,需要的净化费用就越多 ,而且净化费用增加的速度也越快. 反思总结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法那么与导数公式求导 ,而不需要回到导数的定义去求此类简单函数的导数. 2.对于函数求导 ,一般要遵循先化简 ,再求导的根本原那么.求导时 ,不但要重视求导法那么的应用 ,而且要特别注意求导法那么对求导的制约作用.在实施化简时 ,首|先要注意化简的等价性 ,防止不必要的运算失误.当堂检测1. 函数1y x x=+的导数是 ( ) A .211x - B .11x - C .211x+ D .11x +2. 函数sin (cos 1)y x x =+的导数是 ( ) A .cos2cos x x - B .cos2sin x x + C .cos2cos x x + D .2cos cos x x +3. cos xy x =的导数是 ( )A .2sin xx- B .sin x -4. 函数2()1382f x x x =-+ ,且0()4f x '= , 那么0x =5.曲线sin xy x=在点(,0)M π处的切线方程为 板书设计 略。
3.2.2基本初等函数的导数公式及导数的运算法则
§基本初等函数的导数公式及导数的运算法则【运用课时】:1课时【学习目标】:1 .娴熟驾驭基本初等函数的导数公式;2 .驾驭导数的四则运算法则;3 .能利用给出的基本初等函数的导数公式和导数的四则运算法则求简洁函数的导数【学习重点】:基本初等函数的导数公式、导数的四则运算法则【学习方法】:分组探讨学习法、探究式.【学习过程】:一、课前打算(预习教材R,,找出怀疑之处)1 .基本初等函数的导数公式表2.导数的运算法则(常数与函数的积的导数,等于:二、新课导,学学习探究(完成课前打算)典型例题例1:假设某国家在20年期间的年均通货膨胀率为5%,物价P(单位:元)与时间/(单位:年)有如下函数关系P(Z)=PO(I+5%)',其中PO 为,=0时的物价.假定某种商品的PO=1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:变式训练1:假如上式中某种商品的Po=5,那么在第IO 个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为x%时所需费用(单位:元)为求净化到下列纯净度时,所需净化费用的瞬时改变率:.(1)90%(2)98%分析:净化费用的.瞬时改变率就是:比较上述运算结果,你有什么发觉?当堂检测2 .求下列函数的导数]∩X (1) y=xln% (2)y= -----------X 学习小结1 .由常数函数、事函数及正、余弦函数经加、减、乘运算得到的简洁的函数均可利用求导法则与导数公式求导,而不须要回到导数的定义去求此类简洁函数的导数.2 .对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特殊留意求导法则对求导的制约作用.在实施化简时,.首先要留意化简的等价性,避开不必要的运算失误.X 学问拓展1 .复合函数的导数:设函数"=g(x)在点X 处有导数〃;=g'(x),函数产4〃)在点X 的对应点〃处 有导数E=/'(〃),则复合函数y=f(g(K))在点X 处也有导数,且y ∖∙=y)∕χ2 .复合函数求导的基本步骤是:分解一一求导一一相乘一一回代.三、课后练习与提高1 .函数y=x+∙!■的导数是( ) XA.1-4-B.1--C.1+-VD.1+-XXXX 2 .函数y=SinMcosx+1)的导数是( )4 .己知函数/*)在X=I 处的导数为3,则/(x)的解析式可能为:A∕(x)=2(x -1) B∕(X )=2(X -1)2C f(x)=(x-1)2+3(x-1)D/(x)=X-I5 .函数y=αχ2+ι的图像与直线y=χ相切,则〃=6 .设函数y 二V"("∈N')在点(1,1)处的切线与X 轴的交点.横坐标为相,则内∙Ν2=11 n A- B---------- C ------------------------ ,D1 n 〃+1 /?+17 .曲线>=加'+2工+1在点(0,1)处的切线方程,为----------------8 .函数/(x)=13-8x+-Jlx 1,且f ∖x 0)=4,则与=9 .曲线尸包丝在点MgO)处的切线方程为1求下列函数的导数(O y=Iog 2(3) y=2x 3-3x 2-4(2)y=2e x (4) j=3cosx-4sinx A.cos2x-cosXC.cos2x+cosx3.y=9的导数是B.cos2x+sinx D.cos 2%+cosX ) XλSinX A.——— B. -sinx xsinX+cosxXT XCOSX+COSX XTX10 .在平面直角坐标系中,点P在曲线y=d-10x+3上,且在其次象限内,已知曲线在点P处的切线的斜率为2,则P点的坐标为I1.已知函数F(X)=X法2+依+〃的图像过点P(。
2021年高中数学第三章导数及其应用3.2.2导数的运算法则学案含解析人教A版选修1_1.doc
3.2.2 导数的运算法则自主预习·探新知情景引入如何求得下列函数的导数呢? 1.y =x 5+x 3-x 2+3; 2.y =e x-sin x +ln x ; 3.y =cos 2x2-sin 2x2.新知导学 导数的运算法则和差的导数 [f (x )±g (x )]′=__f ′(x )±g ′(x )__积的导数[f (x )·g (x )]′=__f ′(x )g (x )+f (x )·g ′(x )__ 商的导数[f xg x]′=__f ′xg x -f x g ′xg 2x__(g (x )≠0)预习自测1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( A ) A .1 B . 2 C .-1D .0[解析] ∵f (x )=ax 2+c ,∴f ′(x )=2ax , 又∵f ′(1)=2a ,∴2a =2,∴a =1. 2.已知f (x )=e xln x ,则f ′(x )=( C ) A .e xxB .e x+1xC .e xx ln x +1xD .1x+ln x[解析] f ′(x )=(e x)′ln x +e x(ln x )′=e xln x +exx=exx ln x +1x.3.(2020·全国卷Ⅰ理,6)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( B )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1[解析] ∵f (x )=x 4-2x 3,∴f ′(x )=4x 3-6x 2,∴f ′(1)=-2,又f (1)=1-2=-1, ∴所求的切线方程为y +1=-2(x -1),即y =-2x +1.故选B .4.(2020·全国卷Ⅲ文,15)设函数f (x )=e xx +a .若f ′(1)=e 4,则a =__1__.[解析] 由于f ′(x )=exx +a -e x x +a 2,故f ′(1)=e a1+a2=e4,解得a =1.5.求下列函数的导数: (1)y =sin x -2x 2; (2)y =(2x 2+3)(3x -2); (3)y =excos x.[解析] (1)y ′=(sin x -2x 2)′ =(sin x )′-(2x 2)′ =cos x -4x .(2)y ′=(2x 2+3)′(3x -2)+(2x 2+3)(3x -2)′ =4x (3x -2)+3(2x 2+3) =12x 2-8x +6x 2+9 =18x 2-8x +9.(3)y ′=⎝ ⎛⎭⎪⎫e xcos x ′=ex′·cos x -cos x ′·excos 2x =excos x +sin xcos 2x互动探究·攻重难互动探究解疑 命题方向❶导数的四则运算法则的应用典例1 求下列函数的导数:(1)y =(x +1)2(x -1); (2)y =x 2sin x ; (3)y =1x +2x 2+3x3;(4)y =x tan x -2cos x. [解析] (1)解法一:y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)(x -1)+(x +1)2=3x 2+2x -1.解法二:y =(x 2+2x +1)(x -1)=x 3+x 2-x -1,y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)y ′=(x 2sin x )′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(3)y ′=⎝ ⎛⎭⎪⎫1x +2x 2+3x 3′=(x -1+2·x -2+3·x -3)′=-x -2-4x -3-9x -4=-1x 2-4x 3-9x4.(4)y ′=⎝ ⎛⎭⎪⎫x sin x cos x -2cos x ′=⎝ ⎛⎭⎪⎫x sin x -2cos x ′=x sin x -2′cos x +x sin x -2sin xcos 2x=sin x +x cos xcos x +x sin 2x -2sin xcos 2x=sin x cos x +x -2sin x cos 2x =tan x +x cos 2 x -2tan xcos x. 『规律方法』 1.符合导数运算法则形式特点的函数求导可直接用公式,注意不要记错用混积商的导数运算法则.①[f (x )g (x )]′≠f ′(x )g ′(x );②⎣⎢⎡⎦⎥⎤f x g x ′≠f ′x g ′x .2.公式[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )的推广为[f 1(x )·f 2(x )·f 3(x )…f n (x )]′=f 1′(x )f 2(x )f 3(x )…f n (x )+f 1(x )f 2′(x )f 3(x )f 4(x )…f n (x )+…+f 1(x )f 2(x )…f n ′(x )3.较为复杂的求导运算,一般要先将函数化简,再求导. ┃┃跟踪练习1__■ 求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);(3)y =x -1x +1. [解析] (1)y ′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x sin x cos x ′=x sin x ′cos x -x sin x cos x ′cos 2x=sin x +x cos x cos x +x sin 2xcos 2x =sin x cos x +xcos 2x. (2)解法一:y ′=[(x +1)(x +2)(x +3)]′ =[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11;解法二:∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11; (3)解法一:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12;解法二:∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=2x +12.命题方向❷利用导数求参数典例2 (2020·云南昆明高二调研)已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.[思路分析] 本题主要考查利用导数求解参数问题,观察y =f ′(x )的图象可知y =f ′(x )过点(1,0)、(2,0),即f ′(1)=0,f ′(2)=0.[解析] ∵f ′(x )=3ax 2+2bx +c ,且f ′(1)=0、 f ′(2)=0、 f (1)=5, ∴⎩⎪⎨⎪⎧3a +2b +c =012a +4b +c =0a +b +c =5,解得⎩⎪⎨⎪⎧a =2b =-9c =12.∴函数y =f (x )的解析式为f (x )=2x 3-9x 2+12x .『规律方法』 1.导数的应用中,求导数是一个基本解题环节,应仔细分析函数解析式的结构特征,根据导数公式及运算法则求导数,不具备导数运算法则的结构形式时,先恒等变形,然后分析题目特点,探寻条件与结论的联系,选择解题途径.2.求参数的问题一般依据条件建立参数的方程求解. ┃┃跟踪练习2__■偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.[解析] ∵f (x )的图象过点P (0,1), ∴e =1.又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.命题方向❸导数的综合应用典例3 已知曲线y =f (x )=x 2a-1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.[解析] ∵f (1)=1a -1,∴切点坐标为(1,1a-1).由已知,得f ′(x )=(x 2a -1)′=2xa,∴切线的斜率k =f ′(1)=2a,∴切线l 的方程为y -(1a -1)=2a(x -1),即2x -ay -a -1=0. 令y =0,得x =a +12;令x =0,得y =-a +1a. ∴切线l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a=14(a +1a )+12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,∴S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1.『规律方法』 求曲线的切线方程要注意分清点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.┃┃跟踪练习3__■函数f (x )=x 3-x 2-x +1的图象上有两点A (0,1)和B (1,0),在区间(0,1)内求实数a ,使得函数f (x )的图象在x =a 处的切线平行于直线AB .[解析] 直线AB 的斜率k AB =-1,f ′(x )=3x 2-2x -1,令f ′(a )=-1 (0<a <1), 即3a 2-2a -1=-1,解得a =23.学科核心素养 综合应用问题灵活运用导数的运算法则,求解复合函数的导数,或与其他知识结合解决相关问题;利用基本初等函数的求导公式,结合导数的几何意义可以解决一些与距离、面积相关的几何问题与实际问题.典例4 已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.(1)求a ,b 的值;(2)如果曲线y =f (x )的某一切线与直线l :y =-14x +3垂直,求切点坐标与切线的方程.[思路分析] (1)由f (x )在点P 处的切线方程可知f ′(2),及f (2)=-6,得到a 、b 的方程组,解方程组可求出a 、b ;(2)由曲线y =f (x )的切线与l 垂直,可得切线斜率k =f ′(x 0),从而解出x 0,求得切点坐标和k .[解析] (1)∵f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a , 由题意可得f ′(2)=12+a =13, f (2)=8+2a +b =-6, 解得a =1,b =-16.(2)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14,或y 0=-1-1-16=-18. 则切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.『规律总结』 处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.┃┃跟踪练习4__■(天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为__1__.[解析] ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1.易混易错警示 准确应用公式典例5 若f (x )=cos xx,求f ′(π).[错解] ∵f (x )=cos xx,∴f ′(x )=cos x ′x +cos x ·x ′x 2=-x sin x +cos xx2,∴f ′(π)=-πsin π+cos ππ2=-1π2.[错解分析] 应用商的求导法则时,分子应是“分子的导数乘分母-分子乘分母的导数”,解题时错误的写成了“+”.[正解]∵f (x )=cos xx,∴f ′(x )=cos x ′x -cos x ·x ′x 2=-x sin x -cos xx2, ∴f ′(π)=-πsin π-cos ππ2=1π2.。
3.2.2导数的运算法则
1 (3) y ; 2 cos x
(4) y
6 x3 x 1 x2
;
题型一
求导法则的直接运用
【例 1】 求下列函数的导数. (1)y=3x-lg x; x+3 (3)y= 2 ; x +3 (2)y=(x2+1)(x+1); (4)y=-sin x+ex.
[ 思路探索 ] 解答本题可根据函数导数的四则运算法则和导数 公式求导.
x5+ x7+ x9 2 3 4 (3)∵y= =x +x +x , x ∴y′=(x2+x3+x4)′=2x+3x2+4x3.
(4)先使用三角公式进行化简,得 x x 1 y=x-sin2cos2=x-2sin x,
1 1 ∴y′= x-2sin x ′=x′- (sin 2
例题:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x; (4) y (2 x 2 3) 1 x 2 ;
答案:
1 4 (1) y 2 3 ; x x
1 x2 (2) y ; 2 2 (1 x )
(x2+3)-(x+3)· 2x -x2-6x+3 = = 2 2 2 2 . (x +3) (x +3) (4)y′=(-sin x)′+(ex)′=-cos x+ex.
规律方法
应用基本初等函数的导数公式和导数的四则运算法
则可迅速解决一些简单的求导问题.要透彻理解函数求导法则 的结构特点,准确记忆公式.
3 ∴将②式和(1,-1)代入①式得-1-(x0 -2x0)
②(4 分)
=(3x2 0-2)(1-x0).(6 分) 1 解得 x0=1 或 x0=- .(8 分) 2 5 故所求的切线方程为 y+1=x-1 或 y+1=-4(x-1).(10 分) 即 x-y-2=0 或 5x+4y-1=0.(12 分)
高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
1 ,可以转化为y=
x3
x
2 3
,y=x-3
后再求导.
(4)对解析式较复杂的,要先化简解析式,再选择公式进行求
导,化简时注意化简的等价性.
【典例训练】
1.若y=10x,则y′|x=1=_________.
2.求下列函数的导数:
(1)y=x7;(2)y=
1 x2
;(3)y=
3 x;
(4)y=2sin
题目类型三、导数的综合应用 【技法点拨】
导数的综合应用的解题技巧 (1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很 多综合问题我们可以数形结合,巧妙利用导数的几何意义,即 切线的斜率建立相应的未知参数的方程来解决,往往这是解决 问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、 不等式等知识结合出现综合大题.遇到解决一些与距离、面积 相关的最值、不等式恒成立等问题.可以结合导数的几何意义 分析.
【解析】1.依题意,y′|x=x1=
,1
2 x1
∵n与m垂直,
(6)若f(x)=ex,则f′(x)=_ex_;
(7)若f(x)=logax,则f′(x)=
1 (a>0且a≠1);
xlna
(8)若f(x)=lnx,则f′(x)= 1 .
x
1.利用导数的定义求导与导数公式求导的区别 导函数定义本身就是函数求导的最基本方法,但导函数是由极 限定义的,所以函数求导总是要归结为求极限,这在运算上很 麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与 基本初等函数公式后,求函数的导函数就可以用公式直接求导 了,简洁迅速.
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
3.2.2基本初等函数的导数公式及导数的运算法则
题型一: 题型一:导数公式及导数运算法则的应用
(1) y = x − 2 x + 3 1 2 (2) y = − 2 ; x x x (3) y = ; 2 1− x (4) y = tan x;
3 2
求下列函数的导数: 例2:求下列函数的导数 求下列函数的导数
答案: 答案 (1) y′ = 3x2 − 2;
1 4 + 3; 2 x x 1 + x2 (3) y′ = ; 2 2 (1 − x ) (2) y′ = −
1 (4) y ′ = ; 2 cos x
2
(5) y = (2 x − 3) 1 + x ; 1 (6) y = 4 ; x (7) y = x x ;
(5) y′ =
6 x3 + x 1+ x
解:(1)y′=(x5-3x3-5x2+6)′ ′ ′ =(x5)′-(3x3)′-(5x2)′+6′ ′ ′ ′ ′ 4 2 =5x -9x -10x. 2 2 法一: 解:(2)法一:y′=(2x +3)′(3x-2)+(2x +3)(3x-2)′ 法一 ′ ′ - + - ′
=4x(3x-2)+(2x2+3)·3 - + =18x2-8x+9. + (2)法二 ∵ = 法二: 解: 法二: y=(2x2+3)·(3x-2)=6x3-4x2+9x-6, - = - ,
( Cu )′ = C u ′.
u u′v − uv′ 法则3 )′ = ( (v ≠ 0) 2 v v
u(x + ∆x) u(x) − ∆y v(x + ∆x) v(x) = ∆x ∆x u ( x + ∆ x )v ( x ) − u ( x )v ( x + ∆ x ) = v ( x + ∆ x )v ( x )∆ x u(x + ∆x) − u(x) v(x + ∆x) − v(x) v(x) − u(x) ∆x ∆x = v ( x + ∆ x )v ( x )
高中数学(3.2.2基本初等函数的导数公式及导数的运算法则)
3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式
练习1、求下列函数的导数。
解:根据基本初等函数导数公式表,有
因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.
导数的运算法则:(和差的导数)
法则1:两个函数的和(差)的导数,等于这两个函数的导数 的和(差),即:
导数的运算法则:(积的导数)
法则2:两个函数的积的导数,等于第一个函数的导数乘第 二个函数,加上第一个函数乘第二个函数的导数 ,即:
轮流求导之和
导数的运算法则:(商的导数) 法则3:两个函数的商的导数,等于第一个函数的导数乘 第二个函数,减去第一个函数乘第二个函数的导数 ,再除 以第二个函数的平方.即:
y'x y'u u'x
典型例题
课堂小结
基本初等函数的导数公式
课堂小结 ⑴复合函数的求导,要注意分析复合函数的结 构,引入中间变量,将复合函数分解成为较简单的
函数,然后再用复合函数的求导法则求导;
⑵复合函数求导的基本步骤是:
分解——求导——相乘——回代
上导乘下,下导乘上,差比下方
练习2、求下列函数的导数。
例4、求下列函数的导数。
我们再回顾一下导数的几何意义 中的两个练习题。
简单复合函数的导数 复合函数:
目前我们所研究的简单复合函数的导数
问题探究1:
方法一:
方法二: 复合函数,并分别求对应变量的导数如下: 两个导数相乘,得
问题探究2:
方法一:
方法二: 求导 相乘 回代
分 解
方法归纳 ⑴复合函数的求导,要注意分析复合函数的结
人教新课标版(A)高二选修1-1 3.2.2导数的计算(二)同步练习题
人教新课标版(A )高二选修1-1 3.2.2 导数的计算(二)同步练习题【基础演练】题型一:基本初等函数导数公式的应用 熟记导数公式,熟练掌握利用利用导数公式处理点的坐标,函数性质等问题,请根据以上知识解决以下1~4题。
1. 直线kx y =是x ln y =的切线,则k 的值是A. eB. e -C.e1 D. e1-2. 曲线3x y =在点P 处的切线斜率为k ,当3k =时,P 点坐标为A. (-8,-2)B. (-1,-1)或(1,1)C. (2,8)D. (21-,81-) 3. 正弦曲线x sin y =上斜率等于`21的点为_________。
4. 曲线1x y 2+=上点P 处的切线与1x 2y 2--=也相切,求点P 的坐标。
题型二:导数运算法则的应用 几个函数加、减、乘、除的求导问题,我们必须依据导数的运算法则,请根据以上知识解决以下5~8题。
5. 设x cos x x 2y 33++=,则'y 等于A. x sin xx 6322-+-B. x sin x 31x 2322-+-C. x sin x 31x 6322++-D. x sin x 31x 6322-+-6. 设x sin e 2y x -=,则'y 等于A. x cos e 2x -B. x sin e 2x -C. x sin e 2xD. ()x cos x sin e 2x +-7. 设函数()x f 满足()xcx 1bf x af =⎪⎭⎫ ⎝⎛+(其中a ,b ,c 均为常数)且()|b ||a |≠,则()x f '=_________。
8. 求下列函数的导数: (1)()()()5x 8x 21x x f 23-++=;(2)()xcos 2x tan x x f -=;(3)()2xx 2x ln x f +=。
【互动探究】 [学科内综合] 9. 曲线2x 31y 3-=在⎪⎭⎫ ⎝⎛--37,1处切线的倾斜角为A. 30°B. 45°C. 135°D. –45°10. 设0a >,()c bx ax x f 2++=,曲线()x f y =在点P (0x ,()0x f )处切线的倾斜角的取值范围是⎥⎦⎤⎢⎣⎡π4,0,则P 到曲线()x f y =对称轴距离的取值范围为A. ⎥⎦⎤⎢⎣⎡a 1,0B. ⎥⎦⎤⎢⎣⎡a 21,0 C. ⎥⎦⎤⎢⎣⎡a 2b ,0D. ⎥⎦⎤⎢⎣⎡-a 21b ,011. 球的体积公式()34R V =3R π的导数V ′(R )=2R 4π,即为表面积公式,由此联想到其他类似有趣的公式,试写出一个_________。
2-1第3章导数 §3.2 3.2.2(打印)
§3.2 导数的运算3.2.2 函数的和、差、积、商的导数一、填空题1.已知f (x )=x 3+3x +ln 3,则f ′(x )=__________.2.曲线y =x e x +1在点(0,1)处的切线方程是____________.3.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________.4.曲线y =x (x -1)(x -2)…(x -6)在原点处的切线方程为__________.5.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为________.6.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为__________.7.曲线C :f (x )=sin x +e x +2在x =0处的切线方程为____________.8.某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在第4秒末的瞬时速度应该为________ m/s.二、解答题9.求下列函数的导数.(1)y =10x ;(2)y =x +cos x x -cos x; (3)y =2x cos x -3x log 2 011x ;(4)y =x ·tan x .10.求曲线y=x2+sin x在点(π,π2)处的切线方程.能力提升11.已知点P在曲线y=4e x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围为__________.12.求抛物线y=x2上的点到直线x-y-2=0的最短距离.1.理解和掌握求导法则和公式的结构规律是灵活进行求导运算的前提条件.2.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.3.2.2 函数的和、差、积、商的导数知识梳理1.和(或差) f ′(x )±g ′(x )2.第一个函数乘第二个函数的导数 f ′(x )·g (x )+f (x )·g ′(x ) C ·f ′(x )3.分母的积 分母的导数 分母的平方 [f x g x ]′=g x f x -f x g x g 2x(g (x )≠0)作业设计1.3x 2+3x ·ln 3解析 (ln 3)′=0,注意避免出现(ln 3)′=13的错误.2.x -y +1=0解析 y ′=e x +x e x ,当x =0时,导数值为1,故所求的切线方程是y =x +1,即x -y +1=0.3.18解析 ∵f ′(x )=4x 3+2ax -b ,由⎩⎪⎨⎪⎧ f =-13f -=-27⇒⎩⎪⎨⎪⎧-b =-13,-4-2a -b =-27. ∴⎩⎪⎨⎪⎧ a =5,b =13.∴a +b =5+13=18. 4.y =720x解析 y ′=(x -1)(x -2)…(x -6)+x [(x -1)(x -2)…(x -6)]′,所以f ′(0)=1×2×3×4×5×6+0=720.故切线方程为y =720x .5.12e 2解析 ∵y ′=(e x )′=e x ,∴在(2,e 2)处的切线斜率为e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×|-e 2|=12e 2.6.1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x .∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22.∴f ′⎝ ⎛⎭⎪⎫π4=11+2=2-1.故f ⎝ ⎛⎭⎪⎫π4=(2-1)×22+22=1.7.2x -y +3=0解析 由f (x )=sin x +e x +2得f ′(x )=cos x +e x ,从而f ′(0)=2,又f (0)=3,所以切线方程为y =2x +3.8.12516解析 ∵s ′=2t -3t 2, ∴当第4秒末,v =8-316=12516(m/s). 9.解 (1)y ′=(10x )′=10x ln 10.(2)y ′=x +cos x x -cos x -x +cos x x -cosx x -cos x 2 =-sin x x -cos x -x +cos x +sin x x -cos x 2 =-x +x sin x x -cos x 2. (3)y ′=(2x )′cos x +(cos x )′2x -3[x ′log 2 011 x +(log 2 011x )′x ]=2x ln 2·cos x -sin x ·2x -3[log 2 011 x +⎝ ⎛⎭⎪⎫1x log 2 011 e x ] =2x ln 2·cos x -2xsin x -3log 2 011 x -3log 2 011 e.(4)y ′=(x tan x )′=⎝ ⎛⎭⎪⎫x sin x cos x ′ =x sin x ′cos x -x sin x cos x ′cos x 2 =sin x +x cos x cos x +x sin 2x cos x 2 =sin x cos x +x cos 2x +sin 2x cos x 2 =12sin 2x +x cos x 2=sin 2x +2x 2cos 2x. 10.解 f ′(x )=2x +cos x .故曲线在点(π,π2)的切线斜率为2π-1,所以切线为y -π2=(2π-1)(x -π),即(2π-1)x -y -π2+π=0.11.[3π4,π) 解析 y ′=-4e x e 2x +2e x +1=-4e x +2+1e x , ∵e x +1e x ≥2,∴-1≤y ′<0,即-1≤tan α<0, ∴α∈⎣⎢⎡⎭⎪⎫3π4,π. 12.解 依题意知与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20).∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12.切点坐标为⎝ ⎛⎭⎪⎫12,14. ∴所求的最短距离d =⎪⎪⎪⎪⎪⎪12-14-22=728.。
课时作业22:3.2.2 基本初等函数的导数公式及导数的运算法则(二)
3.2.2 基本初等函数的导数公式及导数的运算法则(二)基础过关1.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为( )A.π6B.3π4C.π4D.π3解析 因为f ′(x )=x 2-2x ,k =f ′(1)=-1,所以在x =1处的切线的倾斜角为3π4.答案 B2.函数y =x 2x +3的导数是( ) A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)2 解析 y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2 =2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2. 答案 A3.已知函数f (x )=ax 4+bx 2+c ,且f ′(1)=2,则f ′(-1)等于( )A.-1B.-2C.2D.0解析 f ′(x )=4ax 3+2bx ,因为f ′(1)=2,所以4a +2b =2,所以f ′(-1)=-4a -2b =-2.答案 B4.已知f (x )=x 2+2f ′⎝ ⎛⎭⎪⎫-13x ,则f ′⎝ ⎛⎭⎪⎫-13=________. 解析 因为f ′(x )=2x +2f ′⎝ ⎛⎭⎪⎫-13,所以f ′⎝ ⎛⎭⎪⎫-13=2×⎝ ⎛⎭⎪⎫-13+2f ′⎝ ⎛⎭⎪⎫-13, 解得f ′⎝ ⎛⎭⎪⎫-13=23. 答案 235.曲线y =x -1x 在(1,0)处的切线与坐标轴围成的三角形面积为________.解析 由题意得y ′=1+1x 2,当x =1时,切线斜率为k =1+112=2,∴切线方程为y =2(x -1).令x =0,得y =-2;令y =0,得x =1,∴S △=12×1×2=1.答案 16.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2;(3)y =x -sin x 2cos x 2.解 (1)方法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.方法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3,∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9.(2)∵y =(x -2)2=x -4x +4,∴y ′=x ′-(4x )′+4′=1-4·12x -12=1-2x -12.(3)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x . 7.已知抛物线f (x )=ax 2+bx -7经过点(1,1),且在点(1,1)处的切线方程为4x -y -3=0,求a ,b 的值.解 由抛物线f (x )=ax 2+bx -7经过点(1,1),得1=a +b -7,即a +b -8=0.因为f ′(x )=2ax +b ,且抛物线在点(1,1)处的切线方程为4x -y -3=0,所以f ′(1)=4,即2a +b -4=0.由⎩⎨⎧a +b -8=0,2a +b -4=0,解得⎩⎨⎧a =-4,b =12.能力提升8.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时P 点的坐标为( )A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.⎝ ⎛⎭⎪⎫-12,-18 解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).答案 B9.设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A.y =-2xB.y =-xC.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.答案 D10.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m(m +e). 再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1).答案 (e ,1)11.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=____________. 解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.答案 212.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R ,求曲线y =f (x )在点(1,f (1))处的切线方程.解 因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,又因为f ′(1)=2a ,所以3+2a +b =2a ,解得b =-3.令x =2,得f ′(2)=12+4a +b .又因为f ′(2)=-b ,所以12+4a +b =-b ,解得a =-32.所以f (x )=x 3-32x 2-3x +1,f (1)=-52.又因为f ′(1)=2a =-3,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1),即6x +2y -1=0. 创新突破13.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=12,①又f ′(x )=a +b x 2,∴f ′(2)=74,②由①②得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎨⎧a =1,b =3, 故f (x )=x -3x .(2)证明 设P (x 0,y 0)(x 0≠0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0), 即y -(x 0-3x 0)=(1+3x 20)(x -x 0). 令x =0得y =-6x 0, 从而得切线与直线x =0的交点坐标为(0,-6x 0). 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x +6y-6 = 0
(1 4.过 原 点 作 曲 线 e x的 切 线 则 切 点 坐 标 为 , e ) y ,
则切线的斜率为
e
已知函数
y x ln x.
(1) 求这个函数的导数 (2)这个函数在点
x 1
处的切线方程.
例5.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
例1:求下列函数的导数:
x (1) y ; sin x x2 1 ( 2) y ; x ( 3) y cot x;
2
2 2 ( 4) y ; 1 x 1 x sinx cos x 1 1 sin x (5) y . ( 5) y . 2 (1 cos x ) 1 cos x 1 cos x 2 sinx 2 2 (6) y x cos x sin x; (6) y 2 x cos x x sinx ; 3 2 3 2 3 2 x 3x x x
2 x sin x x 2 cos x (1) y ; 2 sin x 3 1 1 3 ( 2) y x 2 x 2 ; 2 2 1 ( 3) y ; 2 sin x 4 ( 4) y ; 2 (1 x )
5.(2009·全国Ⅰ)已知直线y=x+1与曲线y=ln(x+a) 相切,则a的值为 A.1 B.2 C.-1 ( B ) D.-2
例2:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x; (4) y (2 x 3) 1 x ;
2 2
答案: (1) y
( 3) y
1 4 3; 2 x 导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
(可以推广到求有限个函数的和(差)的导数.)
函数和(差)的导数等 于它们导数的和(差) 。
[ f ( x) g ( x)]' f '( x) g ( x) f ( x) g ( x) ' (轮流求导之和) f ( x) ' f '( x) g ( x) f ( x) g ( x) ' [ ] ...( g ( x) 0) 2 g ( x) [ g ( x)]
解析
设 直 线 y=x+1 与 曲 线 y=ln(x+a) 的 切 点 为
1 , (x0,y0),则y0=1+x0,y0=ln(x0+a),又y′= xa 1 ∴ y |x x0 1, 即x0+a=1.又y0=ln(x0+a), x0 a ∴y0=0,∴x0=-1,∴a=2.
6.(2009·安徽)设函数 f ( x) sin x 3 3 cos x 2 3 2 5π tan , 其中 [0, ] ,则导数f′(1)的取值范围 12
( x 3)' ( x 2 3) ( x 3)( x 2 3)' 解 : y' 2 2 ( x 3) 2 2 1 ( x 3 ) ( x 3) 2 x x 6 x 3 2 2 ( x 3) ( x 2 3) 2 9 18 3 1 ' y |x3 2 ( 9 3) 6
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
所以所求l的方程为:y=0或y=4x-4.
1 ; 2 cos x
练习: 求下列函数的导数
y (1) sin x 3x x
2
(2) y (2 x 1)(3x 2)
1 (3) y tan x x (4) y e ln x x (5) y x 1
x3 例3 : 求 曲 线 2 y 在 点x 3处 的 切 线 方 程 x 3
(上导乘下,下导乘上,差比下方)
三、例题选讲:
例1、求下列函数的导数:
(1)y=7x3 - 5 x + cosx - sinx
;
(2)y = (x2+1)(x-2) + px + q (p,q为常数)
x2 x3 xn ( 3) f ( x ) 1 x ( n N * 且x 1) 2 3 n
是 A.[-2,2] B.[ 2, 3 ] D.[ 2 ,2] ( D)
C.[ 3,2]
解析
由已知f′(x)=sin·x2+ 3 cos ·x,
π 3 cos 2 sin , 3 5π 3 又 [0, ]. , 12 3 3 4 2 π sin( ) 1, 2 f (1) 2. 2 3 f (1) sin
1 4 t 4
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
2 ) 已知函数 f ( x) ax bx c 的导数为 f ( x,,对 于任意实数x,有f ( x ) 0,则 f (1) 的最小值为 。
f ( 0 )
2
导数的运算法则
我们今后可以直接使用的基本初等函数的导数 公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x