关联规则挖掘英文PPT

合集下载

第五章_关联规则挖掘

第五章_关联规则挖掘

Any subset of a frequent itemset must be frequent
Mining Frequent Itemsets: the Key Step
Find the frequent itemsets: the sets of
items that have minimum support A subset of a frequent itemset must also be a frequent itemset
Customer buys diaper
Find all the rules X & Y Z
with minimum confidence and support
support, s, probability that a transaction contains {X , Y , Z}
Customer buys beer
Use the frequent itemsets to generate association rules.
The Apriori Algorithm
Join Step: Ck is generated by joining Lk-1with itself Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
[0.2%, 60%] age(x, “30..39”) ^ income(x, “42..48K”) buys(x, “PC”) [1%, 75%] Single dimension vs. multiple dimensional associations (see ex. Above) Single level vs. multiple-level analysis What brands of beers are associated with what brands of diapers? Various extensions Correlation, causality analysis

第6章 数据挖掘技术2(关联规则挖掘)

第6章 数据挖掘技术2(关联规则挖掘)

求L3。比较候选支持度计数与最小支持度计数得: 项集 I1,I2,I3 I1,I2,I5 支持度计数 2 2


所以 L3=C3 求C4= L3 ∞ L3={I1,I2,I3,I5} 子集{I2,I3,I5} L3,故剪去; 故C4=,算法终止。 结果为L=L1 U L2 U L3
24
19:40
定义5:强关联规则。同时满足最小支持度(min_sup) 和最小可信度(min_conf)的规则称之为强关联规 则 定义6:如果项集满足最小支持度,则它称之为频繁项 集(Frequent Itemset)。
19:40 9
2. 关联规则挖掘过程

关联规则的挖掘一般分为两个过程: (1)找出所有的频繁项集:找出支持度大于 最小支持度的项集,即频繁项集。
由L1 产生C2
项集 支持度 计数 {I1} {I2} {I3} {I4} {I5} 6 7 6 2 2
19:40
19
C2
C2
比较候 支持度 选支持 度计数 4 与最小 4 支持度 1 计数 2
4 2 2 0 1 0
L2
项集 支持度
{I1,I4} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I3,I4} {I3,I5} {I4,I5}
Apriori是挖掘关联规则的一个重要方法。 算法分为两个子问题: 找到所有支持度大于最小支持度的项集 (Itemset),这些项集称为频繁集 (Frequent Itemset)。 使用第1步找到的频繁集产生规则。
19:40
14



Apriori 使用一种称作逐层搜索的迭代方法, “K-项集”用于探索“K+1-项集”。 1.首先,找出频繁“1-项集”的集合。该集合 记作L1。L1用于找频繁“2-项集”的集合L2, 而L2用于找L3, 如此下去,直到不能找到“K-项集”。找每个 LK需要一次数据库扫描。

关联分析基本概念与算法ppt课件

关联分析基本概念与算法ppt课件
如果一个项集包含k个项 支持度计数(Support count )() – 包含特定项集的事务个数 – 例如: ({Milk, Bread,Diaper}) = 2 支持度(Support) – 包含项集的事务数与总事务数的比值 – 例如: s({Milk, Bread, Diaper}) =
2/5 频繁项集(Frequent Itemset) – 满足最小支持度阈值( minsup )的
先验原理( Apriori principle)
先验原理:
– 如果一个项集是频繁的,则它的所有子集一定也是频繁 的
相反,如果一个项集是非频繁的,则它的所有超集 也一定是非频繁的:
– 这种基于支持度度量修剪指数搜索空间的策略称为基于 支持度的剪枝(support-based pruning)
– 这种剪枝策略依赖于支持度度量的一个关键性质,即一 个项集的支持度决不会超过它的子集的支持度。这个性 质也称为支持度度量的反单调性(anti-monotone)。
4
Bread, Milk, Diaper, Beer
关联规则的强度
5
Bread, Milk, Diaper, Coke
– 支持度 Support (s) 确定项集的频繁程度
Example:
{M,iD lkia}p e Bree
– 置信度 Confidence (c) 确定Y在包含X的事 务中出现的频繁程度
Brute-force 方法:
– 把格结构中每个项集作为候选项集
– 将每个候选项集和每个事务进行比较,确定每个候选项集 的支持度计数。
Transactions
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs

《数据挖掘关联规则》PPT课件

《数据挖掘关联规则》PPT课件
支持度s D中包含A和 B 的事务数与总的事务数的比
值 s(A B )|{ |T D |A B T}|| ||D ||
规则 AB 在数据集D中的支持度为s, 其中s 表示
D中包含AB (即同时包含A和B)的事务的百分 率.
8
度量有趣的关联规则
可信度 c D中同时包含A和B的事务数与只包含A的事务 数的比值
24
加权关联规则的描述
对于项目集 X、Y, X、Y,XI ∩Y =φ ,如果有 wsup( X ∪Y )≥wminsup,且 conf(X→Y)≥minconf, 则称 X→Y 是一条加权关联规则。
25
权值的设定
加权支持度 (1)、平均值: (2)、归一化:
(3)、最大值:
w'sup(x)1k(jk1wj)sup(x)
证明:设n为事务数.假设A是l个事务的子集,若 A’ A , 则A’ 为l’ (l’ l )个事务的子集.因此, l/n ≥s(最小 支持度), l’/n ≥s也成立.
18
Apriori 算法
Apriori算法是一种经典的生成布尔型关联规则的频 繁项集挖掘算法.算法名字是缘于算法使用了频繁项 集的性质这一先验知识.
方法: 由频繁k-项集生成候选(k+1)-项集,并且 在DB中测试候选项集
性能研究显示了Apriori算法是有效的和可伸缩 (scalablility)的.
21
The Apriori 算法—一个示例
Database TDB
Tid Items
10
A, C, D
20
B, C, E
C1
1st scan
threshold )
for each itemset l1 Lk-1

第5次课关联规则newppt课件

第5次课关联规则newppt课件

第5章 关联规则 关联规则挖掘简介
研究关联规则的目标:发现数据中的规律 超市中的什么产品经常会被一起购买;-啤酒与尿布 在购买了PC机后,顾客下一步一般购买什么产品; 如何自动对WEB文档分类; 用户上了CCTV网站后,一般将会去那些其他网站; 用户购买了“XXX”书后,一般还会购买什么书; 某一类纳税人在当月未纳税,则其下个月也不纳税的可能性
所有关联规则的数量非常巨大,前面提到5000种商品共有25000 种模式。但可用评分函数的优势,可以将平均运行时间将到一个可 以接受的范围。
第5章 关联规则
关联规则的基本模型及算法
关于评分函数
注意若P(A=1) ≤Ps,且P(B=1) ≤Ps中任何一个成立。则
P(A=1,B=1) ≤Ps。
因此,可以首先找概率大于Ps的所有单个事件(线性扫描一 次)。若事件(或一组事件)大于Ps,则称其为频繁项集(频繁 1项集)。然后,对这些频繁事件所有可能对作为容量为2的候选 频繁集合。
项集(itemset)
第5章 关联规则 关联规则挖掘简介
关于属性值-属性值离散化 若数据集的属性都是布尔值,则此数据集中挖掘的关联
规则都是布尔关联规则。其它属性可以进行转换。可以将非布 尔值数据转换为布尔数据值。
TID
Age
Salary
1
35
3200
2
43
4600
3
56
3700
4
24
2100



第5章 关联规则
关联规则的基本模型及算法
{}
a
b
c
d
e
ab ac ad ae bc bd be
cd ce
de

[课件]数据挖掘 8-association rule mining

[课件]数据挖掘 8-association rule mining

©Wu Yangyang 1OutlineAssociation rule mining (关联规则挖掘)A formal definition (形式化定义)Association rule classification (关联规则分类)Mining single-dimensional Boolean association rules(一维布尔型关联规则挖掘)Problems and solutions(问题与解决办法)6.2.1 A Formal DefinitionA⇒C[50%, 66.67%]Finding interesting associations among sets of data items or6.2.2 Association Rule Classification6.2.3 Mining single-dimensional Boolean association rules(1)6.2.3 Mining single-dimensional Boolean association rules(2) Example:6.2.3 Mining single-dimensional Boolean association rules(3) The Apriori6.2.3 Mining single-dimensional Boolean association rules(4) Algorithm to generate candidates (6.2.3 Mining single-dimensional Boolean association rules(5)Database D6.2.3 Mining single-dimensional Boolean association rules(6) Generating association rule from frequent itemsets©Wu Yangyang 106.2. Association rule mining6.2.4 Presentation of Association Rules(Table Form)6.2 Association rule mining6.2.4 Presentation of Association Rules(Plane Graph)6.2 Association rule mining6.2.4 Presentation of Association Rules(Rule Graph)Discussion(1)Is Apriori Fast Enough?The bottleneck(瓶颈) of Apriori: candidate generationHuge candidate sets(巨大的候选集):104frequent 1-itemset will generate 107candidate 2-itemsetsTo discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one needs to generate 2100 ≈1030candidates.Multiple scans of database(多次扫描数据库):Needs (n +1 ) scans, n is the length of the longest patternDiscussion(2)How to Improve Apriori’s Efficiency?Hash-based itemset countingwhen scanning each transaction in the DB to generate L k-1,we can generate all of the k-itemsets for each transaction,hash them into the different buckets of a hash table, and increase thecorresponding bucket counts.A k-itemset whose corresponding hashing bucket count is below thethreshold cannot be frequent, and thus should be removed.Transaction reductionA transaction that does not contain any frequent k-itemset is uselessin subsequent scans.Therefore such a transaction can be marked or removed from further consideration.PartitioningDiscussion(4)Dynamic itemset counting(动态项集记数):Partition database into blocks marked by start points.Add new candidate itemsets only when all of their subsets are estimated to be frequentMining Frequent Patterns Without Candidate Generation:Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure Mining multilevel, multidimensional, Constraint-based association rules Association analysis in other types of data: spatial data, multimedia data, time series data, etc.Based on quantitative concept lattice。

10AssociationMining(关联规则挖掘)精品PPT课件

10AssociationMining(关联规则挖掘)精品PPT课件
{Video camera} => {warranty, memory card}
•Customer relationship management: identify preferences of different customer groups {Home, 2 cars} => {Policy A}, {Home, Ann Arbor} => {Policy B} •Medical Diagnosis: find associations in symptoms and observations to predict diagnosis {Fever, lethargic, vomiting} => {Food Poisoning}
• s({Bread,Diapers}) = 3 • s({Diapers, Milk, Coke}) = 2
TID Items
1
Bread, Milk
2
Bread, Diapers, Beer, Eggs
3
Milk, Diapers, Beer, Coke
4
Bread, Milk, Diapers, Beer
Association Mining
Definition
•Search for patterns recurring in the given data set •Given a set of item sets or transactions, find rules predicting the occurrence of items based on the occurrences of other items in the transactions
2

2(课件)关联规则挖掘与序列模式挖掘( Apriori AprioriTid AprioriHy

2(课件)关联规则挖掘与序列模式挖掘( Apriori  AprioriTid  AprioriHy

Apriori性质--2 null
A
B
C
D
E
Found to be Infrequent
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
ABCD
Pruned supersets
ABCE
ABDE ABCDE
ACDE
BCDE
Apriori算法--1
Apriori性质--1
Agrawal R, Srikant R. Fast algorithms for mining association rules. (VLDB’94).
Apriori 性质:
频繁项集的所有非空子集都必须也是频繁的。
Apriori 性质成立的原因:
项集的支持度不超过其子集的支持度,即支持度的 反单调性。
关联规则挖掘的动机
发现数据内在的关系
➢ 哪些商品往往被一起购买--啤酒尿布 ➢ 买了PC机之后,还会购买哪些商品 ➢ 哪些DNA对新药较为敏感
什么是关联规则
关联规则是寻找给定的数据集中项目之 间令人感兴趣的关系
购物栏数据库
例子
TID Items
1
Bread, Milk
2
Bread, Diaper, Beer, Eggs
end
return k Lk;
规则生成--1
给定频繁项集L, 找出所有非空的f L使 得f L – f 满足最小可信度阈值
如 {A,B,C,D} 为频繁项集, 候选规则有:

关联规则(可编辑ppt文档)

关联规则(可编辑ppt文档)
可信度是对关联规则地准确度的衡量。 支持度是对关联规则重要性的衡量。支持度说明了这
条规则在所有事务中有多大的代表性。有些关联规则 可信度虽然很高,但支持度却很低,说明该关联规则 实用的机会很小,因此也不重要。
频繁项集(Frequent Itemsets)
项集的出现频率:包含项集的事务数。
关联规则
☆ 关联规则概述 ☆ 与关联规则相关的基本概念 ☆ 关联规则挖掘经典算法 ☆ 关联规则挖掘改进算法
一、关联规则概述
1、简述关联规则挖掘的提出
关联规则挖掘(Association Rule Mining)最早是由R. Agrawal等人提出的(1993)。最初提出的动机是针对 购物篮分析(Basket Analysis),其目的是为了发现交 易数据库(Transaction Database)中不同商品之间的 联系规则。根据被放到一个购物袋的(购物)内容记录 数据而发现的不同(被购买)商品之间所存在的关联知 识无疑将会帮助商家分析顾客的购买习惯。
3、以购物篮应用为例说明关联规则挖掘 的商业价值
发现常在一起被购买的商品(关联知识)将帮助商家制 定有针对性的市场营销策略,科学地安排进货、库存, 进行有针对性的促销,以及进行合适的货架商品摆放。 购物蓝分析的结果可以用于市场规划、广告策划和分类 设计。
目前关联规则主要应用在商业数据库中:商品分类设 计、降价经销分析、生产安排、货架摆放策略等。
关联规则反映了一个事物与其他事物之间的相互 依存性和关联性。
从大量的商业交易记录中发现有价值的关联知 识就可帮助进行商品目录的设计、交叉营销或 帮助进行其它有关的商业决策。
4、关联规则的应用
在一些网上书店的网页中经常会看到:“购买了此商 品的顾客还购买了… …”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INFO411/911Laboratory exercises onAssociation Rule MiningOverview:Association rule mining can help uncover relationships between seemingly unrelated data in a transactional database. In data mining, association rules are useful in discovering consequences of commonly observed patterns within a set of transactions.What you need:1.R software package (already installed on the lab computers)2.The file "laboratory_week5.zip" on Moodle.Preparation:1.Work in a group of size two to three (minimum size of a group is two. But no more thanthree students are to work together). Penalties apply if a group exeeds these limits.2.Boot computer into Windows mode.3.Download laboratory_week5.zip then save to an arbitrary folder, say"C:\Users\yourname\Desktop"4.Uncompress laboratory_week5.zip into this folder5.Start "R"6.Change the working directory by entering: setwd("C:/Users/yourname/Desktop")(Note that R expects forward slashes rather than backwars slashes as used by Windows.) Your task:Your are to submit a PDF document which contains your answers of the questions in this laboratory exercise. One document is to be submitted by each group. The header of the document must list the name and student number of all students in the group. Clearly indicate which question you have answered.The following link provides a documentation of the association rule module in R (called arules). The link can help you develop a better understanding of the usage and parameters of the association rule package in R: /web/packages/arules/arules.pdfWork through the following step and answer given questions:Step1: Familiarize yourself with the arules package in R.Start R and type:library(arules)to load the package. We shall start from the analysis of a small file sample1.csv that contains some transactional data. To load data into R enter:sample1.transactions <- read.transactions("sample1.csv", sep=",")To get information about the total number of transactions in a file sample1.csv enter:sample1.transactionsTo get a summary of data set sample1.csv enter:summary(sample1.transactions)The data set is described as sparse matrix that consists of 10 rows and five columns. The density ofthe matrix is 0.48.Next, list of the most frequent items and the distribution of items per transactions. In our case two transactions consist of one item, five transactions consist of two items, two transactions consist of three items and one transaction consists of four items. To discover the association rules enter: sample1.apriori <- apriori(sample1.transactions)The results start from a summary of parameters used for the execution of the Apriori algorithm. Note that a default value for confidence and support is being used. The minimum (minlen) and maximum (maxlen) number of items in an items follows. The default target is rules. It could also be itemsets. The other targets can be set in the call to apriori with the parameter argument which takes a list of keyword arguments. To list the association rules found by Apriori algorithm enter:inspect(sample1.apriori)It is possible to change the values of the parameters support and confidence to get more association rules:sample1.apriori <- apriori(sample1.transactions,parameter=list(supp=0.5,conf=1.0))R's implementation of Apriori algorithm is also capable of processing data stored in a file with transaction ID and a single item per line. For example the file sample2.csv contains the same data as the file sample1.csv. To load such data into R enter:sample2.transactions <-read.transactions("sample2.csv",sep=",",format="single",cols=c(1,2))To discover and to list the association rules found by Apriori algorithm enter:sample2.apriori <- apriori(sample2.transactions,parameter=list(supp=0.5,conf=1.0))inspect(sample2.apriori)Use the data set sample4.csv. To load data into R enter:sample4.transactions <- read.transactions("sample4.csv", sep=",")R should reply with a message: cannot coerce list with transactions with duplicated items. The message means that at least one of the transactions in an input data set has duplicated items. Indeed, a transaction beer, milk, bread, sausage, beer has a duplicated item beer. To eliminate duplicated items load data into R in the following way:sample4.transactions <- read.transactions("sample4.csv", sep=",",rm.duplicates=TRUE)Task1: Visualize the mined association rules from sample1.csv.Compute the association rules of the data in file sample1.csv by setting the support threshold to 0.12 and confidence threshold to 1.0. Show the association rules.Load the association rule visualization module in R:library(arulesViz)Then plot the association rules by usingplot(sample1.apriori,method="graph")Explain what can be seen in this graph.Task2:Mine association rules from the data set words.csv. List information of the transactions included inthe data set and list a summary of the data set. Discover the association rules for the default values of the parameters support and condence. Find the largest values of the parameters support and confidence such that discovery of association rules provides a nonempty set of nontrivial rules (a rule is trivial if its left or right hand side is empty). List the association rule(s) found.Task3:Load the survival data of passangers on the Titanic:load("titanic.raw.rdata")Explain the output shown by the commandstr(titanic.raw)Mine association rules that only have "survived=No" or "Survived=Yes" on the RHS:rules <-apriori(titanic.raw,parameter=list(minlen=2,supp=0.005,conf=0.8),appearance=list (rhs=c("Survived=No", "Survived=Yes"),default="lhs"))Sort by "lift" then show resultsrules.sorted<-sort(rules,by="lift")inspect(rules.sorted)Explain the output shown by the call of "inspect".Create the following two plots then explain what is shownplot(rules)plot(rules,method="graph",control=list(type="items"))Write up all your answers, then submit your answer as a PDF document via the link provided on MOODLE. One submission per group!Submission site closes on Monday 03/April at 23:55。

相关文档
最新文档