2018年高考数学 专题1.1 集合试题 理
2018年高考数学专题1.1集合试题理
思维能力的考查”简易逻辑用于可以和各章融合命题
, 正是这一理性思维的体现,学生只有在思维能
力上有所提高才能让数学学习有一个质的飞跃。但思维的培养不是一朝一夕的,因此,在第一轮各模
块的复习中应尽量加强学生思维能力方面的培养
.
3.夯实基础的同时加大信息量 : 夯实双基是提高数学能力的必要条件, 只有对数学基础知识和数学规
4.集合的表示常见的有四种方法. (1)自然语言描述法,( 2)列举法,( 3)描述法,( 4) Venn 图法 .
5.常见的特殊集合:( 1)非负整数集(即自然数集) N(包括零)( 2)正整数集 N*或 N (3) 整数
集 Z ( 包括负整数、零和正整数 ) ( 4)有理数集 Q (5) 实数集 R
6.集合的分类:①按元素个数分:有限集 ②按元素特征分;数集 , 点集 . ③空集 :不含任何元素的集合
, 无限集;
【规律方法技巧】 1. 集合运算的互异性应用规律 : 凡是出现含参数的集合 , 必须首先考虑集合的互异性 , 即集合中元素不
相等 , 例如集合 A a, b , 则有 a b .
2. 理清两类关系 , 不要混淆: (1) 元素与集合的关系 , 用 或 表示 (2) 集合与集合的关系 , 用 , ,=
D
. ( , 2] [1, )
【答案】 B
【解析】根据补集的运算得 痧RQ x x2 4 ( 2,2), P ( RQ ) ( 2,2) 1,3
2,3 .故
选 B.
9.【 2016 高考天津理数】已知集合 A {1,2,3,4}, B { y | y 3x 2,x A}, 则 A B =( )
(A) {1} 【答案】 D
学法指导 :
1. 活用“定义法”解题,重视“数形结合” : 涉及本单元知识点的高考题,综合性大题不多,所以在
2018年高考试题分章节汇编必修一 第一章 集合.doc
必修一 第一章 集合一、选择题错误!未指定书签。
1.(2018年重庆数学(理))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则)(B A C U Y =( )A.{}134,,B.{}34,C. {}3D. {}4【答案】D 【解析】 ∵}3,2,1{=B A Y ,∴补集是{4}.故选D.2错误!未指定书签。
.(2018年辽宁数学(理))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=I ,则A.()01,B.(]02,C.()1,2D.(]12, 【答案】D 【解析】 ∵ )4,1(=A ,]2,(∞=B ,∴]2,1(=B A I ,故选D.3错误!未指定书签。
.(2018年天津数学(理))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D 【解析】 ∵]1,2[],1,(],2,2[-=∴-∞=-B A B A I ,故选D4错误!未指定书签。
.(2018年福建数学(理))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A.*,A N B N == B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C.{|01},A x x B R =<<=D.,A Z B Q ==【答案】D 【解析】 根据题意可知,令()1f x x =-,则A 选项正确; 令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .错误!未指定书签。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国普通高等学校招生统一考试数学(理)(北京卷)试题(解析版)
2018年全国普通高等学校招生统一考试数学(理)(北京卷)试题一、单选题1.已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以()12,n n a n n N -+=≥∈, 又1a f =,则7781a a q f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中, 0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4 【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数. 详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6.设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7.在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8.设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.二、填空题9.设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可.详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用. 10.在极坐标系中,直线与圆相切,则a =__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a. 详解:因为, 由,得, 由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.11.设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________.【答案】【解析】分析:根据题意取最大值,根据余弦函数取最大值条件解得ω,进而确定其最小值.详解:因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.12.若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案】3【解析】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.13.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案】y=sin x(答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)>f(0)且(0,2]上是减函数.详解:令,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sin x,则f(0)=0,f(x)>f(0)对任意的x∈(0,2]都成立,但f (x)在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.通常举分段函数.14.已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.三、解答题15.在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1)∠A=(2) AC边上的高为【解析】分析:(1)先根据平方关系求sinB,再根据正弦定理求sinA,即得∠A;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得AC边上的高.详解:解:(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.16.如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论.详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1)概率为0.025(2) 概率估计为0.35(3) >>=>>【解析】分析:(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2) 恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) 服从0-1分布,因此,即得>>=>>.详解:解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P()=P()+P()=P(A)(1–P(B))+(1–P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.点睛:互斥事件概率加法公式:若A,B互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A,B相互独立,则P(AB)=P(A)P(B).18.设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1(2) a的取值范围是(,+∞)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.19.已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.【答案】(1)取值范围是(-∞,-3)∪(-3,0)∪(0,1)(2)证明过程见解析【解析】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据P A,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,.再由,得,.利用直线P A,PB的方程分别得点M,N的纵坐标,代入化简可得结论.详解:解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.直线P A的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 20.设n 为正整数,集合A =(){}12{|,,,,0,1,1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素()12,,,n x x x α=和()12,,,n y y y β=,记M (αβ,)=()()()1111222212n n n n x y x y x y x y x y x y ⎡⎤+--++--+++--⎣⎦.(Ⅰ)当n =3时,若()1,1,0α=, ()0,1,1β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由. 【答案】(1) M (α,β)=1 (2) 最大值为4 (3)答案见解析【解析】分析:(1)根据定义对应代入可得M (,αα)和M (,αβ)的值;(2)先根据定义得M (α,α)= x 1+x 2+x 3+x 4.再根据x 1,x 2,x 3,x 4∈{0,1},且x 1+x 2+x 3+x 4为奇数,确定x 1,x 2,x 3,x 4中1的个数为1或3.可得B 元素最多为8个,再根据当,αβ不同时,M (αβ,)是偶数代入验证,这8个不能同时取得,最多四个,最后取一个四元集合满足条件,即得B 中元素个数的最大值;(3)因为M (αβ,)=0,所以,i i x y 不能同时取1,所以取()()()(){}0,0,,0,1,0,,0,0,1,0,,0,0,0,,0,1B =共n+1个元素,再利用A 的一个拆分说明B 中元素最多n+1个元素,即得结果. 详解:解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M (α,α)=12 [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M (α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x 1,x 2,x 3,x 4)∈B ,则M (α,α)= x 1+x 2+x 3+x 4. 由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=(x1,x2,…,x n)|(x1,x ,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),2S n+1={( x1,x2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.点睛:解决新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.(2)合理利用有关性质是破解新定义型问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用性质的一些因素,并合理利用.。
三年高考(2016-2018)高考数学试题分项版解析 专题01 集合 理(含解析)
专题01 集合考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,则中元素的个数为A. 9 B. 8 C. 5 D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B 【解析】 由题意可得:,结合交集的定义可得:.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:. 点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x<},则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 【答案】C【考点】 交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3} 【答案】A【解析】利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,, ,选B【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 7.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. (3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2016年高考全景展示1.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理. 4. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C. 考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面. 5.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R R Q x x P Q 痧.故选B .考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C. 考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】由题意,{2,1,0,1,2}AZ =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D 【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D. 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________. 【答案】{}1,2- 【解析】 试题分析:{1,2,3,6}{|23}{1,2}AB x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
最新-历年高考数学真题考点归纳 2018年 第一章 集合与
2018年高考题一、选择题1.(2018年广东卷文)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B解析 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.2.(2018全国卷Ⅰ理)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则 集合[()u AB I中的元素共有( )A. 3个B. 4个C. 5个D. 6个解:{3,4,5,7,8,9}A B = ,{4,7,9}(){3,5,8}U A B C A B =∴= 故选A 。
也可用摩根律:()()()U U U C A B C A C B = 答案 A3.(2018浙江理)设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( ) A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此U A B = ð{|01}x x <≤ 4.(2018浙江理)设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( ) A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此U A B = ð{|01}x x <≤. 5.(2018浙江文)设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( ) A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x > 答案 B【命题意图】本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.解析 对于{}1U C B x x =≤,因此U A B = ð{|01}x x <≤. 6.(2018北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤C .{|2}x x <D .{|12}x x ≤<答案 A解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运 算的考查∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}A B x x =-≤< ,故选A.7.(2018山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B = ,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B = ∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.8. (2018山东卷文)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B = ,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B = ∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.9.(2018全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5, 6,7},则C u ( M N )=( )A.{5,7}B.{2,4}C. {2.4.8}D. {1,3,5,6,7} 答案 C解析 本题考查集合运算能力。
【课标通用】2018届高考数学(理)一轮课件:1-集合(含答案)
考点1
考点2
试做真题
高手必备 萃取高招 对点精练
4.空集的概念与应用 (1)空集是一个特殊且重要的集合,它不含任何元素,是任何集合 的子集,是任何非空集合的真子集. (2)与空集有关的结论: ������ = 0, ①A={x|ax+b=0}=⌀⇒ ������ ≠ 0; ②A={x|ax2+bx+c=0,a≠0}=⌀⇒b2-4ac<0; ③A={x|m<x<n}=⌀⇒m≥n; ������ = 0, ④A={x|ax+b>0}=⌀⇒ ������ ≤ 0; ������ < 0, 2 ⑤A={x|ax +bx+c>0,a≠0}=⌀⇒ 2 ������ -4������������ ≤ 0. 5.有限集合的子集的个数 若有限集合A有n个元素,则A的子集个数是2n,真子集个数是2n-1, 非空子集个数是2n-1,非空真子集个数是2n-2.考点1考Fra bibliotek2试做真题
高手必备 萃取高招 对点精练
【解析】 (1)因为 A∪B=A,所以 B⊆A,所以 m=3 或 m= ������. 若 m=3,则 A={1,3, 3},B={1,3},满足 A∪B=A. 若 m= ������,解得 m=0 或 m=1. 若m=0,则A={1,3,0},B={1,0},满足A∪B=A. 若m=1,则A={1,3,1},B={1,1},显然不成立. 综上,m=0或m=3,故选B. (2)由集合A,得a-1<x<a+1,显然集合A≠⌀.若A∩B=⌀,由图可知 a+1≤1或a-1≥5,故a≤0或a≥6.故选C.
考点1
考点2
试做真题
高手必备 萃取高招 对点精练
2018高考数学小题精练:专题(01)集合及解析 含答案
2018高考数学小题精练+B 卷及解析:专题(01)集合及解析专题(01)集合 1.已知集合,集合,集合,则集合的子集的个数为( )A . 1B . 2C . 3D . 4 【答案】D2.已知集合A={1,2,3,4},B={y|y=3x ﹣2,x∈A},则A∩B=( ) A . {1} B . {4} C . {1,3} D . {1,4} 【答案】D【解析】B={1,4,7,10},A∩B={1,4},故选D .3.若集合{}{}1,2,4,8,|25x A B x ==<,则A B ⋂=( ) A . {}1 B . {}2 C . {}1,2 D . {}1,2,3 【答案】C【解析】{}|25x B x =< (){}2,log 51,2A B =-∞∴⋂=,选B . 4.集合A={-1,0,1},A 的子集中含有元素0的子集共有( ) A . 2个 B . 4个 C . 6个 D . 8个 【答案】B【解析】含有元素0的子集有{0},{0,-1},{0,1},{0,-1,1},共4个. 故选B .5.已知集合A={x│x -1>0},B={y│y 2-2y -3≤0},则A∩B=( ) A . (1,3) B . [1,3) C . [1,3] D . (1,3] 【答案】D【解析】{}{}{}2|20|2|230{|13}A x x x x B y y y y y =+>=>-=≤=-≤≤,--,所以A∩B= [1,3]. 故选D .6.已知集合A={﹣2,0,2},B={x|x 2﹣x ﹣2=0},则A∩B=( )A . ∅B . {0}C . {2}D . {﹣2} 【答案】C点睛:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍7.集合A={x|﹣1≤x≤2},B={x|x <1},则A∩(C R B )=( )A . {x|x >1}B . {x|x≥1} C. {x|1<x≤2} D. {x|1≤x≤2} 【答案】D【解析】由{|12}{|1}A x x B x x =≤≤=<﹣,得: {}| 1 R C B x x =≥,则{}|1 2 R A C B x x ⋂=≤≤(),故选D .8.已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( )A . (]6,7B . [)6,7C . []6,7D . ()6,7 【答案】A【解析】若U C A 的元素的个数为4,则{}1,2,7,8,67.U C A m =∴<≤ 本题选择A 选项.9.设全集R U =,集合{}02A x x =<≤, {}1B x x =<,则集合A B ⋃=( ) A . ()2,+∞ B . [)2,+∞ C . (],2-∞ D . (],1-∞ 【答案】C【解析】∵集合{}02A x x =<≤, {}1B x x =<, ∴A B ⋃= (],2-∞点睛:本题是道易错题,看清所问问题求并集而不是交集.10.若函数)32(log 22--=x x y 的定义域,值域分别是M 、N ,则=N M C R )(( ) A .]3,1[- B .)3,1(-C .]3,0(D .),3[+∞【答案】A考点:一元二次不等式,集合交并补.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.注意区间端点的取舍.11.设全集U 是实数集R ,2{4}M x x =>,{13}N x x =<≤,则图中阴影部分所表示的集合是( ) A .{21}x x -≤<B .{22}x x -≤≤C .{12}x x <≤D .{2}x x <【答案】C考点:集合的运算.12.已知集合{}|5A x N x =∈<,则下列关系式错误的是( ) A .5A ∈ B .1.5A ∉C .1A -∉D .0A ∈【答案】A考点:集合与元素的关系.专题(1)集合1.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( )A . {}2,1--B . []2-C . []1,0,1-D . []0,1 【答案】A2.设集合2{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( ) A . ()1,1- B . ()1,2- C . {}1,1,2- D . {}1,0,1- 【答案】D 【解析】{}{}{}{}{}2|423,2,1,0,1,,|4|221,0,1M x x N x xx x =∈-=---==-<<=-<<<Z . 故选D .3.设是全集,集合都是其子集,则下图中的阴影部分表示的集合为( )A .B .C .D .【答案】B【解析】观察图形得:图中的阴影部分表示的集合为,故选:B . 4.已知全集,,,则=( )A .B .C .D .【答案】A【解析】由题意得,,所以,故选A . 5.已知,,则的真子集个数为( )A . 2B . 3C . 7D . 8 【答案】B【解析】∵A={x|x 2-3x-4≤0,x∈Z}={x|-1≤x≤4,x∈Z}={-1,0,1,2,3,4},B={x|2x 2-x-6>0,x∈Z}={x|x<,或x>2,x∈Z},∴A∩B={3,4},则A∩B 的真子集个数为22-1=3,故选:B .点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.6.已知集合,则( )A .B .C .D .【答案】A点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.7.已知集合,,则集合中元素的个数为( )A . 1B . 2C . 3D . 4 【答案】C【解析】由题得,集合,所以.集合中元素的个数为3.故选C .8.已知2{|230},{|A x x x B y y =--≤==,则A B ⋂=( )A . ⎡⎣B .C . ⎤⎦D . ⎡⎣【答案】C【解析】2230x x --≤,解得13x -≤≤ {}|13A x x ∴=-≤≤,≥{|B y y ∴=≥ A B ⎤⋂=⎦,故选C9.设集合{|32}M x Z x =∈-<<,{|13}N x Z x =∈-≤≤,则MN 等于( )A .{0,1}B .{-1,0,1,2}C .{0,1,2}D .{-1,0,1} 【答案】D【解析】考点:1、集合的表示;2、集合的交集.10.已知集合2{|16}A x x =<,{|}B x x m =<,若A B A =,则实数m 的取值范围是( )A .[4,)-+∞B .[4,)+∞C .(,4]-∞-D .(,4]-∞ 【答案】B【解析】考点:1、集合的表示;2、集合的基本运算.11.设集合{}0)2)(1(>-+=x x x A ,集合{}31≤≤=x x B ,则=B A ( ) A .]3,1(- B .]1,1(- C .)2,1( D .)3,1(- 【答案】A【解析】试题分析:因为{}{}(1)(2)0|12A x x x x x =+->=-<<, {}13B x x =<≤,所以,=B A {}13x x -<≤=(]1,3-,故选A .考点:1、集合的表示方法;2、集合的并集.12.已知集合2{|50},{|6},M x x x N x p x =-≤=<<且{|2},M N x x q ⋂=<≤ 则p q += ( )A . 6B . 7C . 8D . 9 【答案】B 【解析】集合{}{}2|50|05M x x x x x =-≤=≤≤, {}|6N x p x =<<,且{}|2M N x x q ⋂=<≤, 2,5,257p q p q ∴==∴+=+=,故选B .。
2018年全国高考数学试题分类汇编考点1集合
考点1 集合一、选择题1.(2018年全国卷I高考理科·T2)已知集合A=,则R A=()A.B.C.∪D.∪【试题解析】选B.A={x|x>2或x<-1},则R A={x|-1≤x≤2}.2.(2018年全国卷I高考文科·T1)已知集合A=,B=,则A∩B=() A.B.C.D.【试题解析】选A.A∩B={0,2}.3.(2018年全国卷II高考文科·T2)已知集合A=,B=,则A∩B=() A.B.C.D.【命题意图】本题考查集合的表示及集合的运算,难度较小.【试题解析】选C.A∩B={3,5}.4.(2018年全国Ⅲ高考理科·T1)已知集合A=,B=,则A∩B=() A.B.C.D.【命题意图】本题考查集合的交集运算,考查运算求解能力,体现了数学运算的核心素养.试题难度:易.【试题解析】选C.因为A={x|x-1≥0}={x|x≥1},B={0,1,2},所以A∩B ={1,2}.5.(2018年全国Ⅲ高考文科·T1)已知集合A=,B=,则A∩B=() A.B.C.D.【命题意图】本题考查集合的交集运算,考查运算求解能力,体现了数学运算的核心素养.试题难度:易.【试题解析】选C.因为A={x|x-1≥0}={x|x≥1},B={0,1,2},所以A∩B ={1,2}.6.(2018年北京高考理科·T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【命题意图】本小题主要考查集合的表示法与基本运算,属容易题,意在考查集合表示法的转化与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.【试题解析】选A.集合A={x|-2<x<2},所以A∩B={0,1}.7.(2018年北京高考文科·T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【命题意图】本小题主要考查集合的表示法与基本运算,属容易题,意在考查集合表示法的转化与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.【试题解析】选A.集合A={x|-2<x<2},所以A∩B={0,1}.8.(2018年天津高考理科·T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【命题意图】本题考查考生对集合的含义、表示方式及集合的补集、交集的理解与运算.【试题解析】选B.因为集合B={x|x≥1},所以R B={x|x<1},所以A∩(R B)={x|0<x<1}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.9.(2018年天津高考文科·T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x ∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【命题意图】本题考查考生对集合的含义、表示方式及集合的并集、交集的理解与运算.【解题指南】可先求出A∪B,再求(A∪B)∩C.【试题解析】选C.因为集合A={1,2,3,4},B={-1,0,2,3},A∪B={-1,0,1,2,3,4},所以(A∪B)∩C={-1,0,1}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻理解,善于抓住代表元素,通过观察集合之间的关系,借助Venn 图或数轴寻找元素之间的关系,使问题准确解决.10.(2018年浙江高考T1)已知全集U={1,2,3,4,5},A={1,3},则U A=()A.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}【命题意图】考查集合的补集运算.【试题解析】选C.因为全集U={1,2,3,4,5},A={1,3},所以U A={2,4,5}.11.(2018年全国卷II高考理科·T2)已知集合A=,则A中元素的个数为()A.9B.8C.5D.4【命题意图】本题考查集合的表示及圆的相关知识,考查数形结合的能力.【试题解析】选A.x2+y2≤3,x∈Z,y∈Z,所有满足的点有(-1,-1),(0,-1), (1,-1),(-1,0),(0,0),(1,0),(-1,1),(0,1),(1,1),共9个.二、填空题12.(2018年江苏高考·T1)已知集合A={0,1,2,8},B={-1,1,6,8},那么A ∩B=.【试题解析】A∩B={1,8}.答案:{1,8}三、解答题13.(本小题14分)(2018年北京高考理科·T20)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=[(x1+y1)-|x1-y1|+(x2+y2)-|x2-y2|+…+(x n+y n)-|x n-y n|].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值.(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值.(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.【命题意图】考查集合的综合应用,意在考查知识的综合应用以及新概念的理解,培养学生的知识整合能力与逻辑推理能力,体现了逻辑推理、数学运算、数据分析的数学素养.【试题解析】(x1+y1-|x1-y1|)=即(x1+y1-|x1-y1|)=min{x1,y1},所以M(α,β)=min{x i,y i},(1)M(α,α)=1+1-0=2,M(α,β)=0+1+0=1.(2)当n=4时,①当α,β相同时,M(α,β)=x1+x2+x3+x4,是奇数,又x i∈{0,1}(i=1,2,3,4),所以x1+x2+x3+x4=1或3,所以集合B中元素可能有(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1), (0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0),但(1,0,0,0)与(1,0,1,1),(1,1,0,1),(1,1,1,0)不能同时属于集合B, (0,1,1,1)与(0,1,0,0),(0,0,1,0),(0,0,0,1)不能同时属于集合B,所以,集合B至多有4个元素,例如B={(1,0,0,0),(0,1,0,0),(0,0,1,0), (0,0,0,1)},所以,集合B中元素个数最大值为4.(3)令λ1=(1,0,…,0),λ2=(0,1,…,0),…,λn=(0,0,…,1),λn+1=(0,0,…,0),集合B={(1,0,…,0),(0,1,…,0),…,(0,0,…,1), (0,0,…,0)},B有n+1个元素.下证此集合是符合题意的一个集合.易知B中任意两个不同元素α,β,都有M(α,β)=0.另一方面,B中元素不能再增加.任取γ=(x1,x2,…,x n)∉B,则x i(i=1,2,…,n)中至少有2个1,不妨令x1=x2=1,则对B中元素λ1,有M(γ,λ1)=1,不符合题意,综上,集合B={(1,0,…,0),(0,1,…,0),…,(0,0,…,1),(0,0,…,0)}符合题意.。
2018年高考(四川省)真题数学(理)试题及答案解析
2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段。
2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
【新课标II卷】2018年高考数学试题(理)(Word全部解析版)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。
所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。
2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)
2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则()A. {0,1}B. {–1,0,1}C. {–2,0, 1,2}D. {–1,0,1,2}2.【2018年理新课标I,则)3.【2018,则)4.【2018年理数全国卷II()A. 9B. 8C. 5D. 45.【2018年理数天津卷】设全集为R()A6.【2018.2017年高考全景展示1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,53.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .04.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则AB =( )A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R7.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .2016年高考全景展示1.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则AB = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭2.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞)3.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12},(C ){0123},,, (D ){10123}-,,,, 4. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞ (D )(0,)+∞5.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞6.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 7.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )68.【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4} 9.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________.解析版2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
2018年高考数学黄金100题系列第01题集合的性质与运算理
第1题 集合的性质与运算I .题源探究·黄金母题【例1】已知集合{}{}|37,|210,A x x B x x =≤<=<< 求()R C AB ,()RC A B ,()R C A B ,()R A C B .()[)()2,37,10R C A B ∴=,(][)[)(),23,710,R A C B =-∞+∞.精彩解读【试题来源】人教版A 版必修一第14页A 组第10题【母题评析】本题以不等式为载体,考查集合的运算问题.本类考查方式是近几年高考试题常常采用的命题形式,达到一箭双雕的目的.【思路方法】借助数轴为工具,利用集合各类运算的方法直接求解,但需要注意区间方向以及区间端点值的验证,确保准确无误!II .考场精彩·真题回放【例2】【2017高考天津,理1】设集合{}1,2,6,A ={}{}2,4,15B C x x ==∈-≤≤R ,则()A B C = A .{2} B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B. 【例3】【2017高考山东,理1】设函数24y x =-义域A ,函数()ln 1y x =-的定义域为B ,则AB =A .()1,2B .(]1,2C .()2,1-D .[)2,1- 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.【命题意图】本类题通常主要考查集合的交、并、补运算.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与函数的定义域、值域、解不等式有联系.【难点中心】对集合运问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.III .理论基础·解题原理考点一 集合的基本概念 1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性;(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为和;(3)集合的表示法:列举法、描述法、Venn 图. 2.常见数集及其表示符号自然数集用N 表示,正整数集用*N 或N +表示,整数集用Z 表示,有理数集用Q 表示,实数集用R 表示.考点二 集合间的基本关系(1)子集:对任意的x A ∈,都有x B ∈,则A B ⊆(或B A ⊇);{xk;w} (2)真子集:若集合A B ⊆,但存在元素x B ∈,且x A ∉,则A B (或B A );(3)性质:A A A A B B C A C ∅⊆⊆⊆⊆⇒⊆,,,; (4)集合相等:若A B ⊆,且B A ⊆,则A B =. 考点三 集合的并、交、补运算: (1)并集:{A A B x x =∈,或}x B ∈; (2)交集:{AA B x x =∈,且}x B ∈;(3)补集:{U C A x x U =∈,且}x A ∉;U 为全集,U C A 表示集合A 相对于全集U 的补集.(4)集合的运算性质: ① ,A B A B A A B A A B =⇔⊆=⇔⊆; ② ,A A A A =∅=∅; ③ A A A A A =∅=,;④ (C )U U U U AC A A C A U C A A =∅==,,.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与函数的定义域、值域、解不等式有联系.【技能方法】解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,先化简集合,常借助数轴求交集.求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.【易错指导】(1)在涉及集合之间的关系时,若未指明集合非空,则要考虑空集的可能性,如A B ⊆(B ≠∅),则有A =∅和A ≠∅两种可能;(2)在子集个数问题上,要注意∅是任何集合的子集,是任何非空集合的真子集,任何集合是其本身的子集,在列举时千万不要忘记;(3)在用数轴法判断集合间的关系时,其端点值能否取到,一定要注意用回代检验的方法确定.如果两个集合的端点值相同,则这两个集合是否能取到端点值往往决定这两个集合之间的关系.V .举一反三·触类旁通 考向1 集合关系的判断【例4】【2016河北石家庄质检二,理1】设集合{}1,1M =-,{}2|6N x x x =-<,则下列结论正确的是( )A. N M ⊆B. N M =∅C.M N ⊆D. M N R =【答案】C【解析】{}23x x N =-<<,所以M ⊆N ,N M =M ,M N =N ,故选C.考向2 根据集合关系求参数的值或范围【例5】【2017高考课标II ,理2】设集合{}{}21,2,4,40A B x x x m ==-+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1.1 集合【三年高考】1. 【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅ 【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
若{}1A B=,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C【解析】由{}1A B =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0【答案】B4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<-,故选A.5.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C = (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.6.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则AB = ( ) (A )33,2⎛⎫--⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭ 【答案】D 【解析】因为23{|-430}={|13},={|},2A x x x x xB x x =+<<<>所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D. 7.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) A.3 B.4 C.5 D.6【答案】C【解析】由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C.8.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( )A .B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞【答案】B 【解析】根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R R Q x x P Q 痧.故选B .9.【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( ) (A ){1}(B ){4} (C ){1,3} (D ){1,4} 【答案】D【解析】{1,4,7,10},A B {1,4}.B ==选D.10.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .11.【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个.【2017考试大纲】1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【三年高考命题回顾】纵观前三年各地高考试题,集合仍是每年高考考试的重点, 主要以考查集合的概念和集合的运算为主,主要考查两个集合的交集、并集、补集运算,偶尔考查集合中元素个数;从考查形式上看,题型一般是选择题,占5分,常联系不等式的解集与不等关系,试题难度较低,一般出现在前三道题中,常考查数形结合、分类讨论等数学思想方法,而集合的运算是高考考试的重点,且集合在历年的高考中考查的形式与内容几乎没有变化.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式,在2018年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2018高考备考主要有以下几点建议: 1.涉及本单元知识点的高考题,综合性大题不多.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型(如集合与映射,集合与自然数集,集合与不等式,集合与方程等) ;2.重视“数形结合”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议便是:画个图,如集合中的韦恩图,数轴,利用图形的直观性,可迅速地破解问题,乃至最终解决问;3.强化“分类思想”应用.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论;4.集合作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.学法指导:1.活用“定义法”解题,重视“数形结合”:涉及本单元知识点的高考题,综合性大题不多,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了. 定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.2.有意识地在各模块复习中渗透数学思维方法:数学是理性思维的学科,高考尤其强调“全卷要贯穿思维能力的考查”简易逻辑用于可以和各章融合命题,正是这一理性思维的体现,学生只有在思维能力上有所提高才能让数学学习有一个质的飞跃。
但思维的培养不是一朝一夕的,因此,在第一轮各模块的复习中应尽量加强学生思维能力方面的培养.3.夯实基础的同时加大信息量:夯实双基是提高数学能力的必要条件,只有对数学基础知识和数学规律、性质有一定的了解才谈得上思维能力的开拓,因此必须注重数学基础的学习.同时,对于有能力的学生,加大信息量,在教材之外,适当的把一些数学思想,以及与高中数学相关的部分高等数学内容和思想方法进行适当的渗透,都有助其解决问题.预测2018年高考仍是考查集合的运算为主,可能与不等式(一元二次不等式,指数不等式,对数不等式)或方程结合,考查集合的交,并与补集,有可能考察集合的元素(如子集个数,与集合的元素个数)问题等.【2018年高考考点定位】高考对集合的考查有两种主要形式:一是直接考查集合的概念;二是以集合为工具考查集合语言和集合思想的运用.从涉及的知识上讲,常与映射、函数、方程、不等式等知识相联系,小题目综合化是这部分内容的一种趋势.【考点1】集合的概念【备考知识梳理】1.集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素.2.集合中元素的三个特性:确定性、互异性、无序性.3.集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为“∈”或“∉”.4.集合的表示常见的有四种方法.(1)自然语言描述法,(2)列举法,(3)描述法,(4)Venn 图法.5.常见的特殊集合:(1)非负整数集(即自然数集)N (包括零)(2)正整数集N*或+N (3)整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R6.集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集.③空集 :不含任何元素的集合【规律方法技巧】1.集合运算的互异性应用规律:凡是出现含参数的集合,必须首先考虑集合的互异性,即集合中元素不相等,例如集合{},A a b =,则有a b ≠.2.理清两类关系,不要混淆:(1)元素与集合的关系,用∈或∉表示 (2)集合与集合的关系,用⊆,≠⊂,=表示3.注意集合中元素的本质: 集合{}2|y y x =中的元素是数,而(){}2,|x y y x =中的元素是抛物线上点的坐标.4.韦恩图的作用:掌握集合间的关系和集合运算的韦恩图表示,并会利用韦恩图解决与集合间的关系和集合运算相关的问题.【考点针对训练】1.【2017北京丰台5月综合测试】()S A 表示集合A 中所有元素的和,且{}1,2,3,4,5A ⊆,若()S A 能被3整除,则符合条件的非空集合A 的个数是( )A. 10B. 11C. 12D. 13【答案】B【解析】因为{}1,2,3,4,5A ⊆,所以非空集合A 可以是: {}{}{}{}{}{}{}{}{}{}{}3,1,2,1,5,2,4,4,51,2,3,1,3,5,2,3,4,3,4,5,1,2,4,5,1,2,3,4,5,故选B.2.【2017河北唐山二模】已知集合{}1,2A =, {|,,}B x x a b a A b A ==+∈∈,则集合B 中元素个数为( )A. 1B. 2C. 3D. 4【答案】C【解析】由题意,得{}1,2A =, {}{}|,,2,3,4B x x a b a A b A ==+∈∈=,则集合B 中元素个数为3;故选C.【考点2】集合间的关系【备考知识梳理】【规律方法技巧】1.注意子集与相等之间的关系:A B ⊆且B A ⊆A B ⇔=.2. 判断两集合的关系常用两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.3.注意空集的特殊性:空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A B ⊆,则需考虑A =∅和A ≠∅两种可能的情况.4.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常运用数轴、Venn 图帮助分析.5.子集个数的运算方法:若集合A 有n 个元素,则集合A 的子集有2n 个,真子集有21n -个,非空真子集有22n -个.【考点针对训练】1. 【2017安徽合肥二模】已知[)1,A =+∞,1{|21}2B x R x a =∈≤≤-,若A B φ⋂≠,则实数a 的取值范围是( )A. [)1,+∞B. 1,12⎡⎤⎢⎥⎣⎦C. 2,3⎡⎫+∞⎪⎢⎣⎭D. ()1,+∞【答案】A【解析】因为A B φ⋂≠,所以211a -≥,且1212a -≥,解得1a ≥,故选A .2. 【2017安徽池州4月联考】已知集合{|316,}x A x x N =<∈, 2{|540}B x x x =-+<,则()R A C B ⋂的真子集个数为( )A. 1B. 3C. 4D. 7【答案】B【考点3】集合运算【备考知识梳理】A A =,∅=∅ B B A = . A A =, A ∅=, B B A =. 注:全集:如果集合含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U 来表示.重要结论:A B A A B =⇔⊆, A B A B A =⇔⊆, ()U U U C A B C A C B =,()U U U C A B C A C B =.【规律方法技巧】1. 集合的基本运算包括集合间的交、并、补集运算,解决此类运算问题一般应注意以下几点:一是看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决运算问题的前提.二是对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.三是注意数形结合思想的应用.集合运算常用的数形结合形式有数轴、坐标系和Venn 图.2.子集关系与交并补运算的关系:①A B A A B =⇔⊆,②A B A B A =⇔⊆.3.熟记交并补的运算法则:如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ),C U (A ∪B )=(C U A )∩(C U B )等.【考点针对训练】1. 【2017湖南湘潭三模】已知全集U R =,集合{|1}M x x =<, {|2,}x N y y x R ==∈,则集合()U C M N ⋃等于( )A. (],1-∞-B. ()1,2-C. ][(),12,-∞-⋃+∞D. [)2,+∞【答案】A 【解析】{|1}{|11}M x x x x =<=-<<, {}{|2,}0x N y y x R y y ==∈=.又∵U R =,∴()[)1,U C M N ⋃=-+∞,故选A.2. 【2017陕西师范附属二模】集合2{|90}P x x =-<, {|13}Q x Z x =∈-≤≤,则P Q ⋂=( )A. {|33}x x -<≤B. {|13}x x -≤<C. {}1,0,1,2,3-D. {}1,0,1,2-【答案】D【解析】因为{}()2|903,3P x x =-<=-, {}{}|131,0,1,2,3Q x x =∈-≤≤=-Z ,所以{}1,0,1,2P Q ⋂=-;故选D.考点4集合中的创新问题【备考知识梳理】【规律方法】与集合有关的新概念问题属于信息迁移类问题,它是化归思想的具体运用,集合的新定义问题的解决方法是:①遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.②按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.③对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.【考点针对训练】1.【云南省曲靖市第一中学2017届高三第六次月考】设,P Q 是两个集合,定义集合{|,}P Q x x P x Q -=∈∉为,P Q 的“差集”,已知2{|10}P x x=-<, {|21}Q x x =-<,那么Q P -等于( ) A. {|01}x x << B. {|01}x x <≤ C. {|12}x x ≤< D. {|23}x x ≤<【答案】D 【解析】∵2{|10}P x x=-<,化简得: {|02}P x x =<<,而{|21}Q x x =-<,化简得: {|13}Q x x =<<.∵定义集合{|,}P Q x x P x Q -=∈∉,∴{|23}Q P x x -=≤<,故选D .2.【2017届山东潍坊临朐县高三10月月考】已知集合{(,)|()}M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +=成立,则称集合M 是“理想集合”.给出下列4;②{(,)|sin }M x y y x ==;③{(,)|2}xM x y y e ==-;④{(,)|lg }M x y y x ==.其中所有“理想集合”的序号是( )A.①③B.②③C.②④D.③④【答案】B【应试技巧点拨】1.分析集合关系时,弄清集合由哪些元素组成,这就需要我们把抽象的问题具体化、形象化,也就是善于对集合的三种语言(文字、符号、图形)进行相互转化,同时还要善于将多个参数表示的符号描述法(){}x p x 的集合化到最简形式.此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时.因此分类讨论思想是必须的.判断两集合的关系常用两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.2.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴,进而用集合语言表示,增强运用数形结合思想方法的意识.要善于运用数形结合、分类讨论、化归与转化等数学思想方法来解决集合的问题.要注意若A B ⊆,则,A B A A B B ==,U U C A C B ⊇,U A C B φ=这五个关系式的等价性.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常运用数轴、Venn 图帮助分析.1. 【辽宁省锦州市2017届高三质量检测(一)】集合{|3,}nM x x n N ==∈,集合{|3,}N x x n n N ==∈,则集合M 与集合N 的关系( )A. M N ⊆B. N M ⊆C. M N φ⋂=D. M ⊆N 且N ⊆M【答案】D【解析】因为1,1;6,6M N N M ∈∉∈∉ ,所以M ⊆N 且N ⊆M ,选D.2. 【黑龙江省佳木斯市第一中学2017届高三下学期第三次模拟】已知全集U R =,集合(){|50},{|A x x x B x y =-≥==,则()U C A B ⋂等于( )A. ()0,3B. ()0,5C. φD. (]0,3【答案】D【解析】因为集合(){|50}{|5A x x x x x =-≥=≥ 或0}x ≤ , {|05}R C A x x ∴=<< , ()(]{|{|30}{|3},0,3R B x y x x x x C A B ==-≥=≤∴⋂= ,故选D.3. 【福建省厦门第一中学2017届高三高考考前模拟】已知集合{|}A x x a =<,2{|320}B x x x =-+<,若A B B ⋂=,则实数a 的取值范围是( )A. 1a ≤B. 1a <C. 2a ≥D. 2a >【答案】C【解析】()1,2,2B A B B B A a =⋂=⇒⊆∴≥ ,选C.4. 【河北省石家庄二中2017届高三第三次模拟】已知全集R U = ,集合1{|1},{|14}3xM x N x x ⎛⎫=≤=-<< ⎪⎝⎭,则M N ⋂= ( )A. {|10}x x -<≤B. {|04}x x ≤<C. {}1,2,3D. {}0,1,2,3 【答案】B 【解析】[)[)0,04M M N =+∞∴⋂=,, ,选B.5. 【辽宁省庄河市高级中学2017届高三第四次模拟】已知集合()(){|0},{|24},{|420}x A x lgx B x C x x x =≥=≤=-+≤ ,则“x A B ∈⋂ ”是“x C ∈ ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条 【答案】A6. 【辽宁省葫芦岛协作体2017届高三下学期模拟考试(6月)】已知集合()()2{|log 2}A x R f x x =∈=-, ()2{|log 2}B y R y x =∈=-,则A B ⋂=( )A. ()0,2B. (]0,2C. [)2,+∞ D. ()2,+∞ 【答案】D【解析】()()2,,2,A B R A B =+∞=∴⋂=+∞,选D.7. 【河南省息县第一高级中学2017届高三第七次适应性考试】已知集合2{|20}P x x x =-<,{|,}2yQ x x y P ==∈,则()R P Q ⋂=ð( ) A. {|01}x x << B. {|02}x x << C. {|12}x x ≤< D. {|00x ≤或2}x > 【答案】C【解析】依题,由集合2{|20}{|02},{|,}{|01}2yP x x x x x Q x x y P x x =-<=<<==∈=<< ,{|0R C Q x x ∴=≤ 或()1},{|12}R x P C Q x x ≥∴⋂=≤< ,故选C.8. 【河北省2017届衡水中学押题卷】设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则集合A B ⋂=( )A. {}0,1B. {}0,1,2C. {}0,1,2,3D. {}1,0,1,2- 【答案】B【解析】由题意可得: {}{}1,0,1,2,0,1,2,3A B =-= ,则集合A B ⋂={}0,1,2. 本题选择B 选项.9. 【山西省实验中学2017届高三下学期模拟热身】设0x >,集合{}24,log M x x =, {}2,x N a =,若{}1M N ⋂=,则M N ⋃=( )A. {}0,1,2,4B. {}0,1,2C. {}1,4D. {}0,1,4 【答案】B10. 【安徽省巢湖市柘皋中学2017届高三最后一次模拟】已知集合4{|0}2xA x Z x -=∈≥+, 1{|24}4x B x =≤≤,则A B ⋂=( ) A. {|12}x x -≤≤ B. {}1,0,1,2- C. {}2,1,0,1,2-- D. {}0,1,2 【答案】B 【解析】{}{Z|24}1,0,1,2,3,4,{|12}A x x B x x =∈-<≤=-=-≤≤ ,{}1,0,1,2A B ∴⋂=- ,故选B.11.【2016河北石家庄质检二,理1】设集合{}1,1M =-,{}2|6N x x x =-<,则下列结论正确的是( )A. N M ⊆B. N M =∅C.M N ⊆D. M N R =【答案】C【解析】{}23x x N =-<<,所以M ⊆N ,NM =M ,M N =N ,故选C.12. 【湖北2016年9月三校联考】已知集合{}{}20log 2,32,,xxA xB y y x R =<<==+∈则A B ⋂=( )A .()1,4B .()2,4C .()1,2D .()1,+∞ 【答案】B【解析】解不等式2log 02<<x 可得{}41<<=x x A ,求函数23+=xy 值域可得{}2>=y y B ,由集合运算可知{}42<<=x x B A ,故本题的正确选项为B.13.【2016届榆林市高考模拟二测】集合{}{}22|230,1,A x N x x B x =∈--<= ,若{}0,1,2A B =,则这样的实数x 的个数为( )A .1个B .2个C .4个D .3个 【答案】D【解析】{}2|230={0,1,2}A x N x x =∈--<,因为{}0,1,2AB =,所以20,20,x x =⇒=,即实数x 的个数为3个,选D.14. 【湖南省长沙市长郡中学2016届高三下学期第六次月考】已知集合2{|20}P y y y =-->,2{|0}Q x x ax b =++≤,若P Q R =,(2,3]P Q =,则a b += .【答案】-515.【2016年榆林二模】已知集合{}|11,|A x x B x y ⎧⎪=+<==⎨⎪⎩ ,则RA CB = . 【答案】()1,0-【解析】{}{}|11|111(2,0)A x x x x =+<=-<+<=-,1||202x B x y x ⎧⎧⎫⎪⎪⎪⎛⎫===-≥⎨⎨⎬ ⎪⎝⎭⎪⎪⎪⎩⎭⎩ (,1]=-∞-所以(2,0)(1,)(1,0)R A C B =--+∞=-.【一年原创真预测】1. 设集合(){}lg 23A x y x ==-,{}|2,0x B y y x ==≥,则()A B =R ð( )A. ()0,3B. 30,2⎡⎤⎢⎥⎣⎦C. 31,2⎡⎤⎢⎥⎣⎦D. 31,2⎛⎫ ⎪⎝⎭【答案】C【入选理由】本题考查指数函数的值域,对数函数的定义域,集合的补集与交集运算等基础知识,意在考查学生的基本运算能力.是一道比较综合的集合题,比较典型,且近几年高考题都是与不等式有关,故押此题.2. 已知集合{}124xA x =剟,{}2430B x x x =-+<,则A B =( )A .[0,1]B .(1,2]C .[2,3)D .(1,3)【答案】B【解析】由124x剟,得02x 剟,即{}|02A x x =剟,解一元二次不等式2430x x -+<,得13x <<,即{}|13x x B =<<,则{}|12A B x x =<…,故选B .【入选理由】本题以解不等式为背景,考查集合的概念及运算,属容易题,比较典型,是高考比较青睐的一种类型,故押此题. 3. 已知集合12{|}3A x x=∈∈+Z N ,2{|450}B x x x =--≤,则A B =( ) A .{1,0,1,3}- B .{1,0,1,2}- C .{1,0,1}- D .{0,1,2,3} 【答案】A【解析】因为{2,1,0,1,3,9}A =--,{|15}B x x =-≤≤,所以{1,0,1,3}AB =-,故选A .【入选理由】本题主要考查不等式解法、集合交集运算等基础知识,意在考查学生运算求解能力.此题难度不大,出法较新,故选此题.4. 已知集合2{|20}A x x x =∈--<R ,{|21,}B x x t t A =∈=+∈Z ,则AB =( )A .{1,0,1}-B .{1,0}-C .{0,1}D .{0} 【答案】C【解析】2{|20}{|12}A x x x x x =∈--<=-<<R ,则21(1,5)x t =+∈-,所以{0,1,2,3,4}B =,∴{0,1}A B =I ,故选C .【入选理由】本题主要考查不等式的解法、集合的交集运算,意在考查学生的运算求解能力.是一道比较综合的集合题,是高考比较青睐的一种类型,故押此题. 5. 已知{}2|20x x A x ≤=--,{}21|||x B x =<-,则=I A B(A ) [1,2]- (B )1,3() (C )1,2() (D )1,2]( 【答案】D【解析】由题意得{}|12A x x =-≤≤,{}|13x x B =<<,所以={|12}A B x x <≤I ,故选D. 【入选理由】本题主要考查集合的交集运算以及一元二次不等式和绝对值不等式的解法,考查基本的运算能力,是容易题.[绝对值不等式也是高考考查的知识点,故押此题. 6. 已知集合{}2|20M x x x =--<,21{|1,}2N y y x x ==-+∈R ,则M N =( )A .{}|21x x -≤<B .{}|12x x <<C .{}|11x x -<≤D .{}|12x x ≤< 【答案】C【解析】{}|12M x x =-<<,{}|1N y y =≤,则{}|11MN x x =-<≤,故选C .【入选理由】本题考查集合的运算、不等式的解法、二次函数的值域,意在考查运算求解能力.是一道比较综合的集合题,比较典型,故押此题.。