高中必修第二册《9.1 随机抽样》简单随机抽样优质课教案教学设计

合集下载

简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册

简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样一、内容和内容解析内容:简单随机抽样的概念以及如何实施简单随机抽样.内容解析:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第九章第1节第1课时的内容.本节内容是统计的初步内容——简单随机抽样,是其他抽样方法的基础,也是估计总体结果的前提,同时也是初中频率知识的延伸.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、目标和目标解析目标:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.目标解析:(1)简单随机抽样是一种简单且基本的抽样方法,是很多抽样方法的基础,在抽样理论中占有重要低位..(2)抽签法和随机数表法是实现简单随机抽样的两种方法,两种抽样都可以归纳为编号,抽取,成样三个步骤,明确两种方法的优劣,选择合适的方法进行抽取.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.简单随机抽样的教学中,利用利用抽样方法解决实际问题是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:普查与抽查、简单随机抽样、总体平均数与样本平均数.三、教学问题诊断分析1.教学问题一:用样本估计总体或多或少会存在误差,从对总体估计的角度看,误差小的样本是“好”样本,误差大的样本是“坏”样本.如何获得一个好样本是学生理解的一个难点。

9.1.1 简单随机抽样 教案-2022-2023学年高一下学期数学人教A版(2019)必修第二册

9.1.1  简单随机抽样 教案-2022-2023学年高一下学期数学人教A版(2019)必修第二册

9.1.1 简单随机抽样【学习目标】1.理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.通过对问题的分析与解决,体验简单随机抽样的科学性,培养分析问题,解决问题的能力.3.通过对身边事例的研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质.【学习重点】抽样的必要性和原则以及会用抽签法和随机数表法抽取样本【学习难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性【问题导引·知识探究】引言在一、二百年前,数学只是供文人雅士们“摆弄”研究的“玩物”,他们被称为“贵族式的经院学派”,堪称“阳春白雪”.可是随着时代的进步和社会的发展,数学已经逐步实现了“阳春白雪”与“下里巴人”的兼容,这是一种抗拒不了和不可逆转的普及趋势。

我国著名数学家华罗庚有一段精辟的论述:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学”。

有趣的是,唐代著名诗人刘禹锡在他的作品《乌衣巷》中有名句:“昔日王谢堂前燕,飞入寻常百姓家”。

意思是说,当年豪门檐下的燕子啊,如今已飞进寻常百姓家里。

不是吗,现在电视机、电脑、智能手机等不已经进入千家万户了吗!华罗庚与刘禹锡的精湛论述竟具有异曲同工之妙!今天我们将要研究的“简单随机抽样”就是上至宇宙、下至日用涵盖面极广的数学工具。

对于我们——高中生、准大学生来说,是一群特殊的“燕子”,就应该飞得更高、飞得更远。

1.抽样的必要性情景一:买火柴的笑话情景二:今年6月6日是第21个“全国爱眼日”,最新数据统计显示,中国青少年学生的近视患病率已高居世界第一位,小学生、初中生、高中生、大学生视力不良率分别为45.71%,74.36%,83.28%和86.36%.问题1:同学们知道这些数据是通过什么方法得到的吗?2.抽样的原则情景三:“在1936年美国总统选举前,一份颇有名气的杂志对当时的两位候选人兰顿和罗斯福做了一次民意调查,调查谁将当选下一届总统,调查者通过电话薄和车辆登记薄上的名单给一大批人发了调查表,(注:在1936年电话和汽车只有少数富人拥有).调查结果表明,兰顿拥有57%的支持率,很可能在选举中获胜,但实际结果正好相反,最后罗斯福以高达62%的支持率在选举中获胜.此次抽样调查被称作抽样中的“泰坦尼克事件”.问题2:你认为预测结果出错的原因是什么?问题3:我们应该遵循什么样的抽样原则?知识探究(一)简单随机抽样的基本思想思考1:一个口袋里有6个球,依次逐个取出2个球.(1)第一次抽取时,其中任意一个球被抽到的概率是多少?第二次抽取时,其中任意一个球被抽到的概率是多少?(2)把依次逐个取出2个球看成一个完整的过程,问每个球被抽到的概率是否相等?思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?1.简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种方法叫做简单随机抽样.思考3:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。

9.1.1简单随机抽样 教案-2022-2023学年高中数学(人教A版2019)必修第二册

9.1.1简单随机抽样 教案-2022-2023学年高中数学(人教A版2019)必修第二册

9.1.1简单随机抽样一、教学目标 1. 正确理解总体、个体、样本、普查、抽样调查的概念2. 理解简单随机抽样的概念3. 体会用样本平均数、样本中的比例去估计总体平均数、总体中的比例二、教学重点普查与抽查、简单随机抽样、总体平均数与样本平均数教学难点简单随机抽样、总体平均数与样本平均数三、教学过程1、情境引入情境1:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?情境2:学校的投影仪灯泡的平均使用寿命是3000小时,“3000小时”这样一个数据是如何得出的呢?2、探索新知1)全面调查(普查)、抽样调查①全面调查(普查):对每一个调查对象都进行调查的方法,称为全面调查,又称普查②总体:调查对象的全体③个体:组成总体的每一个调查对象④抽样调查:根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法⑤样本:从总体中抽取的那部分个体⑥样本量:样本中包含的个体数⑦样本数据:调查样本获得的变量值问题1:样本与样本容量有什么区别?答:样本与样本容量是两个不同的概念,样本是从总体中抽取的个体组成的集合,是对象样本容量是样本中个体的数目,是一个数问题2:普查和抽样调查各有什么特点?答:普查的数据结果全面、准确,但花费的代价大、时间较长抽样调查的数据结果虽没有普查全面、准确,但具有花费少、效率高的特点,在总体规模较大的调查中,如果经费、时间上受限,那么抽样调查是比较合适的调查方法同时,在一些调查中,抽样调查具有不可替代的作用,抽样调查毁损性小例如,检测一批灯泡的寿命,或一批种子的发芽率,或一批待售袋装牛奶的细菌数是否超标【例1】1、医生要检验人血液中血脂的含量,采取的调查方法应该是(B)A.普查B.抽样调查C.既不能普查也不能抽样调查D.普查与抽样调查都可以2、若要调查某城市家庭的收入情况,在该问题中,总体是(B)A.某城市B.某城市的所有家庭的收入C.某城市的所有人口D.某城市的工薪阶层3、抽样调查在抽取调查对象时(A)A.按一定的方法抽取B.随便抽取C.全部抽取D.根据个人的爱好抽取问题3:抽查的目的是什么?抽取的样本具有什么特点?答:抽查的目的是为了了解总体的情况,抽取出的样本要客观、公正、具有代表性探究1:假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同,你能通过抽样调查的方法估计袋中红球所占的比例吗?2)简单随机抽样一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样,放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样,通过简单随机抽样获得的样本称为简单随机样本从总体中,逐个不放回地随机抽取n个个体作为样本,一次性批量随机抽取n个个体作为样本,两种方法是等价的问题4:放回简单随机抽样和不放回简单随机抽样哪个效率高?答:不放回简单随机抽样的效率更高。

9.1随机抽样-人教A版高中数学必修第二册(2019版)教案

9.1随机抽样-人教A版高中数学必修第二册(2019版)教案

随机抽样-人教A版高中数学必修第二册(2019版)教案知识点概述随机抽样是一种常用的统计方法,其主要目的是从总体中选取一定数量的样本进行研究,以了解总体的一些性质,并作出相应的推断。

在实际的统计调查中,随机抽样是必不可少的方法之一。

在高中数学的学习中,随机抽样也是一个重要的学习内容。

人教A版高中数学必修第二册(2019版)中,随机抽样是数学必修二章五节的内容,主要包括以下三个方面:1.随机变量2.二项分布3.抽样与统计推断本教案将重点讲述第三个方面——抽样与统计推断。

教学目标1.掌握随机抽样的基本概念和方法。

2.理解统计推断的基本思想和方法。

3.能够运用所学知识解决实际问题。

教学重点1.抽样误差的计算。

2.统计推断的方法和技巧。

3.不同类型的抽样方法的应用。

教学难点1.掌握较为复杂的统计推断方法。

2.多种抽样方法的灵活应用。

教学步骤第一步:引入话题通过教师提问、课件展示等方式,引导学生了解随机抽样的基本概念和方法,引出本节课的内容。

第二步:抽样样本误差的计算讲解抽样样本误差的概念和计算方法,并让学生通过练习题进行巩固。

第三步:统计推断的方法和技巧讲解统计推断的基本思想和方法,并让学生通过示例题进行理解和掌握。

第四步:不同类型的抽样方法的应用讲解不同类型的抽样方法的优缺点及其应用场景,让学生在实际问题中灵活运用所学知识。

第五步:课后作业布置课后作业,让学生再次巩固所学内容,并检验掌握情况。

总结通过本节课的学习,学生们不仅能够掌握随机抽样的基本概念和方法,更能够理解统计推断的基本思想和方法,并在实际问题中灵活运用所学知识,从而为今后的学习和生活打下坚实的基础。

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。

1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。

2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。

【教学难点】对样本随机性的理解。

抽签纸,图表等。

(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。

统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。

数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。

为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。

于是此杂志预测兰顿将在选举中获胜。

实际选举结果正好相反,最后罗斯福在选举中获胜。

其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。

新人教A版高中数学必修二《9.1.1 简单随机抽样(第一课时)》教学设计

新人教A版高中数学必修二《9.1.1 简单随机抽样(第一课时)》教学设计

9.1.1简单随机抽样(第一课时)(人教A版普通高中教科书数学必修第二册第九章)一、教学目标1.了解获取数据的基本途径及相关概念;2.通过实例,感悟抽样的必要性和重要性;3.知道简单随机抽样的含义及其解决问题的过程;4.能运用两种简单随机抽样方法:抽签法和随机数法二、教学重难点1.教学重点:简单随机抽样的相关概念2.教学难点:简单随机抽样的实现方法三、教学过程1.统计相关概念1.1 创设情境,实例分析【实际情境】2019年11月,经李克强总理签批,国务院印发《关于开展第七次全国人口普查的通知》.根据《中华人民共和国统计法》和《全国人口普查条例》规定,国务院决定于2020年开展第七次全国人口普查.普查标准时点是2020年11月1日零时,彻查人口出生变动情况以及房屋情况.人口普查流程如下:一、准备工作,二、摸底工作,三、登记工作,四、对比复查工作,五、质量控制工作,六、现场验收.调查数据显示,截至2020年11月1日0时,我国人口共141178万人,与第六次全国人口普查的133972万人相比,增加7206万人,增长5.38%,年平均增长率为0.53%,比2000年到2010年的年平均增长率0.57%下降0.04个百分点.数据表明,我国人口10年来继续保持低速增长态势.从人口结构来看,人口老龄化程度进一步加深.为了应对人口老龄化问题,中共中央政治局5月31日召开会议,宣布实施一对夫妻可以生育3个子女政策及配套支持政策.【设计意图】通过现实生活中的实例,让学生感受统计就在我们身边.同时以“三孩生育政策”为例,让学生了解到调查不仅仅是为了统计数据,还能通过数据分析,为我们提供决策依据.让学生进一步体会学习统计的必要性,激发学生对本章学习的兴趣.另外,通过对人口普查的流程介绍,让学生感受全国人口普查工程浩大,体会抽样调查的必要性.【教师讲授】像人口普查这样,对每一个调查对象都进行调查的方法,称为全面调查,又叫普查.我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体.为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体.例.在全国人口普查中,可以将全国所有居民作为总体,每一个居民作为个体;也可以讲全国所有居民的性别年龄等作为总体,每一个人的性别、年龄等作为个体.思考1:普查有何优缺点?【设计意图】能初步认识总体、个体的概念,并结合具体问题进行描述性说明.了解普查的优缺点.1.2 实例分析,形成概念【实际情境】奶茶界从来不缺网红,每隔一段时间,总会跑出来那么些个所谓的“网红奶茶”,而最近这段时间的网红奶茶是它:“泰绿”“泰式柠檬茶”,最大的特点就是那浓浓的绿色.要说这颜色,确实吸引了不少年轻的奶茶爱好者.但有没有想过,作为食品,这颜色就有些不太正常了?这不,深圳市场监管局出手了.近日,深圳市市场监督管理局在对“泰式茶饮”等网红奶茶饮品进行专项抽检时发现,20批次样品中有15批次不合格,不合格的都是:超范围添加食品添加剂日落黄.执法人员一共抽检了20家餐饮单位的20批次产品,检测项目为人工合成类色素(柠檬黄、日落黄、亮蓝).发现有15批次的样品超范围添加食品添加剂日落黄,只有5批次样品所检色素符合标准要求,不合格率达到了75%.在我国的食品添加剂使用表中,日落黄是不得在茶饮中使用.他对人体的危害也不少,最直接的伤害即使可能会引起过敏、腹泻等症状.而如果长期食用,超过肝脏负荷时,就会在体内蓄积,对肾脏、肝脏产生一定的伤害.对于奶茶,很多人都喜欢追求新鲜口味,特别是颜色又好看,口味又独特的奶茶.但别忘了,对于喝到肚子里的东西,还是安全最重要.那些颜色不太正常的还是远离一点好.就像我们在野外的时候:颜色越是鲜艳的蘑菇,毒性越大.问:该调查方式为普查吗?为什么不进行普查?【设计意图】通过实例,让学生感受抽样调查的必要性.【教师讲授】根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本容量.调查样本获得的变量值称为样本的观测数据,简称样本数据.思考2:抽样调查有何优缺点?你能举出一些适合用抽样调查的例子吗?【设计意图】能初步认识样本、样本容量的概念.了解普查的优缺点,并通过实例感受抽样调查在生活中的广泛应用.2.简单随机抽样2.1 自主探究,认识概念【探究情境】假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同,你能通过抽样调查的方法估计袋中红球所占的比例吗?思考3:为什么能用用摸到红球的频率估计口袋中红球所占的比例?思考4:放回摸球的效率高,还是不放回摸球的效率高?【设计意图】通过抽样调查的方法估计袋中红球所占的比例,目的是应用已有的概率知识——频率稳定于概率,从理论上解释用简单随机样本估计总体的可行性,通过两个思考,为后续简单随机抽样的概念作铺垫.【教师讲授】一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样,如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本.说明:1.除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.2.从总体中,逐个不放回地抽取n个个体作为样本和一次性抽取n个个体作为样本,两种方法是等价的.【设计意图】掌握简单随机抽样的含义,能区分放回简单随机抽样和不放回简单随机抽样.并且了解,教材中约定除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.3.两种简单随机抽样方法3.1 典型例题,具体实现【典型例题】一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?1.抽签法1.先给712名学生编号,例如按1~712进行编号.2.然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签.3.使与号签上的编号对应的学生进入样本,直到抽足样本所需要的人数.2.随机数法1.先给712名学生编号,例如按1~712进行编号.2.用随机数工具产生1~712范围内的整数随机数,把产生的随机数作为抽中的编号.3.使与编号对应的学生进入样本.重复上述过程,直到抽足样本所需要的人数.思考5:如何生成随机数?(1) 用随机试验生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,3,…,9,把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号.这样产生的随机数可能会有重复.如果生成的随机数有重复,该如何解决?如果生成的随机数有重复,即同一编号被多次抽到,可以剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需要的人数.(2) 用信息技术生成随机数(以下三种方法都用动图展示操作步骤)①用计算器生成随机数②用电子表格软件生成随机数③用R统计软件生成随机数小贴士:除了上述软件以外,还有很多能够产生随机数的软件,一般的抽签软件,如:抽签助手,抽签器等;专业的统计软件,如:SAS,SPSS,S-Plus,State等;综合性较强的数学软件,如:MATLAB,Mathematica,GeoGebra等.【设计意图】知道用简单随机抽样解决问题的过程,了解具体的操作流程,对于利用信息技术生成随机数的3种方法都用动图进行展示,既有利于直观体会样本的随机性,也让学生感受到信息技术是统计学习的有效辅助手段.3.2 总结归纳,反思小结思考6:比较随机数法与抽签法,它们各有什么优点和缺点?抽样方法优点缺点抽签法简单易行总体量较大时,制作号签成本高,“均匀搅拌”困难.随机数法利用信息技术产生随机数方便、快捷、效率高,可节省成本.随机试验和部分软件可能会产生重复随机数,需要剔除重复编号并重新产生.思考7:用简单随机抽样的方法抽取样本,样本量是否越大越好?对于样本的代表性,一般说来,样本量大的会好于样本量小的.从调查的成本角度,样本量大会导致人力、费用、时间等成本的增加.因此,抽样调查中样本量的选择要根据实际问题的需要,在精度和费用两者间进行权衡,并不一定是越大越好.【设计意图】了解抽签法和随机数法各自的特点,让学生在面对一个抽样问题时,能够选择并使用合适的抽样工具实现简单随机抽样.除了抽样方法,样本量也是一个需要确定的要素,因此通过思考7,让学生能够根据抽样调查的目的和条件,选择合适的样本量.3.3 初步应用,巩固概念活动:完成教材P177的练习1~4.1.在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1) 调查一个班级学生每周的体育锻炼时间;(2) 调查一个地区结核病的发病率;(3) 调查一批炮弹的杀伤半径;(4) 调查一个水库所有鱼中草鱼所占的比例.2.如图,由均匀材质制成的一个正20面体(每个面都是正三角形),将20个平面平分成10组,第1组标上0,第2组标上1,…,第10组标上9.(1) 投掷正20面体,若把朝上一面的数字作为投掷结果,则出现0,1,2,…,9是等可能的吗?(2) 三个正20面体分别涂上红、黄、蓝三种颜色,分别代表百位、十位、个位,同时投掷可以产生一个三位数(百位为0的也看作三位数),它是000~999范围内的随机数吗?3.实验室的笼子里共有100只小白鼠,现要从中抽取10只作试验用.下列两种情况是否属于简单随机抽样?请说明理由.(1) 每次不经任何挑选地抓一只,抓满10只为止;(2) 将笼中的100只小白鼠按1~100编号,任意选出编号范围内的10个不重复数字,把相应编号的小白鼠作为试验用的小白鼠.4.如果计算器只能生成[0,1)内的随机数,你有办法把它转化为1~100范围内的整数随机数吗?转化为1~712范围内的整数随机数呢?【设计意图】熟悉巩固概念,并进行应用,在应用中体会统计学与我们生活的密切联系.4.课堂小结(1) 统计调查中有哪些收集数据的方法?(2) 简单随机抽样有哪两种常用方法?(3) 上述两种方法如何操作,各有何优缺点?【设计意图】通过3个问题,回顾总结本节课所学的知识.5.课外延伸在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统,为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发放了调查表.(注意:在1936年电话和汽车只有少数富人有),通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果(%)选举结果(%)罗斯福43 62兰顿57 38作业:请你查找相关资料,并结合自己的分析,完成一篇调查报告,报告至少应该包含以下两个方面内容:1.分析该预测结果出错的原因;2.如何更好的进行选举民意调查.【设计意图】通过对预测结果出错原因的研究与分析,让学生找出预测出错的原因,进一步体会随机抽样的重要性;通过而在查找资料了解民意调查的正确做法,则有利于让学生在实践中感悟如何科学的抽样,了解多种抽样方法,并体现出抽样方法在实际生活中的广泛应用。

【教案】简单随机抽样(第一课时)说课稿高一下学期数学人教A版(2019)必修第二册

【教案】简单随机抽样(第一课时)说课稿高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样(第一课时)说课稿尊敬的各位评委,大家好,今天我说课的题目是《简单随机抽样》 .我将从“教学分析、教学策略、教学过程、教学反思”这四个方面进行我今天的说课.一、教学分析①内容分析本节课出自人教A 版必修第二册第9 章第一节简单随机抽样的第一课时.统计知识是现代公民必备的知识,抽样方法是数理统计学中的重要内容.故而简单随机抽样作为一种抽样方法处于非常重要的地位,它也为后续概率等知识的学习奠定了基础;从知识的应用价值上来看,本节课的学习对统计数据、分析数据能力有重要意义.②学情分析从学生层面分析,在能力和素养方面,高一学生善于沟通、发现,有良好的的接受能力,但在概念研究过程中缺乏数学抽象素养,数据分析能力还需进一步提升;在知识和思维方面,学生在初中已经学习过相关知识,对统计有初步的认识,有一定的逻辑思维.③教学目标基于上述分析,我制定了如下教学目标:紧抓课程标准要求,我希望通过本节课的教学,使学生在参与数据搜集和处理的过程中,亲历数学建模的过程,初步学会统计的基本方法,体验统计思想;具体有以下3 个方面的目标,其中必备知识包括:普查与抽样调查、简单随机抽样,抽签法,随机数法;关键能力在于理解简单随机抽样的概念;掌握简单随机抽样的两种方法:抽签法和随机数法,并能选用恰当的方法解决实际问题;并在此过程中培养学生的数学抽象、数据分析、数学运算等素养.④教学重难点故而本节课的教学重点是正确理解简单随机抽样的概念,难点则是抽签法和随机数法的具体步骤;会用简单随机抽样的方法从总体中抽取样本则是本节课的重难点.二、教学策略综合以上,考虑到学生的认识水平和理解能力以及课堂教学的信息量,本节课以信息技术和教学知识的有效整合入手,通过直观演示优化教学,使学生在熟悉的知识背景下探求新知,通过视频片段、实际操作、Excel 表格、R 软件的综合应用,丰富学生的体验。

整节课采取理实一体化教学模式,融合情境教学、问题驱动、实验探究、小组合作、自主探究于一体;给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识.三、教学过程①课前准备课前,教师了解世界GDP 数据变化情况,收集相关视频素材,且将生活小笑话制作为动画,给予学生更直观的感受,为了抽签法和随机试验法更有趣的呈现,教师制作抽签箱;学生则需要将自己对应的编号记住。

9.1.1简单随机抽样教学设计-2023-2024学年高一下学期数学人教A版(2019)必修第二册+

9.1.1简单随机抽样教学设计-2023-2024学年高一下学期数学人教A版(2019)必修第二册+

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………9.1.1《 简单随机抽样 》教学设计( 制作:许鸥 日期:2024年5月20日 2课时 第14周 ) 班级: 姓名: 分数: .一.教学目标1.认识与理解全面调查与抽样调查的定义和相关概念,以及简单随机抽样的含义和解决问题的过程(数学抽象);2.理解与掌握两种简单随机抽样的方法(抽签法和随机数法),会计算总体均值与样本均值来了解总体与样本的关系(数学抽象、数据分析、数学运算). 二.教学过程(一)情景问题——统计学(导学) 1.统计学在现实生活中,我们经常会接触到各种统计数据,例如,人口总量、经济增长率、就业状况、物价指数、产品的合格率、商品的销售额、农作物的产量、人均水资源、居民人均年收入、电视台节目的收视率、学生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知识.统计学是通过收集数据和分析数据来认识未知现象的一门科学.第一步:面对一个统计问题,首先要根据实际需求,通过适当的方法获取数据; 第二步:选择适当的统计图表对数据进行整理和描述;第三步:在此基础上用各种统计方法对数据进行分析,从样本数据中提取需要的信息,推断总体的情况,进而解决相应的实际问题.2.问题那么,对于具体的统计问题,应如何收集数据?如何从所收集的数据中提取信息来认识未知现象?这种认识一定正确吗?应如何正确解释统计的结果?本章我们将在初中学过的统计与概率知识的基础上,通过进一步学习,加深对这些问题的认识,并通过解决问题的实践,进一步学习数据分析的方法.【设计意图】通过生活情景导入,让学生对统计学的概念与实施步骤有个感性和初步的认识,既培养了学生的学习兴趣,又引出本节课的教学重点——简单随机抽样.(二)探究新知1——全面调查与抽样调查(互学) 1.统计情景1:全国人口普查准确掌握全国的人口数据,可以为科学制定国民经济和社会发展规划及其他方针政策提供依据.2020年我国进行了第七次人口普查,对全国人口普遍地、逐户逐人地进行一次性调查登记,调查内容包括每位居民的姓名、性别、年龄、民族、受教育程度等.这里,居民为调查对象,而居民的性别、年龄、民族、受教育程度等是要调查的指标.由于不同调查对象的指标值往往不同,它是一个变化的量,所以常把指标称为变量.2.统计情景2:火车站、飞机场安检为了保障人们出行的生命、财产安全,我国在所有的火车站、飞机场设置了安检设施,对每一名乘客及其携带的行李都要进行安全检测,才允许其进入火车站与飞机场乘坐交通工具.3.全面调查的相关概念(1)定义:像人口普查、火车站安检这样,对每一个调查对象都进行调查的方法,称为全面调查,又称普查.(2)总体:在一个调查中,我们把调查对象的全体称为总体;(3)个体:组成总体的每一个调查对象称为个体.(为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体.)温馨提示: 全面调查的优点是精确,缺点是不宜经常进行,需要耗费巨大的财力、物力. 4.统计情景3:灯泡使用寿命检测某灯泡工厂为了检测仓库中一批灯泡的使用寿命质量是否符合要求,通常会在仓库中随机抽取部分灯泡作为代表,对它们的使用寿命进行检测,从而估计出这一批灯泡的使用寿命.5.抽样调查的相关概念 (1)定义像检测灯泡使用寿命这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.(2)样本、样本容量、样本数据①把从总体中抽取的那部分个体称为样本; ①样本中包含的个体数称为样本容量,简称样本量;……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………①调查样本获得的变量值称为样本的观测数据,简称样本数据.温馨提示: 抽样调查的优点是花费少、效率高、易操作,缺点是不够精确.【设计意图】利用统计情景引入全面调查与抽样调查的概念,使抽象的数学知识变得形象生动、易于理解.(三)小组合作、讨论交流1(自学)各位同学,请大家每4个人组成一组,分别交流讨论后,解决下列问题:例1在以下调査中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查? (1)调查一个班级学生每周的体育锻炼时间; (2)调查一个地区结核病的发病率; (3)调查一批炮弹的杀伤半径;(4)调查一个水库所有鱼中草鱼所占的比例. 请你再举一些不宜用全面调查的例子,并说明理由【设计意图】体现以学生为主体的教育理念,让学生以小组为单位进行充分的思考与讨论,题目有针对性的考察了全面调查与抽样调查.(四)成果展示1(迁移变通、检测实践) 解(1)调查一个班级学生每周体育锻炼时间. 总体是:这个班级所有学生每周体育锻炼时间; 个体是:这个班每个学生每周的体育锻炼时间; 适合全面调查.解(2)调查一个地区结核病的发病率. 总体是:该地区所有人结核病发病情况; 个体是:该地区每一个人结核病发病情况; 适合抽样调查.解(3)调查一批炮弹的杀伤半径. 总体是:这一批炮弹杀伤半径;个体是:这批炮弹中每一个炮弹杀伤半径; 适合抽样调查.解(4)调查一个水库所有鱼中草鱼所占的比例. 总体是:这个水库所有的鱼; 个体是:这个水库中的每一条鱼; 适合抽样调查.不适宜全面调查的例子:(1)调查一批灯泡的使用寿命;(2)调查某地区职工收入状况.【设计意图】通过学生展示,让学生充当小老师的同时,也从自己的角度牢固掌握全面调查与抽样调查,锻炼学生的语言表达能力的同时,也培养了学生数学抽象的核心素养.(五)提升演练1(达标检测)例2下列情况中哪些适合用全面调查,哪些适合用抽样调查?说明理由. (1)了解某城市居民的食品消费结构;(2)调查一个县各村的粮食播种面积; (3)了解某地区小学生中思沙眼的人数; (4)了解一批玉米种子的发芽率; (5)调查一条河流的水质;(6)某企业想了解其产品在市场的占有率.解:(1)抽样调查;(2)全面调查;(3)全面调查;(4)抽样调查;(5)抽样调查;(6)抽样调查.【设计意图】通过提升演练,既能让学生进行独立思考,也能让学生进一步牢固地掌握全面调查与抽样调查.(六)探究新知2——简单随机抽样(互学) 1.探究假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同.你能通过抽样调查的方法估计袋中红球所占的比例吗?分析:(1)方法1(放回型抽样)这里袋中所有小球是调查的总体,每一个小球是个体,小球的颜色是所关心的变量 .我们可以从袋中随机地摸出一个球,记录颜色后放回, 摇匀后再摸出一个球,如此重复n 次,根据初中的概率知识可知,随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,即口袋中红球所占的比例,因此,我们可以通过放回摸球,用频率估计出红球的比例.(2)方法2(不放回型抽样)在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息.如果我们采用不放回摸球,即从袋中摸出一个球后不再放回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免同一个小球被重复摸中.特别地,当样本量n =1000时,不放回摸球已经把袋中的所有球取出,这就完全了解了袋中红球的比例,而有放回摸球一般还不能对袋中红球的比例作出准确的判断.2.简单随机抽样的概念一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n(1≤n <N)个个体作为样本. (1)放回简单随机抽样如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,把这样的抽样方法叫做不放回简单随机抽样.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)简单随机抽样:放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样,简单随机抽样获得的样本称为简单随机样本.温馨提示:与放回简单随机抽样比较,不放回简单随机抽样的效率更高,因此实践中人们更多采用不放回简单随机抽样.除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.(4)不放回简单随机抽样的四个特征 ①有限性;①逐个抽取;①不放回;①等可能性. 3.问题一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?分析:在这个问题中,树人中学全部高一年级的学生构成调查的总体,每一位学生是个体,学生的身高是调查的变量.与“探究”栏目中估计红球的比例类似,我们可以对高一年级进行简单随机抽样,用抽出的样本的平均身高估计高一年级学生的平均身高.实现简单随机抽样的方法有很多,抽签法和随机数法是比较常用的两种方法. 4.简单随机抽样的方法1——抽签法 (1)探究1先给712名学生编号,例如按1-712进行编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌,最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的学生进入样本,直到抽足样本所需要的人数.(2)抽签法的步骤①确定总体容量N 并编号;①制签并放入不透明容器中;①充分搅拌均匀;①不放回地逐个抽取n 次,得到容量为n 的样本.温馨提示:抽签法简单易行,但当总体较大时,操作起来比较麻烦.因此,抽签法一般适用于总体中个体数不多的情形.5.简单随机抽样的方法2——随机数法 (1)探究2先给712名学生编号,例如按1-712进行编号,用随机数工具产生1-712范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本,重复上述过程,直到抽足样本所需要的人数.如果生成的随机数有重复,即同一编号被多次抽到,可以剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需要的人数.(2)用随机试验生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1-712范围内,就代表对应编号的学生被抽中,否则舍弃编号.这样产生的随机数可能会有重复.(3)用信息技术生成随机数(略) (4)随机数法的步骤①确定总体容量N 并编号,例如按0,1,2,…,N 编号; ①利用随机数工具产生0~N 范围内的整数随机数;①把产生的随机数作为抽中的编号,使与编号对应的个体进入样本; ①重复上述过程,直到抽足样本所需的数量.【设计意图】通过具体的简单随机抽样实例与操作步骤,来引入简单随机抽样的概念、特征、分类与抽样方法(抽签法与随机数法),会使得抽象的数学知识变得更加的生动形象,简单易懂.(七)小组合作、讨论交流2(自学)各位同学,请大家每4个人组成一组,分别交流讨论后,解决下列问题:例3 如图,由均匀材质制成的一个正二十面体(每个面都是正三角形),将 20个面平分成 10 组,第1组标上 0,第 2组标上 1,…,第 10 组标上 9.(1)投掷正二十面体,若把朝上一面的数字作为投掷结果,则出现0,1,2,…,9是等可能的吗?(2)三个正二十面体分别涂上红、黄、蓝三种颜色,分别代表百位、十位、个位,同时投掷可以产生一个三位数(百位为0的也看作三位数),它是000-999范围内的随机数吗?【设计意图】体现以学生为主体的教育理念,让学生以小组为单位进行充分的思考与讨论,题目有针对性的考察了简单随机抽样.(八)成果展示2(迁移变通、检测实践) 解(1)① 是均匀材质制成的一个正 20 面体, ① 出现 0,1,2,…,9 是等可能的,可能性为220=110;解(2)①三个正 20 面体分别涂上红、黄、蓝三种颜色,分别代表百位,十位,个位,同时投掷可以产生一个三位数(百位为0的也看作三位数),该三位数最大值为 999,最小值为000,①它是 000-999 范围内的随机数.【设计意图】通过做题步骤引领及严密地分析,让学生牢固掌握简单随机抽样,同时注重培养学生数学抽样和数学运算的核心素养.(九)提升演练2(达标检测)例4 实验室的笼子里共有 100 只小白鼠,现要从中抽取 10 只作试验用,下列两种情况是否属于简单随机抽样?请说明理由.(1)每次不经任何挑选地抓一只,抓满 10 只为止;(2)将笼中的 100 只小白鼠按 1-100 编号,任意选出编号范围内的 10 个不重复数字,把相应编号的小白鼠作为试验用的小白鼠.解:(1)属于简单随机抽样; (2)属于简单随机抽样.理由如下:(1)(2)都满足简单随机抽样的四个特征①有限性;①逐个抽取;①不放回;①等可能性.【设计意图】通过提升演练,既能让学生进行独立思考,也能让学生进一步牢固地掌握简单随机抽样.(十)探究新知3——总体均值与样本均值(互学)1.探究下面是用随机数法从树人中学高一年级学生中抽取的一个容量为50的简单随机样本,他们的身高变量值(单位:cm)如下:156.0 166.0 157.0 155.0 162.0 168.0 173.0 155.0 157.0 160.0175.0 177.0 158.0 155.0 161.0 158.0 161.5 166.0 174.0 170.0162.0 155.0 156.0 158.0 183.0 164.0 173.0 155.5 176.0 171.0164.5 160.0 149.0 172.0 165.0 176.0 176.0 168.5 171.0 169.0156.0 171.0 151.0 158.0 156.0 165.0 158.0 175.0 165.0 171.0分析:由这些样本观测数据,我们可以利用计算器计算出样本的平均数为164.3,据此,可以估计树人中学高一年级学生的平均身高为164.3cm左右.注:以样本数据估计总体的情况,是简单随机抽样的实际意义所在.2.总体均值一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,⋯Y N,则称Y̅=Y1+Y2+⋯+Y NN=1N∑Y iNi=1为总体均值,又称总体平均数.如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,⋯,Y k, 其中Y i出现的频数为f i(i=1,2,…k),则总体均值还可以写成加权平均数的形式Y̅=Y1f1+Y2f2+⋯+Y k f kN=1N∑Y iki=1f i3.样本均值如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,⋯,y n, 则称y̅=y1+y2+⋯+y nn=1n∑Y ini=1为样本均值,又称样本平均数.注:在简单随机抽样中,我们常用样本平均数y̅去估计总体平均数Y̅ ̅.【设计意图】通过情景问题的探究,让学生牢固掌握总体均值与样本均值,同时注重培养学生的数学运算和数据分析的核心素养.(十一)小组合作、讨论交流3(自学)各位同学,请大家每4个人组成一组,分别交流讨论后,解决下列问题:例4 为了调查某校高一学生每天午餐消费情况,从该校高一学生中抽查了20名学生,这20名学生每天午餐消费数据如下(单位:元):10 12 8 8 10 14 17 8 10 812 10 10 17 8 10 12 10 10 12试估计该校高一学生每天午餐的平均费用,以及午餐费用不低于12元的比例.【设计意图】体现以学生为主体的教育理念,让学生以小组为单位进行充分的思考与讨论,题目有针对性地考察了简单随机抽样中用样本均值估计总体均值.(十二)成果展示3(迁移变通、检测实践)解:①样本平均数y̅为y̅=8×5+10×8+12×4+14×1+17×220=10.8(元)样本中午餐消费不低于12元的比例为4+1+220=720①可估计该校高一学生每天午餐的平均费用约为10.8元,以及午餐费用不低于12元的比例约为720.【设计意图】通过做题步骤引领及精密的数学计算,让学生牢固掌握用样本数据估计总体情况的统计方法与步骤,注重培养学生数据分析、数学抽象的核心素养,同时充分体现学校“以学为重,以用为本”的二元七环教育教学理念.三、课堂小结:本节课我们都学习了那些知识?1.认识与理解了全面调查与抽样调查的定义和相关概念,以及简单随机抽样的含义和解决问题的过程(数学抽象);2.理解与掌握了两种简单随机抽样的方法(抽签法和随机数法),会计算总体均值与样本均值来了解总体与样本的关系(数学抽象、数据分析、数学运算).四、家庭作业1.记背今天所学知识点;2.完成导学案达标检测题目.。

9.1.1.1简单随机抽样+教学设计

9.1.1.1简单随机抽样+教学设计

9.1 随机抽样9.1.1.1 简单随机抽样教学目标:1.通过阅读课本了解数据的调查方法;2.通过阅读课本了解简单随机抽样;3.通过问题掌握简单随机抽样的常用方法.教学重点:了解简单随机抽样和良种常用方法教学难点:会用抽签法和随机数法进行简单随机抽样教学过程:一、导入新课,板书课题想必大家都听说过人口普查,那么人口普查是如何进行的,面对庞大的数据不方便全面收集的时候,又该如何处理呢,本节课我们就来学习一下简单随机抽样。

【板书:简单随机抽样】二、出示目标,明确任务1.了解调查数据的方法。

2.了解何为简单随机抽样3.掌握简单随机抽样的常用方法三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书下面,阅读课本P173-P177页内容,思考如下问题(4min):1.找出阅读内容中的知识点。

2.找出阅读内容中的重点。

3.找出阅读内容中的困惑点,疑难点。

四、自学指导,紧扣教材1.自学指导1(5min)阅读课本173-175页问题1以上内容,思考并完成如下问题(1)什么是全面调查?人口普查是否为全面调查?(2)什么是总体?什么是个体?(3)什么是抽样调查?何为样本,何为样本容量?(4)抽样调查的目的是什么?(5)放回和不放回简单抽样分别是什么?统称为什么?自学指导2(5min)阅读课本175-177页,思考并完成以下问题(1)简单随机抽样常用的两种方法有?(2)抽签法如何操作,优点是什么?(3)随机数法如何操作,优点是什么?(4)用简单随机抽样方法抽取样本,样本量是否越大越好?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1)调查一个班级学生每周的体育锻炼时间(2)调查一个地区结核病的发病率(3)调查一批炮弹的杀伤半径(4)调查一个水库所有鱼中草鱼所占的比例精讲点拨:自学指导1:点拨1.全面调查与抽样调查的区别;全面调查是对每一个对象进行调查,抽样调查时抽取一部分进行调查。

9.1.1简单随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

第九章统计9.1.1简单随机抽样教学设计一、教学目标1.正确理解总体、个体、样本、普查、抽样调查的概念.2.理解简单随机抽样的概念.3.体会用样本平均数、样本中的比例去估计总体平均数、总体中的比例.二、教学重难点1、教学重点1.普查与抽样调查的意义.2.总体与样本的意义.3.简单随机抽样及其应用.4.数据的平均数的概念及意义.2、教学难点1.简单随机抽样的应用2.平均数的意义.三、教学过程1、新课导入在现实生活中,我们经常会接触到各种统计数据,例如,人口总量、经济增长率、就业情况、物价指数、产品的合格率、商品的销售额、农作物的产量、人均水资源、居民人均年收入、电视台节目的收视率、学生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知识.在初中我们简单的学习过统计与概率,对于具体的统计情况,应如何收集数据?如何从所收集的数据中提取信息来认识未知现象?这种认识一定正确吗?应该如何正确解释统计的结果,是我们接下来要学习的.2、探索新知一、相关概念1.普查:像人口普查这样,对每一个调查对象都进行调查的方法,称为全面调查,又称普查.2.总体:调查对象的全体称为总体.3.个体:组成总体的每一个调查对象称为个体.也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体.4.抽样调查:根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.(抽样调查只抽取一部分个体进行调查,因此具有花费少、效率高的特点.)5.样本:从总体中抽取的那部分个体称为样本.6.样本量:样本中包含的个体数称为样本量.7.样本数据:调查样本获得的变量值称为样本的观测数据,简称样本数据. 8.普查和抽样调查的对比9.简单随机抽样:设一个总体含有N (N 为正整数)个个体,从中逐个抽取(1)n n N ≤<个个体作为样本,如果抽取是放回的,且每次抽取总体内的各个个体被抽样的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本简称简单随机样本.简单随机抽样的特点:(1)总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便于通过样本对总体进行分析.(2)逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作. (3)不放回抽样:简单随机抽样是一种不放回抽样,这样便于样本的获取和一些相关的计算.(4)等可能抽样:不仅每次从总体中抽取一个个体时各个个体被抽到的可能性相等,而且在整个抽样过程中,各个个体被抽到的可能性也相等,从而保证了这种抽样方法的公平性.二、抽签法一般地,抽签法就是把总体总的N个个体编号,把号码写在号签上,将号签放在一个不透明容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.抽签法的操作步骤:第一步,编号:将N个个体编号(号码可以从1到N,也可以使用已有的号码).第二步,写签:将N个号码写到大小、形状相同的号签上.第三步,抽签:将号签搅拌均匀,每次从中抽取一个号签,连续不放回地抽取n次,并记录其编号.第四步,定样:从总体中找出与号签上的号码对应的个体,组成样本.抽签法的注意事项:(1)对个体编号时,也可以利用已有的编号.例如,从全班学生中抽取样本时,可以利用学生的学号、座位号等.(2)制作号签时,所使用的工具(如纸条、小球等)的形状、大小要一样,以确保每个号签被抽到的可能性相等.(3)抽取样本前总体要“搅拌均匀”,目的是让每个号签被抽到的机会相等.抽签法的优缺点优点:简单易行缺点:仅适用于个体数较少的总体.当总体容量非常大时,该方法费时费力又不方便.况且,如果号签搅拌得不均匀,还可能导致抽样不公平.三、随机数法为了克服把大量的号签搅拌均匀的困难,也为了节约制作号签和搅拌均匀的成本、时间,需要寻找代替抽签的方法.在用抽签法产生简单随机样本的过程中,第三四步的本质是等概率地在容器中抽取号签,这个步骤完全等价于产生整数值随机数.得到随机数的方法:(1)用随机试验生成随机数.(2)用信息技术生成随机数. (3)用R 统计软件生成随机数. 四、样本量的选择抽样调查中样本量的选择要根据实际问题的需要,并不一定是越大越好.样本量大的会好于样本量小的.尤其是样本量不大时,增加样板量可以较好地提高估计的效果.但是在实际抽样中,样本量的增大会导致调查的人力、费用、时间等成本的增加.五、总体平均数与样本平均数1.总体平均数:一般地,总体中有N 个个体,它们的变量值分别为12,,,N Y Y Y ,则称1211NNi i Y Y Y Y Y NN=+++==∑为总体均值,又称总体平均数2.加权平均数:如果总体的N 个变量值中,不同的值共有()k k N ≤个,不妨记为12,,,k Y Y Y ,其中i Y 出现的频数(1,2,,)i f i k =,则总体均值还可以写成加权平均数的形式11ki i i Y f Y N==∑3.样本平均数:如果从总体中抽取一个容量为n 的样本,它们的变量值分别为12,,,n y y y ,则称1211nni i y y y y y nn =+++==∑为样本均值,又称样本平均数. 4.样本平均数的特性:样本平均数也具有随机性.5.总体平均数的特性:总体平均数是一个确定的数.大部分样本平均数离总体平均数不远,在总体平均数附近波动.一般来说,样本容量越大,估计效果越好,即估计值与真实值差别越小.六、某类个体在总体中的占比用样本平均数y 估计总体平均数Y ,用样本中的比例p 估计总体中的比例P .计算样本中某类个体在样本中所占的比例的方法:拿某类个体的个数除以样本量即可. 可用样本中某类个体的比例估计总体中该类个体的比例. 3、课堂练习1.下列哪种工作不能使用抽样方法进行( ) A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况答案:D解析:抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A、B、C都是从总体中抽取部分个体进行检验.选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法,故选D.2.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每个学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100答案:D解析:根据有关的概念并且集合题意可得:此题的总体、个体、样本这三个概念考查的对象都是学生成绩,而不是学生,根据答案可得:而选项A、B表达的对象都是学生,而不是成绩,所以A、B都错误.C每名学生的成绩是个体,被抽取的100名学生的成绩是样本.D样本的容量是100正确.故选D.3.对于简单随机抽样,下列说法中正确的是()①它要求被抽取样本的总体的个体数有限;②它是从总体中逐个进行抽取的;③它是一种不放回抽样;④它是一种等可能抽样,在整个抽样过程中,每个个体被抽到的机会相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④答案:D解析:由简单随机抽样的特征知,全部正确.4.为了提高学生对毒品危害性的认识,某市相关部门每个月都要对学生进行“禁毒知识应知应会”测评,为了激发学生的积极性,某校对达到一定成绩的学生授予”禁毒小卫士”的荣誉称号,为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:可以推测该市学生测评成绩的平均数( )A.一定为90B.约为90C.约为93D.一定为93答案:C解析:由已知条件可得20名学生的平均成绩为93,因为样本平均数可以用来估计总体平均数,所以推测该市学生测评成绩的平均数约为93.5.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?答案:见解析解析:A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.4、小结作业小结:1.本节课我们主要学习了哪些内容?2.普查的抽样调查3.简单随机抽样及两种方法4.总体平均数和样本平均数的计算5.某类个体在总体中的占比作业:四、板书设计9.1.1 简单随机抽样一、引入二、普查和抽样调查的定义三、简单随机抽样的定义四、抽签法五、随机数法六、总体平均数及样本平均数七、例题八、巩固练习。

新教材人教版高中数学必修第二册 9-1-2分层随机抽样(教案)

新教材人教版高中数学必修第二册 9-1-2分层随机抽样(教案)

第九章统计案例9.1.2分层随机抽样一、教学目标1.理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;2.掌握简单随机抽样与分层抽样的区别与联系;3.通过对分层随机抽样的学习,培养学生数据分析、数学运算、数学建模等数学素养.二、教学重难点1.正确理解分层抽样的定义,灵活应用分层抽样抽取样本;2.恰当的选择两种抽样方法解决现实生活中的抽样问题.三、教学过程:(1)创设情景1000,800,700名,为了了解全校学生的视力某校高一、高二和高三年级分别有学生情况,从中抽取容量为100的样本,怎样抽取较为合理?(2)新知探究问题1:能否用简单随机抽样或系统抽样进行抽样,为什么?学生回答,教师点拨指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

问题2:你认为哪些因素影响学生视力?抽样要考虑哪些因素?学生回答,教师点拨(提出本节课所学内容:分层抽样)(3)新知建构分层抽样的定义:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

简单随机抽样高中数学教案

简单随机抽样高中数学教案

简单随机抽样高中数学教案
教学内容:随机抽样
教学目标:
1. 了解什么是随机抽样以及其重要性;
2. 掌握常见的随机抽样方法;
3. 能够应用随机抽样方法解决实际问题。

教学过程:
一、导入:引入随机抽样的概念,并讨论其在生活中的应用。

二、讲解:介绍常见的随机抽样方法,包括简单随机抽样、分层抽样、系统抽样等。

三、练习:让学生通过实例练习不同的随机抽样方法,并分析结果的可靠性。

四、应用:讨论随机抽样在统计调查和科学研究中的应用,以及如何避免抽样偏差。

五、总结:总结本节课的重点内容,并布置相关的练习作业。

教学工具:黑板、教科书、抽样工具(如抽奖箱、骰子等)
教学评估:通过练习和课堂讨论来评估学生对随机抽样的理解和应用能力。

教学延伸:引导学生深入了解随机抽样的原理和方法,以及在实际研究中的应用。

教学反思:及时收集学生的反馈意见,不断改进教学方法,提高教学效果。

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。

人教A版新教材高中数学第二册教学设计1:9.1.1简单随机抽样教案

人教A版新教材高中数学第二册教学设计1:9.1.1简单随机抽样教案

9.1.1简单随机抽样1.利用随机数表法从500件产品中抽取40件进行质检.(1)这500件产品可以怎样编号?(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的3件产品的编号依次是什么?解:(1)按照001~500进行编号;(2)512、123、441.2.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,可以怎样操作?第一步:将800袋牛奶编号为000,001,002, (799)第二步:在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7).第三步:从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.知识探究(四):总体平均数与样本平均数下面是用随机数法从树人中学高一年级学生中抽取的一个容量为50的简单随机样本,他们的身高变量值(单位:cm)如下:由这些样本观测数据,我们可以计算出样本的平均数为164.3.据此,可以估计树人中学高一年级学生的平均身高为164.3cm左右.上面我们通过简单随机抽样得到部分学生的平均身高,并把样本平均身高作为树人中学高一年级所以学生平均身高的估计值.总体平均数:12121,,,1k N N i i N Y Y Y Y Y Y Y Y N N=⋅⋅⋅++⋅⋅⋅+==∑一般地,总体中有个个体,它们的变量值分别为,则称为总体均值,又称总体平均数.121(),,,(1,2,,)1k i i Ni ii N k k N Y Y Y Y f i k Y f Y N =≤⋅⋅⋅=⋅⋅⋅=∑如果总体的个变量值中,不同的值共有个,不妨记为,其中出现的频数,则总体均值还可以写成加权平均数的形式为总体均值,又称总体平均数。

样本平均数12121,,,1.k nn i i n y y y y y y y y n n y Y =⋅⋅⋅++⋅⋅⋅+==∑如果从总体中抽取一个容量为的样本,它们的变量值分别为,则称为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数去估计总体平均数补充知识:问题一:小明想考察一下简单随机抽样的估计效果,他从树人中学医务室得到了高一年级学生身高的所有数据,计算出整个年级学生的平均身高为165.0cm.然后,小明用简单随机抽样的方法,从这些数据中抽取了样本量为50和100的样本各10个,分别计算出样本平均数,如下表所示,从小明多次抽样所得的结果中,你有什么发现?为了更方便地观察数据,以便我们分析样本平均数的特点以及与总体平均数的关系,我们把这20次试验的平均数用图形表示出来,如下图所示.图中的红线表示树人中学高一年级全体学生身高的平均数.从试验结果看,不管样本量为50,还是为100,不同样本的平均数往往是不同的.由于样本的选取是随机的,因此样本平均数也具有随机性,这与总体平均数是一个确定的数不同.虽然在所有20个样本平均数中,与总体平均数完全一致的很少,但除了样本量为50的第2个样本外,样本平均数偏离总体平均数都不超过1cm,即大部分样本平均数离总体平均数不远,在总体平均数附近波动.比较样本量为50和样本量为100的样本平均数,还可以发现样本量为100的波动幅度明显小于样本量为50的,这与我们对增加样本量可以提高估计效果的认识是一致的.总体平均数是总体的一项重要特征.另外,某类个体在总体中所占的比例也是人们关心的一项总体特征,例如全部产品中合格品所占的比例、赞成某项政策的人在整个人群中所占的比例等.。

9.1.1 简单随机抽样 教案——2022-2023学年高一下学期数学人教A版(2019)必修第二册

9.1.1 简单随机抽样 教案——2022-2023学年高一下学期数学人教A版(2019)必修第二册

9.1.1 简单随机抽样一、教学目标1.理解简单随机抽样的概念,掌握抽签法、随机数法的一般步骤.2.会恰当选用两种简单随机抽样方法从实际问题的总体中抽取样本.3.体会用样本平均数、样本中的比例去估计总体平均数、总体中的比例.二、教学重难点1、教学重点简单随机抽样的概念.2、教学难点简单随机抽样的应用.三、教学过程1、新课导入统计的研究对象是数据,核心是通过数据分析研究和解决问题. 因此,首先要设法获取与问题有关的数据,从而为解决问题莫定基础. 本节课开始,我们就来深入学习一下统计的相关知识.2、探索新知一、全面调查和抽样调查1.普查:对每一个调查对象都进行调查的方法,称为全面调查,又称普查.总体:在一个调查中,调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体.2.抽样调查:根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.样本:从总体中抽取的那部分个体称为样本.样本量:样本中包含的个体数称为样本量.普查和抽样调查的对比方法特点普查抽样调查优点调查结果全面、系统(1)迅速及时;(2)节约人力缺点工作量大,有时费时费力调查结果不如普查全面、系统适用范围1.调查对象少;2调查对象多,但是调查结果要求必须全面、系统、准确时1.调查对象太多,且不必要普查的;2.调查方式有破坏性时简单随机抽样:一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取()1n n N <个个体作为样本.如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,这样的抽样方法叫做放回简单随机抽样.如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本.三、两种简单随机抽样的方法1.抽签法:先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.2.随机数法:先把总体中的个体编号,用随机数工具产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.产生随机数的方法:①用随机试验生成随机数;②用信息技术生成随机数. 四、总体均值和样本均值1.总体均值:一般地,总体中有N 个个体,它们的变量值分别为12N Y Y Y ,,,,则称1211Ni Ni Y Y Y Y Y NN =+++==∑为总体均值,又称总体平均数.如果总体的N 个变量值中,不同的值共有()k kN 个,不妨记为12k Y Y Y ,,,,其中i Y 出现的频数(12)i f i k =,,,,则总体均值还可以写成加权平均数的形式11ki i i Y f Y N ==∑.2.样本均值:如果从总体中抽取一个容量为n 的样本,它们的变量值分别为12n y y y ,,,,则称1211nni i y y y y y nn =+++==∑为样本均值,又称样本平均数. 3、课堂练习1.某县教育局为了解本县今年参加大联考的学生的成绩,从500名参加今年大联考的学生中抽取了250名学生的成绩进行统计,则下列表述正确的是( ) A.5000名学生是总体 B.250名学生是总体的一个样本 C.样本容量是250D.每一名学生是个体答案:C解析:总体指的是5000名参加今年大联考的学生的成绩,所以A错误;样本指的是抽取的250名学生的成绩,所以B错误;样本容量是250,所以C正确;个体指的是5000名学生中的每一名学生的成绩,所以D错误.故选C.2.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)答案:D解析:对于A,总体中的个体有无数个.对于B,不是逐个抽取个体.对于C,样本中的个体具有特殊性,不符合简单随机抽样的特点.D符合简单随机抽样的特点.3.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中个体甲被第二次抽到的可能性为( ).A.310B.110C.19D.13答案:A解析:每个个体被抽到的可能性均为310,与第n次抽取无关.4.为了大致了解某公司员工的身高情况,决定从50名员工(已编号为00~49)中选取10名进行测量.如果利用随机数法进行抽取,得到如下4组编号,则符合要求的编号是( )A.26,94,29,27,43,99,55,19,81,06B.20,26,31,40,24,36,19,34,03,48C.02,38,22,41,38,24,49,44,03,11D.04,00,45,32,44,22,04,11,08,49答案:B解析:观察选项A中的编号,有不在00~49内的数字,故排除选项A;选项C,D中都有重复的编号,故排除选项C和D.故选B.4、小结作业小结:本节课学习了简单随机抽样的概念和应用,以及用样本平均数、样本中的比例去估计总体平均数、总体中的比例.作业:完成本节课课后习题.四、板书设计9.1.1 简单随机抽样1.全面调查和抽样调查:(1)普查:对每一个调查对象都进行调查的方法,称为全面调查,又称普查.总体:在一个调查中,调查对象的全体称为总体. 个体:组成总体的每一个调查对象称为个体.(2)抽样调查:根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查. 样本:从总体中抽取的那部分个体称为样本. 样本量:样本中包含的个体数称为样本量.2.简单随机抽样:一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取()1n n N <个个体作为样本. 如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,这样的抽样方法叫做不放回简单随机抽样. 放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样. 通过简单随机抽样获得的样本称为简单随机样本. 3.两种简单随机抽样的方法(1)抽签法:先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.(2)随机数法:先把总体中的个体编号,用随机数工具产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.4.总体均值和样本均值(1)总体均值:一般地,总体中有N 个个体,它们的变量值分别为12N Y Y Y ,,,,则称1211Ni Ni Y Y Y Y Y NN =+++==∑为总体均值,又称总体平均数.如果总体的N 个变量值中,不同的值共有()k kN 个,不妨记为12k Y Y Y ,,,,其中i Y 出现的频数(12)i f i k =,,,,则总体均值还可以写成加权平均数的形式11ki i i Y f Y N ==∑.(2)样本均值:如果从总体中抽取一个容量为n 的样本,它们的变量值分别为12n y y y ,,,,则称1211nni i y y y y y nn =+++==∑为样本均值,又称样本平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【新教材】9.1.1 简单随机抽样教学设计(人
教A版)
简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
课程目标
1.了解总体、样本、样本容量的概念,了解数据的随机性.
2.通过实例,了解简单随机抽样的含义及其解决问题的过程.
3.掌握两种简单随机抽样.
4.会计算样本均值,了解样本与总体的关系.
数学学科素养
1.数学抽象:随机抽样的相关概念;
2.数据分析:利用抽签法,随机数法解决实际问题;
3.数学运算:计算样本均值.
重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比.
难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用.
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入
新闻链接:教育部:截至本月全国毕业生就业率72.2%。

现实生活中的问题如何进行研究?要求:让
学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.
二、预习课本,引入新课
阅读课本173-180页,思考并完成以下问题
1、统计有哪些概念?
2、什么是简单随机抽样?简单随机抽样有哪几种方法?
3、抽签法和随机数法怎样定义?
4、什么总体均值、样本均值?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究
1.统计的相关概念
(1)普查
像人口普查这样,对每一个调查对象都进行调查的方法,称为全面调查,又称普查.
(2)总体、个体
在一个调查中,我们把调查对象的全体称为总体.组成总体的每一个调查对象称为个体.为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体.
(3)抽样调查
根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.
(4)样本、样本量
我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量.
2.简单随机抽样
一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.
3.简单随机抽样的方法
(1)抽签法:。

相关文档
最新文档