高频开关电源的基本原理

合集下载

开关电源的工作原理与接法

开关电源的工作原理与接法

开关电源的工作原理与接法开关电源(Switching power supply)是一种将电能从一种形式转换为另一种形式的电源。

它通过高频开关管将输入电能按一定的方式转化为高频交流电能,再经过变压器、整流电路和滤波电路等部分,最终得到所需要的输出电能。

开关电源因其高效率、小体积和广泛适用性而得到广泛应用。

开关电源的工作原理可以分为四个主要步骤:能量存储、开关和控制、能量释放和滤波。

能量存储是指将输入电能转化为磁能或电能,以便在输出端提供所需的电能。

这一步骤主要是通过变压器完成的。

输入电能先经过整流电路变成直流电压,再通过一个变压器将其转换为所需的电压值。

变压器通过磁耦合作用来实现高效率的能量转换。

开关和控制是指通过高频开关管控制输入电能的通断,从而实现对输出电能的调节。

开关管的通断状态由控制电路控制,控制电路根据输出电能的需求来调整开关管的工作状态。

当开关管处于导通状态时,输入电能通过变压器传输到输出端;当开关管处于断开状态时,输入电能被切断,电感储能。

能量释放是指当开关管切断时,电感储能的能量会被释放出来,并经过滤波电路转换为平滑的直流电压。

当开关管切断时,电感储能的磁场崩溃,将能量反馈到输出端。

此时,由于输出负载的存在,电感储能的能量会被输出端吸收。

通过合理选择电感元件和电容元件,可以实现对噪音和纹波的有效滤除。

滤波是指通过选择合适的滤波元件,将输出端的脉动或纹波进行滤波,使得输出电能更加平稳稳定。

滤波电路通常由电感和电容组成。

电感元件用于滤除高频噪音,而电容元件则用于平滑输出电压。

通过合理选择滤波元件的参数,可以减小输出端的纹波和噪音,提高输出电能的质量。

除了以上四个主要步骤外,开关电源还包括其他辅助电路,如输入电压的稳压保护电路、过压保护电路、过流保护电路等。

这些保护电路能够保证开关电源在异常情况下能够及时停止工作,保护其自身和被供电设备的安全。

开关电源的接法主要涉及输入端和输出端的连接方式。

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是一种将交流电转换为稳定直流电的电子设备,广泛应用于各种电子设备和系统中。

了解开关电源的工作原理,对于工程技术人员和维修人员来说至关重要。

本文将介绍开关电源的工作原理,并提供一些常见问题的维修技巧。

一、开关电源的工作原理开关电源通过使用电子器件(如开关管、二极管和电感等)将交流电转换为高频脉冲电流,再通过滤波和稳压电路得到稳定的直流电。

下面将详细介绍开关电源的主要工作原理。

1. 输入滤波:开关电源的输入端会接入交流电源,而交流电源会带有各种干扰信号。

为了保证开关电源的正常工作,需要通过输入滤波电路来滤除这些干扰信号。

输入滤波电路一般由电容器和电感器组成,能够有效地滤除高频和低频的干扰信号。

2. 整流和滤波:经过输入滤波后,交流电会被整流电路转换为直流电。

整流电路通常使用二极管桥整流器来实现。

然后,通过输出滤波电路对整流后的直流电进行滤波处理,以去除直流电中的纹波电压,得到相对稳定的直流电。

3. 高频开关转换:直流电经过滤波后,会进入开关电源的核心部件——开关电路。

开关电路由开关管(如MOSFET、IGBT等)组成,通过快速开关操作将直流电转换为高频脉冲电流。

4. 变压器:高频脉冲电流进一步经过变压器的转换,得到所需的电压大小。

通过变压器的变换比例,可以实现升压、降压或保持电压稳定的功能。

5. 输出调节和稳压:经过变压器转换后的电流会进入稳压电路,稳压电路通常由反馈电路、误差放大器和控制开关管等组成。

利用反馈电路监测输出电压的变化情况,并与设定的参考电压进行比较,在误差放大器和控制开关管的调节下,保持输出电压稳定在设定值。

二、开关电源的常见故障和维修技巧1. 电源无输出或输出电压波动大:可能原因:- 输入端电源线异常,如插头松动或电源线破损。

- 滤波电容故障,需要检查滤波电容是否损坏或漏电。

- 开关管故障,开关管可能损坏或短路,需要更换。

- 控制电路故障,检查反馈电路和误差放大器是否正常工作。

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。

本文将详细解析开关电源的工作原理。

开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。

输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。

它一般由电容、电感和绕组构成。

输入电压经过滤波电路后,接入整流电路。

整流电路的作用是将交流电转换为脉冲直流电。

常用的整流电路有单相桥式整流电路和三相桥式整流电路。

整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。

能量存储元件一般是电感和电容。

电感能存储电能,电容能存储电荷。

在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。

它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。

控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。

开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。

反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。

开关电源的输出电压由开关管通断的频率和占空比决定。

开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。

PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。

开关电源的优点是高效率、稳定性好和体积小。

相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。

此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。

由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。

总之,开关电源是一种高效、稳定、可靠的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。

开关电源的结构和基本原理模板

开关电源的结构和基本原理模板

3 90 6 S MD
?
D29
R114
1 .5K 1 20 6 F R1 04
C19 C18
2 2u ,50 V 2 2u ,50 V
0 .1u ,2 50 vA C
C4
C9 3 .3u 1 00 V
L8 5 *2 0
MYV1 0 72 71 0 72 71 MYV2
C3A
R1
1
C7
1 02 25 0V ac
Q5
R166
1 0 1 /8 W
R167
R121 1 0 0 80 5
1 00 1/8W
CAP
C 3 .3 VS
F R1 05
D2
1 5V 1 W
R115
1 K 1 2 06
D31
1 N4 14 8
2 ,12 0 6
1
8
F SD 5L01 6 5
C12
R42
2
7
D32
1 00 12 06
1 0u F/5 0V
输出电压的稳定则是依赖对脉冲宽度的改变来实现, 这就叫做脉宽调制PWM。
开关电源工作流程
当市电进入电源后,先经过扼流线圈和电容滤波去除 高频杂波和干扰信号,然后经过整流和滤波得到高压直流 电。
接着通过开关电路把直流电转为高频脉动直流电,再 送高频开关变压器降压。
然后滤除高频交流部分,这样最后输出供电脑使用相 对纯净的低压直流电。
有源PFC
输入电压可以从90V到270V; 高于0.99的线路功率因数,并具有低损耗和高可靠等优 点; 有源PFC电路可用作辅助电源,而不再需要辅助电源变 压器; 输出不随输入电压波动变化,因此可获得高度稳定的 输出电压; 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工 频2倍)的正弦波,因此采用有源PFC的电源不需要采 用很大容量的滤波电容。

开关电源原理与维修 开关电源原理图

开关电源原理与维修 开关电源原理图

开关电源原理与维修开关电源原理图电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。

由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。

电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。

故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。

二.开关电源的组成开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。

1.主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。

输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。

整流与滤波:将电网交流电源直接整流为较平滑的直流电。

逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。

输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

2.控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。

3.检测电路提供保护电路中正在运行中各种参数和各种仪表数据。

4.辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

开关电源原理图三.开关电源的工作原理开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。

高频开关电源原理

高频开关电源原理

高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。

其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。

首先,接入整流电路将交流电转换为直流电。

整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。

2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。

输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。

3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。

此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。

4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。

这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。

5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。

输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。

6. 输出调节:高频开关电源需要对输出电压进行精确的调节。

通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。

总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。

它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。

机载高频开关电源工作原理及设计简介

机载高频开关电源工作原理及设计简介

机载高频开关电源工作原理及设计简介机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。

应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。

机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V 直流电源。

两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。

机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。

下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至-40℃~+55℃,完全适应军品级电源的需要。

系统构成及主回路设计图1所示为整机电路原理框图。

它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。

115Vac/400Hz中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。

图1 整机电路原理框图升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。

本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。

隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。

反激和正激拓扑主要应用在中小功率电源中,不适合本电源的3000W输出功率要求。

铁路通信系统中高频开关电源原理及使用

铁路通信系统中高频开关电源原理及使用

图1 :通信 高频开 关电源工作原理拓扑 图 如 果温度高 于 3 5摄 氏度 ,会 直接导 致 电池 寿 命 的缩减 。因此 ,在高频开 关电源 中的使 用维 护措施上 ,还 需要对 蓄电池 组室的温 度进 行控 制 ,通 过 大量 的 实 践 事 例证 明 , 高 频 开 关 电源 的电池组最 佳工作环 境温度为 2 5摄 氏度 , 过 高 、过低都会 导致 电池 寿命 的缩短。在炎热的 夏季 需要通过 空调降低 蓄电池 室的温度,对于 北 方 的 冬 季 则 需 要提 高 温度 , 保 障 蓄 电 池 组 室 的 温 度 一直 保 持 在 2 5摄 氏度 左 右 , 延 长 高 频 开关 电源 蓄电池 组使 用寿命 。为了提高蓄 电池 的使用寿 命,并且检 查蓄电池组的容量 ,需要 定 期做 充放 电试 验 。
2 . 5 纳 入 电源 与 环 境 监 控 系统 , 实 时监 控 高频
开 关 电 源
关 电源 的使用维护上还需要保 障检修 人员对 各 种检修 工具的合理使用 ,加强培训 ,提升工作 铁 路 通 信 系 统 中 高 频 开 关 电 源 组 成 上 包 人员的意识;此外 ,管理人 员根据 现场实际情 括 主 电路 、控制 电路、检测保护 电路 以及辅助 况制定出高标准 的高频开关 电源检修 作业指导 3 结 束语 电源 等部 分 。其工 作 原理 如下 ,交流 电源 接 书 ,要求 职工在检修工作 中严格依照作业 指导 同时 将 具体 的检 修 责 任落 实 到 人 , 入 开 关 电源 经 AC 断 路 器 ,保 险 丝 等 保 护 原 件 书进 行 作 业 , 在 铁 路 通 信 系 统 中 , 高 频 开 关 电源 是 系 后 ,进 入 E MI 滤波 器 ( 其 功能 是 防止开 关 电 从 思想面和制度面使检修人 员检修 设备,避免 统的动力供给单元 ,对整个系统 的运作稳 定性 源 受 到 交 流 电 的 突波 电 压 的 破 坏 以及 将 差 模 与 造 成 高 频 开 关 电源 的 损 坏 。 起 着 决 定 性 的 作 用 。本 文 基 于 高 频 开 关 电源 的 共模 杂讯做有效 的削减 ,以消除电网传入的高 工作原理及使 用特点, 提 出了保 障工作 区清洁 , 2 . 3合理接入 负载,调节均流 频 杂 讯 并 防 止 开 关 电源 的 杂 讯 反 馈 回 电网 ) 。 加 强 设 备 检 查 、 科 学 合 理 使 用 检 修 工具 、 合 理 交流 电源经桥式整流器整 流为直流后 ,再经主 在 铁 路 通 信 系 统 高 频 开 关 电 源 中 整 流 模 接入负载,调节均流 、保障机房 的温度适 中、 动 式功 率因数校 正线路 ( P F C), 产生约 4 0 0 V 块处于 自动控制 的状态 下时 ,系统内的内部监 纳入 电源及环境监控系统五 点高频开关 电源在 的直流 电压供 给 DC. DC转换器 使用 。同时为 控模块对 整个设备的运作进行控制 ,均流 也处 使用过程中的维护措施,需要我们在工作 中有 开 关 电源整流模块 内控制 线路提供辅助 电源 。 于 自动 调 节 下 ,人 员 无 法 对 其 进 行 操 作干 预 。 效执行,提升高频开关 电源 的使用稳定性和寿 4 0 0 V DC经 DC . DC转换器产 生一稳 定的输 出 在 一 切正 常运 作模 式 下,不 需要 人为进 行 控 命 。 电 压 。此 部 分 是 用 高频 软 开 关 脉 宽 调 制 零 电压 制 。但 是 当 铁 路 通 信 系 统 处 于 负载 很 低 的 状 态 转换技术 :在全 桥式线路上 以高频 ( 1 0 k Hz以 下时,会导致高频开关 电源 中部分模块 的电流 参考文 献 上)切换频率经移相 P WM 的方 式将 4 0 0 V DC 很小,进而会导致部分系统判 定这些模块 为无 [ 1 ] 朱世 盘 , 张 永 超 ,史 忠诚 .智 能 变 电站 切 换为交流脉波 ,经 高频 变压器的降压成为适 输 出,从而激活预警模块 ,上报 告警信息。此 中 高频 开 关 电 源 技 术 应 用 [ J ] .中 国 电 当波幅的交流脉波 。二次侧的交流脉波经整流 力 . 2 0 1 5 . 1 1 ( 0 1 ) : 1 4 2 - 1 4 5 . 时便需要人为的介入一些 负载 于其 中,保 障整 二极 管及 输 出滤 波 电路 ,可得 稳定 的直 流输 2 】张 学 廷 .如 何 进 一 步 优 化 高 频 开 个设备的运行稳定性 ,同时 也提升 高频开关电 [ 出。另为对 高频开 关电源 系统做最佳与适时 的 源 的使 用寿命 。 关 电源 变压 器 … J .科 技 创 新 与 应 保护 , 在此 并加上保 护线路, 其包含输 出过压 、 用 , 2 O 1 5 , 0 5 ( 0 3 ) : 1 2 2 — 1 2 2 , 1 2 3 . . 4保 障蓄 电池组 室的温度 适中,定期做放 电 过流保护 ,过温保 护、短路保护等 。如 图 1 所 2 试验 示 为 通 信 高 频 开 关 电源 工 作 原 理 拓 扑 图 。

开关电源原理详解

开关电源原理详解

开关电源原理详解
开关电源是由开关管、变压器、滤波电感、电容和稳压电路等器件组成的电源,其工作原理是将交流电转换为直流电。

下面我们来详细了解开关电源的工作原理:
1.输入变压器:开关电源的输入变压器工作于高频状态下,将低电压高电流的输入变换成高电压低电流的输出,促使开关电源的高频开关能够实现小尺寸和高效率的要求。

2.整流电路:开关电源的整流电路负责将输入电压的交流部分转换成直流电。

整流电路通常包括一个桥式整流器,它可以同时整流正、负电压的交流信号。

3.滤波电路:由于开关电源的输出具有高频脉冲特性,需要通过滤波电路将其转换成平稳的直流电。

滤波电路主要由电感和电容组成,可以过滤高频杂波,从而保持输出电压的稳定性。

4.变换电路:开关电源的变换电路主要由开关管和变压器构成。

变换电路负责将滤波后的直流电转换成需要的电压和电流,并将其输出。

5.稳压电路:开关电源的稳压电路主要由电容和稳压芯片构成,负责保持输出电压的稳定性。

稳压电路可以根据输入电压和输出电流自动调整输出电压,以确保输出电压不会因外部负载的变化而波动。

综合以上几部分,开关电源的工作原理就是将输入电压通过整流、滤波、变换和稳压等过程,最终将输出电压转换成需要的电压和电流,以满足各种电器设备的需要。

高频开关电源说明书

高频开关电源说明书
体。另外,避免整流器在充满粉尘和腐蚀性气体的环境中工作,并远离产热源,和潮湿地带,相对 湿度 5%~70%,环境温度-25℃~40℃,以延长机器寿命。 ◆ 2、检查一下机器外壳有无松动,端口有无在运输过程中损坏,确认三相空气开关处于断开位置。
指导:上海瑞进电源 ◆ 3、找出电源输入线,分别接好引线,将远控线对好插座的凹凸部位插牢并旋紧。 ◆ 4、机器外壳有“┴”标识,请接入大地,预防静电。 ◆ 5、将功率调节旋钮逆时针旋转到底(最小状态)。 ◆ 6、闭合空气开关,此时风扇开始转动,电源指示灯亮。 ◆ 7、顺时针旋转调节旋钮,电压表读数随着增加,工作灯亮。 ◆ 8、将调节旋转调到最大,此时电压表应指示额定电压值 ,电流表根据负载大小做出相应指示。 ◆ 9、断开空气开关,关闭整流器。 ◆ 10、机器正常工作时,外壳由于机内高频磁场的影响会产生涡流使外壳发热,关且有静电,属正常
以免损坏元器件。 ◆ C、检查电源是否正常检查空气开关分断是否可靠。 ◆ D、检查风扇工作是否异常,有无杂声。 ◆ E、检查输出铜排有无氧化现象,要及时进行清理。 ◆ F、检查螺丝,螺帽有无松动等。
开关电源操作规程 一.产品介绍: 此电源为高频开关电源,电流电压均为数字显示.具有稳压稳流转换功能. 二.开机方法: 1. 启动前,将面板开关置"待机"位置,输出调节旋钮逆时针旋到最小;"稳压/稳流"开关根据用
同配置和功能的产品。 ■ 如在仔细阅读说明书后,仍不能正常安装和操作整流器,本厂可以派技术人员为您现场安装。 ■ 如您有什么特殊的要求以及建议欢迎来电来函,本公司将竭诚为您服务。
三、 技术参数
输入
三相 380V±10% 50HZ±5HZ
输出电流 输出电压 纹波系数
0-500A 0-35V 1%
调整精度 冷却方式

高频开关电源在铁路系统中应用原理及其重要性

高频开关电源在铁路系统中应用原理及其重要性

探讨高频开关电源在铁路系统中的应用原理及其重要性摘要:大量的数字通信系统随着不断发展的铁路通信在通电设备方面提出了更高的要求,可靠的通信网运行和安全的铁路运输生产直接受到电源供电质量的影响。

高频开关电源在铁路通信网中的应用,使通信电源的可靠性和安全性得以提高,本文针对高频开关电源应用原理及其重要性进行详细的阐述。

关键词:高频开关电源通信电源监控系统应用一、引言本文通过探究高频开关电源系统的总体结构及工作原理、在铁路系统中的应用和应用效果,得出高频开关电源具有各项技术指标合格、功能齐全、可靠稳定的运行等方面的优势,从而使通信电源的可靠性和安全性得以提高。

二、高频开关电源系统的总体结构及工作原理(1)总体结构整流模块、配电模块、主监控单元、交流配电单元等组成了高频开关电源系统的总体结构,通过通信线主监控单元的控制和管理功能输送给主监控系统各个监控单元采集的信息。

由其进行统一管理。

直流系统各种信息在主监控中显示,通过触摸显示屏用户能够查询和操作信息,在远程监控系统中也能够接入系统信息。

除了基本单元中的开关量监控、直流监控、交流监控等,在系统中还配置有电池巡检、降压装置、绝缘监测等功能单元,从而实现全面控制直流系统。

在工作状态下,经过交流切换装置两路电流输入一路电流,供电给整流模块。

输入三相电流在整流模块中被转换为直流电,供电给合闸母线负载,并且给蓄电池充电,除此之外通过降压装置合闸母线供电给控制母线。

这个系统结构是集充电和整流两项功能于一体。

高频开关电源系统的组成图如下:a、交流配电模块对交流电源的检测、保护、处理都是通过这个模块来实现的。

交流输入切换装置在交流输入正常时提供两路380伏电源给直流电源系统的整流模块,这两路电源的自动切换系统都能够实现,在正常运行中给蓄电池充电是通过整流模块来实现的,并且提供交流电给站内。

整流模块在站内失去交流电的时候停止工作,通过逆变电源蓄电池提供交流电源给站内,还装有防雷器在交流配电模块上,过电压的冲击能够被有效的避免,电源系统的正常运行得以保证。

开关电源的结构和基础原理

开关电源的结构和基础原理

3 .3 V
R103 R99
B
2 K 0 8 05
3 VI
R173
5V
C45
1 K,0 8 05
5 VI
C53
1 04 12 06
R101
1 K 0 8 05
11 12 13
FB2 VREF2 VREF1 FB1 GND COMP IN SS RI VCC
PG OP1 OP2 V1 2 NVP UVAC OPP V5 V3 3 PSON
o ut3 o ut4 GND 4 in + 4 in 3 in + 3 in -
14 13 12 11 10 9 8
C56
2 .2u ,5 0V
1 2V2
R163 R160
1 K 0 8 05 1 K 0 8 05
R117
R131 1 0K 0 80 5
R130 1 0K 0 80 5
1 0K 0 80 5
AC输入
EMI器件
整流滤波
主变压器
功率输出
取 样
开关管
PWM
SB器件 驱动变压器 控制 供 电
VCC 辅助变压器 SB输出
常用元器件性能及主要参数介 绍



电阻 电容 电感 二极管 三极管 变压器 比较器 PWM控制器
电路图

一个典型的电路图
开关电源原理示意图
1经过了EMI滤波电路以及PFC电 路的交流电波形
1 04 ,08 05
1 K 0 8 05
R158
3 9K 0 80 5
5 60 K 06 03 R119
3 .3K 0 80 5
1 04 ,08 05

高频开关电源工作原理

高频开关电源工作原理

高频开关电源工作原理高频开关电源是一种高效、稳定、可靠的电源,正在被广泛应用于各种电子设备中。

它的工作原理是将交流电压转换为高频脉冲信号后,在经过滤波、调整和反馈等电路处理之后,输出直流电压,从而为各种电子设备提供稳定的电力支持。

一、高频开关电源的基本构造高频开关电源的基本构造包括变压器、开关管、滤波电容、调整电路和反馈电路等五个部分。

1.变压器:变压器是高频开关电源的核心部件,它能够将输入的交流电压转换为高频脉冲信号,输出到开关管上。

因此,变压器的质量和性能是影响高频开关电源输出效果的关键因素之一。

2.开关管:高频开关电源采用晶体管或MOS管作为开关管,通过控制其导通和截止时间来实现电流的开断和转换。

由于开关管的开关频率很高,达到几十千赫,因此它的响应速度、频响特性和损耗情况对高频开关电源的性能有很大的影响。

3.滤波电容:滤波电容用于过滤高频干扰和跨越电压,将输出脉冲信号转换为直流电压。

它的作用是保证高频开关电源的输出稳定性和纹波电压小,也就是电源的纹波系数小。

4.调整电路:调整电路用于调整输出电压或电流,使高频开关电源能够满足不同的电子设备工作要求。

调整电路采用稳压器进行调整,可以通过电压分压器、电流限制器等方式实现输出电压或电流的稳定控制。

5.反馈电路:反馈电路也是高频开关电源关键部分之一,它通过检测输出电压或电流大小并输出反馈信号,控制开关管的工作状态,从而实现高频开关电源的自动稳压、限流和保护等功能。

二、高频开关电源的工作原理高频开关电源的工作原理可以分为三个步骤:输入、转换和输出。

1.输入阶段:高频开关电源的输入电源是交流电源,经过整流电路转换为直流电压,输入到变压器端口。

2.转换阶段:通过变压器将输入的电压转换为高频脉冲信号,输出到开关管上。

当开关管闭合时,电流会通过变压器和地线形成电磁场,从而将变压器中的能量存储在磁场中;当开关管断开时,电磁场就会将这些能量释放出来,形成一个脉冲信号输出到滤波电容上。

高频开关电源原理

高频开关电源原理

高频开关电源(电源技术讲座四)1:高频开关电源的组成与分类开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。

但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。

电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。

开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。

另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。

目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFE的开关电源转换频率可达几百kHz。

为提高开关频率必须采用高速开关器件。

对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。

它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。

采用谐振开关方式的兆赫级变换器已经实用化。

开关电源的集成化与小型化已成为现实。

然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。

1.1 开关电源的基本构成开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。

开关电源的基本构成如图1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。

输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。

图2 是一种电路实现形式。

DC/DC变换器有多种电路形式,常用的有工作波形为方波的PWMS换器以及工作波形为准正弦波的谐振型变换器。

图1 开关电源的基本构成图2 开关型稳压电源的原理电路对于串联线性稳压电源,输出对输入的瞬态响应特性主要由调整管的频率特性决定。

高频开关电源的工作原理

高频开关电源的工作原理

推挽电路原理图
V1
W1
- Uin +
V2
W2
Uce 2Uin
L
Uin
+
0
Ton
Toff
t
Ic
0
T
t
4、半桥电路
半桥电路有两个功率开关管,通过两个串连的电容器来构成 工作回路,这两个功率管交替导通驱动高频变压器进行能量 传递,变压器是双向激励的。半桥电路同样存在变压器磁偏 现象,会出现“直通”问题。同样的变压器的情况,半桥的 输出功率大于推挽电路。如下图所示:C1和C2的作用主要是 实现静态时分压,使Ua=1/2Uin。当V1导通,V2截止时, 输入电流方向为图中虚线方向,向C2充电;当V1截止,V2 导通时,输入电流方向为图中实线方向,向C1充电。当V1导 通,V2截止时,V2两端承受的电压为输入直流电压Uin。
APFC电路,是有源功率因数校正电路。它是一
个升压电路,电路结构采用的是BOOT电路,输出电压
一般规定在410VDC左右。由于开关电源所采用的器件 全部工作在非线性状态,电路上有电感和电容,所以会 造成交流输入电压和电流的相位存在相位差,导致交流 电不能全部做功,一部分在电感和电容中转换。另外交 流电压和电流波形出现畸变,造成谐波分量增加,干扰 增加。功率因数校正电路就是将电压和电流相位强制到 一致,同时对波形给予修正。
高频开关电源工作原理
作者:湖南常德分公司传动中心郝书韬
1、开关电源的概念 2、开关电源的组成 3、开关电源的常用电路类型与原理 4、通信用开关电源的基本要求
1、开关电源的概念
开关电源是一个能量转换器,作为电源的功率器件工作 在开关状态(开关管、电感、高频变压器、电容、整流 二极管)-开或关状态,其特点是频率高、功耗低、工 作效率高、体积小、输入范围宽(SwitchingRegulator -- A switching circuit that operates in a closed loopsystem to regulate the power supply output) 通过闭环系统调节,使输出电压保持稳定。

高频开关电源工作原理

高频开关电源工作原理
6
波分量增加,干扰增加。功率因数校正电路就是将电压和电流相位强制
7
到一致,同时对波形给予修正。
8
二、开关电源的电路组成
二、开关电源的电路组成
开关电源APFC电路
二、开关电源的电路组成
输入缓启动电路原理图
将PFC输出的410VDC高压进行变换,变成高频高压脉冲电压,然后驱 动高频变压器,变压器将高压脉冲电压变成低压脉冲电压。该部分的主 要器件是开关功率器件和高频变压器。
开关电源的主要指标
一、开关电源的概念
4、开关电源的主要指标 ④负载调整率 指的是输出负载变化时,引起的输出电压的变化。 SL=(△V0÷V0 )%。 ⑤输出纹波(峰-峰值) 这个指标衡量了开关电源的电磁兼容性,纹波越小越好。一般小于输 出电压的百分之三毫伏,例如对于53.5V电压来说,输出纹波就位150毫 伏。
三、开关电源的常用电路类型
正激电路原理图(单管正激)
三、开关电源的常用电路类型
正激电路原理图(双管正激)
推挽式功率变换电路原理图,如图下图所示。推挽电路要求输入电压
1
低,两个开关管的耐压要求是输入电压的2倍,所以一般用在DC/DC电源
2
中。推挽电路一般用在中型功率电路上,变压器双向激励,变压器效率
02
%,工作频率是振荡频率的一半,所使用的控制芯片一般是UC3844和
03
UC3845。可以做中型功率的开关电源,使用双管正激电路,其功率可以
04
做得更高一点。虽然功率变压器不像反激式电路要开气隙,但是一般要
05
在变压器中加去磁绕组,在关断时将付边的能量反射到交流输入上。
06
单端正激电路
三、开关电源的常用电路类型

高频开关电源的基本原理

高频开关电源的基本原理

第一节高频开关电源的基本原理一、高频开关电源的组成高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。

图1-3-1高频开关整流器组成方框图图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。

从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。

开关整流器的特点:①重量轻,体积小采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。

②功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。

经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。

③可闻噪音低在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。

而开关电源在无风扇的情况下可闻噪声仅为45dB左右。

④效率高开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。

⑤冲击电流小开机冲击电流可限制的额定输入电流的水平。

⑥模块式结构由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。

二、高频开关电源的分类(二)开关整流器分类1、按激励方式可分为自激式和他激式。

自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。

直流高频开关电源及维护V2

直流高频开关电源及维护V2
直流高频开关电源及维护
何为高频开关电源
高频开关电源是将交流电整流后,通过高频开关管产生高频脉冲震荡,在输出端用高频二极管整流得到不同的直流, 通过调整高频开关管的脉冲宽度,使输出电压稳定.
高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范 围内,实现高效率和小型化。
温度
温度升高:加速电池内水的分解,充电电流大,蓄电池过充。
温度降低:蓄电池容量降低。
环境温度+5°C时 蓄电池容量为额定值80%
阀控式密封铅酸蓄电池
阀控蓄电池组的运行及维护 DL/T 724-2000
阀控蓄电池组的运行方式及监视 蓄电池正常以浮充电方式运行 浮充电电压宜控制为(2.23~2.28)V×N 均衡充电电压控制为(2.30~2.35)V×N 运行中监视 ①电池组端电压、
变电所直流系统
系统接线 【QL/T 5044 — 2004】
动力负荷 直流网络宜采用辐射供电方式 采用环网供电时,环形网络干
线或小母线的两回直流电源经 隔离器接入。 正常时开环运行。 供电网络干线引接负荷处设置 隔离器。
变电所直流系统
事【故事照故明照的明自回动路切】换
目录
变电所直流系统 阀控式密封铅酸蓄电池 高频开关电源直流系统 变电所直流电源系统故障
DL/ T 724-2000 规定: 充电电流减少至 0.1I10时计时3h 后转
浮充运行
补充充电
DL/ T 724-2000 规定:一般3个 月充电装置自动 进行
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池名词术语
浮充电:正常运行充电装置承担经常负荷电流,同时向蓄电池补充电。
浮充电压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频开关电源的基本原理————————————————————————————————作者:————————————————————————————————日期:第一节高频开关电源的基本原理一、高频开关电源的组成高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。

图1-3-1高频开关整流器组成方框图图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。

从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。

开关整流器的特点:①重量轻,体积小采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。

②功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。

经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。

③可闻噪音低在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。

而开关电源在无风扇的情况下可闻噪声仅为45dB左右。

④效率高开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。

⑤冲击电流小开机冲击电流可限制的额定输入电流的水平。

⑥模块式结构由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。

二、高频开关电源的分类(二)开关整流器分类1、按激励方式可分为自激式和他激式。

自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。

自激式电路出现最早。

它的特点是电路简单、响应速度较快,但开关频率变化大、输出纹波值较大,不易作精确的分析、设计,通常只有在小功率的情况下使用,如家电、仪器电源。

他激式开关电源需要外接的激励信号控制才能使变换电路工作,完成功率变换任务。

他源激式开关电源的特点是开关频率恒定、输出纹波小,但电路较复杂、造价较高、响应速度较慢。

2、按开关电源所用的开关器件可分为双极型晶体管开关电源、功率MOS管开关电源、IGBT开关电源、晶闸管开关电源等。

功率MOS管用于开关频率100kHz以上的开关电源中,晶闸管用于大功率开关电源中。

3、按开关电源控制方式可分为脉宽调制(PWM)开关电源,脉频调制(PFM)开关电源,混合调制开关电源。

4、按开关电源的功率变换电路的结构形式可分为降压型、反相型、升压型和变压器型。

变压器型中按开关管输出电路的形式可分为了单端开关电源、双端开关电源。

而双端开关电源又可分为推挽型、半桥型、全桥型。

单端开关电源可分为单端正激型、单端反激型。

除了上述几种类型外,还有一些改进型电路,如双端正激型等。

第二节开关整流器一、主电路电路如图1-3-2所示。

交流输入电压经电网滤波、整流滤波得到直流电压,通过高频变换器将直流电压变换成高频交流电压,再经高频变压器隔离变换,输出高频交流电压,最后经过输出整流滤波电路,将变换器输出的高频交流电压整流滤波得到需要的直流电压。

图1-3-2 典型主电路(1)交流输入滤波及桥式整流滤波电路电容C116、C117、C118,共模电感L102构成EMI(Eletromagnetic Interference电磁干扰)滤波器,其作用是:一方面抑制电网上的电磁干扰;另一方面它还对开关电源本身产生的电磁干扰有抑制作用,以保证电网不受污染。

即它的作用就是滤除电磁干扰,因此常称作EMI 滤波器。

单相/三相市电经滤波后,再经全桥整流滤波,得到300V/500V左右的高压直流电压送入功率变换电路。

(2)功率变换电路(DC/DC变换电路)300V/500V高压直流电送入功率变换器,功率变换器首先将高压直流电转变为高频交流脉冲电压或脉动直流电,再经高频变压器降压,最后经输出整流滤波得到所需的低压直流电。

(3)次级滤波电路由于DC/DC全桥变换器输出的直流电压仍含有高频杂音,需进一步滤波才能满足要求。

为此在DC/DC变换器之后,又加了共模滤波器。

由高频电容C212、C213及电流补偿式电感L23组成的共模滤波器的直流阻抗很低,但对高频杂音有很强的抑制作用,使输出电压的高频杂音峰-峰值降到200mV以下。

二、控制电路(1)电压/电流取样电路电压/电流取样电路如图1-3-3所示:图1-3-3 取样电路整流模块的输出电压,经由取样支路(R205、RP21、R203、R204)的电位器RP21取样,送出采样电压(即反馈电压)Vf。

分流器(取样电阻)FL01上的电压即为电流反馈信号If,作为限流和均流的取样信号。

(2)反馈控制电路整流模块控制电路由电压闭环控制与电流闭环控制组合而成,其基本原理见图2-22。

首先讨论稳压过程。

从图2-22可见输出电压取样反馈信号Vf输入至PWM控制器内部的比较放大器的1脚,与2脚的电压基准信号Vref进行比较放大,得到误差信号。

如果因某种因素使得输出电压升高,则Vf上升,因而9脚的电压降低,这将导致控制器输出的控制脉冲宽度变窄,即占空比变小,从而最终使得输出电压降低,完成负反馈稳压过程。

电压基准电路见图1-3-4。

图1-3-4 反馈控制电路接着分析恒流(也称限流)过程。

从分流器取样而来的反馈信号If和电流基准信号Iref合成后输入U6的3脚,同时Iref也输入U6的2脚。

当模块输出电流小于限流值时(调整电位器RV1可改变限流值),U6的3脚电平高于2脚电平,这时1脚呈高电平,二极管截止,电流环不起作用;当模块限流时(即模块输出电流达到限流值时),U6的3脚电平低于2脚电平,1脚呈低电平,二极管导通,从而拉低U7的9脚电平,最后使模块处于恒流状态,电压环不起作用。

电流基准电路由图1-3-3中的U3等构成,正常工作时,当光耦不导通时,电流基准电平为5.5V左右,光耦饱和导通时,电流基准电平为2.55V左右。

(3)电压、电流基准正常工作时U8(TL431)产生稳压基准,其电平为+5V,经过电阻分压输出基准信号Vref,电阻RX设有两档值,切换这两档就可以获得均充电压或浮充电压。

调节RX便可调整均充或浮充电压。

在图1-3-5中,Q12,Q13两PNP管起着较重要的保护作用。

由于电压控制环的反应速度比电流控制环的反应速度快,如果没有Q12,Q13,当输出短路时电压控制环首先响应,工作占空比迅速变至最大,经过几个周期后电流控制环才起作用,把电流限制在一定范围。

这样输出短路时对电路的冲击很大。

本电路加了Q12,Q13后,在输出短路时,图1-3-3中电容C201通过二极管D202迅速放电,电压UB加到Q12、Q13基极,UB的下降使它们导通,迅速将电压基准电平和电流基准电平拉低,将输出电流限制得很小,使短路冲击的影响大大降低。

另一方面,它还能起输出软启动的作用。

模块开机时,输出滤波电容上的电压为0,所以模块建立电压的过程中电流很大。

而输出电流是经开关管的,如果没有相应措施,开关管很容易在这个时候遭受过流冲击而损坏。

开机时图1-3-3中电容C201上的电压UB为0,Q12、Q13导通,电压基准被拉得很低,变换器输出电压小。

电容C201经由电阻R207慢慢充电,电压UB逐渐升高,由于Q12、Q13的作用,电压、电流基准逐渐升高,输出电压也逐渐升高。

最后U8进入稳压状态,模块输出电压也达到额定值。

这样就完成了输出软启动过程。

图1-3-5 电压电流基准电路图(4)驱动电路如图1-3-6所示。

现以其中一路驱动为例描述工作原理。

驱动输入A、B为为互补对称关系。

A为高电平时,由于互补关系,输入B为低电平,这时Q7、Q10导通,Q8、Q9截止。

VCC1通过Q7,隔直电容C1,驱动变压器T10原边这条回路产生正向驱动脉冲,使功率管Q1开通。

当驱动输入A转为低电平时,Q7、Q9截止,Q8、Q10导通。

通过D8、隔直电容C1、驱动变压器T10原边,这条回路产生反向驱动脉冲。

当变压器原边中的电流减小到0时,电容C1通Q8、变压器T10原边放电,继续维持等幅反向脉冲。

另一路的工作原理相同。

图1-3-6 驱动电路工作原理图功率变换电路是整个开关电源的核心部分,根据输出功率的大小,开关频率的工作范围,以及开关管上所承受的电压、电流应力的不同,功率变换电路有多种拓朴结构,下面介绍两种拓朴结构:双端正激变换器和全桥变换器。

一、双端正激变换器电路结构如图1-3-7所示。

基本工作原理图1-3-7 双端正激变换电路图1-3-8 双端正激电路状态1等效电路图1-3-9 双端正激电路状态2等效电路Q1、Q2由同一组驱动信号控制,同时导通或关断。

其工作过程是:在Q1、Q2的控制端加一个高电平,开关管Q1、Q2导通,其等效电路如图1-3-8所示。

这时,输入电压Ui全部加到变压器初级线圈两端,次级的感生电动势使D3导通,将输入电流的能量传送给电感L和电容C及负载,给电感L、电容C充电(电感电流IL增大,当超过负载电流Io时,电容电压Uc也开始增大,如图1-3-10所示);与此同时在变压器T中建立起励磁电流(INP与INS/n之差,如图1-3-10中的阴影所指示),即在变压器的励磁电感中存储能量。

撤去Q1、Q2控制端的高电平,Q1、Q2关断,变压器的原、副边的极性立即反转,D3截止,其等效电路如图1-3-9所示。

这时,电感L上的电压极性也反转,通过续流二极管D4向负载继续供电,当电感电流小于输出电流Io时,电容也向负载供电,见图1-3-10。

另一方面,变压器中原边的电流如图1-3-9所示的方向流动,即磁化电流通过D1、D2将原先储存的能量回馈给电源Ui而去磁。

同时D1、D2具有箝位作用,它们保证变压器原边的电压不超过输入电压Ui,能有效防止变压器漏感的电压尖峰对开关管的冲击。

显然,在Q1、Q2再次导通之前,T中的去磁电流必须释放到零,即T中的磁通必须复位,否则,能量经几个周期叠加,将使变压器T发生饱和导致开关管损坏。

这就要求占空比<0.5。

图1-3-10 双端正激变换电路工作波形特性分析正激:开关管导通时,输入馈电给负载,截止时L供电给负载,因此称为正激式耐压:开关管最大电压为Ui变压器:变压器利用率不高(仅使用磁滞回曲线第一象限)应用:安圣电源HD4850和HD4820-5整流模块主电路基本工作原理图1-3-11 全桥式变换电路全桥式变换电路的结构如图1-3-11所示。

相关文档
最新文档