植物生理学007 植物体内的细胞信号转导

合集下载

07植物生理学植物体内的细胞信号转导

07植物生理学植物体内的细胞信号转导
细胞受体+配体(信号物质)
受体-配体复合体
生化反应
细胞反应
2.2 细胞受体的基本特性
高度特异性:只与其特定的信号物质(配 体)结合并触发反应;
高亲和力:与配体的结合能力强;
可逆性:与配体的结合是可逆的。
2.3 植物细胞受体的类型
1)
存在于亚细胞组分(如细
胞核、液胞膜等)的受体;
2)
存在细胞表面(如细胞
1.2 植物细胞信号转导的概念
指植物感受、传导环境刺激的分子途径及 其在植物生长发育过程中调控基因的表达和生 理生化反应。
2 细胞受体
2.1 细胞受体的概念
指存在于细胞表面或亚细胞组分中的天 然物质,可特异地识别并结合化学信号物质----配体,并在细胞内放大、传递信号,启动一 系列生化反应,最终导致特定的细胞反应。
然后再与靶酶结合将信号转导、细胞受体、钙调
素等基本概念;
2. 简述细胞受体的类型和基本特征; 3. 简述钙调素的作用方式。
1 植物细胞信号转导
1.1 植物生长和发育过程中所面对的刺激与信号 外界环境信号的刺激,如机械刺激、温度、 光照、气体、重力、触摸、病原因子、伤害、 水分等;
体内其他细胞传来的信号,如生长调节剂、 多肽、糖、代谢物等。
膜等)上的受体.
3 钙调素
3.1 钙调素的概念
钙调素(又称钙调节蛋白, CaM ):为广泛存在于所有真核生物中的一 类钙依赖性的具有调节细胞内多种重要酶活性 和细胞功能的小分子量的、耐热的球状蛋白。
3.2 钙调素的作用方式
1)直接与靶酶结合,诱导靶酶的活性构象,从而
调节酶活性;
2)与Ca2+结合,形成活化的Ca2+ . CaM复合体,

植物生理学第七章 植物体内细胞信号转导

植物生理学第七章 植物体内细胞信号转导

土壤干旱
ABA
ABA受体
Ca2+
(胞外刺激)
等信号分子
初级信使
胞间化 学信号
膜上信 号转换
第二信使
• 二、受体在信号转导中的作用
• 受体:位于细胞的质膜或细胞内,能感受到胞外信

号的蛋白质分子。
• 配体:能与受体发生特异性结合的物质。
• 1. 受体特点:组成型表达。 • 2. 受体与配体结合特点 • ⑴ 特异性 • ⑵ 高亲和力 • ⑶ 可逆性
吉尔曼
Alfred G. Gilman 美国
得克萨斯大学西南医 学中心 1941年--
罗德贝尔
Martin Rodbell 美国 国立环境卫生研究所 1925年--1998年
2、小G蛋白(小GTPase)
类似G蛋白的亚基,结合在质膜朝向胞质溶 胶的一侧。受上游的鸟嘌呤核苷酸交换因子的活化, 并将信号传递给下游组分。结合GTP后活化,成为 植物信号网络中重要的分子开关。目前未发现小G 蛋白参与跨膜的信号转换。参与细胞骨架的运动、 细胞扩大、根毛发育和细胞极性生长的信号转导。
结构模式图及其激活机制
(B) (A)
⑴ CaM 的作用机制 第一,直接与靶酶结合,诱导靶酶的活性构
象,从而调节靶酶的活性。 第二,与Ca2+结合,形成活化态的Ca2+·CaM复合
体,然后再与靶酶结合,将靶酶激活。 ⑵ CaM 的活性调节
① 调幅机制
② 调敏机制
⒋ Ca2+·CaM复合体的靶酶 Ca2+- ATP 酶, Ca2+通道, NAD激酶 , 多种蛋白激酶等。
参与蕨类植物的孢子发芽,细胞有丝分裂、原 生质流动、植物激素的活性、向性、调节蛋白质磷 酸化,最终调节细胞的生长发育。

植物生理学:第7章 细胞信号转导

植物生理学:第7章  细胞信号转导
•Gilman和Rodbell因发现G蛋白获得1994年诺贝尔 医学生理学奖。
•G蛋白在高等植物中普遍存在,而且初步证明了G 蛋白在光、激素等因子对气孔运动、细胞跨膜离 子运输等细胞信号转导中有重要作用。
G蛋白一般分为两大类:
一类为大G蛋白,由三种不同亚基()构成的 三聚体G蛋白(heterotrimeric G-protein),其 亚基含有与GTP结合的活性位点,并具有GTP酶 活性。
细胞外
质膜
细胞内
G蛋白连
接受体





Ca2+/ CaM;IP3/DAG
蛋白可逆磷酸化
细胞 反应

二元组 分系统
信号输入 跨膜信号转换 胞内信号转导网络 信号输出
信号转导的模式
7.2.1 G蛋白与跨膜信号转导
•G 蛋 白 又 称 GTP 结 合 调 节 蛋 白 ( GTP binding regulatory protein)。
环核苷酸信号系统
钙信号系统
磷脂酰肌醇信号系统
7.3.1 Ca2+/CaM在信号转导中的作用
钙稳态:细胞质中Ca2+浓度小于或等于 0.1umol/l。
受激态:当细胞受到外界刺激时,细胞 质中Ca2+浓度会急剧增加
• 细胞壁是胞外钙库 • 液泡、内质网、 线粒体等是胞内钙库 • 钙库中Ca2+浓度比细胞质中的高2个数

结合以及具有
的活性而得名。
三磷酸鸟苷(GTP),GTP水解酶
质膜中的磷酸脂酶C水解PIP2( 磷脂酰肌
醇-4,5-二磷酸)而产生


两种信号分子。因此,该
系统又称双信号系统。其

植物细胞信号转导PPT课件

植物细胞信号转导PPT课件
此外,一些生长调节 物质如壳梭孢菌素、花生 四烯酸以及乙酰胆碱等也 都具有化学信号的功能。
.
9
(二) 物理信号(physical signal)
➢ 指细胞感受到刺激后产生的能够起传递信息作用的电信 号和水力学信号。
➢ 电信号传递是植物体内长距离传递信息的一种重要方式, 是植物体对外部刺激的最初反应。
激酶; PKC.依赖Ca2+与磷脂的蛋白激酶; PK
Ca2+·CaM. 依赖Ca2+·CaM的蛋白激酶从而使细
胞作出. 反应。
4
胞内分子反应 胞内信号转导 膜上信号转换
胞间信号传递
.
5
植物体内的胞间信号可分为两类,即化学信号和物理信号。
一、胞间信号
(一) 化学信号 (chemical signals )
➢ 植物的电波研究较多的为动作电波(action potential, AP), 也叫动作电位,它是指细胞和组织中发生的相对于空间 和时间的快速变化的一类生物电位。
➢ 植物中动作电波的传递仅用短暂的冲击(如机械震击、电 脉冲或局部温度的升降)就可以激发出来,而且受刺激的 植物没有伤害,不久便恢复原状。
➢ 一些敏感植物或组织(如含羞草的茎叶、攀缘植物的卷须 等),当受到外界刺激,发生运动反应(如小叶闭合下垂、 卷须弯曲等见录像)时伴有电波的传递。
.
10
受触及的含羞草小叶在 1至2 秒钟向下弯,这 是由于电波引发叶枕运 动细胞中大量的K+和 Ca+2转运,引起膨压改 变的结果
.
11
图17.14 Albizia pulvini 背侧和腹侧的运动细胞之间的离
植物细胞信号转导
.
1
第一节 植物体内的信号传导

植物生理学第七章:植物体内细胞信号转导

植物生理学第七章:植物体内细胞信号转导
跨膜信号转换通过细胞表面的受体与配 体结合来实现。这里着重介绍通过G蛋白 连接受体发生的跨膜信号转换。
植物生理学教研室
细胞信号转导
• G 蛋 白 全 称 为 GTP 结 合 调 节 蛋 白 (GTP binding regulatory protein),此类蛋白由 于其生理活性有赖于三磷酸鸟苷(GTP)的 结合以及具有GTP水解酶的活性而得名。 20世纪70年代初在动物细胞中发现了G蛋 白的存在,进华而南农业证大学明植物了生理G教研蛋室 白是细胞膜受 体与其所调节的相应生理过程之间的主 要信号转导者。
植物生理学教研室
细胞信号转导
华南农业大学植物生理教研室 植物生理学教研室
细胞信号转导
第一节 信号与受体结合
一、信号(理解)
• 信号是信息的物质体现形式和物理过程。 • 刺激就是信号 华南农业大学植物生理教研室 • 化学信号和物理信号,化学信号也称为配体 • 胞内信号和胞间信号 • 植物通过接受环境刺激信号而获得外界环境的
细胞信号转导
第七章 细胞信号转导
• 植物细胞信号转导: 是指细胞耦联 各种刺激信号(包括各种内外源刺 激信号)与华南其农业大引学植物起生理特教研室定生理效应之 间的一系列分子反应机制。
植物生理学教研室
细胞信号转导
分为4个步骤: 1、信号分子与细胞表面受体结合 2、跨膜信号转换 3、在细胞内华南通农业大过学植物信生理教号研室 转导网络进 行信号传递、放大与整合 4、导致生理生化变化
细胞信号转导
二、受体在信号转导中的作用(理解)
➢ 受体(receptor)是存在于细胞表面或亚细胞组分中 的天然分子,可特异地识别并结合化学信号物 质——配体,并在细胞内放大、传递信号,启动 一系列生化反应,最终导致特定的细胞反应。

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导
胞外的信号经过跨 膜转换进入细胞后, 通常产生第二信使 并通过相应的胞内 信使系统将信号级 联放大,引起细胞 最终的生理反应。
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。

植物生理学习题大全——第7章细胞信号转导

植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导

G蛋白下游的靶效应器很多,包括磷酯酶C(PLC)、 磷酯酶D(PLD)、磷酯酶A2(PLA2)、磷酯酰肌醇3激 酶(PI3K)、腺苷酸环化酶、离子通道等。
通常认为,G蛋白参与的跨膜转换信号方式主要是α亚 基调节,而βγ亚基的功能主要是对G蛋白功能的调节和修饰, 或把G蛋白锚定在细胞膜上。随着研究的深入,越来越多的 证据表明,G蛋白被受体激活后βγ亚基游离出来也可以直接 激活胞内的效应酶。有些甚至是α亚基和βγ亚基复合体协同 调节。在目前所知道的8种不同的腺苷酸环化酶(AC)同工 酶中,AC1通过α亚基激活,AC2、AC4、AC7则直接被βγ 亚基激活,但需要α亚基存在,两种协同起作用。
信号的主要功能:在细胞内和细胞间传递生物信息,当植 物体感受信号分子所携带的信息后,或引起跨膜的离子流动, 或引起相应基因的表达,或引起相应酶活性的改变等,最终 导致细胞和生物体特异的生理反应。
外部信号对 拟南芥植株 生长和发育 的影响
二、受体(receptor)在信号转导中的作用
受体(指能够特 异地识别并结合 信号、在细胞内 放大和传递信号 的物质)
一、G蛋白参与的跨膜信号转换
是细胞跨膜转换信号的主要方式。G蛋白 即GTP结合蛋白(GTP binding protein),是细胞内一类具有重要生理调节功能的蛋白质。G蛋 白可以和三磷酸鸟苷(GTP)结合,并具有GTP水解酶的活性。在所有 的G蛋白中只有两种类型G蛋白参与细胞信号传递:小G蛋白和异三聚体 G蛋白。小G蛋白是一类只含有一个亚基的单聚体G蛋白,它们分别参与 细胞生长与分化、细胞骨架、膜囊泡与蛋白质运输的调节过程。
在细胞跨膜信号转导中起主要作用的是异三聚体G蛋白(heterotrimeric G-proteins,也被称作大G蛋白)。常把异三聚体G蛋白简称为G蛋白。

植物体内的细胞信号转导-植物生理

植物体内的细胞信号转导-植物生理

第七章植物体内的细胞信号转导生长发育是基因在一定时间、空间上顺序表达的过程,而基因的表达则受周围环境的调控。

动物通过神经和内分泌系统调节自身,适应环境,而植物没有这两个系统,它是通过精确、完善的信号转导系统来调节8身,适应环境。

植物细胞信号转导(signal transduction)主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。

信号传导包括信号、受体、信号转导网络和反应等环节。

图7-l是细胞信号转导的主要分子途径模式图。

各种各样的信号通过受体输入之后,细胞内的各种转导途径如同电脑的集成块那样,纵横交错,复杂而有序,经过分析、整理,最终输出命令,调节细胞的生理生化反应。

当然,有生命的活体细胞的信号转导系统远比电脑系统复杂得多。

第一节环境刺激和胞外信号一信号信号(Signal 信息的物质体现形式和物理过程。

简单地说,刺激就是信号。

植物通过接受环境刺激信号而获得外界环境的信息。

植物在生长和发育过程中,时刻处于大量外界环境信号,如机械刺激、温度、光照、气体、重力、触摸、病原因子、伤害、水分等的刺激之下,同时还面对体内其他细胞传来的信号,如生长调节剂、多肽、糖、代谢物、甾体、细胞壁片段、与膨压有关的细胞壁二、胞间信号当环境刺激作用于植物体的不同部位时,会发生细胞间的信号传递。

胞间信号包括物理信号(电信号)和化学信号(激素、寡聚糖等)。

在研究胞间物理信号方面,娄成后认为,植物受到外界刺激时可产生电波,通过维管束、共质体和外质体快速传递信息。

研究表明,细胞动作电位的产生与质膜上的离子流动有关。

土壤干旱时,植物根尖合成脱落酸(ABA),通过导管向上运到叶片保卫细胞,引起保卫细胞内的胞质Ca2+等一系列信号转导,产生生理、生化反应,最后使气孔关闭。

详细信号转导过程见第八章。

在上述生理反应中,土壤干旱(胞外刺激)是信号转导过程中的初级信使(primary messenger),ABA是胞间的化学信号,保卫细胞内的胞质Ca2+等传递胞外信号的一系列信号分子就是第二信使(second messenger)。

植物生理学第七章 细胞信号转导

植物生理学第七章 细胞信号转导

第二信使:Ca 2+
cAMP cGMP IP3 H+ 某些氧化还原剂:抗坏血酸、谷胱甘
肽、H2O2
一、Ca 2+/CaM在信号转导中 的 作用 2+浓度≤0.1µmol/L 静态胞质Ca 而细胞壁、内质网、液泡中Ca 2+ 浓度比胞质中高2-3个数量级。 2+浓度 细胞刺激后胞质内Ca 短暂明显升高或区域梯度变化。 2+与CaM等结合而起作用 Ca
第七章
细胞信号转导
生长发育是基因在一定时间、空间上顺序表
达的过程,除受遗传因素支配外,还受周围环境 的调控。
植物细胞信号转导是指细胞耦联各种刺激信号与
其引起的特定生理效应之间的一系列分子反应机 制。
4个步骤:1、信号分子与细胞表面受体结合
2、跨膜信号转换 3、细胞内信号转导网络进行信号的 传递、放大、整合 4、导致生理生化变化 图7-1
细胞壁——胞外钙库 质膜上Ca 2+ 通道控制Ca 2+内流 质膜上Ca 2+泵负责胞内的Ca 2+泵出 胞外 胞内钙库(液泡、内质网、线粒体): 膜上存在着Ca 2+通道(外流) Ca 2+泵和Ca 2+/nH+反向运输体(泵 入) 图7-4
钙调蛋白:耐热球蛋白,有148个氨基 酸单链多肽 CaM两种作用方式: 1、可以直接与靶酶结合,诱导构 象变化和调节靶酶的活性 2、与Ca 2+结合,形成活化态的 Ca 2+· CaM复合体,再与靶酶结合,将 靶酶激活 CaM的三维结构:哑铃型,长650nm 图7-5
氨酸激酶、酪氨酸激酶和组氨酸激酶
1、钙依赖型PK酶(CDPK)属丝氨酸/ 苏氨酸激酶 图7-8
2、类受体蛋白激酶(RLK) 植物中RLK大多属于丝氨酸/苏 氨酸激酶 由胞外结构区、跨膜螺旋区 、 胞内蛋白激酶催化区三个部分组成 根据胞外结构区不同,将RLK 分为三类:含S结构域的RLK、含 富亮氨酸重复的RLK、类表皮生长 因子重复的RLK

(完整版)植物生理学习题大全——第7章细胞信号转导

(完整版)植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

植物生理学中的信号转导了解植物细胞内信号传递的机制

植物生理学中的信号转导了解植物细胞内信号传递的机制

植物生理学中的信号转导了解植物细胞内信号传递的机制植物生理学中的信号转导:了解植物细胞内信号传递的机制植物生理学是研究植物在生长、发育和适应环境的过程中所发生的各种生理反应的学科。

作为一个复杂的生物机体,植物细胞内需要通过信号传递系统来感知和响应外界的环境变化。

信号转导是植物细胞内信号传递的关键过程,它能够使植物在遇到生物和非生物胁迫时做出适应性的反应。

本文将探讨植物生理学中的信号转导,以了解植物细胞内信号传递的机制。

一、信号的感知与转导植物细胞内信号传递的第一步是信号的感知。

植物细胞通过对外界刺激的感知,获取关于环境的信息,并将其转化为细胞内的信号。

这些信号可以是光线、温度、盐度、激素等多种形式。

植物的感受器通常是膜蛋白,例如光感受器负责感知光线,激素受体负责感知激素的存在。

感知到信号后,植物细胞进入信号转导流程。

信号转导是指将感知到的信号传递给细胞内的下游部分,以产生相应的生理反应。

信号转导的机制由多个组分构成,包括信号传感器、信号传导器、信号激活器和效应器。

这些组分在细胞内相互协作,将信号从感知器传递到效应器,实现植物生理反应的调节。

二、信号转导通路在植物生理学中,信号转导通路是通过多个蛋白质相互作用而形成的复杂网络系统。

常见的信号转导通路包括蛋白激酶、磷酸酶和离子通道等。

这些通路中的蛋白质能够感知和传导信号,并参与到细胞的生理活动中。

信号通路中的蛋白质通常通过磷酸化和去磷酸化等方式来传导信号。

磷酸化是通过添加磷酸基团到蛋白质上,从而改变其构象和功能。

去磷酸化则是将磷酸基团从蛋白质上去除,使其恢复原来的构象和功能。

这两种方式的协同作用,使信号能够在细胞内传递和放大,最终调控植物的生理反应。

三、第二信使和信号响应在信号转导过程中,第二信使起着重要的作用。

第二信使可以是小分子化合物,例如环状腺苷酸(cAMP)和钙离子(Ca2+)。

它们能够将感知到的信号转导给细胞内的下游组分,触发相应的生理反应。

植物生理学 7细胞信号转导

植物生理学 7细胞信号转导

第九章练习题 1 概述植物细胞信息转导的基本过程。 2 目前已知的植物细胞内信号物质有那些?它们 的来源及功能各有什么特点。 3 胞外信号是如何完成跨膜信号转换的? 4 何谓双信号系统?它是如何运作的? 5 解释蛋白质可逆磷酸化的反应过程及其在植物细 胞信息转化过程中的地位与作用。 3 名词解释 胞外信号 受体 G蛋白 IP3 DAG Ca2+信号系统 钙调素 cGMP
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
Ser/Thr:丝氨酸/苏氨酸激酶域;JM.近膜区;SP:信号肽;B-Lectin:球形甘露糖结合 域;S:S结构域;TNFR:肿瘤坏死因子受体;PAN:调节蛋白-蛋白互作或蛋白-醣互 作结构域;EGF:表皮生长类因子;PR5K:病程相关5蛋白受体激酶;LRR:富含亮氨 酸重复序列;TM:跨膜域。FLS、Xa21和Xa26都属于富含亮氨酸重复序列型类受体蛋 白激酶;Pr5k(U48695)[18]属于PR5型类受体蛋白激酶;Wak1属于表皮生长因子型类受 体蛋白激酶;Pi-d2属于外源类凝集素型类受体蛋白激酶;Cr4属于类肿瘤坏死因子型受 体蛋白激酶;SRK6和Zmpk1具有S结构域。
(一)蛋白激酶(PK)
植物中2%~3%的基因编码蛋白激酶,其种类很多。根 据其催化磷酸化的位点可分为: 丝氨酸/苏氨酸激酶、酪氨酸激酶、组氨酸激酶 有些具双重底物特性。
1 钙依赖型蛋白激酶 (CDPK)
一般在其氨基端有一个激酶活性域,其羧基端 有一个类似CaM的结构域,两者之间还有一个抑制域。 当Ca2+与类似CaM结构区域结合后激酶被活化。
一性。由148个Aa组成。分子呈哑铃型。两个球形端

植物生理学课件】第7章细胞信号转导

植物生理学课件】第7章细胞信号转导

膜受体的种类及信号分子的作用
不同类型的膜受体可以识别不同类型的信号分 子,并触发特定的细胞反应。典型的膜Fra bibliotek路:酪氨酸激酶受体
酪氨酸激酶受体是一类常见的膜受体,它们通 过酪氨酸激酶活性媒介信号转导。
膜通路的分类和特点
膜通路根据信号传递的方式和参与的分子特点 而被归类,每种通路在细胞内部的作用方式也 不同。
除了生长素和ABRE通路,还 有许多其他信号转导通路在 植物发育和适应中发挥着重 要作用。
未来展望和研究趋势
随着技术和研究的进展,我们能够更深入地了解细胞信号转导的机制。未来 的研究将继续聚焦于植物的发育调控和环境适应。
结论
细胞信号转导是植物生长发育和环境适应的关键过程。了解这个过程对于理 解植物的生物学机制和应对逆境非常重要。
参考文献
1. Smith, A. B., et al. (2020). Advances in plant cell signaling: molecular and environmental interactions. Springer. 2. Zhang, C., et al. (2019). Plant cell signaling: Ethylene, abscisic acid, and other hormones. Springer. 3. Wu, G., et al. (2018). Molecular mechanisms of plant cell signaling. CRC Press.
植物生理学课件 第7章 细 胞信号转导
这是第7章,关于植物的细胞信号转导。你将学习细胞如何感知和传递信号, 以及信号转导在植物生长和环境适应中的重要作用。
细胞信号转导的概念

植物生理学007 植物体内的细胞信号转导

植物生理学007 植物体内的细胞信号转导
由胞外刺激信号激活或抑制的、具有生理调节活性 的细胞内因子称为第二信使(second messenger)。
到目前,发现在植物细胞中的第二信使系统主要有:
1、环核苷酸信号系统 2、钙信号系统 3、磷脂酰肌醇信号系统。
6.3.1.环核苷酸信号系统
环核苷酸主要是指cAMP和cGMP:
cAMP作为重要的第二信使物质在动物细胞中早已定论。植物 细胞中的cAMP是否普遍存在以及是否也具有象动物细胞类似的 第二信使作用,尚无定论。目前已在某些植物中测到cAMP的存 在,但其浓度远低于动物细胞中的有效生理浓度。另一方面, 有报道证明外加cAMP可以引起植物细胞的生理反应,如细胞质 膜离子通道(e.g NSCCs)的开关等。说明cAMP作为植物细胞的第 二信使是可能的。
CaM的三维结构(A)和Ca2+·CaM复合体结合到靶 酶上(B)
Ca2+•CaM复合物的形成使CaM与许多靶酶的 亲和力大大提高,导致靶酶的活性全酶浓度增 加,这就是所谓的调幅机制(amplitude modulation)。而调敏机制(sensitive modulation)是指在细胞内Ca2+浓度保持不变 的情况下,通过调节CaM或靶酶对Ca2+的敏感程 度,增加活性全酶。现已发现许多Ca2+•CaM复 合体的靶酶,如质膜上的Ca2+-ATP酶、Ca2+通道、 NAD激酶和多种蛋白激酶等。这些靶酶被活化 后参与细胞分裂、生长和分化等过程,最终调 节细胞的生长发育。
磷脂酰肌醇(phosphatidylinositol, PI)主要分 布在细胞质膜内侧,其总量仅占膜磷脂的很少一部分。 现已确定的磷脂酰肌醇主要有三种:磷脂酰肌醇 (phosphatidylinositol , PI),磷脂酰肌醇-4,5二磷酸 (phosphatidylinositol-4,5-bisphosphate , PIP2 ) 和 磷 脂 酰 肌 醇 -4- 磷 酸 ( phosphatidylinositol-4-phosphate , PIP ) , PIP和PIP2是由PI和PIP分别在PI激酶和PIP激酶催化下 磷酸化而形成的,其基本结构及其相应磷脂酶 (phospholipase)作用位点如(图5.9)。图中箭头 所示位置为相应磷脂酶作用位点,这些磷脂酶分别称 为 磷 脂 酶 A1 , A2 , C 和 D 。 其 中 质 膜 中 的 磷 脂 酶 C (phospholipase C , PLC)最为重要,它催化PIP2水 解形成肌醇三磷酸(inositol-1,4,5-triphosphate , IP3)和二酯酰甘油(diacylglycerol , DG)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)与动物相似,植物电波也是质膜极化及透性变化的 结果,而且伴随有化学信号的产生(如乙酰胆碱)。
(4)植物电波长途传递途径是维管束,短途传递则是通 过共质体和质外体。
(5)各种电波传递都可以产生生理效应。植物细胞电信 号产生、传递及生理效应的详细机制有待进一步研究。
6.2 信号的跨膜转换
环境刺激与细胞反应之间要完成信息 的传递,必然有一个外界环境信号接受 与引起细胞内信号放大之间的中介过程, 这个中介过程涉及到外界信号接受所必 需的受体以及把外界信号转换成胞内信 号的转换系统。
目前还有一些物质被认为在植物细胞中具有第二信号作用,如: H+、ABA、乙酰胆碱和乙烯等。
6.1.4 化学信号
化学信号(chemical signal)是 指细胞感受环境刺激后形成的并能 传递信息引起细胞反应的化学物质。 如:植物激素(ABA、生长素和乙 烯等)、植物生长活性物质(多胺 类化合物、茉莉酸和水杨酸等)和 Ca2+等。
6.1.3 胞内信号
信号与质膜受体结合后,经跨膜转换诱发产生第二信号,通过第 二信号的进一步传递和放大,最终引起细胞中相应的生理生化反 应。这些第二信号通常也就是胞内信号。主要有:
环核苷酸信号系统(cAMP环化单磷酸腺苷、cGMP环化单磷酸鸟苷)
钙信号系统( Ca2+ )
磷酸肌醇信号系统( IP3 )。
G蛋白一般分为两大类:
一类为大G蛋白,由三种不同亚基()构成 的三聚体G蛋白(heterotrimeric G-protein),其 亚基含有与GTP结合的活性位点,并具有GTP酶活性, 其相对分子量为31 kDa46 kDa。和亚基的相对分 子量分别为约36 kDa和7 kDa8 kDa,和信号(physical signal) 是指细胞感 受环境刺激后产生的具有传递信息并引起细 胞反应的物理因子,如电波和水力学信号等。 植物细胞是否普遍存在胞间通信作用的电信 号一直是一个具有争议的问题。在低等植物 藻类和某些敏感性高等植物如含羞草中具有 动作电位是无疑的。娄成后院士通过大量研 究明确提出了“电波的信息传递在高等植物 中是普遍存在的”观点,近年来他对这一观 点做了进一步阐述。
(1)植物为了对环境变化作出反应,既需要专一的化学 信号传递,也需要快速的电波传递。
(2)植物的电波传递有多种形式:对高敏感性植物,外 界刺激无需达到伤害程度即可产生动作电位(AP);中 等敏感的植物在伤害刺激条件下产生变异电位(VP); 最不敏感的植物只引起不可传递的局部电位变化,而且 植物都有经逆境或剧烈刺激激活的潜在兴奋性。
信号既非营养物质,又不是能源物质,也不是细 胞的结构组分。
6.1.2信号的类型
胞外信号(extracellular signal)和胞内信号(intracellular signal);化学信号(chemical signal)和物理信号(physical signal)。
这种分类只是为了研究和学习的方便,而实际上胞外信号 既可能是化学信号,也可能是物理信号;化学信号既可能存在 于胞外,也可能存在于胞内。
植物细胞内有三类光受体:
1、对红光和远红光敏感的光敏色素(phytochrome) (有关光敏色素的详细内容参考第7章有关章节)。 2、对蓝光和紫外光A敏感的隐花色素(cryptochrome); 3、对紫外光B敏感的紫外光B区光受体。
6.2.2. G蛋白与跨膜信号转导
在受体接受胞外信号与产生胞内信号之间,往往要通过质 膜上的信号转换。这种转换是通过G蛋白偶联起来的。
6.2.1.受体
受体(receptor)是指位于细胞质膜或亚细胞 组分中能特异识别并结合信号的天然物质,可在细 胞内放大、传递信号并启动一系列生理生化反应, 最终导致特定的细胞反应。
受体具有特异性、高亲和性和可逆性等特征。 到目前为止发现的受体多为蛋白质。
受体分为细胞表面受体和细胞内受体。前者位 于细胞质膜上,后者则位于细胞内的亚细胞组分上。
植物生理学007 植物体内的细胞信号 转导
*有关概念 信号的类型 受体 偶联蛋白( G蛋白) 第二信使系统(环核苷酸信号系统、钙信号系统和磷脂酰肌醇 信号系统) 蛋白质磷酸化与脱磷酸化(蛋白激酶和蛋白磷酸酶) 生理生化响应
*细胞信号转导步骤
信号分子与细胞表面受体结合 跨膜信号转换 胞内信号的产生、传递、放大、整合 生理生化反应(蛋白质的磷酸化和去磷酸化)
G 蛋 白 又 称 GTP 结 合 调 节 蛋 白 ( GTP binding regulatory protein),由于其作用是把胞外信号转化成胞内信号,故又把 G蛋白称为信号转换蛋白或偶联蛋白。
G蛋白的发现是生物学研究的又一重大成就,发现者由此获 得1994年诺贝尔医学生理学奖。
20世纪90年代以来利用生理学、分子生物学技术,不仅证 明了G蛋白在高等植物中普遍存在,而且初步证明了G蛋白在光、 激素等因子对气孔运动、细胞跨膜离子运输等细胞信号转导中 有重要作用。
外界信号通 过第二信使由细 胞表面向细胞内 的传递过程
6.1信号的概念及类型
6.1.1 信号
信号(signal)—把环境条件的变化或来自环境的刺 激统称为信号 。简单的说,刺激就是信号。
按性质分为:物理信号和化学信号(配体)
按位置分为:胞外信号和胞内信号
信号的主要功能是在细胞间和细胞内传递信息并 引发相应的生理生化变化。
细胞信号转导
外界环境刺激因子和胞间信号分子等,作用于细胞表面或胞内 受体后,跨膜形成胞内第二信使,及经过其后的信号途径分级 联传递、引起细胞生理反应和诱导基因表达的过程。
基因
长期


刺 激 信
受 体
G 蛋 白
效 应 器

第 二 信 使
靶 酶
表达 调控
生理 效应




短期

生理
效应
跨膜信号转导
胞内信号转导
(一)细胞表面受体包括:
(1)G蛋白联接受体(G proteinlinked receptor) (2)酶联受体(enzymelinked receptor), (3)离子通道连接受体(ionchannellinked receptor)
质膜上三类受体示意图
(二)目前对细胞内受体研究较多的是光受 体和激素受体。
相关文档
最新文档