李雅普诺夫稳定性的基本定理
第5章李雅普诺夫稳定性分析
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫Lyapunov稳定性理论李雅普诺夫
表示向量 x 到x e的距离 n2 x xe ( x1 x1e ) 2 ( x2 x2e ) 2 c
表示状态空间中,以 x e为圆心,半径为c的圆
n3
x xe ( x1 x1e ) 2 ( x2 x2e ) 2 ( x3 x3e ) 2 c
0
方程的解(运动或状态轨线)为: x(t; x 初始状态向量
, t0 )
初始时刻
x(t0 ; x 0 , t0 ) x 0
f (x, t ) x
平衡状态:各分量相对于时间不再发生变化
e f (x e , t ) 0 x
所有状态的变化速度为零,即是静止状态 线性定常系统:
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
系统不管在什么样的初始状态下,经过足够长的时间总
能回到平衡状态附近并且向平衡状态靠拢。 大范围渐近稳定的必要条件是状态空间中只能有一个平 衡状态。
1
1
极点位于s左半平面,s=2的极点被对消掉了。系统是有 界输入有界输出稳定的。
(2)求系统的特征方程:
6 det(I A) ( 2)( 3) 0 1 1
求得:1 2,2 3
系统不是渐近稳定的。
例 : 用间接法判断下列系统的稳定性 x1 x2 x1 x1 x2 x1 x1 x2 1 ) , 2) , 3) x2 x1 x2 x1 x2 x2 x1 x2
李雅普诺夫稳定性
x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非
李雅普诺夫稳定性的基本定理
定义3-5 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x都有V(x)>0;当且仅当x=0时,才有
V(x)=0,
则称函数V(x)为区域上的正定函数。
实函数的正定性(2/4)—函数定号性定义
K2
x1
K1, K2 0
试确定系统在原点处的稳定性。
解 1: 由状态方程知,原点为该系统的平衡态。
将系统在原点处线性化,则系统矩阵为
f (x)
0
A x xxe K2
因此,系统的特征方程为
1
K1
|I-A|=2+K1+K2=0
李雅普诺夫第一法(8/7)
李雅普诺夫第一法(2/7)
下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态稳 定性中的应用。
设所讨论的非线性动态系统的状态方程为 x’=f(x)
其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
参看课本P167
李雅普诺夫第一法(5/7)
李雅普诺夫第一法的基本结论是: 1. 若线性化系统的状态方程的系统矩阵A的所有特征值都 具有负实部,则原非线性系统的平衡态xe渐近稳定,而且系 统的稳定性与高阶项R(x)无关。 2. 若线性化系统的系统矩阵A的特征值中至少有一个具有 正实部,则原非线性系统的平衡态xe不稳定,而且该平衡态 的稳定性与高阶项R(x)无关。 3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。
=-mgx’(cos-fsin)+mgx’cos =mgx’fsin
李雅普诺夫第二法
李雅普诺夫第二法李雅普诺夫第二法又称直接法,它是从能量观点进行稳定性分析的,它的基本思想是建立在这样一个物理事实基础之上,即:由经典力学理论可知,对于一个振动系统,如果系统的总能量随时间增长而连续减少,直到平衡状态为止,那么振动系统是稳定的。
1)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为0e x =,满足(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。
则系统在原点处的平衡状态是一致渐进稳定的。
此外,如果当||||x →∞,有(,)v x t →∞,则在原点处的平衡状态是大范围一致渐进稳定的。
2)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。
(3)(,)v x t 在0x ≠时不恒等于零,则系统在原点处的平衡状态是大范围渐进稳定的。
3)李雅普诺夫意义下稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是负定的。
v x t(3)则系统在原点处的平衡状态在李雅普诺夫意义下是一致稳定的。
4)不稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是正定的。
v x t则系统在原点处的平衡状态是不稳定。
5李雅普诺夫稳定性分析.ppt
平衡态(2/4) —定义1
平衡态
平衡态 平衡态
李雅普诺夫稳定性研究的平衡
x2
态附近(邻域)的运动变化问题.
➢ 若平衡态附近某充分小邻
xe
域内所有状态的运动最后
都趋于该平衡态,则称该
平衡态是渐近稳定的;
李雅普诺夫意义下的稳定性—范数(1/2)
1) 范数
范数在数学上定义为度量n维空间中的点之间的距离. ➢ 对n维空间中任意两点x1和x2,它们之间距离的范数记为 ||x1-x2||. ➢ 由于所需要度量的空间和度量的意义的不同,相应有各种 具体范数的定义. ➢ 在工程中常用的是2-范数,即欧几里德范数,其定义式为
对于定常系统来说,上述定义中的实数(,t0)与初始时刻t0必定 无关,故其稳定性与一致稳定性两者等价. ➢ 但对于时变系统来说,则这两者的意义很可能不同.
李雅普诺夫意义下的稳定性—稳定性定义(4/4)
概述(8/5)
李雅普诺夫稳定性理论不仅可用来分析线性定常系统,而且 也能用来研究 ➢ 时变系统、 ➢ 非线性系统,甚至 ➢ 离散时间系统、 ➢ 离散事件动态系统、 ➢ 逻辑动力学系统
等复杂系统的稳定性,这正是其优势所在.
概述(9/5)
可是在相当长的一段时间里,李雅普诺夫第二法并没有引起 研究动态系统稳定性的人们的重视,这是因为当时讨论系统 输入输出间关系的经典控制理论占有绝对地位.
t
式中,x(t)为系统被调量偏离其平衡位置的变化量; 为任意小的规定量。 ✓ 如果系统在受到外扰后偏差量越来越大,显然它不 可能是一个稳定系统。
概述(3/5)
分析一个控制系统的稳定性,一直是控制理论中所关注的最 重要问题.
李雅普诺夫稳定性理论
定义三 对所有的状态(状态空间的所有点),如 果由这些状态出发的轨迹都具有渐近稳定性,则 称平衡状态xe为大范围渐近稳定。
定义四 :如果从球域 S( )出发的轨迹,无论球
域选得多么小,只要其中有一条轨迹脱离球域, 则称平衡状态xe为不稳定。
❖线性系统:如果它是渐近稳定的,必是有大 范围渐近稳定性(线性系统稳定性与初始条件的 大小无关)。
❖非线性系统:稳定性与初始条件大小密切 相关,系统渐近稳定不一定是大范围渐近稳定。
三. 李雅普诺夫第一法(间接法)
利用状态方程解的特性来判断系统稳定性。
1. 线性定常系统稳定性的特征值判据:
xAx x(0)x0 t 0
李氏稳定的充要条件:
Re(i ) 0 i1,2,n
即系统矩阵A的全部特征值位于复平面左半部。
2) 选取不当,会导V致( x , t ) 不定的结果。
2) 这仅仅是充分条件。
3)
例4:试判断下列线性系统平衡状态的稳定性。
x 1 x 2 x 2 x 1 x 2
解: x 1x 2 0 x1x2 0 即 xe 0
.
设 V(x)x12x2 2 则 V(x) 2x22
.
可见V
( x )与 x1 .
结论:
1) 若 Re(i) 0 i1,2,,n ,则非线
性系统在 x e 处是渐近稳定的,与 g ( x)
2) 无关。
2) 若 Re(i) 0 Re(j ) 0 ij1,,n
3) 则不稳定。
3) 若 Re(i ) 0,稳定性与 g (x)有关,
4)
g(x)50) 则是李雅普诺夫意义下的稳定性。
4.4 线性系统的李雅普诺夫稳定性分析
1.线性定常系统的李雅普诺夫稳定性分析
第四章李雅普诺夫稳定性理论
对概念的几点说明:
(5)线性系统渐近稳定等价于大范围渐近稳定。对非线 性系统,一般只考虑吸引区为有限定范围的渐近稳定。
第二节 李雅普诺夫间接法
思想:李氏间接法利用系统矩阵A的特征值 或者说系统极点来判断系统稳定性。
一、线性定常系统的稳定性
线性定常系统的稳定性判别定理:
(1)李氏稳定 A的约当标准形J中,实部为0的特征 值所对应的约当块的维数是一维的,其余特征值均 有负实部。 (2)渐近稳定 A的特征值均具有负实部。
,其中P为实对
称方阵,它的元素可以是定常的,可以是时变的,但
V(x)并不一定都是简单的二次型。
(4) V(x)函数只表示系统在平衡状态附近某邻域内局部运动的 稳定情况,但丝毫不能提供邻域外运动的任何信息。
(5) 由于V(x)构造需要技巧,因此Lyapunov第二法主要用 于那些使用别的方法无效或难以判断其稳定性的问题,如 高阶非线性系统或时变系统。
A奇异:
b. 非线性系统 例:
令
2. 孤立的平衡状态:在某一平衡状态的充分小的 邻域内不存在别的平衡状态。
说明: (1) 系统不一定都存在平衡点; (2) 但系统也可能有多个平衡点; (3) 平衡点多数在状态空间的原点,可通过适当
的坐标变换移到原点(针对孤立平衡点); (4) 稳定性问题都是相对于某个状态而言的,对
(3)不稳定 A的特征值中至少有一个有正实部。
说明:
(1)劳斯判据依然适用。 (2)状态稳定(内部的稳定)与BIBO稳定(输出稳定性)。
解释: 例1:
李氏稳定 不稳定 李氏稳定
李氏稳定 不稳定
例2:
求A的特征值: 得A特征值:
不稳定
二、非线性系统的稳定性 非线性系统的稳定性一般是局部的。用间接法判
《现代控制理论》李雅普诺夫稳定性分析
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当
时
,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,
当
时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为
第四章 李雅普诺夫稳定性PPT课件
5.1 几个稳定性概念 5.2李雅普诺夫稳定性定理 5.3线性系统中李雅普诺夫稳定性分析 5.4非线性系统中李雅普诺夫稳定性分析
1
稳定性定义
稳定性与能控性,能测性一样,均是系统的结构性 质。一个动态系统的稳定性,通常指系统的平衡状 态是否稳定。简单的说,稳定性是指系统在扰动消 失后,由初始偏差状态恢复到原平衡状态的性能, 其是系统的一个自身动态属性。
系统的平衡状态是一致渐近稳定的。
10
李雅普诺夫稳定性定理
定理5-1(李雅普诺夫稳定性的基本定理) 并称 V ( x , t ) 是系统的一个李雅普诺夫函数。 进一步,若 V ( x , t ) 还满足: (3) limV(x,t) ,则系统的平衡状态是大
x
范围一致渐近稳定的。
11
李雅普诺夫稳定性定理
2
平衡状态
对于系统自由运动,令输入 u 0 ,系统的齐次状态方程
•
为 xf(x,t) (5-1)式(5-1)的解为 x(t) (t;x0,t0) (5-2)
式(5-2)描述了系统(5-1)在n维状态空间的运动轨线。
在式(5-1)所描述的系统中,存在状态点 x e ,当系统运动
到该点时,系统状态各分量维持平衡,不在随时间变化,即
发的状态轨迹都收敛于x e 。
8
李雅普诺夫稳定性定理
李雅普稳定性理论提出了判断系统稳定性的两 种方法。
1.第一方法:利用状态方程解的性质来判断系 统的稳定性。
2.第二方法:无须求解状态方程而是借助于象 征广义能量的李雅普诺夫函数 V ( x , t ) 及其对 时间的偏导数V• ( x , t ) 的符号特征直接判定平 衡状态的稳定性。
存在(,t0) 0,使得当 x0xe (,t0)时,系统(5-1) 从任意初始状态 x(t0) x0出发的解满足
李雅普诺夫稳定性理论
几点说明: 1) V ( x, t ) 选取不唯一,但没有通用办法, V ( x, t ) . 选取不当,会导致 V ( x, t ) 不定的结果。 2) 这仅仅是充分条件。 . V ( x, t )--单调衰减(实际上是衰减振荡)
李氏第二法的步骤: 1) 构造一个 V ( x, t ) 二次型; . 2) 求 V ( ,并代入状态方程; . x, t ) 3) 判断 V ( x, t ) 的定号性; . V [ x(t ; x0 , t ), t ] 是否为零。 4) 判断非零情况下, 渐进稳定 李氏稳定 不稳定
上式为向量函数的雅可比矩阵。
f f1
令
f2 fn
T
x x1 x2 xn
T
x f ( xe ) x
f A T x
x xe
x x xe
则线性化系统方程为:
Ax x
结论: 1) 若 Re(i ) 0 i 1,2,, n ,则非线 性系统在 xe 处是渐进稳定的,与 g ( x) 无关。 2) 若 Re(i ) 0 Re( j ) 0 i j 1,, n 则不稳定。 3) 若 Re(i ) 0,稳定性与 g ( x)有关,
.
说明: x 0 V ( x, t ) 0 系统维持等 能量水平运动,使 x(t; x0 , t0 ) 维持在非零 状态而不运行至原点。 定理4:若(1) V . ( x, t ) 正定; (2) V ( x, t ) 正定 . 则原点是不稳定的。 说明:V ( x, t ) 正定 能量函数随时间增 大,x(t; x0 , t0 ) 在xe 处发散。
g ( x) 0 则是李雅普诺夫意义下的稳定性。
3.3 李雅普诺夫第二法(直接法)
李雅普诺夫稳定性的基本定理
试确定系统在原点处的稳定性。 试确定系统在原点处的稳定性。 解 1: 由状态方程知 原点为该系统的平衡态。 原点为该系统的平衡态。 : 由状态方程知,原点为该系统的平衡态 将系统在原点处线性化,则系统矩阵为 将系统在原点处线性化 则系统矩阵为 0 ∂f (x) A= = τ ∂x x =xe − K 2 1 − K1
因此,系统的特征方程为 因此 系统的特征方程为 |λI-A|=λ2+K1λ+K2=0
李雅普诺夫第一法(8/7)
2. 由李雅普诺夫第一法知 原非线性系统的原点为渐近稳定的充 由李雅普诺夫第一法知,原非线性系统的原点为渐近稳定的充 分条件为: 分条件为 K1>0 和 K2>0.
参看课本P168 参看课本
李雅普诺夫第二法(2/3)
李雅普诺夫第二法又称为直接法。 李雅普诺夫第二法又称为直接法。 它是在用能量观点分析稳定性的基础上建立起来的。 它是在用能量观点分析稳定性的基础上建立起来的。 若系统平衡态渐近稳定,则系统经激励后 其储存的能 若系统平衡态渐近稳定 则系统经激励后,其储存的能 则系统经激励后 量将随着时间推移而衰减。当趋于平衡态时,其能量 量将随着时间推移而衰减。当趋于平衡态时 其能量 达到最小值。 达到最小值。 反之,若平衡态不稳定 则系统将不断地从外界吸收能 反之 若平衡态不稳定,则系统将不断地从外界吸收能 若平衡态不稳定 其储存的能量将越来越大。 量,其储存的能量将越来越大。 其储存的能量将越来越大 基于这样的观点,只要能找出一个能合理描述动态系统的 基于这样的观点 只要能找出一个能合理描述动态系统的 n维状态的某种形式的能量正性函数 通过考察该函数随 维状态的某种形式的能量正性函数,通过考察该函数随 维状态的某种形式的能量正性函数 时间推移是否衰减,就可判断系统平衡态的稳定性。 时间推移是否衰减 就可判断系统平衡态的稳定性。 就可判断系统平衡态的稳定性
李雅普诺夫稳定性理论PPT课件
b.非线性系统
f ( xe , t ) 0 可能有多个 xe x
eg. x 1 x1
2 x1 x2 x x
令
3 2
1 0 x
xe 1 0
2 0 x
0 xe3 1
0 xe2 1
=f(x,t)的解为 x(t , x0 , t0 ) 2.初态 x
x(t0 , x0 , t0 ) x0 初态
3.平衡状态:
xe 系统的平衡状态 e f ( xe , t ) 0 x n Ax xR x a.线性系统
A非奇异: A奇异:
Axe 0 xe 0 Axe 0 有无穷多个 xe
4)判
正负半定 ( x, t ) 0 ? V x0 V
( x, t ) 0 反设 V 0 李氏意义下的稳定 若x 0,V 0, 渐近稳定 若 x 0 , V
1 x2 x1 ( x1 x2 ) 试用李氏第二法判稳 eg1.x 2 x1 x2 ( x1 x2 ) x
1 2 2
且 lim x(t , x0 , t0 ) xe
t 0
t t0
则称 xe 是李氏意义下的稳定。
与t0无关 一致稳定
2.渐近稳定 1)是李氏意义下的稳定
x(t , x0 , t0 ) xe 0 2) lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
0
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个 实数 ( , t0 ) 0 满足 x0 xe ( , t0 )
第3章 李雅普诺夫稳定性
x2
ε
δ
x0
x1
x0 − xe ≤ δ (ε )
Lyapunov渐近稳定 线性系统平衡状态不稳定 →系统不稳定 非线性系统平衡状态不稳定 →系统不稳定 →或进入另一个稳定平衡状态
则称该平衡状态是大范围一致渐近稳定的
不稳定性
不论任意给定的 δ , ε 有多小,只要从 S (δ ) 出发 的轨迹,都将超出 S (ε ) 以外,则称此平衡状态是 不稳定的
第3章 李雅普诺夫稳定性理论
x2
ε
δ
x0
x1
线性定常系统的稳定性判定: ¾ 劳斯(1877)-霍尔维斯判据(1895) ¾ Nyquist判据(1932) 但对非线性或时变系统,难以判定
1892年苏联学者Lyapunov提出了两种方法: 第一法:通过解系统的微分方程,然后根据解的性质判定。非 线性系统在工作点附近线性化,判断特征根 第二法(直接法):不求解微分方程直接判定,重点内容
& = Ax 的渐近稳定的充要条件 为:给定一正定实对称 矩阵 Q(t ) 定理:系统 x ,有 & (t ) = −Q (t ) 成立。 惟一正定实对称矩阵 P (t ) ,使 AT (t )P (t ) + P (t )A(t ) + P
• 定常离散系统 设系统 x(k + 1) = Ax(k ) x ∈ R n 线性系统的平衡状态 xe = 0 选取 Lyapunov函数 V ( x ) = xT (k )Px(k ) P为实对称矩阵 & ( x ) → ∆V ( x(k )) 用差分代替微分 V ∆V ( x(k )) = V ( x(k + 1)) − V ( x(k )) = xT (k + 1)Px(k + 1) − xT (k )Px(k ) = xT (k )[AT PA − P ]x(k ) 令 − Q = AT PA − P ⇒ ∆V ( x(k )) = − xT (k )Qx(k )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x1 2x2 )2 ( x1 2x2 )2
函数的定号性是一个相对概念, 与其函数定义域有关。
2 对 x 与 x 组成的 2 维空间为非负定的, 但是 如, 函数 2 x2 1 2
对于 1 维空间 x2 则为正定的。
(2) 二次型函数和对称矩阵的正定性
二次型函数 (quadratic function) 是一类特殊形式函数。 设V(x)为关于 n 维变量向量 x 的实二次型函数, 则其可以 表示为
欲讨论系统在平衡态xe的稳定性,先必须将非线性向量函数 f(x)在平衡态附近展开成Taylor级数,即有
f ( x ) x f ( xe ) x τ
( x -xe ) R( x -xe )
x xe
A( x -xe ) R( x -xe ) x xe
其中A为nn维的向量函数f(x)与x间的雅可比矩阵; R(x-xe)为Taylor展开式中包含x-xe的二次及二次以上的余项。
1) 正定函数
2 2 x1 2x2 2 ( x1 2x2 )2 x2
2) 负定函数
2 2 x1 2x2 2 ( x1 2x2 )2 5x1
3) 非负定函数
2 2x2
( x1 2x2 )2
( x1 2x2 )2
4) 非正定函数
2 3x1
5) 不定函数
2 2 3x1 2x2
于零;
P为不定的充分必要条件是的对角线元素有正有负。
定理11-3中的合同变换 (congruence transformation) 是指对 对称矩阵的同样序号的行和列同时作同样的初等变换。 上述三种判别实对称矩阵P的定号性的方法, 各有千秋。但 总的说来, 基于Sylvester定理的方法计算量较大,若将该方法推广
态方程的特征值, 根据特征值在复平面的分布来分析稳定性。
值得指出的区别是: 经典控制理论讨论在有界输入下的输出稳定性问题, 而Lyapunov方法讨论状态稳定性问题。 由于Lyapunov第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,但是不能推广用于时变系统。
若对任意 n 维非零向量 x,都有 V(x)≤0, 且V(0)=0, 则称函数V(x) 为区域 上的非正定函数。
若无论取多么小的原点的某个邻域, V(x)可为正值也可 为负值, 则称函数V(x)为不定函数。
下面是几个在由变量x1和x2组成的2维线性空间中的正定函数、
负定函数等的例子。
定义11-6 设xRn, 是Rn中包含原点的一个区域,若实函数
V(x)对任意n维非零向量x,都有V(x)<0; 当且仅当x=0时, 才有V(x)=0,则称函数V(x)为区域上的负定函数。
若对任意 n 维非零向量 x,都有 V(x)≥0, 且V(0)=0,
则称函数V(x) 为区域 上的非负定函数。
二次型函数和对称矩阵的正定性 quadratic
function and symmetric matrix 矩阵正定性的判别方法
(1) 实函数的正定性
实函数正定性问题亦称为函数定号性问题。 它主要讨论该函数的值在什么条件下恒为正,什么条件 下恒为负的。 下面先给出n维向量x的标量实函数V(x)的正定性定义。
正实部,则原非线性系统的平衡态xe不稳定,而且该平 衡态的稳定性与高阶项R(x)无关。
3. 若线性化系统的系统矩阵A除有实部为零的特征值外,
其余特征值都具有负实部,则原非线性系统的平衡态xe 的稳定性由高阶项R(x)决定。
由上述Lyapunov第一法的结论可知, 该方法与经典控制理论 中稳定性判据的思路一致, 需求解线性化状态方程或线性状
其中 P 称为二次型函数 V(x) 权矩阵, 它为如下 nn 维实对称 矩阵:
a11 a12 / 2 a / 2 a 22 P 12 ... ... a / 2 a / 2 2n 1n
... a1n / 2 ... a2 n / 2 ... ... ... a nn
由Lyapunov第一法的结论可知,该方法能解决部分 弱非线性系统的稳定性判定问题,但对强非线性系 统的稳定性判定则无能为力,而且该方法不易推广 到时变系统。
下面我们讨论对所有动态系统的状态方程的稳
定性分析都适用的Lyapunov第二法。 Lyapunov's second method
Lyapunov第二法又称为直接法(direct method) 。 它是在用能量观点分析稳定性的基础上建立起来的。
合同变换法 congruence transformation
下面分别进行介绍。
定理11-1(Sylvester定理) (1) 实对称矩阵P为正定的充要条件
是P 的各阶顺序主子式 (order principal minor determinant) 均大于零,即
Δ1 p11 0
Δ2
的一次近似式,如果用该一次近似式来表达原非线性方程的 近似动态方程,即可得如下线性化的状态方程:
x’=A(x-xe)
由于对如上式所示的状态方程总可以通过n维状态空间 中的坐标平移,将平衡态xe移到原点。
因此, 上式又可转换成如下原点平衡态的线性状态方程: x’=Ax 判别非线性系统平衡态xe稳定性的Lyapunov第一法的思想为:
11.2 Lyapunov第一方法
Lyapunov第一法又称间接法(indirect method), 它是研究 动态系统的一次近似数学模型(线性化模型)稳定性的方法。 它的基本思路是: 首先,对于非线性系统,可先将非线性状态方程在平衡 态附近进行线性化,
即在平衡态求其一次Taylor展开式 (Taylor expansion) 然后,利用这一次展开式表示的线性化方程去分析 系统稳定性。
若系统平衡态渐近稳定,则系统经激励后,其储存 的能量将随着时间推移而衰减。当趋于平衡态时, 其能量达到最小值。
反之,若平衡态不稳定,则系统将不断地从外界吸 收能量,其储存的能量将越来越大。 基于这样的观点,只要能找出一个能合理描述动态系统 的n维状态的某种形式的能量正性函数,通过考察该函 数随时间推移是否衰减,就可判断系统平衡态的稳定性。
例11-1 某装置的动力学特性用下列常微分方程组来描述:
x2 x1 x K ( x 2 1) x K x 2 2 1 2 1 1
试确定系统在原点处的稳定性。
K1 , K 2 0
解 1: 由状态方程知,原点为该系统的平衡态。 将系统在原点处线性化,则系统矩阵为
二次型函数与一般函数一样,具有正定、负定、非负定、非 正定和不定等定号性概念。
二次型函数V(x)和它的对称权矩阵P是一一对应的。
因此,由二次型函数的正定性同样可定义对称矩阵 P 的 正定性。
定义11-8 设对称矩阵P为二次型函数V(x)的权矩阵,当V(x) 分别为正定、负定、非负定、非正定与不定时,则称对称矩 阵P相应为正定、负定、非负定、非正定与不定。 □
其次,解出线性化状态方程组或线性状态方程组的特征 值,然后根据全部特征值在复平面上的分布情况来判定 系统在零输入情况下的稳定性。
下面将讨论Lyapunov第一法的结论以及在判定系统的状态稳 定性中的应用。
设所讨论的非线性动态系统的状态方程为
x’=f(x) 其中 f(x) 为与状态向量 x 同维的关于 x 的非线性向量函数, 其各元素对x有连续的偏导数。
p11 p21
p12 p22
0
... Δn | P | 0
其中pij为实对称矩阵P的第 i 行第 j 列元素。
(2) 实对称矩阵P为负定的充要条件是P 的各阶顺序主子式满足
0 i为偶数 i 0 i为奇数
i 1,2,...,n
定理11-2 实对称矩阵P为正定、负定、非负定与非正定的充 分必要条件是P的所有特征值分别大于零、小于零、大于等 于零与小于等于零; 实对称矩阵P为不定的充分必要条件是 P 的特征值有正 有负。 定理11-3 实对称矩阵P必定可经合同变换转化成对角矩阵, 则P为正定、负定、非负定与非正定的充分必要条件是的所 有对角线元素分别大于零、小于零、大于等于零与小于等
0 f (x) A x x xe K 2 1 K1
因此,系统的特征方程为 |I-A|=2+K1+K2=0 2. 由Lyapunov第一法知,原非线性系统的原点为渐近稳定 的充分条件为:
K1>0 和 K2>0.
11.3 Lyapunov第二方法
负定函数 negative definite function
非负定(又称半正定或正半定)函数 non-negative definite function; positive semi-definite function 非正定函数(又称半负定或负半定) non-positive definite function; negative semi-definite function 不定函数。 indefinite function
在给出Lyapunov稳定性定理之前,下面先介绍 数学预备知识 然后介绍 Lyapunov稳定性定理的直观意义 最后给出 Lyapunov稳定性定理
1. 数学预备知识 preliminary knowledge 下面介绍在Lyapunov稳定性分析中需应用到的如下 数学预备知识: 函数的正定性 positive definiteness
定义11-5 设xRn, 是 Rn 中包含原点的一个区域,若实函 数V(x) 对任意 n 维非零向量 x 都有V(x)>0;当且仅当 x=0 时,才有V(x)=0, 则称函数V(x)为区域上的正定函数。Positive definite function