2021年九年级数学中考一轮复习高频考点《轴对称确定最短路线》小专题突破训练
2021年九年级数学中考一轮复习高频考点《轴对称确定最短路线》小专题突破训练答案
2021年九年级数学中考高频考点《轴对称确定最短路线》小专题突破训练答案1.解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.2.解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.3.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.4.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即P A+PB的最小值为2.故选:A.5.解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.6.解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:D.7.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即P A+PB的最小值为.故选:D.8.解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1),设直线AE的解析式为y=kx+b,则,解得,∴y=﹣x﹣,将D(1,m)代入,得m=﹣﹣=﹣,即点D的坐标为(1,﹣),∴当△ACD的周长最小时,△ABD的面积=×AB×|﹣|=×4×=.故选:C.9.解:∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,∴b=﹣,∴抛物线的解析式为y=x2﹣x﹣2,∴顶点D的坐标为(,﹣),作出点C关于x轴的对称点C′,则C′(0,2),OC′=2连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴=,即=,∴m=.故选:B.10.解:连接CD,交OB于P.则CD就是PD+P A和的最小值.∵在直角△OCD中,∠COD=90°,OD=2,OC=6,∴CD==2,∴PD+P A=PD+PC=CD=2.∴PD+P A和的最小值是2.故选:A.11.解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.12.解:A、PQ+QM=8+2=10km;B、∵QM+PM=P′Q,P′Q2=82﹣(5﹣2)2+(5+2)2=104,∴P′Q=2km>10km;C、QM+PR=5+>10;D、PM+QM=5+>10.综上所述,A选项铺设的管道最短.故选:A.13.解:延长CB到C′,使C′B=CB=2,连接DC′交AB于P.则DC′就是PC+PD 的和的最小值.∵AD∥BC,∴∠A=∠PBC′,∠ADP=∠C′,∴△ADP∽△BC′P,∴AP:BP=AD:BC′=3:2,′∴PB=AP,∵AP+BP=AB=5,∴AP=3,BP=2,∴PD===3,PC′===2,∴DC′=PD+PC′=3+2=5,∴PC+PD的最小值是5,故答案为5.14.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.15.解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE===2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.16.解:把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D 左侧),使CD=1,连接AD,则AD+BC的值最小,∵B(﹣2,2),∴B′(﹣2,﹣2),设直线B′A′的解析式为y=kx+b,∴,解得:,∴直线B′A′的解析式为y=2x+2,当y=0时,x=﹣1,∴C(﹣1,0),故答案为:(﹣1,0).17.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.18.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.19.解:过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,∵△ABC为等边三角形,边长为6,∴BF=AB=6=3,∴CF===3,∴CE+EF的最小值为3,故答案为:3.20.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.21.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE===4,即P A+PB的最小值为4.故答案为:4.22.解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)23.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.24.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当P A+PF最小时,△P AF的周长最小即点P为CF与BE的交点时,△P AF的周长最小,此时△P AF的周长=P A+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,.∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△P AF的周长最小=CF+AF=2.25.(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC对称点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.26.解:(1)作点B关于CD的对称点E,连接AE交CD于点P,此时P A+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得=.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴∠B′AM=∠BAM,在△B′AM和△BAM中,∴△B′AM≌△BAM(SAS),∴BM=B′M,∠BMA=∠B′MA=90°,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.27.(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1﹣W2=(3x+7y)﹣(2x+8y)=x﹣y,∵x>y,∴x﹣y>0,∴W1﹣W2>0,得W1>W2,所以张丽同学用纸的总面积大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B作BM⊥AC于M,则AM=4﹣3=1,在△ABM中,由勾股定理得:BM2=AB2﹣12=x2﹣1,在△A′MB中,由勾股定理得:AP+BP=A′B==,故答案为:.③解:=(x+3)2﹣()2=x2+6x+9﹣(x2+48)=6x﹣39,当>0(即a1﹣a2>0,a1>a2)时,6x﹣39>0,解得x>6.5,当=0(即a1﹣a2=0,a1=a2)时,6x﹣39=0,解得x=6.5,当<0(即a1﹣a2<0,a1<a2)时,6x﹣39<0,解得x<6.5,综上所述当x>6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x<6.5时,选择方案一,输气管道较短.28.解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.29.解:(1)作点B关于x轴的对称点E,连接AE,则点E为(12,﹣7)设直线AE的函数关系式为y=kx+b(k≠0),则解得,当y=0时,x=5.所以,水泵站建在距离大桥5千米的地方,可使所用输水管道最短.(2)作线段AB的垂直平分线GF,交AB于点F,交x轴于点G设点G的坐标为(x,0)在Rt△AGD中,AG2=AD2+DG2=32+(x﹣2)2在Rt△BCG中,BG2=BC2+GC2=72+(12﹣x)2∵AG=BG,∴32+(x﹣2)2=72+(12﹣x)2解得x=9.所以,水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.30.解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,P A+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°,∵AO=CO,AO=A′O∴∠OA'C=∠OCA'=30°,作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB 于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.。
2021年九年级中考数学几何教学重难点专题:轴对称之线段最短问题(五)
2021年九年级中考数学几何教学重难点专题:轴对称之线段最短问题(五)1.在平面直角坐标系中,P点坐标为(2,6),Q点坐标为(2,2),点M为y轴上的动点.(1)在平面直角坐标系内画出当△PMQ的周长取最小值时点M的位置.(保留作图痕迹)(2)写出点M的坐标.2.如图,在锐角三角形ABC中,BC=4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.3.已知:矩形ABCD中,AD=2AB,AB=6,E为AD中点,M为CD上一点,PE⊥EM交CB于点P,EN平分∠PEM交BC于点N.(1)求证:PE=EM;(2)用等式表示BP2、PN2、NC2三者的数量关系,并加以证明;(3)过点P作PG⊥EN于点G,K为EM中点,连接DK、KG,求DK+KG+PG的最小值.4.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=80°,则∠NMA的度数是.(2)连接MB,若AB=9cm,△MBC的周长是16cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并证明;若不存在,说明理由.5.在平面直角坐标系中有一点A,其坐标为A(3,2)回答下列问题:(1)点A关于x轴的对称点B的坐标点为点A关于y轴的对称点C的坐标点为(2)若在x轴上找一点D,使DA+DC之和最短,则点D的坐标为(3)若在x轴上找一点E,使△OAE为等腰三角形,则有个这样的E点.6.如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q (均不同于O),求△PQR周长的最小值.7.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由.(2)若∠ABC=30°,∠C=45°,ED=,点H是BD上的一个动点,求HG+HC 的最小值.8.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.9.如图,草地边缘OM与小河河岸ON在点O处形成30°的夹角,牧马人从A地出发,先让马到草地吃草,然后再去河边饮水,最后回到A地.已知OA=2km,请在图中设计一条路线,使所走的路径最短,并求出整个过程所行的路程.10.将军在B处放马,晚上回营,需要将马赶到河CD去饮水一次,再回到营地A,已知A 到河岸的距离AE=2公里,B到河岸的距离BF=3公里,EF=12公里,求将军最短需要走多远.参考答案1.解:(1)如图所示:(2)设直线Q′P的解析式为y=kx+b,将点Q′、点P的坐标代入得:.解得:b=4.故点M的坐标为(0,4).2.解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=4,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=4×=4.故CM+MN的最小值为4.3.(1)证明:过P作PQ⊥AD于Q,则PQ=AB,∵AD=2AB,E为AD中点,∴AD=2DE,∴PQ=DE,∵PE⊥EM,∴∠PQE=∠D=∠PEM=90°,∴∠QPE+∠PEQ=∠PEQ+∠DEM=90°,∴∠QPE=∠DEM,∴△PQE≌△EDM(ASA),∴PE=EM;(2)解:三者的数量关系是:BP2+NC2=PN2.①点N与点C重合时,P为BC的中点,显然BP2+NC2=PN2成立;②点P与点B重合时,N为BC的中点,显然BP2+NC2=PN2成立;③证明:如图2,连接BE、CE,∵四边形ABCD为矩形,AD=2AB,E为AD中点,∴∠A=∠ABC=90°,AB=CD=AE=DE,∴∠AEB=45°,∠DEC=45°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∠BEC=90°,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠EBC=∠ECD,又∵∠BEC=∠PEM=90°,∴∠BEP=∠MEC,在△BEP和△CEM中,,∴△BEP≌△CEM(ASA),∴BP=MC,PE=ME,∵EN平分∠PEM,∴∠PEN=∠MEN==45°,在△EPN和△EMN中,,∴△EPN≌△EMN(SAS),∴PN=MN,在Rt△MNC中有:MC2+NC2=MN2,∴BP2+NC2=PN2;(3)解:如图3,连接PM,由(2),可得PN=MN,PE=ME,∴EN垂直平分PM,PG⊥EN,∴P、G、M三点共线,且G为PM的中点,∵K为EM中点,∴GK=ME,又∵∠D=90°,∴DK=ME,由(2),可得△PEM为等腰直角三角形,根据勾股定理,可得PG=GM=ME,∴DK+GK+PG==(1+)ME,∴当ME取得最小值时,DK+GK+PG取得最小值,即当ME=DE=6时,DK+GK+PG有最小值,最小值为:(1+)×6=6+3.4.解:(1)∵AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠B,又∵MN垂直平分AB,∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°=70°,故答案为:70°;(2)如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是16cm,∴AC+BC=16cm,∴BC=7cm.②当点P与点M重合时,PB+CP的值最小,最小值是9cm.5.解:(1)点A关于x轴的对称点B的坐标点为(3,﹣2)点A关于y轴的对称点C的坐标(﹣3,2)故答案为(3,﹣2),(﹣3,2);(2)如图1中,作点A关于x轴的对称点A′,连接A′C与x轴交于点D(与O重合),此时AD+CD最小.∴D(0,0),故答案为(0,0).(3)如图2中,满足条件的点E有4个,故答案为4.6.解:分别作P关于OA、OB的对称点M、N.连接MN交OA、OB交于Q、R,则△PQR符合条件.连接OM、ON,由轴对称的性质可知,OM=ON=OP=8,∠MON=∠MOP+∠NOP=2∠AOB=2×30°=60°,则△MON为等边三角形,∴MN=8,∵QP=QM,RN=RP,∴△PQR周长=MN=8,7.解:四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形;(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=4,∴EM=BE=2,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=2,MN=DE=4,在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=2,∴MC=4+2=6,在Rt△EMC中,∵∠EMC=90°,EM=2.MC=6,∴EC==4∵HG+HC=EH+HC=EC,∴HG+HC的最小值为4.8.解:(1)若∠B=70°,则∠NMA的度数是50°,故答案为:50°;(2)如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8+6=14cm.9.解:分别画出点A关于OM、ON的对称点B、C,连接BC交OM、ON于点D、E,连接AD、AE,则线段AD、DE、EA即为所示路径;由题意得,OB=OA=2,三角形OBC为等边三角形,∴BC=2,故其总路程为2km.10.解:作A点关于河岸的对称点A′,连接BA′交河岸与P,连接A′B′,则BB′=2+3=5,则PB+P A=PB+P A′=BA′最短,故将军应将马赶到河边的P地点.作FB′=EA′,且FB′⊥CD,∵FB′=EA′,FB′⊥CD,BB′∥A′A,∴四边形A′B′BA是矩形,∴B'A'=EF,在Rt△BB′A′中,BA′==13,答:将军最短需要走13公里.。
2021年九年级数学中考一轮复习高频考点《轴对称确定最短路线》小专题突破训练
2021年九年级数学中考高频考点《轴对称确定最短路线》小专题突破训练1.如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+12.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.83.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.4.如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.2B.2C.3D.5.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D 为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)6.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF7.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.B.C.5D.8.平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.9.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.B.C.D.10.如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+P A和的最小值是()A.2B.C.4D.611.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3D.12.如图,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个水泵站,向P,Q两地供水.现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A.B.C.D.13.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.14.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.15.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.16.如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为.17.如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.19.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.20.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.21.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=S矩形ABCD,则点P到A、B两点的距离之和P A+PB的最小值为.22.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.23.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF ⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.24.如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△P AF的周长的最小值.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.26.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.27.阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵a2﹣b2=(a+b)(a﹣b),a+b>0∴(a2﹣b2)与(a﹣b)的符号相同当a2﹣b2>0时,a﹣b>0,得a>b当a2﹣b2=0时,a﹣b=0,得a=b当a2﹣b2<0时,a﹣b<0,得a<b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1=(用x、y的式子表示)W2=(用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B 到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P 处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x的式子表示);②在方案二中,a2=km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.28.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.29.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图).两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短?(2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?30.几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求P A+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.。
2021年中考数学总复习突破-轴对称(原卷版)
2021年数学中考一轮单元总复习达标精准突破(原卷版)轴对称单元知识点呈现知识点1:轴对称1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.对称点:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3.线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
线段的垂直平分线的性质(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
知识点2:画轴对称图形的方法几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
知识点3:等腰三角形与等边三角形1.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)2.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
3.等腰三角形的判定:等角对等边。
4.等边三角形角的特点:三个内角相等,等于60°,5.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
6.直角三角形中,30°角所对的直角边等于斜边的一半。
7.直角三角形斜边上的中线等于斜边的一半。
重点及方法解读一、学习线段的垂直平分线要求1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.二、线段的垂直平分线要点梳理要点一、线段的垂直平分线1. 线段的垂直平分线定义。
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(三)
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(三)1.如图,点P是∠AOB内部一点,现有一只蚂蚁要从P点出发,先到OA,再到OB,最后返回到点P.请作出蚂蚁爬行的最短路径(要求:保留作图痕迹,不写作法.)2.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.3.如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF.(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为.4.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分线.(1)如图1,若E是AC边上的一个定点,在CD上找一点P,使P A+PE的值最小;(2)如图2,若E是AC边上的一个动点,在CD上找一点P,使P A+PE的值最小,并直接写出其最小值.5.如图,要在燃气管道l上修建一个泵站,分别向A,B两城镇供气,泵站修在管道的什么位置可使所用的输气管线最短?6.如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A (3,4)、C(4,2).(1)判断△ABC的形状,并求图中格点△ABC的面积;(2)在x轴上有一点P,使得P A+PC最小,则P A+PC的最小值为.7.如图,平面直角坐标系内,A(﹣5,4),B(3,0),C(2,3)按下列要求解答.(1)如图1,在x轴上标出点D的位置,使AD=BD,直接写出点D的坐标.(2)如图2,在x轴上标出点E的位置,使AE+CE最短,直接写出点E的坐标.8.如图,一牧童的家在点A处,他和哥哥一起在点C处放马,点A,C到河岸的距离分别是AB=500m,CD=700m,且B,D两地间的距离为600m.夕阳西下,弟兄俩准备从C 点将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)他们应该将马赶到河边的什么地点?请在图中画出来.(2)请求出他们至少要走的路程.9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?10.如图,在▱ABCD中,AD的垂直平分线经过点B,与CD的延长线交于点E,AD与BE 相交于点O,连接AE,BD.(1)求证:四边形ABDE为菱形;(2)若AD=8,问在BC上是否存在点P,使得PE+PD最小?若存在,求线段BP的长;若不存在,请说明理由.参考答案1.解:如图,作点P关于OA、OB的对称点P′、P″,连接P′P″与OA、OB交于点M、N,则蚂蚁爬行的最短路径为:PM+MN+PN=P′M+MN+P″N=P′P″.2.解:(1)①∠BCE+∠BAC=180°;②如图1∵△ABD≌△ACE,∴BD=EC,∵四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小;∵AB=AC,∴BD=BC=1;(2)∠BCE+∠BAC=180°;理由如下:如图2,AD与CE交于F点,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD,∵∠BAC=∠F AE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°;3.解:(1)∵矩形ABCD中,∴AB∥CD,AB=CD,∵EF∥AB,EF=AB,∴EF∥CD,EF=CD,∴四边形CDEF是平行四边形,∵DE=DC,∴四边形CDEF是菱形;(2 )∵AB=CD,AB∥CD∥EF,EF=AB,∴AB∥EF,AB=EF,∴四边形ABFE是平行四边形,∵四边形ABFE周长=2(BF+EF)=2(AB+BF),∴当BF⊥BD时,四边形ABFE周长最小;∵AB=,BC=3,∴∠CBD=∠ADB=30°,∵∠AEB=∠FBE=90°,∴∠DAE=60°,∴∠BAE=30°,∴AE=,∴BF=,∵AE=,AD=3,∠ADE=30°,∴DE=,∴四边形CDEF的周长=2(CD+DE)=2(+)=5.故答案为:5.4.解:(1)如图,作点E关于CD的对称点F连接AF交CD于点P,则此时,P A+PE的值最小;点P即为所求;(2)如图,过D作DF⊥BC于F,过F作EF⊥AC交CD于P,则此时,P A+PE的值最小;P A+PE的最小值=EF,∵CD是角平分线,∠BAC=90°,∴DA=DF,即点A与点F关于CD对称,∴CF=AC=10,∵∠ACB=30°,∴EF=CF=5.5.解:作A关于直线l的对称点A′,连接A′B交直线l于P,连接AP,则泵站修在管道的P点处,可使所用的输气管线AP+BP最短.理由如下:在直线l上任取一点E,连接AE、BE、A′E,∵A、A′关于直线l对称,∴AP=A′P,同理AE=A′E,∵AP+BP=A′P+BP=A′B,AE+BE=A′E+BE>A′B,∴AP+BP<A′E+BE,∵E是任意取的一点,∴AP+BP最短.6.解:(1)△ABC是直角三角形,理由:∵AC2+BC2=25,AB2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形;△ABC的面积=××=5;(2)如图所示,作点C关于x轴的对称点C',连接AC'交x轴于P,连接CP,则CP=C'P,∴P A+PC的最小值为AC'的长,∵AC'==,∴P A+PC的最小值为,故答案为:.7.解:(1)如图1所示,点D即为所求,D(﹣2,0);(2)如图2所示,点E即为所求,E(﹣1,0).故答案为:(﹣2,0);(﹣1,0).8.解:(1)作A点关于河岸的对称点A′,连接CA′交河岸与P,则PC+P A=PC+P A′=CA′最短,故牧童应将马牵到河边的P地点.(2)作DB′=BA′,且DB′⊥BD,∵DB′=BA′,DB′⊥BD,CB′∥A′A,∴四边形A′B′CA是矩形,∴B'A'=BD,在Rt△CB′A′中,连接A′B′,则CB′=CD+DB′=1200(m),∴CA′==600(m).9.解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°.10.(1)证明:∵BE垂直平分AD,.∴AO=DO,AD⊥BE.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABE=∠BED.∵∠AOB=∠DOE,又AO=DO,∴△AOB≌△DOE(AAS),∴BO=EO.又AO=DO,∴四边形ABDE是平行四边形.∵AD⊥BE,∴四边形ABDE是菱形;(2)解:如图所示:作点D关于BC的对称点D',DD′交BC于点G,延长EB,过D'作DM⊥BE于点M,连接ED'交BC于点P,此时PD+PE最小;∵∠B0D=∠OBC=∠BGD=90°,∴四边形ODGB是矩形.∴BO=DG.同理BM=GD.∴MD'=DO=AD=4.又BO=EO,∴BO=EO=BM.∵∠EBP=∠M=90°,∠BEP=∠MED',∴△BEP∽△MED′,∴==,∴=,即BP=.。
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(二)
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(二)1.在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD =12,试求PC+PE的最小值.2.如图,在平面直角坐标系中,A(﹣3,3),B(﹣1,﹣1)在y轴上画出一个点P,使P A+PB最小,并写出点P的坐标.3.如图,在直角坐标系中,先描点A(1,1),点B(4,3).(1)点C是x轴上的一个动点,当AC+BC最小时,画出点C的位置;(2)在本题中你认为有用到如下那些数学道理,请把它挑选出来并填在横线上.A:两点之间线段最短;B:线段垂直平分线的点到线段两个端点的距离相等;C:角平分线上的点到角两边的距离相等;D:三角形两边之和大于第三边.4.先阅读下列文字,再回答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为:P1P2=.(1)已知点P(2,4),Q(﹣3,﹣8),试求P,Q两点间的距离.(2)已知A(0,6),B(﹣3,2),C(3,2),判断线段AB,BC,AC大小关系.(3)已知点M(m,5),N(0,2)且MN=5,求m的值.(4)求代数式的最小值.5.尺规作图:用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l,(1)在直线上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB ≤QA+QB.6.在一平直的河岸l同侧有A、B两村.A村位于河流l正南4km,B村位于A村东8km南7km处.现要在河岸边建一水厂C为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.7.尺规作图用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l.(1)在直线l上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB <QA+QB.8.如图1和图2,P是直线m上一动点,A、B两点在直线m的同侧,且点A、B所在直线与m不平行.(1)当P点运动到P1位置时,距离A点最近,在图1中的直线m上画出点P1的位置;(2)当P点运动到P2位置时,与A点的距离和与B点距两相等,请在图2中作出P2位置;(3)在直线m上是否存在这样一点P3,使得到A点的距离与到B点的距离之和最小?若存在请在图3中作出这点,若不存在清说明理由.(要求:不写作法,请保留作图痕迹)9.如图1:P是∠AOB内任意一点,OP=5cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图2中利用作图确定M点和N点的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图2中若△PMN周长的最小值是5cm,则∠AOB的度数是多少?10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.参考答案1.解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.2.解:∵A(﹣3,3),∴点A关于y轴对称的点C(3,3),连接BC交y轴于P,则P A+PB最小,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=x,∴点P的坐标(0,0).3.解:(1)如图,A′(1,﹣1);点C为所作;(2)故选A,B,D.4.解:(1)根据两点的距离公式得,PQ=;(2)AB=,BC=,AC=,∴AB=AC<BC;(3)根据题意得,,∴m2+9=25,∴m=±4;(4)∵可以看成点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和,∴的最小值为点点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和的最小值,∵当点(x,y)在以两点(﹣3,1)和(0,﹣4)为端点的线段上时,点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和的最小值,其最小值为以两点(﹣3,1)和(0,﹣4)为端点的线段长度,∴的最小值为.5.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB≥A′B,∴QA+QB≥A′B即QA+QB≥A′P+BP,∴P A+PB≤QA+QB.6.解:方案一:如图1,连接AB,过A作AC1⊥l于C1则C1即为水厂地址,过B作BD⊥AC1交C1A的延长线于D,则AD=7km,BD=8km,AC1=4km,∴AB==km,∴所需管道长度=AC1+AB=(4+)km;方案二:作A关于直线l的对称点A′,连接A′B交直线l于C2,则C2即为水厂地址,如图2,过B作BD⊥AA′交A′A的延长线于D,则A′D=15km,BD=8km,∴所需管道长度=A′B==17km,综上所述:所需最短管道长度=(4+)km.7.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB>A′B,∴QA+QB>A′B即QA+QB>A′P+BP,∴QA+QB>AP+BP.∴P A+PB最小.8.解:(1)过点A作直线m的垂线,垂足为P1,则P1即为所求;(2)作线段AB的垂直平分线交直线m于P2,则P2即为所求;(3)作点A关于直线m对称点A′,连接BA′交直线m于P3,则P3即为所求.9.解:(1)分别作点P关于OA、OB的对称点D,C,连接CD,分别交OA、OB于点M、N,连接PM、PN、MN,则△PMN的周长最小;(2)连接OC、OD,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.10.解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|P A﹣PB|的值最大的点,|P A﹣PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45°,∠ACB=90°,∵∠BCD=15°,∴∠ACD=75°,∴∠CAA′=15°,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15°,∴∠ACA′=150°,∵∠ACB=90°,∴∠A′CB=60°,∴△A′BC是等边三角形,∴A′B=BC=4.故答案为:4.百度文库精品文档。
2021年九年级中考数学几何教学重难点专题:轴对称之线段最短问题一
2021年九年级中考数学几何教学重难点专题:轴对称之线段最短问题一1.如图,∠AOB=45°,∠AOB内有一定点P,且OP=8.在OA上有一动点Q,OB上有一动点R.若△PQR周长最小,则最小周长是()A.8B.C.16D.2.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ 与QN的和最小,那么下面的操作正确的是()A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,AB的中点为D.以C为原点,射线CB为x轴的正方向,射线CA为y轴的正方向建立平面直角坐标系.P是BC上的一个动点,连接AP、DP,则AP+DP最小时,点P的坐标为()A.(,0)B.(,0)C.(,0)D.(,0)4.如图,△ABC中,AB=AC=10,BC=16,AD是BC边上的中线且AD=6,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值是()A.B.16C.6D.105.如图,在直角坐标系中,点A、B的坐标分别为(1,3)和(2,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的纵坐标是()A.0B.1C.2D.36.如图,在Rt△ABO中,∠OAB=90°,B(6,6),点D在边AB上,AD=5BD,点C 为OA的中点,点P为边OB上的动点,则使四边形PCAD周长最小的点P的坐标为()A.(3,3)B.(,)C.(,)D.(5,5)7.如图,在△ABC中,点A、B、C的坐标分别为(m,0)、(0,1)和(3,2),则当△ABC 的周长最小时,m的值为()A.0B.1C.2D.38.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离3,试在直线a上找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB 的长度和最短,且AC+DB=8.则AB长()A.3B.3C.2D.29.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.1010.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(10,0),OB=8,点P 是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(,)C.(,)D.(,)11.如图,菱形ABCD的边长为2,∠BAD=60°,点P是边AD的中点,点Q是对角线AC上一动点,则△DPQ周长的最小值是()A.B.C.D.12.如图,在平面直角坐标系中,A(0,1),B(3,2),点C是x上任意一点,当CA+CB 有最小值时,C点的坐标为()A.C.13.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D 为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.C.D.14.如图,在菱形ABCD中,AB=5,对角线BD=8.点P、点Q分别是AB、BD上动点,则AQ+PQ的最小值为()A.B.C.5D.15.如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.30°B.40°C.50°D.70°16.如图,正三角形ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.5C.6D.717.如图,等腰△ABC中AB=AC,AD⊥BC,EF平分AB,交AB于点E,交BC于点F,点G是线段EF上的一动点,若△ABC的面积是6cm2,BC=6cm,则△ADG的周长最小值是()A.4.5cm B.5cm C.5.5cm D.6cm18.如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N 分别是BD、BC上的动点,则CM+MN的最小值是()A.2B.4C.6D.819.如图,∠AOB=α,点P是∠AOB内的一定点,点M、N分别在OA、OB上移动,当△PMN的周长最小时,∠MPN的值为()A.90°+αB.90°C.180°﹣αD.180°﹣2α20.如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为()A.5B.6C.8D.10参考答案1.解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD与OA、OB分别相交于点Q、R,所以PQ=CQ,PR=DR,所以△PQR的周长=PQ+QR+PR=CQ+QR+DR=CD,由两点之间线段最短得,此时△PQR周长最小,连接CO、DO,则∠AOP=∠AOC,OC=OP,∠BOP=∠BOD,OD=OP,所以OC=OD=OP=8,∠COD=2∠AOB=2×45°=90°,所以△COD为等腰直角三角,所以CD=OC=8,即△PQR最小周长是8.故选:B.2.解:先作点M关于直线l的对称点M′,再连接M′N交l于点Q,则MQ+NQ=M′Q+NQ=M′N,由“两点之间,线段最短”可知,点Q即为所求的点,故选:D.3.解:如图所示,作点A关于x轴的对称点A',连接A'P,则AP=A'P,∴AP+DP=A'P+DP,当A',P,D在同一直线上时,AP+DP的最小值等于A'D的长,∵AC=BC=2,AB的中点为D,∴A(0,2),B(2,0),D(1,1),A'(0,﹣2),设直线A'D的解析式为y=kx+b(k≠0),则,解得,∴y=3x﹣2,当y=0时,x=,∴点P的坐标为(,0),故选:A.4.解:如图,作BM⊥AC交AD于点F,连接EF,∵AB=AC=10,BC=16,AD是BC边上的中线且AD=6,∴BD=DC=8,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,=×BCAD=ACBM∵S△ABC∴16×6=10BM∴BM=.即CF+EF的最小值为.故选:A.5.解:∵B(2,0),∴B′(﹣2,0),∵点A的坐标为(1,3),设直线AB′的解析式为y=kx+b,∴,解得,所以,直线AB′的解析式为y=x+2,令x=0,则y=2,所以,点C的坐标为(0,2).故选:C.6.解:∵在Rt△ABO中,∠OAB=90°,B(6,6),∴AB=OA=6,∠AOB=45°,∵AD=5BD,点C为OA的中点,∴AD=5,OC=AC=3,∴C(3,0),D(6,5),作C关于直线OB的对称点E,连接ED交OB于P′,连接CP′则此时,四边形P′DAC周长最小,E(0,3),∵直线OB的解析式为y=x,设直线ED的解析式为y=kx+b,∴,解得:,∴直线ED的解析式为y=x+3,解得,,∴C(,),故选:C.7.解:如图所示,做出B关于x轴对称点为B′,连接B′C,交x轴于点A',此时△ABC 周长最小过点C作CH⊥x轴,过点B'作B'H⊥y轴,交CH于H,∵B(0,1),∴B′(0,﹣1),∵C(3,2),∴CH=BH=3,∴∠CB'H=45°,∴∠BB'A=45°,∴∠OB'A'=∠OA'B'=45°,∴OB'=OA'=1,则此时A'坐标为(1,0).m的值为1.故选:B.8.解:如图,作AE⊥a,使得线段AE=4,连接EB交直线b于点D,作DC⊥b交直线a 于点C,连接AC,作BF⊥AE交AE的延长线于点F.∵CD=AE=4,CD∥AE,∴四边形AEDC是平行四边形,∴AC=ED,∴AC+CD+BD=ED+BD+CD,此时AC+CD+DB的值最小,由题意EF=2+4+3﹣4=5,BE=AC+BD=8,∴BF===,∴AB===2,故选:D.9.解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∴CE=CG=4,∴AC=BC=10,故选:D.10.解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=4,A、C关于直线OB对称,∴PC+PD=P A+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===2,∴AC=4,∵OABK=ACOB,∴BK=16,AK==6,∴点B坐标(16,8),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故选:B.11.解:如图所示,连接BQ,BD,∵点Q是菱形对角线AC上一动点,∴BQ=DQ,∴DQ+PQ=BQ+PQ,当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长,∵四边形ABCD是菱形,∠BAD=60°,∴△BAD是等边三角形,又∵P是AD的中点,∴BP⊥AD,AP=DP=1,∴Rt△ABP中,∠ABP=30°,∴AP=AB=1,∴BP===,∴DQ+PQ最小值为,又∵DP=1,∴△DPQ周长的最小值是,故选:D.12.解:作点A(1,0)关于x轴的对称点D,连接BD交x轴于C,则D(0,﹣1),此时CA+CB有最小值,设直线BD的解析式为:y=kx+b,∴,解得:,∴直线BD的解析式为:y=x﹣1,当y=0时,x=1,∴C(1,0),故选:B.13.解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.14.解:连接AC交BD于O,过C作CP⊥AB于P,则此时,AQ+PQ的值最小,且最小值为CP的长度,∵在菱形ABCD中,AB=5,对角线BD=8,∴AC⊥BD,BO=BD=4,∴AO==3,∴AC=6,=ACBD=ABCP,∵S菱形ABCD∴CP==,∴AQ+PQ的最小值为,故选:B.15.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=70°,∴∠DAB=110°,∴∠HAA′=70°,∴∠AA′E+∠A″=∠HAA′=70°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=70°,∴∠EAF=110°﹣70°=40°,故选:B.16.解:连接CC′,如图所示.∵△ABC、△A′BC′均为正三角形,∴∠ABC=∠A′=60°,A′B=BC=A′C′,∴A′C′∥BC,∴四边形A′BCC′为菱形,∴点C关于BC'对称的点是A',∴当点D与点B重合时,AD+CD取最小值,此时AD+CD=2+2=4.故选:A.17.解:如图,连接GB.∵AB=AC,AD⊥BC,∴BD=DC=3,=BCAD=6,∵S△ABC∴AD=2,∵EF垂直平分AB,∴GB=GA,∴AG+GD=BG+GD,∵BG+GD≥BD,∴GB+GD≥3,∴GB+GD的最小值为3,∴△ADG的最小值为2+3=5,故选:B.18.解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴×4CE=8,∴CE=4.即CM+MN的最小值为4.故选:B.19.解:分别作点P关于OA、OB的对称点P1、P2,连接P1、P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质可得MP=P1M,PN=P2N,∴△PMN的周长的最小值=P1P2,由轴对称的性质可得∠P1OP2=2∠AOB=2α,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=180°﹣2α,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=∠OP1P2+∠OP2P1=180°﹣2α,故选:D.20.解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,∵∠BAD=90°,AD∥BC,∴∠ABC=90°,∴Rt△BCE中,EB2+BC2=CE2,∴82+x2=(16﹣x)2,解得x=6,∴BC=6,故选:B.。
2021-2022学年人教版九年级数学中考一轮复习《轴对称》知识点分类训练(附答案)
2021-2022学年人教版九年级数学中考一轮复习《轴对称》知识点分类训练(附答案)一.轴对称图形1.下列图形只具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形二.关于x轴、y轴对称的点的坐标2.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)3.若点A(x+y,1)与B(﹣3,x﹣y)关于x轴对称,则()A.x=﹣2,y=1B.x=﹣2,y=﹣1C.x=2,y=﹣1D.x=2,y=1三.作图-轴对称变换4.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于x轴对称的△A2B2C2;(3)请求出△ABC的面积;(4)请在y轴上找一点P,使得P A+PC最小.四.翻折变换(折叠问题)5.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.486.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm7.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm8.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为()A.1B.C.D.210.如图,将长方形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于点F.(1)试说明:△AEF≌△CDF;(2)若AB=4,BC=8,EF=3,求图中阴影部分的面积.11.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm.(1)求证:DE=DF;(2)求重叠部分△DEF的面积.五.平移的性质12.下面的每组图形中,左面的图形平移后可以得到右面图形的是()A.B.C.D.13.如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为.14.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14六.坐标与图形变化-平移15.将A(2,﹣3)向上平移2个单位,再向左平移3个单位,得到点B,则点B的坐标为()A.(4,﹣6)B.(5,﹣1)C.(﹣1,﹣1)D.(4,0)七.旋转的性质16.如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A.2B.3C.3D.无法确定17.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°18.如图,将等腰Rt△ABC绕点A顺时针旋转15°得到△AB′C′,若AC=1,则图中阴影部分面积为()A.B.C.D.319.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)20.如图,在△ABC中,以C为中心,将△ABC顺时针旋转34°得到△DEC,边ED,AC 相交于点F,若∠A=30°,则∠EFC的度数为()A.60°B.64°C.66°D.68°21.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC 于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.22.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.八.旋转对称图形23.如图,把图形绕着它的中心旋转后可以与原来的图形重合,则至少要旋转()度.A.60B.120C.180D.270九.中心对称24.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′十.中心对称图形25.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.26.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形27.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.十一.关于原点对称的点的坐标28.在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(2,﹣1)D.(2,1)十二.坐标与图形变化-旋转29.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.参考答案一.轴对称图形1.解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.二.关于x轴、y轴对称的点的坐标2.解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选:C.3.解:∵点A(x+y,1)与B(﹣3,x﹣y)关于x轴对称,∴,解得:.故选:B.三.作图-轴对称变换4.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3=3.5;(4)如图,点P为所作.四.翻折变换(折叠问题)5.解:由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24.故矩形ABCD的周长为24.故选:B.6.解:由折叠可得DF=EF,设AF=x,则EF=8﹣x,∵AF2+AE2=EF2,∴x2+42=(8﹣x)2,解得x=3.故选:A.7.解:∵△BDE由△BDC翻折而成,∴BE=BC=7cm,DE=CD,∴AE=AB﹣BE=10﹣7=3cm,∴△AED的周长=AE+(AD+DE)=AE+AC=3+6=9cm.故选:A.8.解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.9.解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.证明:(1)∵ABCD是长方形,∴AB=CD,∠D=∠B=90°,由折叠可知:AB=AE,∠BCA=∠ACE,∠B=∠E,∴AE=CD,∠D=∠E,又∵∠AFE=∠CFD,∴△AFE≌△CFD(AAS)(2)在Rt△AEF中,由勾股定理得:AF=,∴S阴影部分===10.(也可以根据S阴=S△AEC﹣S△AEF计算)因此,阴影部分的面积为:10.11.(1)证明:由折叠的意义知:∠BFE=∠DFE,又∵AD∥BC,∴∠DEF=∠DFE,∴∠BFE=∠DEF,∴DE=DF,(2)解:∵AB=3cm,BC=5cm,∴A′D=AB=3cm,假设AE=x,则A′E=xcm,DE=5﹣x(cm),∴A′E2+A′D2=ED2,∴x2+9=(5﹣x)2,解得:x=1.6,∴DE=5﹣1.6=3.4(cm),∴△DEF的面积是:×3.4×3=5.1(cm2).五.平移的性质12.解:A、两图形不全等,故本选项错误;B、两图形不全等,故本选项错误;C、通过平移得不到右边的图形,只能通过旋转得到,故本选项错误;D、左面的图形平移后可以得到右面图形,故本选项正确.故选:D.13.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.14.解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.六.坐标与图形变化-平移15.解:将点A(2,﹣3)先向上平移2个单位,再向左平移3个单位,得到点B的坐标为(2﹣3,﹣3+2),即:(﹣1,﹣1).故选:C.七.旋转的性质16.解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′===3,故选:B.17.解:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=×(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.18.解:如图,设B′C′与AB交点为D,∵△ABC是等腰直角三角形,∴∠BAC=45°,∵△AB′C′是△ABC绕点A逆时针旋转15°后得到,∴∠CAC′=15°,AC′=AC=1,∴∠C′AD=∠BAC﹣∠CAC′=45°﹣15°=30°,∵AD=2C′D,∴AD2=AC′2+C′D2,即(2C′D)2=12+C′D2,解得C′D=,故阴影部分的面积=×1×=.故选:B.19.解:∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.20.解:由旋转的性质得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B.21.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°22.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,F,C,M三点共线,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF,∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4,∴BF=BM﹣MF=4﹣x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF的长为.八.旋转对称图形23.解:∵360°÷3=120°,∴该图形绕中心至少旋转120度后能和原来的图案互相重合.故选:B.九.中心对称24.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.十.中心对称图形25.解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.26.解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.27.解:A、既是轴对称图形,也是中心对称图形,故本选项不符合题意;B、既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.十一.关于原点对称的点的坐标28.解:点(1,﹣2)关于原点对称的点的坐标是(﹣1,2),故选:B.十二.坐标与图形变化-旋转29.解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);。
2021-2022学年人教版九年级数学中考专题复习之轴对称确定最短路径专题训练(附答案)
2021-2022学年人教版九年级数学中考专题复习之轴对称确定最短路径专题训练(附答案)1.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,∠ABC的平分线交AC于点D,点E,F分别是BD、AB上的动点,则AE+EF的最小值为()A.2B.2.4C.2.5D.32.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.83.如图,四边形ABCD中,∠A=∠C=90°,点M、N分别是BC、AB边上的动点,∠B =56°,当△DMN的周长最小值时,则∠MDN的度数是()A.124°B.68°C.60°D.56°4.如图,点P是∠AOB内任意一点,OP=9,M、N分别是射线OA和OB上的动点,若△PMN周长的最小值为9,则∠AOB=°.5.如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF =∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为.6.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y 轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为.7.如图,在正方形ABCD中,点M,N在CB,CD上运动,且∠MAN=45°,在MN上截取一点G,满足BM=GM,连接AG,取AM,AN的中点F,E,连接GF,GE,令AM,AN交BD于H,I两点,若AB=4,当GF+GE的取值最小时,则HI的长度为.8.如图,在正方形ABCD中,E,F为AD和BC的中点,P为对角线BD上的一个动点,则图中线段的长等于AP+EP最小值的是.9.如图,已知AB=8,点P为线段AB上的一个动点,分别以AP、BP为边在AB同侧作正方形APDC、PBFE,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是CD、EF的中点,点O是GH的中点,当P点从M点到N点运动过程中,OM+OB的最小值为.10.如图,正方形ABOD的边长为4,OB在x轴上,OD在y轴上,点A在第二象限内,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F,过点C作CE⊥DF 于点C,交x轴于点E,则点E坐标为,点P是直线CE上的一个动点,当点P的坐标为时,PB+PF有最小值.11.如图,正方形ABCD的边长为6,E是边AB的中点,F是边AD上的一个动点,EF=GF,且∠EFG=90°,则GB+GC的最小值为.12.如图,在边长为2的正方形ABCD中,点M在边AB上,点N在对角线AC上,连接DM,DN.若AM=CN,则(DM+DN)2的最小值为.13.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.14.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小;(3)四边形BCC1B1的面积为.15.尺规作图:用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l.(1)在直线l上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB <QA+QB.16.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形P ABQ的周长最小.17.如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.18.在一平直的河岸l同侧有A、B两村.A村位于河流l正南4km,B村位于A村东8km 南7km处.现要在河岸边建一水厂C为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.19.如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.20.已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;(2)求出(1)中PC+PD的最小值.21.如图,在Rt△AOC中,∠A=30°,点O(0,0),C(1,0),点A在y轴正半轴上,以AC为一边作等腰直角△ACP,使得点P在第一象限.(1)求出所有符合题意的点P的坐标;(2)在△AOC内部存在一点Q,使得AQ、OQ、CQ之和最小,请求出这个和的最小值.22.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC于点D,垂足为E,AD 平分∠BAC.(1)求∠B的度数;(2)求证:CD=BC;(3)若AC=2,点P是直线AD上的动点,求|PB﹣PC|的最大值.参考答案1.解:作点A关于BD的对称点M,∵BD平分∠ABC,∴M落在BC上.∴BM=BA=4,过M作MF⊥AB于F,交BD于E,则AE+EF的最小值是MF的长.∵∠MFB=∠CAB=90°,∴MF∥CA,∴MF=2.4,∴AE+EF=MF=2.4.故选:B.2.解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∵AB=3,AC=4,∴△ABP周长的最小值是AB+AC=3+4=7.故选:C.3.解:延长DA到E使DA=AE,延长DC到F,使CF=DC,连接EF交AB于N,交BC 于M,此时,△DMN的周长最小,∵AB⊥AD,BC⊥DC,∴∠DAB=∠DCB=90°,DM=FM,DN=EN,∴∠E=∠ADN,∠F=∠CDM,∵∠B=56°,∴∠ADC=124°,设∠MDN=α,∴∠ADN+∠CDM=124°﹣α∴∠DNM+∠DMN=2(124°﹣α),∴α+2(124°﹣α)=180°,解得:α=68°,故选:B.4.解:作P点关于OB的对称点P',连接OP',作点P关于OA的对称点P'',连接OP'',连接P'P''与OB交于N,与OA交于M,∵PN=P'N,P''M=PM,∴PN+PM+MN=P'P'',此时△PMN周长的最小,∵△PMN周长的最小值为9,∴P'P''=9,∵OP'=OP,∠P'ON=∠PON,ON=ON,∴△OP'N≌△OPN(SAS),∴PO=OP',同理可证,△OP''M≌△OPM(SAS),∴PO=OP'',∴OP'=OP'',∴△OP'P''是等边三角形,∴∠P'OP''=60°,∴∠MON=30°,故答案为30.5.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠FDC=90°,∵∠ADF=∠FCD,∴∠FDC+∠FCD=90°,∴∠DFC=90°,∴点F在以DC为直径的半圆上移动,如图,设DC的中点为O,作正方形ABCD关于直线AD对称的正方形AB'C'D,则点B 的对应点是B',连接B'O交AD于E,交半圆O于F,则线段B'F的长即为BE+EF的长度最小值,OF=3,∵∠C'=90°,B'C'=C'D=CD=6,∴OC'=9,∴B'O===3,∴B'F=3﹣3,∴EB+FE的长度最小值为3﹣3,故答案为:3﹣3.6.解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).7.解:如图1中,将△ADN绕点A顺时针旋转90°得到△ABJ,则AN=AJ,∠DAN=∠BAJ,∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,∵∠MAN=45°,∴∠MAJ=∠MAB+∠BAJ=∠MAB+∠DAN=45°,∴∠MAJ=∠MAN,∵AM=AM,AJ=AN,∴△AMJ≌△AMN(SAS),∴∠AMB=∠AMN,∵MA=MA,MB=MG,∴△MAB≌△MAG(SAS),∴AB=AG=4,∠ABM=∠AGM=90°,∵AF=FM,AE=EN,∴FG=AM,EG=AN,∴GF+GE=(AM+AN),下面证明当AM=AN时,AM+AN的值最小,如图2中,过点A在直线l∥MN,作点N 关于直线l的对称点N′,连接AN′,MN′.∵N,N′关于直线对称,∴AN=AN′,∴AM+AN=AN′+AM,∴当A,M,N′共线时,AM+AN的值最小,此时∵AN=AN′,∴∠ANN′=∠AN′N,∵MN∥直线l,NN′⊥直线l,∴NN′⊥MN,∴∠MNN′=90°,∴∠AMN+∠AN′N=90°,∠ANM+∠ANN′=90°,∴∠AMN=∠ANM,∴AN=AM,∴当AM=AN时,AM+AN的值最小,如图1中,当AM=AN时,可知BH=DI,过点H作HP⊥AB于P,在AP上截取一点K,使得AK=KH,连接KH,设PH=PB=x,∵∠BAM=∠DAN=22.5°,KA=KH,∴∠KAH=∠KHA=22.5°,∴∠PKH=∠KAH+∠KHA=45°,∴PK=PB=PH=x.AK=KH=x,∵AB=4,∴2x+x=4,∴x=4﹣2,∴BH=DI=PB=4﹣4,∵BD=4,∴HI=4﹣2(4﹣4)=8﹣4,故答案为8﹣4.8.解:连接CE,交BD于点P,∵四边形ABCD是正方形,∴A点与C点关于对角线BD对称,∴AP=PC,∴AP+EP=PC+EP≥EC,∴当AP+EP=EC时,AP+EP的值最小,∵E,F为AD和BC的中点,∴ED=BF,在Rt△CDE和Rt△ABF中,,∴Rt△CDE≌Rt△ABF(HL),∴CE=AF,故答案为AF.9.解:如图1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH 为梯形.∵点O为中点,∴OS=(GR+HT)=(AP+PB)=4,即OS为定值,∴点O的运动路径在与AB距离为4的平行线上.如图2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.由轴对称性质可知,此时OM+OB=BM′最小.在Rt△BMM′中,MM′=2×4=8,BM=7,由勾股定理得:BM′==.∴OM+OB的最小值为.故答案为:.10.解:∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,BF=AD=4∵CE⊥DF,∴CE垂直平分DF,∴D、F关于直线CE对称,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴BE=1,∴OE=OB﹣BE=4﹣1=3,∴E点坐标为(﹣3,0);如图,连接BD交直线CE于点P,∵点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,此时PF+PE的值最小,∵直线CE的解析式为y=﹣2x﹣6,直线BD的解析式为y=x+4,由,解得,∴P(﹣,).故答案为(﹣3,0),(﹣,).11.解:如图,取AD的中点M,连接GM,延长MG交BC的延长线于J,在AB上截取AN,使得AN=AF,连接FN.作点C关于GJ的对称点K,连接GK,BK.∵四边形ABCD是正方形,∴AD=AB,∵AM=MD.AE=EB,∴AM=AE,∵AF=AN,∴FM=NE,∵∠A=∠GFE=90°,∴∠AFE+∠AEF=90°,∠AFE+∠GFM=90°,∴∠GFM=∠FEN,∵FG=FE,∴△FGM≌△EFN(SAS),∴∠GMF=∠ENF,∵∠ANF=∠AFN=45°,∴∠GMF=∠FNE=135°,∴∠DMG=45°,设MJ交CD于R,∵∠D=∠JCR=90°,∴∠DMR=∠DRM=∠CRJ=∠CJR=45°,∴DM=DR=CR=CJ=3,∵C,K关于MJ对称,∴KJ=CJ=2,∠MJK=∠MJC=45°,GC=GK,∴∠KJB=90°,∴BK===3,∵GC+GB=GK+GB≥BK,∴GC+GB≥3,∴GC+GB的最小值为3.故答案为3.12.解:如图,在AB的下方作∠BAR=45°,且AR=CD=2,连接MR,DR,过点R作RT⊥DA交DA的延长线于T.∵四边形ABCD是正方形,∴AD=CD=2,∠DCN=45°,∠DAB=∠BAT=90°,∴∠DCN=∠RAM=45°,在△DCN和△RAM中,,∴△DCN≌△RAM(SAS),∴DN=RM,∵∠BAR=∠RAT=45°,AR=2,∠T=90°,∴AT=RT=,∴DR===,∵DM+DN=DM+MR≥DR,∴DM+DN的最小值为,∴(DM+DN)2的最小值为8+4.故答案为:8+4.13.解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,则AP=AP',BP=BP“,此时△P AB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,∴∠OP A=∠OP'A=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.14.解:(1)如图所示:;(2)如图所示:;(3)∵每小格均为边长是1的正方形,∴CC1=4+4=8,BB1=2+2=4,BB1和CC1之间的距离为2,∴四边形BCC1B1的面积为×(8+4)×2=12,故答案为:12.15.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB>A′B,∴QA+QB>A′B即QA+QB>A′P+BP,∴QA+QB>AP+BP.∴P A+PB最小.16.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形P ABQ的周长最小.17.解:(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(﹣1,1)、B1的坐标为(﹣4,2)、C1的坐标为(﹣3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则P A+PB的最小值=A′B,∵A′B==3,∴P A+PB的最小值为3;(3)△ABC的面积=3×3﹣×3×1﹣×1×2﹣×2×3=,故答案为:(﹣1,1),(﹣4,2),(﹣3,4),3.18.解:方案一:如图1,连接AB,过A作AC1⊥l于C1则C1即为水厂地址,过B作BD⊥AC1交C1A的延长线于D,则AD=7km,BD=8km,AC1=4km,∴AB==km,∴所需管道长度=AC1+AB=(4+)km;方案二:作A关于直线l的对称点A′,连接A′B交直线l于C2,则C2即为水厂地址,如图2,过B作BD⊥AA′交A′A的延长线于D,则A′D=15km,BD=8km,∴所需管道长度=A′B==17km,综上所述:所需最短管道长度=(4+)km.19.解:如图:(1)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(2)当点P与点M重合时,PB+CP的值最小,最小值是8cm.20.解:(1)作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求,此时PC+PD =PC+PD′=CD′,根据两点之间线段最短可知此时PC+PD最小.(2)作D′E⊥BC于E,则EB=D′A=AD,∵CD=2AD,∴DD′=CD,∴∠DCD′=∠DD′C,∵∠DAB=∠ABC=90°,∴四边形ABED′是矩形,∴DD′∥EC,D′E=AB=4,∴∠D′CE=∠DD′C,∴∠D′CE=∠DCD′,∵∠DCB=60°,∴∠D′CE=30°,∴D′C=2D′E=2AB=2×4=8;∴PC+PD的最小值为8.21.解:(1)∵C(1,0),∴OC=1,∵在Rt△AOC中,∠A=30°,∴AC=2,OA=,如图1,①当AC=AP,∠CAP=90°,过P1作P1B⊥y轴于B,则△ABP1≌△COA,∴AB=OC=1,BP1=AO=,∴OB=1+,∴P1(,1+);②当AC=CP,∠ACP=90°,过P2作P2D⊥x轴于D,同理可得:CD=OA=,P2D=1,∴P2(1+,1);③当CP=AP,∠APC=90°,过P3作P3E⊥x轴于E,则P3是AP2的中点,∴OE=OD=,P3E=(OA+P2D)=,∴P3(,);综上所述,P(,1+),(1+,1),(,);(2)如图2,任取△AOC内一点Q,连接AQ、OQ、CQ,将△ACQ绕点C顺时针旋转60°得到△A′CQ’,∴A′C=AC=2,CQ=CQ′,AQ=A′Q′,∠ACA′=∠QCQ′=60°,∴△QCQ′是等边三角形,∴CQ=QQ′,∴AQ+OQ+CQ=A′Q′+OQ+QQ’,∴当A′Q′,OQ,QQ′这三条线段在同一直线时最短,即AQ+OQ+CQ的最小值=OA′,∵∠ACO=∠ACA′=60°,∴∠A′CB=60°,过A′作A′B⊥x轴于B,∴BC=A’C=1,A′B=,∴OB=2,∴A′O==,∴AQ、OQ、CQ之和的最小值是.22.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.23.解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连接AB1或BA1交y轴于点P,则点P即为所求.24.解:(1)∵DE是AB的垂直平分线,∴AD=BD,∴∠BAD=∠B,∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠C=90°,∴∠B=30°.(2)∵∠CAD=∠BAD=∠B=30°,∴AD=2CD,∵AD=BD,∴BD=2CD,∴BC=BD+CD=3CD,∴CD=BC;(3)作C点关于直线AD的对称点C′,∵AD平分∠BAC.∴C′在直线AB上,连接BC′的直线就是AB,∴P点就是A点,此时|PB﹣PC|的最大值为BC′,∵AC=AC′=BC′,∴|PB﹣PC|的最大值=2.。
九年级数学中考复习《轴对称最短路径问题》解答题专题提升训练
九年级数学中考复习《轴对称最短路径问题》解答题专题提升训练(附答案)1.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点D,交AC于点E,连接BE.(1)若∠ABC=68°,求∠AED的度数;(2)若点P为直线DE上一点,AB=8,BC=6,求△PBC周长的最小值.2.如图,在平面直角坐标系中,已知A(﹣4,3),B(﹣1,﹣2).(1)请在x轴上画出点C,使|AC﹣BC|的值最大.(2)点C的坐标为,|AC﹣BC|的最大值为.3.探究:如图所示,C为线段BD上一动点,分别过点B,点D作AB⊥BD,ED⊥BD,分别连接AC,EC.已知AB=5,ED=1,BD=8.设CD=x.(1)AC+CE的值为.(用含x的代数式表示)(2)请问:当点A、C、E时,AC+CE的值最小,最小值为.(3)根据(2)中的规律和结论,请构图并求出代数式+的最小值.4.在一平直河岸l同侧有A、B两个村庄,A、B到l的距离分别是3km和2km,AB=akm (a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l 于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2=P A+PB(km)(其中点A'与点A关于l对称,A'B与l交于点P).观察计算:(1)在方案一中,d1=km(用含a的式子表示);(2)在方案二中,组长小强为了计算d2的长,作了如图3所示的辅助线,请你按小强同学的思路计算,d2=km(用含a的式子表示).探索归纳:(3)①当a=4时,比较大小:d1d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1d2(填“>”、“=”或“<”);(4)请你把a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,如何对这两个方案进行选择?5.如图,Rt△ABC中,∠C=90°,AB=15,AC=12,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)M,N分别为AC,BE上的动点,连接AN,MN,求AN+MN的最小值.6.已知:M、N分别是∠AOB的边OA、OB上的定点,(1)如图1,若∠O=∠OMN,过M作射线MD∥OB(如图),点C是射线MD上一动点,∠MNC的平分线NE交射线OA于E点.试探究∠MEN与∠MCN的数量关系;(2)如图2,若P是线段ON上一动点,Q是射线MA上一动点.∠AOB=20°,当MP+PQ+QN取得最小值时,求∠OPM+∠OQN的值.7.如图,等边△ABC(三边相等,三个内角都是60°的三角形)的边长为10cm,动点D 和动点E同时出发,分别以每秒1cm的速度由A向B和由C向A运动,其中一个动点到终点时,另一个也停止运动,设运动时间为ts,0<t≤10,DC和BE交于点F.(1)在运动过程中,CD与BE始终相等吗?请说明理由:(2)连接DE,求t为何值时,DE∥BC;(3)若BM⊥AC于点M,点P为BM上的点,且使PD+PE最短.当t=7s时,PD+PE 的最小值为多少?请直接写出这个最小值,无需说明理由.8.Rt△ABC中,∠B=90°,AB=2,BC=4,AC的中垂线DE交AC于D,交BC于点E.(1)如图1,连接AE,则AE=;(2)如图2,延长DE交AB的延长线于点F,连接CF,请求出CF的长;(3)如图3,点P为直线DE上一动点,点Q为直线AB上一动点,则BP+PQ的最小值为.9.如图,△ABC内接于半径为2的⊙O,其中∠ABC=45°,∠ACB=60°,CD平分∠ACB 交⊙O于D,点M、N分别是线段CD、AC上的动点,求MA+MN的最小值.10.最值问题.(1)如图1,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,求AP+BP+CP 的最小值.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC、PM,能使PC+PM的长度最短.①请通过画图指出点P的位置.②求出PC+PM的最短长度.11.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C =45°,在(2)的条件下,求△AFP周长的最小值.12.如图,直线a∥b,点A,点D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=12cm,AE:BE=1:2,P为射线AB上一动点,P从A点开始沿射线AB方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m为何值时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.13.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.14.如图1,点P是正方形ABCD对角线BD上一点(不与B,D重合),PE⊥BC于点E,PF⊥CD于点F,连接P A、EF.(1)请探究线段AP与线段EF的大小关系;(2)如图2,若AB=4,点H是AD的中点,求AP+HP的最小值.15.如图1,菱形ABCD的对角线AC、BD相交于点O,且AC=6cm,BD=8cm,分别过点B、C作AC与BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A沿射线AC的方向以2cm/s的速度移动了t秒,连接BG,当S△ABG=2S时,求t的值.△OBG(3)如图2,长度为3cm的线段GH在射线AC上运动,求BG+BH的最小值.16.问题提出:(1)如图①,在△ABC中,AD是ABC边BC的高,点E是BC上任意点,若AD=3,则AE的最小值为;(2)如图②,在等腰△ABC中,AB=AC,∠BAC=120°,DE是AC的垂直平分线,分别交BC、AC于点D、E,DE=1cm,求△ABD的周长;问题解决:(3)如图③,某公园管理员拟在园内规划一个△ABC区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路AB、BC和AC,满足∠BAC=90°,点A到BC的距离为2km.为了节约成本,要使得AB、BC、AC之和最短,试求AB+BC+AC的最小值(路宽忽略不计).17.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.18.如图,在三角形ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为D,P为AD上的动点,Q在BA的延长线上,且∠CPQ=60°.(1)如图,当P与A、D不重合时,PC与PQ的数量关系是什么?说明理由;(2)M为BC上的动点,N为AB上的动点,BC=5,直接写出AM+MN的最小值.19.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.20.【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD=,S△EBC=,S四边形AECD=,则它们满足的关系式为,经化简,可得到勾股定理.【知识运用】(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D 为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC =16千米,则两个村庄的距离为千米(直接填空);(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.【知识迁移】借助上面的思考过程与几何模型,求代数式+的最小值(0<x<16)参考答案1.解:(1)∵AB=AC,∠ABC=68°,∴∠C=∠ABC=68°,∴∠A=180°﹣∠C﹣∠ABC=180°﹣68°﹣68°=44°,∵DE垂直平分AB,∴∠ADE=90°,∴∠AED=90°﹣∠A=90°﹣44°=46°;(2)当点P与点E重合时,△PBC的周长最小,理由:∵PB+PC=P A+PC≥AC,∴当点P与点E重合时,P A+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=AB+BC=8+6=14.2.解:(1)如图所示;(2)设直线AB′的解析式为y=kx+b,把A(﹣4,3),B′(﹣1,2)代入得,解得,∴直线AB′的解析式为y=﹣x+,令y=0,则0=﹣x+,解得x=5,∴C(5,0),∵AB′==,∴|AC﹣BC|的最大值为,故答案为:(5,0),.3.解:(1)AC+CE=+=+,故答案为:+;(2)当A、C、E三点共线时,AC+CE的值最小,过A点作AF平行于BD交ED的延长线于点F,得矩形ABDF,连接AE.则DF=AB=5,AF=BD=8,EF=ED+DF=5+1=6,所以AE===10,则AC+CE的最小值为10.故答案为:三点共线,10;(3)如图2所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED =3,连接AE交BD于点C,设BC=x,则AE的长即为代数式+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13即代数式+的最小值为13.4.解:(1)∵如图1,作A关于执行l的对称点A′,连接P A′,∵A和A'关于直线l对称,∴P A=P A',d1=PB+BA=PB+P A'=a+2;故答案为:a+2;(2)因为BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24,所以d2=;故答案为:;(3)①当a=4时,d1=6,d2=,d1<d2;②当a=6时,d1=8,d2=,d1>d2;故答案为:<,>;(4)d12﹣d22=(a+2)2﹣()2=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,∴d1﹣d2>0,∴d1>d2;②当4a﹣20=0,即a=5时,d12﹣d22=0,∴d1﹣d2=0,∴d1=d2;③当4a﹣20<0,即a<5时,d12﹣d22<0,∴d1﹣d2<0,∴d1<d2;综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5时,选方案一.5.(1)证明:在Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,在△BDF与△ABC中,,∴△BDF≌△ABC(AAS);(2)解:∵AB=15,AC=12,∴BC==9,∵△ABC≌△BDF,∴DF=BC=9,BF=AC=12,∴FC=BF+BC=9+12=21.如图,连接DN,∵顶点A与顶点D关于BE对称,∴AN=DN.如使得AN+MN最小,只需D、N、M在一条直线上,由于点M、N分别是AC和BE上的动点,作DM1⊥AC,交BE于点N1,垂足为M1,∵DF∥AC,∴AN+MN的最小值等于DM1=FC=21.6.解:(1)设∠O=∠OMN=α,∴∠MNB=2α,∵MD∥OB,∴∠AMD=α,∵NE平分∠MNC,∴∠MNE=∠ENC,设∠MNE=β,∴∠CNB=2α﹣2β,∵MD∥OB,∴∠MCN=2α﹣2β,∴∠EMC+∠MEN=∠ENC+∠MCN,∴β+2α﹣2β=α+∠MEN,∴∠MEN=α﹣β,∴2∠MEN=∠MCN;(2)作M点关于OB的对称点M',N点关于OA的对称点N',连接M'N'与OB、OA分别交于点P、点Q,连接ON'、OM',∴MP+PQ+QN=M'N',此时MP+PQ+QN的值最小,由对称性可知,∠OQN'=∠OQN,∠OPM'=∠OPM,∴∠OPM'=∠AOB+∠OQP=∠AOB+(180°﹣∠OQN'),∵∠AOB=20°,∴∠OM'P=200°﹣∠OQN',∴∠OPM+∠OQN=200°.7.解:(1)由已知可得AD=t,EC=t,∴AD=CE,∵△ABC是等边三角形∴∠A=∠ACB=60°,BC=AC,∴△ADC≌△CEB(SAS),∴BE=CD,∴CD与BE始终相等;(2)∵DE∥BC,∴=,∵AB=AC=10,∴AD=AE,∴t=10﹣t,∴t=5;(3)∵BM⊥AC,∴BM平分∠ABC,作D点关于BM的对称点D'交BC于点D',连接D'E,交BM于点P,∵DP=D'P,∴DP+PE=D'P+PE=D'E,∵t=7,∴AE=BD=3,AD=CE=7,∵DD'⊥BM,BM⊥AC,∴DD'∥AC,∵BD=BD',∠ABC=60°,∴DD'=3,∴四边形ADD'E是平行四边形,∴AD=D'E=7,∴PD+PE的最小值为7.8.解:(1)∵DE是AC的中垂线,∴AE=CE,设AE=CE=x,则BE=BC﹣CE=4﹣x,在Rt△ABE中,由勾股定理得:22+(4﹣x)2=x2,解得:x=,即AE=,故答案为:;(2)∵DE是AC的中垂线,∴AF=CF,设AF=CF=y,则BF=y﹣2,在Rt△BCF中,由勾股定理得:(y﹣2)2+42=y2,解得:y=5,即CF的长为5;(3)方法一:连接CF,过B作BM⊥CF于M,交直线DE于P',过P'作P'Q'⊥BF于Q',如图3所示:∵DE是AC的中垂线,∴AF=CF,∴∠AFD=∠CFD,∵P'M⊥CF,P'Q'⊥BF,∴P'M=P'Q',则点M与Q'关于DE对称,此时BM=BP'+P'M=BP'+P'Q',即BP+PQ的值最小=BM,由(2)得:AF=CF=5,AB=2,∴BF=AF﹣AB=3,∵∠CBF=180°﹣∠ABC=90°,∴△BCF的面积=CF×BM=BF×BC∴BM===,即BP+PQ的最小值为,故答案为:.方法二:作点B关于DE的对称点H,交DF于G,过点H作HQ⊥AB于Q,交DE于点P,如图4所示:则点P、Q就是使BP+PQ最小的点,由对称得:∠AFD=∠CFD,∠AFD=∠HFD,BP=HP,FB=FH,∴∠CFD=∠HFD,∴点C、H、F三点共线.BP+PQ=HP+PQ=HQ,由“垂线段最短”得:BP+PQ的最小值为HQ.在等腰△BFH中,∵FB=FH,HQ⊥BF过B作BM⊥CF于M,∴HQ=BM(等腰三角形两腰上的高相等).由方法一得:BM=.∴BP+PQ的最小值为.故答案为:.9.解:连接OA,OC,∵∠ABC=45°,OA=OC=2,∴∠AOC=90°,∴AC===2.过点A作AE⊥AC,交CD于点E,过点E作EA′⊥BC于点A′过点A′作A′N′⊥AC于点N′,∵CD平分∠ACB交⊙O于D,∴点A与点A′关于直线CD对称,∴A′N′的长即为MA+MN的最小值,AC=A′C=2,∵∠ACB=60°,∴A′N′=A′C•sin60°=2×=,即MA+MN的最小值是.10.解:(1)从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2,解得x=1.4,在Rt△ABP中,,∴AP+BP+CP=AC+BP=5+4.8=9.8.故答案为:9.8﹒(2)如图,过点C作CO⊥AB于O,延长BO到C',使OC'=OC,连接MC',交AB于P,则点P为所求;②此时MC′=PM+PC'=PM+PC的值最小,连接AC′,∵CO⊥AB,AC=BC,∠ACB=90°,∴,∵CO=OC'′,CO⊥AB,∴AC′=CA=AM+MC=8,∴∠OC′A=∠OCA=45°,∴∠C'AC=90°,∴C′A⊥AC,∴.∴PC+PM的最小值为,故答案为:.11.(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC=90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴F A=FC,∴∠C=∠F AC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△P AF的周长最小,最小值=△ADF的周长=2+.12.解:(1)在△PCD中,PC+PD≥CD,当取等号时,P,C,D在同一条直线上,即点P与点E重合,此时PC+PD最小,∴AP=AE,∵AE:BE=1:2,AB=12cm,∴AE=AB=4cm,∴t==4s,故m=4时,PC+PD有最小值;(2)当t<m即t<4时,点P在AE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM=∠CPH,∠PDA=∠DPH,∴∠PCM+∠PDA=∠CPH+∠DPH,∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠PDA=∠CPD,∴当t<4时,∠PCM+∠PDA=∠CPD;(3)当t>m即t>4时,点P在BE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM+∠CPH=180°,∠PDA+∠DPH=180°,∴∠PCM+∠CPH+∠PDA+∠DPH=360°,又∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠CPD+∠PDA=360°,即当12≥t>4时,∠PCM+∠CPD+∠PDA=360°.当t>12时,同法可得∠PCM=∠CPD+∠PDA.综上所述,t>4时,∠PCM+∠CPD+∠PDA=360°或∠PCM=∠CPD+∠PDA.13.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.14.解:(1)过点P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),∴GB=GP,同理:PE=BE,∵AB=BC=GF,∴AG=AB﹣GB,FP=GF﹣GP=AB﹣GB,∴AG=PF,在△AGP和△FPE中,,∴△AGP≌△FPE(SAS),∴AP=EF;(2)取CD的中点G,连接AG,交BD于P,∵四边形ABCD是正方形,H是AD的中点,G是CD的中点,∴H、G关于BD对称,由轴对称确定最短路线问题,点P即为所求作的使AP+HP最小的点,AP+HP的最小值为AG的长度,∵AB=4,∴AD=4,DG=2,∴AG===2,∴AP+HP的最小值为2.15.解:(1)结论:四边形BOCE是矩形.理由:∵BE∥OC,EC∥OB,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形BOCE是矩形.(2)如图2中,∵四边形ABCD是菱形,∴OA=OC=3cm,OB=OD=4cm,∵S△ABG=2S△OBG,∴AG=2OG,∴2t=2(3﹣2t)或2t=2(2t﹣3),解得t=1或t=3,∴满足条件的t的值为1或3.(3)如图2中,设OG=x,则BG+BH=+,欲求BG+BH的最小值,相当于在x轴上找一点P(x,0),使得点P(x,0)到A(0,4)和B(3,4)的距离最小,如图3中,作点B关于x轴的对称点B′,连接AB′交x轴于P,连接BP,此时P A+PB的值最小,∵A(0,4),B′(3,﹣4),∴AP+PB=AP+PB′=AB′==,∴BG+BH的最小值为.16.解:(1)∵AD是ABC边BC的高,点E是BC上任意点,AD=3,则AE的最小值为3,故答案为:3;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣120°)=30°,∵DE是AC的垂直平分线,∴AD=CD,∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=120°﹣30°=90°,在Rt△CDE中,DE=1cm,∴AD=CD=2DE=2cm,在RtABD中,BD=2AD=2CD=4(cm),AB=AD tan60°=2(cm),∴△ABD的周长为:AD+BD+AB=2+4+2=6+2(cm).(3)延长CB到点D,使得AB=DB,延长BC到点E,使得CE=AC,连接AD、AE,∴∠ADB=∠DAB=ABC,∠AEC=∠CAE=ACB,AB+BC+AC=DB+BC+CE =DE,∴DE的最小值即为AB+BC+AC的最小值.∵∠DAB+∠CAE=(∠ABC+∠ACB)=(180°﹣∠BAC)=45°,∴∠DAE=∠DAB+∠CAE+∠BAC=135°,以DE为斜边向下作等腰直角三角形ODE,以点O为圆心,OD为半径作圆O,∠EAD =180°﹣DOE=135°,∴点A在弦DE所对的劣弧,过点A作AP⊥DE于P,过点O作OH⊥DE于H,连接OA,则AP=2,设DH=x,则DE=2x,OH=x,OA=OD=x,则AP+OH≤AO,可得2+x≤x,∴x≥.∴DE的最小值为2x==4+4.∴AB+BC+AC的最小值为(4+4)km.17.解:(1)方案1:AC+AB=1+5=6,方案2:,∵,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,(或)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4﹣x)2+128x=1∴,即:;故当DQ=3或时,△ABQ为等腰三角形.18.解:(1)PQ=PC,理由:如图1,连接BP,∵AB=AC,AD⊥BC,∴AD是BC的垂直平分线,∴BP=PC,∴∠BPD=∠CPD,∵AB=AC,AD⊥BC,∴∠DAC=∠BAC=60°,∴∠APQ=180°﹣∠DAQ﹣∠BQP=180°﹣120°﹣∠BQP=60°﹣∠BQP,∵∠APQ+∠CPQ+∠DPC=180°,∴∠DPC=180°﹣∠APQ﹣∠CPQ=180°﹣(60°﹣∠BQP)﹣60°=60°+∠BQP,∴∠DBP=90°﹣∠BPD=90°﹣∠DPC=90°﹣(60°+∠BQP)=30°﹣∠BQP,∵∠DBP+∠PBQ=30°,∴∠PBQ=30°﹣∠DBP=30°﹣(30°﹣∠BQP)=∠BQP,∴BP=PQ,∵BP=PC,∴PQ=PC;(2)如图2,作A关于BC的对称点A',作A'N⊥AB于点N,交BC于点M,则此时AM+MN 的值最小,且AM+MN=A'N,∵AB=AC,∠BAC=120°,∴∠BAD=60°连接A'B,∴△A'BA是等边三角形,∴A'N=BD=,即:AM+MN的最小值是.19.解:(1)①∠BCE+∠BAC=180°;②如图1∵△ABD≌△ACE,∴BD=EC,∵四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小;∵AB=AC,∴BD=BC=1;(2)∠BCE+∠BAC=180°;理由如下:如图2,AD与CE交于F点,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD,∵∠BAC=∠F AE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°;20.解:【小试牛刀】答案为:a(a+b),b(a﹣b),c2,a(a+b)=b(a﹣b)+c2.【知识运用】(1)如图2①,连接CD,作CE⊥AD于点E,∵AD⊥AB,BC⊥AB,∴BC=AE,CE=AB,∴DE=AD﹣AE=25﹣16=9千米,∴CD===41千米,∴两个村庄相距41千米.故答案为41.(2)如图2②所示:设AP=x千米,则BP=(40﹣x)千米,在Rt△ADP中,DP2=AP2+AD2=x2+242,在Rt△BPC中,CP2=BP2+BC2=(40﹣x)2+162,∵PC=PD,∴x2+242=(40﹣x)2+162,解得x=16,即AP=16千米.【知识迁移】:如图3,代数式+的最小值为:=20.。
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(一)
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(一)1.(1)如图,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域,试确定燃气站的位置,使铺设管道的路线最短.2.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN 周长最小时,求∠MAN的度数是多少?3.如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.4.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.5.如图,直线a∥b,点A,点D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=12cm,AE:BE=1:2,P为射线AB上一动点,P从A点开始沿射线AB方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m为何值时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.6.如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A'B'C',并写出B'的坐标;(2)在x轴上找一点P,使得P A+PB的值最小,并求最小值.7.如图,小明家在一条东西走向的公路MN北侧200米的点A处,小红家位于小明家北500米(AC=500米)、东1200米(BC=1200米)的点B处.(1)求小明家离小红家的距离AB;(2)现要在公路MN上的点P处建一个快递驿站,使P A+PB最小,请确定点P的位置,并求P A+PB的最小值.8.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形P ABQ的周长最小.9.如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.10.△ABC在平面直角坐标系中的位置如图所示,以A、B、C、D为顶点的四边形是平行四边形.(1)若四边形为矩形,此时D记为D1,则D1的坐标为;(2)若D在第二象限,此时D记为D2,则D2的坐标为;平行四边形的面积为;(3)P为y轴上动点,PB+PC的最小值为.参考答案1.解:(1)如图,点P即为所求;沿AP﹣PB路线铺设管道,管道长度最短;(2)如图,点P即为所求;.2.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=80°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°,∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.3.解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴,∴,∴,设OF=x,则BF=8﹣x,∵OA′2﹣OF2=A′F2=A′B2﹣BF2,即,解得,x=,即OF=,∴,∴A′(﹣,);(2)作A′点关于x轴的对称点A″,连接BA″,与x轴交于点P,则A'P+PB=A″P+PB=A″B的值最小,∴A″(﹣,﹣),∵B(0,8),∴故A'P+PB的长度的最短距离为.4.解:(1)∵AB=AC,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,MN是AB的垂直平分线,∴AM=BM,∴∠A=∠ABM=50°,∴∠MBC=∠ABC﹣∠ABM=15°,∴∠AMB=∠MBC+∠C=80°,∴∠NMA=∠AMB=40°.故答案为40度.(2)①∵AB=AC=10,△MBC的周长是18cm,即BM+MC+BC=18∵AM=BM,∴AM+MC+BC=18,∴AC+BC=18,∴BC=8.答:BC的长度为8cm.②当点P与点M重合时,△PBC周长的值最小,答:△PBC的周长的最小值为18cm.5.解:(1)在△PCD中,PC+PD≥CD,当取等号时,P,C,D在同一条直线上,即点P与点E重合,此时PC+PD最小,∴AP=AE,∵AE:BE=1:2,AB=12cm,∴AE=AB=4cm,∴t==4s,故m=4时,PC+PD有最小值;(2)当t<m即t<4时,点P在AE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM=∠CPH,∠PDA=∠DPH,∴∠PCM+∠PDA=∠CPH+∠DPH,∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠PDA=∠CPD,∴当t<4时,∠PCM+∠PDA=∠CPD;(3)当t>m即t>4时,点P在BE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM+∠CPH=180°,∠PDA+∠DPH=180°,∴∠PCM+∠CPH+∠PDA+∠DPH=360°,又∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠CPD+∠PDA=360°,即当t>4时,∠PCM+∠CPD+∠PDA=360°.6.解:(1)△A1B1C1如图所示.(3)A点关于x轴的对称点A′坐标为(4,﹣4),连结A'B交x轴于P点,则P A+PB=P A'+PB=A'B,此时P A+PB的值最小,最小值==7.解:(1)如图,连接AB,由题意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000…………,∵AB>0∴AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.8.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形P ABQ的周长最小.9.解:(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(﹣1,1)、B1的坐标为(﹣4,2)、C1的坐标为(﹣3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则P A+PB的最小值=A′B,∵A′B==3,∴P A+PB的最小值为3;(3)△ABC的面积=3×3﹣×3×1﹣×1×2﹣×2×3=,故答案为:(﹣1,1),(﹣4,2),(﹣3,4),3.10.解:(1)如图,D1(1,3),故答案为(1,3);(2)如图,D2(﹣1,5),S=2S=S=×2=4,△ABC故答案为(﹣1,5),4;(3)作C关于y轴的对称点C′,连接BC′,与y轴的交点即为P点,此时PB+PC=BC′,∵BC′==,∴PB+PC的最小值为,故答案为.。
中考数学高频考点突破——轴对称的应用——最短距离问题
中考数学高频考点突破——轴对称的应用——最短距离问题一、综合题1.已知二次函数y =﹣x 2+bx+c 的图象经过点A (2,0),B (5,0),过点D (0, 54)作y 轴的垂线DP 交图象于E 、F .(1)求b 、c 的值和抛物线的顶点M 的坐标;(2)求证:四边形OAFE 是平行四边形;(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP 与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式. 2.(1)问题提出:如图①在 ABC 中, AD 是 ABC 边 BC 的高,点E 是 BC 上任意一点,若 3,AD = 则 AE 的最小值为_ ;(2)如图②,在等腰 ABC 中, ,120,AB AC BAC DE =∠=︒ 是 AC 的垂直平分线,分别交 BC AC 、 于点 D E 、 , 1DE cm = ,求 ABD 的周长;(3)问题解决:如图③,某公园管理员拟在园内规划一个 ABC 区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路 AB BC 、 和 AC ,满足 90,BAC ∠=︒ 点 A 到 BC 的距离为 2km .为了节约成本,要使得 ,,AB BC AC 之和最短,试求AB BC AC ++ 的最小值(路宽忽略不计).3.(1)【问题提出】如图1,在矩形ABCD 中, 10AD = , 12AB = ,点E 为AD 的中点,点P 为矩形ABCD 内以BC 为直径的半圆上一点,则PE 的最小值为 ;(2)【问题探究】如图2,在ABC 中,AD 为BC 边上的高,且 4AD BC == ,点P 为 ABC 内一点,当 12PBC ABC S S = 时,求 PB PC + 的最小值;(3)【问题解决】李伯伯家有一块直角三角形菜园ABC ,如图3, 2003BC = 米,90C ∠=︒ , 60ABC ∠=︒ ,李伯伯准备在该三角形菜园内取一点P ,使得120APB ∠=︒ ,并在 ABP 内种植当季蔬菜,边BC 的中点D 为菜园出入口,为了种植方便,李伯伯打算在AC 边上取点E ,并沿PE 、DE 修两条人行走道,为了节省时间,要求人行走道的总长度( PE DE + )尽可能小,问 PE DE + 的长度是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.4.如图1,已知直线l 的同侧有两个点A ,B ,在直线l 上找一点P ,使P 点到A ,B 两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l 的对称点,对称点与另一点的连线与直线l 的交点就是所要找的点,通过这种方法可以求解很多问题(1)如图2,在平面直角坐标系内,点A 的坐标为(1,1),点B 的坐标为(5,4),动点P 在x 轴上,求PA+PB 的最小值;(2)如图3,在锐角三角形ABC 中,AB=8,∠BAC=45°,∠BAC 的角平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值为(3)如图4,∠AOB=30°,OC=4,OD=10,点E ,F 分别是射线OA ,OB 上的动点,则CF+EF+DE 的最小值为 。
备考2021年中考数学复习专题:图形的变换_轴对称变换_轴对称的应用-最短距离问题,填空题专训及答案
,E为AB的中点,若P为对角线BD上一动点,
8、 (2018广水.中考模拟) 在平面直角坐标系中,点A、B的坐标分别为( 2,0 ),(4,0),点C的坐标为(m, m
)(m为非负数),则CA+CB的最小值是________ 9、 (2017襄城.中考模拟) 如图,MN是⊙O的直径,MN=10,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN
备考2021年中考数学复习专题:图形的变换_轴对称变换_轴对称的应用-最短
距离问题,填空题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 图 形 的 变 换 _轴 对 称 变 换 _轴 对 称 的 应 用 -最 短 距 离 问 题 , 填 空 题 专 训
1、 ቤተ መጻሕፍቲ ባይዱ2016黑龙江.中考真卷) 如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个 动点,则PA+PB的最小值为________.
18、
(2020毕节.中考模拟) 已知菱形
在平面直角坐标系的位置如图所示,
,
,
上的一个动点,
,当
周长最小时,点 的坐标为________.
,点 是对角线
19、
(2020内江.中考真卷) 如图,在矩形ABCD中,
,
点,则
的最小值为________.
,若点M、N分别是线段DB、AB上的两个动
20、
(2020永州.中考真卷)
12、 (2017平南.中考模拟) 抛物线y=﹣ _____时,|PA﹣PB|取得最小值.
x+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是___
13、 (2017临高.中考模拟) 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点, 则△BEQ周长的最小值为________.
2021-2022学年苏科版九年级数学中考专题复习之轴对称确定最短路径专题训练(附答案)
2021-2022学年苏科版九年级数学中考专题复习之轴对称确定最短路径专题训练(附答案)1.如图,在等腰Rt△ABC中,斜边AB的长为2,D为AB的中点,E为AC边上的动点,DE⊥DF交BC于点F,P为EF的中点,连接P A,PB,则P A+PB的最小值是()A.3B.2C.D.2.如图,菱形ABCD的周长为24,∠ABD=30°,点P是对角线BD上一动点,Q是BC 的中点,则PC+PQ的最小值是()A.6B.C.D.3.如图,在正方形ABCD中,点E,F分别在AB,CD上,且BE=DF,点M,N分别为AD,BC的中点,P为MN上的一个动点,则下列线段的长等于BP+EP最小值的是()A.AE B.BN C.BE D.AF4.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值为()A.3B.C.2D.15.如图,正方形ABCD中,AB=4,E是AD上一点,且AE=1,F、G是AB、CD上的动点,且BE⊥FG,连接EF、FG、BG,当EF+FG+BG的值最小时,CG的长为()A.2B.C.D.6.已知,如图,正方形ABCD的边长为4,E、F为线段AB和BC上的动点,且始终满足AE=BF,连接DE,DF,则DE+DF的最小值为()A.4B.5C.4D.67.如图,在四边形ABCD中,∠A=∠D=90°,AB=5,AD=4,CD=3,点P是边AD 上的动点,则△PBC周长的最小值为()A.8B.C.12D.8.如图,△ABC是等边三角形,AB=2,AD是BC边上的高,E是AC的中点,P是AD 上的一个动点,则PE+PC的最小值为()A.1B.2C.D.9.如图,在边长为8的正方形ABCD中,E、F分别是边AB、BC上的动点,且EF=6,M 为EF中点,P是边AD上的一个动点,则CP+PM的最小值是()A.10B.8﹣3C.6+3D.3+510.如图,△ABC中,∠ACB=90°,∠A=30°,BC=2,若D,E是边AB上的两个动点,F是边AC上的一个动点,DE=,则CD+EF的最小值为()A.﹣B.3﹣C.1+D.311.在△ABC中,∠A=45°,∠B=60°,AB=4,点P、M、N分别在边AB、BC、CA上,连接PM、MN,NP,则△PMN周长的最小值为.12.如图,P是∠AOB内部的一个定点,且OP=1,点E,F分别是OA,OB上的动点,若△PEF周长的最小值等于1,则∠AOB=度.13.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC 上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.14.如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB 上动点,则MQ+PQ+NP的最小值是.15.如图,∠AOB=45°,P是∠AOB内的一点,PO=10,点Q,R分别在∠AOB的两边上,△PQR周长的最小值是.16.如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC 于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ 的最小值是,其中所正结论的序号是.17.如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂分别向两镇供水,铺设水管的费用为每千米3万元.(1)请在河流上选择水厂的位置M,使铺设水管的费用最少.(不写作法,保留作图痕迹)(2)最低费用为多少?18.如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D 作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:CE=BE.(2)若AB=15cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.19.如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△P AF的周长的最小值.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.21.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l 对称,(Ⅰ)连接CC′,判断四边形CBA′C′的形状并进行证明.(Ⅱ)D为线段BC′上一动点,求AD+CD的最小值.22.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.23.如图1:P是∠AOB内任意一点,OP=5cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图2中利用作图确定M点和N点的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图2中若△PMN周长的最小值是5cm,则∠AOB的度数是多少?24.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=3,DF是线段AC的垂直平分线;交AC边于点D,交AB边于点E,以BE为边作等边△BEF,连接CF、AF.(1)求证:△ACF是等边三角形;(2)若点P是直线DE上一动点,连接BP、CP,当点P运动到何处时,BP+CP的值最小?并求出该最小值.参考答案1.解:连接PC,PD,∵在Rt△CEF中,P为EF的中点,∴CP=EF,在Rt△EDF中,DP=,∴CP=DP,∴点P在CD的垂直平分线上运动,作A关于CD垂直平分线的对称点A',∴P A+PB的最小值为A'B,在Rt△AA'B中,A'B=,故选:D.2.解:如图,由菱形的对称轴可知,点A和点C关于BD对称,连接AQ,AQ即为所求.连接AC,∵∠ABD=30°,四边形ABCD是菱形,∴∠ABC=60°,AB=BC,∴△ABC是等边三角形,∵点Q为BC的中点,∴AQ⊥BC,∵菱形ABCD的周长为24,∴AB=BC=6,在Rt△ABQ中,∠ABC=60°,∴∠BAQ=30°,∴BQ=AB==3,∴AQ=BQ=3.故选:B.3.解:如图,连接CP,由题可得,MN垂直平分BC,∴BP=CP,∴BP+PE=CP+PE,当点E,P,C在同一直线上时,BP+PE的最小值为CE长,此时,由AD=CB,∠ADF=∠CBE,DF=BE,可得△ADF≌△CBE(SAS),∴AF=CE,∴BP+EP最小值等于线段AF的长,故选:D.4.解:过点P作MN∥AD交AB于点M,交CD于点N,如图所示:∵四边形ABCD为正方形,∴MN⊥AB,∴PM≤PE(当PE⊥AB时取等号),PN≤PF(当PF⊥BC时取等号),∴MN=AD=PM+PN≤PE+PF,∵正方形ABCD的面积是2,∴AD=.∴PE+PF的最小值为.故选:B.5.解:如图,过点G作GT⊥AB于T,设BE交FG于R.∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠C=90°,∵CT⊥AB,∴∠GTB=90°,∴四边形BCGT是矩形,∴BC=GT,∴AB=GT,∵GF⊥BE,∴∠BRF=90°,∵∠ABE+∠BFR=90°,∠TGF+∠BFR=90°,∴∠ABE=∠TGF,在△BAE和△GTF中,,∴△BAE≌△GTF(ASA),∴BE=GF,∵AB=4,AE=1,∴BE===,∴GF=BE=,∴EF+BG的值最小时,EF+FG+BG的值最小,设CG=BT=x,则EF+BG=+,欲求+的最小值,相当于在x轴上寻找一点P(x,0),使得点P 到M(0,4),N(3,1)的距离和最小.如图,作点M关于x轴的对称点M′(0,﹣4),连接NM′交x轴于P,连接PM,此时PM+PN的值最小.∵N(3,1),M′(0,﹣4),∴直线M′N的解析式为y=x﹣4,∴P(,0),∴x=时,+的值最小.故选:D.6.解:设AE=BF=x.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=90°,∴DE+DF=+,欲求DE+DF的最小值,相当于在x轴上找一点P(x,0),到A(0,4),B(4,4)的距离和的最小值(如下图),作点A关于x轴的对称点A′,连接A′B交x轴于P,连接AP,此时P A+PB的值最小,最小值=BA′==4,∴DE+DF的值的最小值为4.故选:A.7.解:作点C关于AD的对称点E,连接EB交AD于点P′,连接CP′,则EP′=CP′,ED=CD,此时△P′BC周长最小为:P′C+P′B+BC=P′E+P′B+BC=EB+BC,作BF⊥DC的延长线于点F,∠A=∠ADC=90°,∴四边形ABFD是矩形,∴BF=AD=4,DF=AB=5,∴CF=DF﹣CD=5﹣3=2,EF=DF+ED=5+3=8,∴在Rt△BCF和Rt△BFE中,根据勾股定理,得BC==2,BE==4,∴BC+BE=6.所以△PBC周长的最小值为6.方法二:如图,作点C关于AD的对称点C′,连接C′B,当点B,P,C′三点共线时,△P′BC周长有最小,此时PC+PB+BC=PC′+PB+BC=BC′+BC,作CE⊥AB于点E,得矩形AECD,∴CE=AD=4,AE=CD=3,∴BE=AB﹣AE=5﹣3=2,∴BC==2,作C′F⊥BA的延长线于点F,得四边形EFC′C是矩形,∴C′F=CE=4,EF=CC′=6,∴BF=EF+EB=6+2=8,在Rt△BC′F中,根据勾股定理,得BC′==4,∴BC+BC′=6.所以△PBC周长的最小值为6.故选:D.8.解:如图,连接BE交AD于点P′,∵,△ABC是等边三角形,AB=2,AD是BC边上的高,E 是AC的中点,∴AD、BE分别是等边三角形ABC边BC、AC的垂直平分线,∴P′B=P′C,P′E+P′C=P′E+P′B=BE,根据两点之间线段最短,点P在点P′时,PE+PC有最小值,最小值即为BE的长.BE==,所以P′E+P′C的最小值为.故选:C.9.解:延长CD到C′,使C′D=CD,CP+PM=C′P+PM,当C′,P,M三点共线时,C′P+PM的值最小,根据题意,点M的轨迹是以B为圆心,3为半径的圆弧上,圆外一点C′到圆上一点M距离的最小值C′M=C′B﹣3,∵BC=CD=8,∴CC′=16,∴C′B===8.∴CP+PM的最小值是8﹣3.故选:B.10.解:如图,过C作AB的对称点C1,连接CC1,交AB于N;过C1作C1C2∥AB,且C1C2=,过C2作C2F⊥AC于F,交AB于E,C2F的长度即为所求最小值,∵C C2∥DE,C C2=DE,∴四边形C1DEC2是平行四边形,∴C1D=C2E,又∵C、C1关于AB对称,∴CD=C1D,∴CD+EF=C2F,∵∠A=30°,∠ACB=90°,∴AC=BC=2,∴CN=,AN=3,过C2作C2M⊥AB,则C2M=C1N=CN=,∴C2M∥C1N,C1C2∥MN,∴MN=C1C2=,∵∠MEC2=∠AEF,∠AFE=∠C2ME=90°,∴∠MC2E=∠A=30°,在Rt△C2ME中,ME=1,C2M=,C2E=2,∴AE=AN﹣MN﹣ME=3﹣﹣1=2﹣,∴EF=1﹣,∴C2F=2+1﹣=3﹣.故选:B.11.解:如图,作点M关于直线AB、直线AC的对称点K、H,连接HK交AB于P,交AC 于N.∵△PMN的周长=PM+MN+PN=Pk+PN+HN=HK,∴HK最小时,△PMN的周长最小,根据对称性,AM=AK=AH,∠MAB=∠BAK,∠MAC=∠CAH,∴∠KAH=2(∠MAB+∠MAC)=90°,∴KH=AM,∴AM最短时,△PMN的周长最短=AM,当AM⊥BC时,AM的值最短,在Rt△ABM中,∠AMB=90°,AB=4,∠B=60°,∴AM=AB=2,AM===2,KH=2,∴△PMN的周长的最小值为2.故答案为:2.12.解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB,OC=OD=OP=1,∴∠COD=2∠OAB,又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=1,∴OC=OD=CD=1,∴△COD是等边三角形,∴2∠AOB=60°,∴∠AOB=30°.故答案为:30.13.解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称的性质可知,AE=AP=AF,∠BAP=∠BAE,∠CAP=∠CAF,∵∠P AB+∠P AC=∠BAC=90°,∴∠EAF=180°,∴E,A,F共线,∵ME=MP,NF=NP,∴PM+MN+PN=EM+MN+NF,∵EM+MN+NF≥EF,∴EF的值最小时,PM+MN+PN的值最小,∵EF=2P A,∴当P A⊥BC时,P A的值最小,此时P A==,∴PM+MN+PN≥,∴PM+MN+PN的最小值为.故答案为:.14.解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.15.解:如图所示,分别作点P关于OA、OB的对称点P'、P'',连接P'P''交OA、OB于点Q、R,此时,△PQR的周长最小,最小即为P'P''的长.连接OP',OP''.根据轴对称性可得:∠P''OB=∠BOP,∠P'OA=∠AOP,OP=OP'=OP''=10,∵∠AOB=45°,∴∠P'OP''=90°,∴P'P''===.故答案为:10.16.解:∵正方形ABCD,∴CD=AD,∠CDE=∠DAF=90°,∴∠ADF+∠CDF=90°,在△CDE和△DAF中,,∴△CDE≌△DAF(ASA),∴∠DCE=∠ADF,∴∠DCF+∠CDF=90°,∴∠DGC=90°,∴CE⊥DF,故①正确;∵CE平分∠ACD,∴∠DCE=∠HCG,在△GCD和△GCH中,,∴△GCD≌△GCH(ASA),∴CD=CH,∠CDH=∠CHD,∵正方形ABCD,∴CD∥AB,∴∠CDF=∠AFD,∴∠CHD=∠AFD,∵∠CHD=∠AHF,∴∠AFD=∠AHF,∴AF=AH,∴AC=AH+CH=AF+CD=DE+CD,故②正确,设DE=AF=AH=a,∵∠AHF=∠DHC,∠CDF=∠AFH,∴a=﹣1,∴DE=AF=AH=﹣1,∴AE=1﹣DE=2﹣,∴EA≠AH,故③错误;∵△GCD≌△GCH,∴DG=GH,∵CE⊥DF,∴CG垂直平分DH,∴DP=PH,当DQ⊥HC时,PH+PQ=DP+PQ有最小值,过点D作DM⊥HC,则DM的长度为PH+PQ的最小值,∵S△ADC==,∴DM=,故④正确.故答案为:①②④.17.解:(1)根据分析,水厂的位置M为:(2)如图2,,在直角三角形BEF中,EF=CD=30(千米),BF=BD+DF=30+10=40(千米),∴BE=(千米),∴铺设水管长度的最小值为50千米,∴铺设水管所需费用的最小值为:50×3=150(万元).答:最低费用为150万元.18.解:(1)∵△ACD为等边三角形,DE⊥AC,∴DE垂直平分AC,∴∠AEF=∠FEC,∵∠ACB=∠AFE=90°,∴DE∥BC,∴∠AEF=∠EBC,∠FEC=∠ECB,∴∠ECB=∠EBC,∴CE=BE;(2)连接P A,PC,∵DE垂直平分AC,P在DE上,∴PC=P A,∵两点之间线段最短,∴当P与E重合时P A+PB最小为15 cm,∴PB+PC最小为15 cm.19.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(1)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当P A+PF最小时,△P AF的周长最小即点P为CF与BE的交点时,△P AF的周长最小,此时△P AF的周长=P A+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△P AF的周长最小=CF+AF=2.20.解:如图:(1)在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴BC=AB.∠ABC=60°.∵E为AB边的中点,∴AE=BE,∵△BDE是等边三角形,∴BE=BD=DE,∠DBE=∠DEB=60°,∴AE=DE=DB=BC,∠DBC=∠AED=120°,∴△ADE≌△CDB(SAS).(2)作点B关于AC的对称点B′,连接B′E交AC于点H,此时BH=B′H,B′E=B′H+HE=BH+HE最小.∵BC=1,BB′=2,∴B′E=.答:这个最小值为.21.解:(1)正△ABC,△ABC与△A′BC′关于直l对称,∴∠CBA=∠C'A'B=60°,∴BC∥A'C',BC=A'C',∴四边形CBA′C′是平行四边形,∵BC=BA',∴四边形CBA′C′是菱形;(2)∵C与A'关于BC'对称,∴AD+CD的最小值为AA'的长,∵正△ABC的边长为2,∴AA'=4,∴AD+CD的最小值为4;22.解:(1)①∠BCE+∠BAC=180°;②如图1∵△ABD≌△ACE,∴BD=EC,∵四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小;∵AB=AC,∴BD=BC=1;(2)∠BCE+∠BAC=180°;理由如下:如图2,AD与CE交于F点,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD,∵∠BAC=∠F AE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°;23.解:(1)分别作点P关于OA、OB的对称点D,C,连接CD,分别交OA、OB于点M、N,连接PM、PN、MN,则△PMN的周长最小;(2)连接OC、OD,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.24.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).(2)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD=BC=×2=1.25.(1)证明:在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵FD是线段AC的垂直平分线,∴FD⊥AC,CD=AD,∴CF=AF,∵∠ACB=∠ADF=90°,∴FD∥BC,∴BE=AE,∵△BEF是等边三角形,∴∠ABF=∠BEF=60°,BE=EF,∴EF=AE,∴∠EAF=∠EF A,∴2∠EAF=∠BEF=60°,∴∠EAF=30°,∴∠CAF=∠BAC+∠EAF=60°,∴△ACF是等边三角形;(2)解:∵FD是AC的垂直平分线,∴P A=PC,∴BP+PC=BP+P A,∵BP+P A≥AB,∴当点P运动到点E处时,BP+CP的值最小,最小值为AB.在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,∴BP+CP的最小值为6.。
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(四)
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(四)1.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点E是斜边AB上的一个动点,连接CE,过点B,C分别作BD∥CE,CD∥BE,BD与CD相交于点D.(1)当CE⊥AB时,求证:四边形BECD是矩形;(2)填空:①当BE的长为时,四边形BECD是菱形;②在①的结论下,若点P是BC上一动点,连接AP,EP,则AP+EP的最小值为.3.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)观察图形,请问在什么情况下,AC+CE的值最小?最小值多少?写出计算过程.(3)求代数式+的最小值.4.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C在线段AB右侧,且满足AC=BC,则当△ABC的周长最小时,△ABC的面积等于;(2)若格点D在线段AB左侧,且满足AD⊥BD,则△ABD的面积等于.(以上两问均直接写出结果即可)5.如图,在△ABC中,∠ABC=90°,AE平分∠BAC,BD⊥AC于D,E为BC边上一点,AE、BD交于点F,EG∥BD.(1)求证:AB=AG;(2)当∠BAE=30°,BE=2时,在EG上有一动点P,求AP+BP的最小值.6.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.7.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.8.阅读材料,解决问题:如图,为了求平面直角坐标系中任意两点A(x1,y1)、B(x2,y2)之间的距离,可以AB 为斜边作Rt△ABC,则点C的坐标为C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,根据勾股定理可得AB=,反之,可以将代数式的值看做平面内点(x1,y1)到点(x2,y2)的距离.例如∵可将代数式看作平面内点(x,y)到点(﹣1,3)的距离根据以上材料解决下列问题(1)求平面内点M(2,﹣3)与点N(﹣1,3)之间的距离;(2)求代数式的最小值.9.阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2),M,N两点之间的距离可以用公式MN=计算.解答下列问题:(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.(3)已知点A(5,5),B(﹣4,7),点P在x轴上,且要使P A+PB的和最小,求P A+PB 的最小值.10.如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB =S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.参考答案1.解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.2.解:如图所示:(1)∵BD∥CE,CD∥BE,∴四边形BDCE是平行四边形,∵CE⊥AB,∴∠BEC=90°,∴四边形BECD是矩形;(2)①当BE的长为时,四边形BECD是菱形.理由如下:连接ED,与BC交于点O,∵四边形BDCE是平行四边形,当BC和DE互相垂直平分时,四边形BDCE是菱形,BO=BC=3,OE=AC=2,∴根据勾股定理,得BE===.故答案为.②连接AD,与BC交于点P,连接PE,此时PD=PE,AP+EP最小,∴AP+PE=AP+PD=AD,过点D作DF垂直于AC的延长线于点F,得矩形ODFC,∴CF=OD=2,DF=OC=3,∴AF=AC+CF=6,∴在Rt△ADF中,根据勾股定理,得AD===3.∴AP+EP的最小值为3.故答案为3.3.解:(1)AC+CE=;(2)当A、C、E三点共线时,AC+CE的值最小,过A点作AF平行于BD交ED的延长线于点F,得矩形ABDF,则DF=AB=4,AF=BD=8,EF=ED+DF=2+4=6,所以,则AC+CE的最小值为10;(3)构造图形作BD=4,分别过点B,D作AB⊥BD,ED⊥BD,AB=2,DE=1,C为线段BD上一动点,设BC=x,当A、C、E三点共线时,AE的长即为代数式的最小值.过A点作AF平行于BD交ED的延长线于点F,得矩形ABDF.则DF=AB=2,AF=BD=4,EF=ED+DF=1+2=3,所以,过A点作AF平行于BD交ED的延长线于点F,得矩形ABDF.则DF=AB=4,AF=BD=8,EF=ED+DF=2+4=6BF,则AC+CE的最小值为5.4.解:(1)如图,△ABC即为所求;△ABC的面积为:×=2.5;故答案为:2.5;(2)如图点D1,D2,D3即为所求;△ABD的面积分别为:×2=2;×=2.5;1×3=1.5.故答案为:2或2.5或1.5.5.解:(1)∵BD⊥AC于D,EG∥BD,∴EG⊥AC,∵AE平分∠BAC,∠ABC=90°,∴BE=EG,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴AB=AG;(2)∵∠BAE=30°,AE平分∠BAC,∴∠BAC=60°,∠CAE=30°,∵∠ABC=90°,∴∠C=30°,∴AE=EC,∵EG⊥AC,∴AG=CG,∴A与C关于EG对称,连接BC与EG的交点即为P点,此时P点与E重合,P A+PB=BC,值最小,∵BE=2,∠BAE=30°,∴AB=BE=2,在Rt△ABC中,∠C=30°,∴BC=AB==6,∴AP+BP的最小值为6.6.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.7.解:如图所示.8.解:(1)MN===3;(2)∵原式=+=+,∴原式可以看作点P(x,y)到点(3,4)和点(﹣5,2)的距离之和,∴当点P(x,y)在线段AB上时,原式有最小值,∵AB===2,∴原式的最小值为2.9.解:(1)P,Q两点间的距离PQ==13;(2)△AOB是直角三角形,理由如下:AO2=(1﹣0)2+(2﹣0)2=5,BO2=(4﹣0)2+(﹣2﹣0)2=20,AB2=(4﹣1)2+(﹣2﹣2)2=25,则AO2+BO2=AB2,∴△AOB是直角三角形;(3)如图,∵点A(5,5),B(﹣4,7),∴作点A关于x轴的对称点A′,则A′坐标为(5,﹣5),连接A′B交x轴于一点,此点就是点P,此时P A+PB最小,∴P A +PB 最小值=A ′B ===15. 10.解:(1)∵矩形ABCD 中,OB =5,OD =3,∴C (5,3),设直线OC 的解析式为y =kx ,∴3=5k ,∴k =,∴直线OC 的解析式为y =x ,∵点P 在矩形的对角线OC 上,∴设P (m , m ),∵S △POB =S 矩形OBCD ,∴5×m =3×5,∴m =, ∴P (,2); (2)∵S △POB =S 矩形OBCD ,∴设点P 的纵坐标为h ,∴|h |×5=5,∴h =±2,∴点P 在直线y =2或y =﹣2的直线上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小, 设直线OE 的解析式为y =nx ,∴4=5n ,∴n =,∴直线OE 的解析式为y =x ,当y=2时,x=,∴P(,2),同理,点P在直线y=﹣2的直线上,P(,﹣2),∴点P的坐标为(,﹣2)或(,2).。
2021年九年级数学中考一轮复习专题突破训练(选择题专项):轴对称之线段最短问题
2021年九年级数学中考一轮复习专题突破训练:轴对称之线段最短问题(选择题专项)1.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10B.8C.5D.62.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()A.3+2B.10C.D.3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)4.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.5.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.66.如图所示,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H是对角线BD上的任意一点,则HE+HF的最小值是()A.14B.28C.6D.107.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2B.2+C.4D.4+28.如图,正方形ABCD的边长为2,延长AB至E,使得AB=BE,连接CE,P为CE上一动点,分别连接P A、PB,则P A+PB的最小值为()A.4B.5C.2D.29.如图,在正方形ABCD中,BC=2,点P,Q均为AB边上的动点,BE⊥CP,垂足为E,则QD+QE的最小值为()A.2B.3C.D.10.如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是8cm,则∠AOB的度数是()A.30°B.40°C.50°D.60°参考答案1.解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB 于F点,AC=5,AC边上的高为==2,所以BE=4.∵△ABC∽△EFB,∴=,即=EF=8.故选:B.2.解:如图,作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D,则A′D的长度即为AE+DE的最小值,AA′=2AC=2×6=12,∵∠ACB=90°,BC=8,AC=6,∴AB===10,∴sin∠BAC===,∴A′D=AA′•sin∠BAC=12×=,即AE+DE的最小值是.故选:D.3.解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴△B′OC∽△B′EA,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.4.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB 交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.5.解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB==5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选:C.6.解:如图:作EE′⊥BD交BC于E′,连接E′F,则E′F就是HE+HF的最小值,∵E、F分别是边AB、AD的中点,∴E′F AB,而由已知可得AB==10,∴HE+HF的最小值为10.故选:D.7.解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=1,MN=∴AC=2,AB=BC=2PM=2PN=2∴△ABC的周长为:2+2+2=4+2.故选:D.8.解:作点B关于直线EC的对称点T,连接PT,AT.∵四边形ABCD是正方形,∴∠ABC=∠CBE=90°,∵AB=BC=BE=2,∴∠CEB=45°,∵EB=ET,∠CEB=∠CET=45°,∴∠AET=90°,∴AT===2,∴PB=PT,∴P A+PB=P A+PT≥AT,∴P A+PB≥2,∴P A+PB的最小值为2,故选:D.9.解:如图所示,作点D关于AB的对称点D',连接D'Q,取BC的中点F,连接EF,过D'作D'G⊥BC于G,交CB的延长线于G,∵BE⊥CP,∴Rt△BCE中,EF=BC=1,∵D'G=DC=2,BG=BC=2,∴GF=2+1=3,当D',Q,E,F在同一直线上时,D'Q+QE+EF的最小值等于D'F的长,此时QD+QE+EF 的值最小,∵Rt△D'GF中,D'F===,∴QD+QE的最小值为D'F﹣EF=﹣1,故选:D.10.解:分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是8cm,∴PM+PN+MN=8,∴DM+CN+MN=8,即CD=8=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:A.。
2021年九年级数学中考一轮复习专题突破训练(填空题专项):轴对称之线段最短问题(一)及答案
2021年九年级数学中考一轮复习专题突破训练(填空题专项):轴对称之线段最短问题(一)1.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF 是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为.2.∠AOB在平面直角坐标系中的位置如图所示,且∠AOB=60°,在∠AOB内有一点P(4,3),M,N分别是OA,OB边上的动点,连接PM,PN,MN,则△PMN周长的最小值是.3.如图,正方形ABCD的边长为4,点P是对角线AC上一动点,点E是边BC的中点,则PB+PE的最小值为.4.如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1,若M、N分别是线段AD、AE上的动点,则MN+MF的最小值为.5.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.6.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为.7.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.8.如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.9.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP =6,当△PMN的周长取最小值时,四边形PMON的面积为.10.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.11.在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).12.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为.13.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.14.在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM 的最小值是cm.15.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.17.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F 分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.18.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则P A+PB的最小值为.19.已知如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC 上移动,则当P A+PD取最小值时,△APD中边AP上的高为.20.如图,在等腰梯形ABCD中,AB=AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接P A,PB,则P A+PB的最小值为.参考答案1.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.2.解:分别作P关于射线OA、射线OB的对称点P′与点P″,连接P′P″,与OA、OB 分别交于M、N两点,此时△PMN周长最小,最小值为P′P″的长,连接OP′,OP″,OP,∵OA、OB分别为PP′,PP″的垂直平分线,P(4,3),∴OP′=OP=OP″==5,且∠POA=∠P′OA,∠POB=∠P″OB,∵∠AOB=∠AOP+∠BOP=60°,∴∠P′OP″=120°,过O作OQ⊥P′P″,可得P′Q=P″Q,∠OP′Q=∠OP″Q=30°,∴OQ=,P′Q=P″Q=,∴P′P″=2P′Q=2×=5,则△PMN周长的最小值是5.故答案为:5.3.解:如图,连接DE交AC于点P,因为四边形ABCD是正方形,所以点B和D关于AC对称,所以PB=PD,所以PB+PE=PD+PE=DE,根据两点之间线段最短,可知:PB+PE的最小值即为DE的长,在Rt△DEC中,DC=4,EC=BC=2,根据勾股定理,得DE==2.所以PB+PE的最小值为2.故答案为:2.4.解:作点F关于AD的对称点G,过G作GN⊥AE与N,交AD于M,则GN的长度等于MN+MF的最小值,∵△DGM≌△DFM,∴∠DMF=∠GMD,∵∠GMD=∠AMN,∵∠AMN+∠MAN=∠MAN+∠BAE=90°,∴∠FMD=∠BAE=∠AMN,∴△ABE∽△DMF∽△AMN,∴,∵AB=4,∴BE=2,∵DF=1,∴DM=2,∴AM=2,∵=,∴MN=,∵GM==,∴GN=GM+MN=MN+MF=.∴MN+MF的最小值为,故答案为:.5.解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.6.解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为P A+PB 的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即P A+PB的最小值2.故答案为:2.7.解:如图1所示:作E 关于BC 的对称点E ′,点A 关于DC 的对称点A ′,连接A ′E ′,四边形AEPQ 的周长最小,∵AD =A ′D =3,BE =BE ′=1,∴AA ′=6,AE ′=4.∵DQ ∥AE ′,D 是AA ′的中点,∴DQ 是△AA ′E ′的中位线,∴DQ =AE ′=2;CQ =DC ﹣DQ =3﹣2=1,∵BP ∥AA ′,∴△BE ′P ∽△AE ′A ′,∴=,即=,BP =,CP =BC ﹣BP =3﹣=, S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP=9﹣AD •DQ ﹣CQ •CP ﹣BE •BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.8.解:连接DE .∵BE 的长度固定,∴要使△PBE 的周长最小只需要PB +PE 的长度最小即可,∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分,∴P ′D =P ′B ,∴PB +PE 的最小长度为DE 的长,∵菱形ABCD 的边长为2,E 为BC 的中点,∠DAB =60°,∴△BCD 是等边三角形,又∵菱形ABCD 的边长为2,∴BD =2,BE =1,DE =, ∴△PBE 的最小周长=DE +BE =+1,故答案为: +1.9.解:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PC 、PD .∵点P 关于OA 的对称点为C ,关于OB 的对称点为D ,∴PM =CM ,OP =OC ,∠COA =∠POA ;∵点P 关于OB 的对称点为D ,∴PN =DN ,OP =OD ,∠DOB =∠POB ,∴OC =OD =OP =6,∠COD =∠COA +∠POA +∠POB +∠DOB =2∠POA +2∠POB =2∠AOB =60°,∴△COD 是等边三角形,∴CD =OC =OD =6.∵∠POC =∠POD ,∴OP ⊥CD ,∴OQ =6×=3,∴PQ =6﹣3 设MQ =x ,则PM =CM =3﹣x ,∴(3﹣x )2﹣x 2=(6﹣3)2,解得x =6﹣9,∴MN =2MQ =12﹣18, ∵S △PMN =MN ×PQ ,S △MON =MN ×OQ ,∴S 四边形PMON =S △MON +S △PMN =MN ×PQ +MN ×OQ =MN ×OP =×(12﹣18)×6=36﹣54.故答案为36﹣54.10.解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,所以E′F=.故答案为:.11.解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.12.解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,B′D===.故BE+ED的最小值为.故答案为:.13.解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE==,故答案为:.14.解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.15.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵AQ=CN,∠QAP=∠PCN,∠APQ=∠CPN,∴△APQ≌△CPN(AAS),∴AP=PC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.16.解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.17.解:作A点关于直线DC的对称点A′,连接AA′,延长CD交AA′于点N,连接BD,DA′,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ADB是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN=60°,∴∠A′DN=60°,∴∠ADB+∠ADA′=180°,∴A′,D,B在一条直线上,由题意可得出:此时P与D重合,E点在AD上,F在BD上,此时PE+PF最小,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,PF=2,∴PE+PF的最小值是3.故答案为:3.18.解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,由题意可得出:OA′=1,BO=2,P A′=P A,∴P A+PB=A′B==.故答案为:.19.解:过点D作DE⊥BC于E,∵AD∥BC,AB⊥BC,∴四边形ABED是矩形,∴BE=AD=2,∵BC=CD=5,∴EC=3,∴AB=DE=4,延长AB到A′,使得A′B=AB,连接A′D交BC于P,此时P A+PD最小,∴△A′PB≌△DPE,∴BP=EP,∴P A=PD,∴BP=AD=1,∴AP=,在△APD中,由面积公式可得△APD中边AP上的高=2×4÷=.故答案为:.20.解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为P A+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴P A+PB的最小值=AB•tan60°=.故答案为:2.。
2021年九年级数学中考一轮复习专题突破训练(填空题专项):轴对称之线段最短问题
2021年九年级数学中考一轮复习专题突破训练:轴对称之线段最短问题(填空题专项)1.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.2.如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则P A+PE的最小值是.3.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.4.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB 上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为.5.如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为.6.如图,菱形ABCD的边长为2cm,∠A=120°,点E是BC边上的动点,点P是对角线BD上的动点,若使PC+PE的值最小,则这个最小值为.7.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则P A+PB的最小值为.8.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.9.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.10.菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.参考答案1.解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为:6.2.解:作出点E关于BD的对称点E′交BC于E′,连接AE′与BD交于点P,此时AP+PE 最小,∵PE=PE′,∴AP+PE=AP+PE′=AE′,在Rt△ABE′中,AB=3,BE′=BE=1,根据勾股定理得:AE′=,则P A+PE的最小值为.故答案为:.3.解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.4.解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).5.解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.在Rt△OBK中,OB===4,∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,设OA=AB=x,在Rt△ABK中,∵AB2=AK2+BK2,∴x2=(8﹣x)2+42,∴x=5,∴A(5,0),∵A、C关于直线OB对称,∴PC+PD=P A+PD=DA,∴此时PC+PD最短,∵直线OB解析式为y=x,直线AD解析式为y=﹣x+2,由解得,∴点P坐标(,),故答案为(,).6.解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连接AE交BD于P,则PE+PC=PE+AP=AE,当AE⊥BC时,AE取得最小值.∵∠BAD=120°,∴∠ABC=60°,∴AE=AB•sin60°=2×=cm.故答案为:.7.解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB =QB,根据两点之间线段最短,P A+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,BQ=OB=CD=2,即P A+PB的最小值为2.故答案为2.8.解:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).故答案为:(﹣1,0).9.解:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=AD,∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=2,在Rt△EHD中,DE===2,∴EF+BF的最小值为2.故答案为:2.10.解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年九年级数学中考高频考点《轴对称确定最短路线》小专题突破训练1.如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+12.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.83.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.4.如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.2B.2C.3D.5.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D 为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)6.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF7.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.B.C.5D.8.平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.9.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.B.C.D.10.如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+P A和的最小值是()A.2B.C.4D.611.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3D.12.如图,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个水泵站,向P,Q两地供水.现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A.B.C.D.13.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.14.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.15.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.16.如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为.17.如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.19.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.20.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.21.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=S矩形ABCD,则点P到A、B两点的距离之和P A+PB的最小值为.22.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.23.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF ⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.24.如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△P AF的周长的最小值.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.26.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.27.阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵a2﹣b2=(a+b)(a﹣b),a+b>0∴(a2﹣b2)与(a﹣b)的符号相同当a2﹣b2>0时,a﹣b>0,得a>b当a2﹣b2=0时,a﹣b=0,得a=b当a2﹣b2<0时,a﹣b<0,得a<b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1=(用x、y的式子表示)W2=(用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B 到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P 处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x的式子表示);②在方案二中,a2=km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.28.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.29.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图).两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短?(2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?30.几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求P A+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.。