数字信号处理实验二用FFT做谱分析报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理_实验报告__实验二_应用快速傅立叶变换对信号进行频谱分析

数字信号处理_实验报告__实验二_应用快速傅立叶变换对信号进行频谱分析

数字信号处理_实验报告__实验⼆_应⽤快速傅⽴叶变换对信号进⾏频谱分析数字信号处理实验报告实验⼆应⽤快速傅⽴叶变换对信号进⾏频谱分析2011年12⽉7⽇⼀、实验⽬的1、通过本实验,进⼀步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法原理和FFT ⼦程序的应⽤。

2、掌握应⽤FFT 对信号进⾏频谱分析的⽅法。

3、通过本实验进⼀步掌握频域采样定理。

4、了解应⽤FFT 进⾏信号频谱分析过程中可能出现的问题,以便在实际中正确应⽤FFT 。

⼆、实验原理与⽅法1、⼀个连续时间信号)(t x a 的频谱可以⽤它的傅⽴叶变换表⽰()()j t a a X j x t e dt +∞-Ω-∞Ω=?2、对信号进⾏理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进⾏Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅⽴叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字⾓频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωπ+∞-∞=-∑ ( 2-6 ) 7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。

(信号为有限带宽,采样满⾜Nyquist 定理)8、⽆线长序列可以⽤有限长序列来逼近,对于有限长序列可以使⽤离散傅⽴叶变换(DFT )。

可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。

当序列()x n 的长度为N 时,它的离散傅⾥叶变换为:1()[()]()N kn N n X k DFT x n x n W -===∑其中2jNN W eπ-=,它的反变换定义为:11()[()]()N kn Nk x n IDFT X k X k WN--===∑⽐较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==kN W -是Z 平⾯单位圆上幅⾓为2k的点,也即是将单位圆N 等分后的第k 点。

数字信号实验报告材料 (全)

数字信号实验报告材料 (全)

数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。

2、熟悉 FFT 算法原理和 FFT 子程序的应用。

3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。

二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。

可以根据此时选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

实验二用FFT做谱分析实验报告

实验二用FFT做谱分析实验报告

实验二用FFT做谱分析实验报告一、引言谱分析是信号处理中一个重要的技术手段,通过分析信号的频谱特性可以得到信号的频率、幅度等信息。

傅里叶变换是一种常用的谱分析方法,通过将信号变换到频域进行分析,可以得到信号的频谱信息。

FFT(快速傅里叶变换)是一种高效的计算傅里叶变换的算法,可以大幅减少计算复杂度。

本实验旨在通过使用FFT算法实现对信号的谱分析,并进一步了解信号的频谱特性。

二、实验目的1.理解傅里叶变换的原理和谱分析的方法;2.学习使用FFT算法对信号进行谱分析;3.通过实验掌握信号的频谱特性的分析方法。

三、实验原理傅里叶变换是将信号从时域转换到频域的一种数学变换方法,可以将一个非周期性信号分解为一系列正弦和余弦函数的叠加。

FFT是一种计算傅里叶变换的快速算法,能够在较短的时间内计算出信号的频谱。

在进行FFT谱分析时,首先需要对信号进行采样,然后利用FFT算法将采样后的信号转换到频域得到信号的频谱。

频谱可以用幅度谱和相位谱表示,其中幅度谱表示信号在不同频率下的幅度,相位谱表示信号在不同频率下的相位。

四、实验装置和材料1.计算机;2.信号发生器;3.数字示波器。

五、实验步骤1.连接信号发生器和示波器,通过信号发生器产生一个周期为1s的正弦信号,并将信号输入到示波器中进行显示;2.利用示波器对信号进行采样,得到采样信号;3.利用FFT算法对采样信号进行频谱分析,得到信号的频谱图。

六、实验结果[插入频谱图]从频谱图中可以清晰地看到信号在不同频率下的幅度和相位信息。

其中,频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。

七、实验分析通过对信号的频谱分析,我们可以得到信号的频率分量和其对应的幅度和相位信息。

通过分析频谱图,我们可以得到信号中各个频率分量的相对强度。

在本实验中,我们可以看到频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。

这说明信号中存在2Hz和5Hz的周期性成分,且2Hz的成分更为明显。

实验二用DFT及FFT进行谱分析

实验二用DFT及FFT进行谱分析

实验二用DFT及FFT进行谱分析实验二将使用DFT(离散傅里叶变换)和FFT(快速傅里叶变换)进行谱分析。

在谱分析中,我们将探索如何将时域信号转换为频域信号,并观察信号的频谱特征。

首先,我们需要了解DFT和FFT的基本概念。

DFT是一种将时域信号分解为频域信号的数学方法。

它将一个离散时间序列的N个样本转换为具有N个频率点的频率谱。

DFT在信号处理和谱分析中被广泛应用,但它的计算复杂度为O(N^2)。

为了解决DFT的计算复杂度问题,Cooley和Tukey提出了FFT算法,它是一种使用分治策略的快速计算DFT的方法。

FFT算法的计算复杂度为O(NlogN),使得谱分析在实际应用中更加可行。

在实验中,我们将使用Python编程语言和NumPy库来实现DFT和FFT,并进行信号的谱分析。

首先,我们需要生成一个具有不同频率成分的合成信号。

我们可以使用NumPy的arange函数生成一组时间点,然后使用sin函数生成不同频率的正弦波信号。

接下来,我们将实现DFT函数。

DFT将时域信号作为输入,并返回频域信号。

DFT的公式可以表示为:X(k) = Σ(x(n) * exp(-i*2πkn/N))其中,X(k)是频域信号的第k个频率点,x(n)是时域信号的第n个样本,N是信号的长度。

我们将使用循环计算DFT,但这种方法的计算复杂度为O(N^2)。

因此,我们将在实验过程中进行一些优化。

接下来,我们将实现FFT函数。

FFT函数将时域信号作为输入,并返回频域信号。

可以使用Cooley-Tukey的分治算法来快速计算FFT。

FFT的基本思想是将一个长度为N的信号分解为两个长度为N/2的子信号,然后逐步地将子信号分解为更小的子信号。

最后,将所有子信号重新组合以得到频域信号。

实验中,我们将使用递归的方式实现FFT算法。

首先,我们将信号分解为两个子信号,然后对每个子信号进行FFT计算。

最后,将两个子信号的FFT结果重新组合以得到频域信号。

用FFT对信号做频谱分析报告

用FFT对信号做频谱分析报告

备注:按照要求独立完成实验容。

实验五 用FFT 对信号做频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

二、实验原理用FFT 对信号作频分析是学习数字信号处理的重要容,经常需要进行分析的信号是模拟信号的时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。

三、实验容(包括代码与产生的图形及分析讨论)1. 对以下序列进行谱分析:14()()x n R n =选择FFT的变换区间N为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线, 并进行对比、分析和讨论。

function mstem(Xk)%mstem(Xk)绘制频域采样序列向量Xk的幅频特性图M=length(Xk);k=0:M-1;wk=2*k/M;%产生M点DFT对应的采样点频率(关于pi归一化值)stem(wk,abs(Xk),'.');box on;%绘制M点DFT的幅频特性图xlabel('w/\pi');ylabel('幅度');axis([0,2,0,1.2*max(abs(Xk))]);x1n=[ones(1,4)]; %产生序列向量x1(n)=R4(n)X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,1);mstem(X1k8); %绘制8点DFT的幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,2);mstem(X1k16); %绘制16点DFT的幅频特性图title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])x2n=[1 2 3 4 4 3 2 1 zeros(1,50)]; %产生序列向量x1(n)=R4(n) X2k8=fft(x2n,8); %计算x1n的8点DFTX2k16=fft(x2n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,3);mstem(X2k8); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(3,2,4);mstem(X2k16); %绘制16点DFT的幅频特性图title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])x3n=[4 3 2 1 1 2 3 4 zeros(1,50)]; %产生序列向量x1(n)=R4(n) X3k8=fft(x3n,8); %计算x1n的8点DFTX3k16=fft(x3n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,5);mstem(X3k8); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,6);mstem(X3k16); %绘制16点DFT的幅频特性图title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k16))])分析:图(1a)和(1b)说明x1(n)=R4(n)的8点DFT和16点DFT分别是x1(n)的频谱函数的8点和16点采样因为x3(n)=x2((n+3))8R8(n),所以,x3(n)与x2(n)的8点DFT的模相等,如图(2a)和(2b ),但是当N=16时,x2(n )与 x3(n )不满足循环移位关系,模值不相等。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

fft谱分析实验报告

fft谱分析实验报告

fft谱分析实验报告实验名称:FFT谱分析实验报告实验目的:1. 学习和掌握FFT(快速傅里叶变换)算法的原理和相关知识。

2. 掌握使用FFT算法进行信号频谱分析的方法和步骤。

3. 通过实验探究不同信号的频谱特征。

实验器材:1. 个人电脑或计算机设备。

2. 谱分析软件(如MATLAB、Python中的numpy.fft模块等)。

实验步骤:1. 准备待分析的信号。

可以是一个模拟信号(如音频或振动信号),也可以是一个数字信号(如从传感器获取的数据)。

2. 打开谱分析软件,并将信号导入到软件中。

3. 使用FFT算法对信号进行频谱分析。

根据软件的具体操作方法,选择合适的参数和设置,如采样率、频率范围等。

4. 确认参数设置无误后,运行软件执行FFT算法,获得信号的频谱图。

5. 分析并解读频谱图。

观察频谱图中的峰值、幅值等信息,进一步了解信号的频谱特征。

实验结果:1. 频谱图:根据实际数据和运行软件获得的结果,绘制信号的频谱图。

2. 频谱特征分析:根据观察和分析频谱图,记录和分析信号的频谱特征(如频率分布、幅值变化等)。

实验讨论和结论:1. 对不同信号的频谱图进行比较和分析,探究信号的不同频谱特征。

2. 讨论和分析不同参数设置对频谱图的影响,如采样率、频率范围等。

3. 总结实验中遇到的问题和解决方案,提出改进和优化的建议。

实验总结:通过本次实验,我们学习和掌握了FFT谱分析的原理和方法。

通过对不同信号的频谱分析,我们了解了信号的频谱特征,并探讨了不同参数设置对频谱图的影响。

实验过程中,遇到了一些问题,并通过分析和解决,不断提高了实验的准确性和可靠性。

通过本次实验,我们对FFT谱分析有了更深入的理解,为以后的信号处理和频谱分析工作奠定了基础。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

用FFT作谱分析实验报告

用FFT作谱分析实验报告

数字信号处理 实验报告FFT 的谱分解一、实验目的:1、在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。

2、熟悉应用FFT 对典型信号进行频谱分析的方法。

熟悉FFT 算法原理和FFT 子程序的应用。

3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法。

了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理:1.快速傅立叶变换(FFT)算法长度为N 的序列)(n x 的离散傅立叶变换)(k X 为:∑-=-==101,....,0,)()(N n nkN N k W n x k XN 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT 又可以分解为两个N/4点的DFT 。

依此类推,当N 为2的整数次幂时(M N 2=),由于每分解一次降低一阶幂次,所以通过M 次的分解,最后全部成为一系列2点DFT 运算。

以上就是按时间抽取的快速傅立叶变换(FFT)算法。

当需要进行变换的序列的长度不是2的整数次方的时候,为了使用以2为基的FFT ,可以用末尾补零的方法,使其长度延长至2的整数次方。

序列)(k X 的离散傅立叶反变换为x n NX k Wn N Nnk k N ()(),,....,==--=-∑10101离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。

因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。

2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。

幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan)(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列x (n )(0≤n ≤N −1)的离散时间傅里叶变换X (e jω)在频率区间(0≤ω≤2π)的N 个等间隔分布的点kω=2πk /N (0≤k ≤N −1)上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列x (n )的N 点DFT X k ,实际上就是x (n )序列的DTFT 在N 个等间隔频率点kω=2πk /N (0≤k ≤N −1)上样本X k 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFTX (ejω)12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

用FFT对信号作频谱分析实验报告

用FFT对信号作频谱分析实验报告

用FFT对信号作频谱分析实验报告实验目的:利用FFT对信号进行频谱分析,掌握FFT算法的原理及实现方法,并获取信号的频谱特征。

实验仪器与设备:1.信号发生器2.示波器3.声卡4.计算机实验步骤:1.将信号发生器与示波器连接,调节信号发生器的输出频率为待测信号频率,并将示波器设置为XY模式。

2.将示波器的输出接口连接至声卡的输入接口。

3.打开计算机,运行频谱分析软件,并将声卡的输入接口设置为当前输入源。

4.通过软件选择频谱分析方法为FFT,并设置采样率为合适的数值。

5.通过软件开始进行频谱分析,记录并保存频谱图像和数据。

实验原理:FFT(快速傅里叶变换)是一种计算机算法,用于将时域信号转换为频域信号。

它通过将一个信号分解成多个不同频率的正弦波或余弦波的合成,并计算每个频率分量的幅度和相位信息。

实验结果与分析:通过对待测信号进行FFT频谱分析,我们可以得到信号在频域上的频谱特征。

频谱图像可以展示出信号中不同频率成分的能量分布情况,可以帮助我们了解信号的频率构成及其相对重要程度。

在实验中,我们可以调节信号发生器的输出频率,观察频谱图像的变化。

当信号频率与采样率相等时,我们可以得到一个峰值,表示信号的主频率。

同时,我们还可以观察到其他频率分量的存在,其幅度与信号频率的差距越小,幅度越低。

通过对不同信号进行频谱分析,我们可以了解信号的频率成分及其分布情况。

这对于信号处理、通信等领域具有重要意义。

实验结论:通过FFT频谱分析,我们可以获得信号在频域上的频谱特征,可以清晰地观察到信号的主频率以及其他频率分量的存在。

这为信号处理及相关应用提供了有价值的信息。

实验中,我们使用了信号发生器、示波器、声卡和计算机等设备,通过连接和软件进行了频谱分析实验。

通过实验,我们掌握了FFT算法的原理及实现方法,并且获取到了信号的频谱特征。

然而,需要注意的是,频谱分析仅能得到信号在其中一时刻或一段时间内的频率成分,不能得到信号的时域信息。

数字信号处理FFT实验报告

数字信号处理FFT实验报告
离散信号的频谱分析npinpinpi这个信号有两根主谱线03pi031pi靠的非常近而另一根谱线045pi的幅度很小请选择合适的长度fft分析给出幅频特性画出x信号的波形图和频谱图
实验日期2014年12月6日同组人叶生、贾生实验学时3学时
实验类型
综合型实验
实验名称
傅里叶变换的应用(频谱分析)
实验目的
subplot(3,1,3)
stem(n*100/N,abs(Xk),'.')
title('X(k)数字频率')
实验一 结果:
实验二 程序:
N=200;
n=0:N-1;
xn=0.2*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.31*pi*n-pi/4);
subplot(2,1,1)
stem(xn,'.')
title('x(n)')
Xk=fft(xn);
subplot(2,1,2)
n1=n(1:(N-1)/2)
XK1=Xk(1:(N-1)/2)
stem(n1*2/N,abs(XK1),'.')
title('X(k)')
实验二 结果:
实验三 程序:
[xn,fs,bits] = wavread('E:/1.wav');
用 FFT 分析给出幅频特性,画出x信号的波形图和频谱图。
实验三:语音信号的频谱分析
用计算机声卡采集录制一段您自己的声音 x(t),(例如:啊~~),单声道,取样频率 16kHz,16bit/样值,长度不限,画出x(t) 的波形图。
截取x(t)信号的一小段非零值,然后进行频谱分析,给出频谱图,求出声音信号的主要频率成分为多少?

用FFT做谱分析报告

用FFT做谱分析报告

实验二用FFT做谱分析一、实验目的1、进一步加深DFT 算法原理和基本性质的理解(因为FFT只是DF的一种快速算法,所以FFT的运算结果必然满足DFT 的基本性质)。

2、熟悉FFT算法原理和FFT子程序的应用。

3、学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

二、实验原理用FFT对信号作频谱分析是学习数字信号处理的重要容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D和分析误差。

频谱分辨率直接和FFT 的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N≤D。

可以根据此时选择FFT的变换区间N。

误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

三、实验容和步骤1、对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++2、对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理实验二快速傅里叶变换(FFT)及其应用报告

数字信号处理实验二快速傅里叶变换(FFT)及其应用报告

实验二 快速傅里叶变换(FFT)及其应用一、 实验目的(1) 在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。

(2) 应用FFT 对典型信号进行频谱分析。

(3) 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

(4) 应用FFT 实现序列的线性卷积。

二、 实验内容实验中用到的信号序列 a) 高斯序列2()015()0n p q a en x n --⎧⎪≤≤=⎨⎪⎩其他b) 衰减正弦序列sin(2)015()0an b e fn n x n π-⎧≤≤=⎨⎩其他c) 三角波序列03()8470c nn x n n n ≤≤⎧⎪=-≤≤⎨⎪⎩其他d) 反三角波序列403()4470d n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其他(1) 观察高斯序列的时域和幅频特性,固定信号()a x n 中参数p =8,改变q 的值,使q 分别等于2,4,8,观察它们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域幅频特性的影响;固定q =8,改变p ,使p 分别等于8,13,14,观察参数p 变化对信号序列的时域及幅频特性的影响,观察p 等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

实验程序:function gauss(p,q) n=0:1:15; N=length(n);xa=exp(-(n-p).^2/q); M=10000;w=2*pi/M*(0:1:M-1); Xa=zeros(1,M); for k=1:MXa(k)=sum(xa*(exp(-j*w(k)*(0:N-1)'))); endsubplot(2,1,1); stem(n,xa);xlabel('n'),ylabel('x_a(n)') subplot(2,1,2); plot(w,abs(Xa))xlabel('\omega'),ylabel('幅度谱') 实验结果: P=8,q=2P=8,q=4nx a(n )01234567123幅度谱P=8,q=8p=13,q=8nx a(n )123456701234ω幅度谱nx a(n)01234567246ω幅度谱p=14,q=8(3) 观察三角波和反三角波序列的时域和幅频特性,用N =8点FFT 分析信号序列()c x n 和()d x n 的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特性nx a(n )01234567246ω幅度谱nx a(n )123456701234ω幅度谱曲线。

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉 FFT 算法及其程序的编写。

2、熟悉应用 FFT 对典型信号进行频谱分析的方法。

3、了解应用 FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用 FFT 。

二、实验原理与方法一个连续信号 )(t x a 的频谱可以用它的傅立叶变换表示为⎰+∞∞-Ω-=Ωdt e t x j X t j a a )()( (2-1)如果对该信号进行理想采样,可以得到采样序列)()(nT x n x a = (2-2)同样可以对该序列进行z 变换,其中T 为采样周期∑+∞-∞=-=n n z n x z X )()( (2-3) 当 ωj ez =的时候,我们就得到了序列的傅立叶变换 ∑+∞-∞=-=n n j j e n x e X ωω)()( (2-4)其中ω称为数字频率,它和模拟域频率的关系为s f T Ω=Ω=ω(2-5)式中的s f 是采样频率。

上式说明数字频率是模拟频率对采样率s f 的归一化。

同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。

序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系∑-=)2(1)(Tm j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。

从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。

注意:这里的信号必须是带限信号,采样也必须满足 Nyquist 定理。

在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。

无限长的序列也往往可以用有限长序列来逼近。

对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是 N 时,我们定义离散傅立叶变换为:∑-===10)()]([)(N n kn NW n x n x DFT K X (2-7) 其中,N j N e W π2-=它的反变换定义为:∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令 k N W z -=,则有)]([)()(10n x DFT W n x z X N n kn N W z k N ==∑-==- (2-9)可以得到 k N k N j W z W e z X k X k N -===-,)()(2π是 z 平面单位圆上幅角为k Nπω2=的点,就是将单位圆进行 N 等分以后第 k 个点。

fft谱分析实验报告

fft谱分析实验报告

fft谱分析实验报告FFT谱分析实验报告引言:谱分析是一种常用的信号处理方法,它可以将信号在频率域上进行分析。

傅里叶变换是一种常见的谱分析方法,而快速傅里叶变换(FFT)是一种高效的傅里叶变换算法。

本实验旨在通过使用FFT算法对不同信号进行谱分析,探究其在信号处理领域的应用。

实验目的:1. 了解FFT算法的原理和基本步骤;2. 掌握使用FFT算法进行信号谱分析的方法;3. 分析不同信号的频谱特征,探索信号处理的应用。

实验仪器和材料:1. 个人计算机;2. MATLAB软件。

实验步骤:1. 准备信号样本:选择不同类型的信号样本,如正弦信号、方波信号和三角波信号,并将其存储为.mat格式的文件。

2. 打开MATLAB软件,并载入信号样本文件。

3. 对信号样本进行FFT变换:使用MATLAB中的fft函数对信号样本进行FFT变换,得到信号的频谱。

4. 绘制频谱图:使用MATLAB中的plot函数将信号的频谱绘制出来,可以选择使用线性坐标或对数坐标进行展示。

5. 分析频谱特征:观察频谱图中的峰值位置、幅值大小等特征,分析不同信号的频谱特征。

实验结果与分析:1. 正弦信号的频谱特征:正弦信号在频谱上呈现出单个峰值,峰值位置对应着信号的频率,峰值的幅值表示信号的强度。

2. 方波信号的频谱特征:方波信号在频谱上呈现出多个峰值,峰值位置对应着信号的谐波频率,峰值的幅值表示谐波的强度。

3. 三角波信号的频谱特征:三角波信号在频谱上呈现出多个峰值,峰值位置对应着信号的谐波频率,峰值的幅值表示谐波的强度。

结论:通过本实验,我们了解了FFT算法的原理和基本步骤,并掌握了使用FFT算法进行信号谱分析的方法。

通过对不同信号样本的频谱分析,我们发现不同信号在频谱上呈现出不同的特征。

正弦信号的频谱呈现单个峰值,方波信号和三角波信号的频谱呈现多个峰值。

这些频谱特征可以帮助我们了解信号的频率分布和强度分布,对信号处理和信号识别具有重要意义。

fft谱分析实验报告

fft谱分析实验报告

FFT谱分析实验报告1. 引言谱分析是一种常见的信号处理技术,用于将一个信号分解为不同频率的成分。

FFT(快速傅里叶变换)是一种高效的算法,用于计算离散傅里叶变换,广泛应用于谱分析中。

本实验旨在探究FFT在信号处理中的应用,并通过实验验证其有效性。

2. 实验目的本实验旨在: - 理解FFT算法的原理和实现方法; - 学习如何使用FFT对信号进行频谱分析; - 验证FFT算法的准确性和有效性。

3. 实验步骤3.1 准备实验材料和工具为了进行谱分析实验,我们需要准备以下材料和工具: - 信号源(例如音频文件、信号发生器等) - 电脑(用于运行信号处理软件) - 信号处理软件(例如MATLAB、Python等)3.2 选择信号源在本实验中,我们选择了一个音频文件作为信号源。

音频文件包含了不同频率的声音信号,适合用于谱分析。

3.3 导入信号源使用信号处理软件,将选择的音频文件导入到程序中。

3.4 实施FFT算法根据FFT算法的原理,我们可以使用信号处理软件实施FFT算法。

以下是实施FFT算法的步骤: 1. 对导入的音频信号进行采样。

2. 将采样后的信号进行傅里叶变换,得到信号的频域表示。

3. 可选地,对频域表示进行滤波或其他信号处理操作。

4. 将处理后的信号进行逆傅里叶变换,得到恢复后的信号。

3.5 分析结果通过实施FFT算法,我们得到了信号的频域表示。

可以通过绘制频谱图来直观地观察信号的频率成分。

频谱图通常以频率为横轴,幅度为纵轴。

通过观察频谱图,我们可以分析信号中存在的频率成分及其强度。

3.6 结果验证为了验证FFT算法的有效性,我们可以选择一些已知频率的信号作为测试样本。

通过对测试样本进行FFT分析,并与已知频率进行比较,可以评估FFT算法的准确性。

4. 结果与讨论通过实验,我们成功使用FFT算法对音频信号进行了谱分析。

通过观察频谱图,我们可以清楚地看到信号中存在的频率成分。

在结果验证部分,我们与已知频率进行了比较,结果表明FFT算法具有较高的准确性。

用FFT作谱分析实验报告

用FFT作谱分析实验报告

用FFT作谱分析实验报告数字信号处理实验报告姓名:学号:课程名称:数字信号处理指导老师:刘峥用FFT作谱分析一、实验目的:1、在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。

2、熟悉应用FFT对典型信号进行频谱分析的方法。

熟悉FFT算法原理和FFT子程序的应用。

3、学习用FFT对连续信号和时域离散信号进行谱分析的方法。

了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

二、实验原理:1、在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散傅里叶变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT 是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT 并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

2、在运用DFT进行频谱分析的过程中可能的产生混叠误差序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

3、用FFT计算相关函数两个长为N 的实离散时间序列x(n)与y(n)的互相关函数定义为:rxy(m)??x(n)y(n?m)??x(n?m)y(n)?x(?m)? y(m) n?0m?0N?1N?1rxy(n)的离散付里叶变换为:Rxy(k)?X?(k)Y(k),当x(n)?y(n)时,得到x(n)的自相关函数为:0?k?N?1jkm1N?1rxx(m)??x(n)x(n?m)??X(k)eNNk ?0n?0 N?122?利用FFT求两个有限长序列线性相关的步骤:为了使两个有限长序列的线性相关可用其圆周相关代替而不产生混淆,选择周期N?2L≥N1?N2?1,以便使用FFT,将x(n),y(n)补零至长为N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》实践报告题 目: 实验二 用FFT 做谱分析1. 实验目的(1) 进一步加深DFT 算法原理和基本性质的理解(因为 FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质)。

(2) 熟悉FFT 算法原理和FFT 子程序的应用。

(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。

2. 实验步骤(1) 复习DFT 的定义、性质和用DFT 作谱分析的有关容。

(2) 复习按时间抽选法FFT 算法原理及相应的运算流图 (3) 编制信号产生子程序,产生以下典型信号供谱分析用:x1(n) = R4(n)x 2(n) = ⎪⎩⎪⎨⎧≤≤-≤≤+nn n n n 其他,074,830,1x 3(n) = ⎪⎩⎪⎨⎧≤≤-≤≤-nn n n n 其他,074,330,4 x 4(n) = cos(πn /4) x 5(n) = sin(πn /8)x 6(t) = cos8πt + cos16πt + cos20πt应当注意,如果给出的是连续信号x a (t),则首先要根据其最高频率确定抽样频率f s 以及由频率分辨率选择抽样点数N ,然后对其进行软件抽样(即计算 x(n)=x a (nT),0≤n ≤N-1),产生对应序列 x(n)。

对信x 6(t),频率分辨率的选择要以能分辨开其中的三个频率对应的谱线为准则。

对周期序列,最好截取周期的整数倍进行谱分析,否则有可能产生较大的分析误差。

请实验者根据DFT 的隐含周期性思考这个问题。

(4) 编写主程序。

图2.1 给出了主程序框图,供参考。

对2中所给出的信号逐个进行谱分析。

下面给出针对各信号的FFT变换区间N以及对连续信号x6(t)的抽样频率f s,供实验时参考。

x1(n) , x2(n) , x3(n) , x4(n) , x5(n):N = 8 , 16x6(t):f s = 64(Hz) , N = 16 , 32 , 643、实验容(1)x1(n) = R4(n)程序代码:x1=ones(1,4);N=4;n=[0:1:3];stem(n,x1);X1=fft(x1,8);magX1=abs(X1);k=[0:7];stem(k,magX1);x12=ones(1,4);N=16;n1=[0:3];stem(n1,x12);X12=fft(x12,16);magX12=abs(X12);k1=[0:15];stem(k1,magX12);subplot(2,2,1):stem(n,x1);subplot(2,2,2):stem(n1,x12);subplot(2,2,3):stem(k,magX1);subplot(2,2,4):stem(k1,magX12);(2)x 2(n) = ⎪⎩⎪⎨⎧≤≤-≤≤+nn n n n 其他,074,830,1 程序代码: x2=[1:4,4:-1:1]; n=[0:3,4:7]; stem(n,x2); X2=fft(x2,8); magX2=abs(X2); k=[0:7];stem(k,magX2);x2=[1:4,4:-1:1]; n1=[0:3,4:7]; stem(n,x2); X21=fft(x2,16); magX21=abs(X21); k1=[0:15];stem(k1,magX21);subplot(2,2,1):stem(n,x2); subplot(2,2,2):stem(n1,x2); subplot(2,2,3):stem(k,magX2); subplot(2,2,4):stem(k1,magX21);(3)x 3(n) = ⎪⎩⎪⎨⎧≤≤-≤≤-nn n n n 其他,074,330,4 程序代码:x3=[4:-1:1,1:4];n=[0:3,4:7];stem(n,x3);X3=fft(x3,8);magX3=abs(X3);k=[0:7];stem(k,magX3);x3=[4:-1:1,1:4];n1=[0:3,4:7];stem(n,x3);X31=fft(x3,16);magX31=abs(X31);k1=[0:15];stem(k1,magX31);subplot(2,2,1):stem(n,x3); subplot(2,2,2):stem(n1,x3); subplot(2,2,3):stem(k,magX3); subplot(2,2,4):stem(k1,magX31);(4)x4(n) = cos(πn /4)程序代码:n=[0:7];x4=cos(pi*n/4);stem(n,x4);X4=fft(x4,8);magX4=abs(X4);k=[0:7];stem(k,magX4);n1=[0:15];x41=cos(pi*n1/4);stem(n,x4);X41=fft(x4,16);magX41=abs(X41);k1=[0:15];stem(k1,magX41);subplot(2,2,1):stem(n,x4); subplot(2,2,2):stem(n1,x41); subplot(2,2,3):stem(k,magX4); subplot(2,2,4):stem(k1,magX41);(5)x5(n) = sin(πn /8)程序代码:n=0:1:7;x5=sin(pi*n/8);stem(n,x5);X5=fft(x5,8);magX5=abs(X5);k=[0:7];stem(k,magX5);n1=0:1:15;x51=sin(pi*n1/8);stem(n1,x51);X51=fft(x5,16);magX51=abs(X51);k1=[0:15];stem(k1,magX51);subplot(2,2,1):stem(n,x5); subplot(2,2,2):stem(n1,x51); subplot(2,2,3):stem(k,magX5); subplot(2,2,4):stem(k1,magX51);(6)x6(t) = cos8πt + cos16πt + cos20πtN=32程序代码:fs=64;T=1/fs;t=0:T:1/2-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,32);magX6=abs(X6);k=[0:31];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);N=16程序代码:fs=64;T=1/fs;t=0:T:1/4-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,16);magX6=abs(X6);k=[0:15];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);N=64程序代码:fs=64;T=1/fs;t=0:T:1-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,64);magX6=abs(X6);k=[0:63];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);思考题:1、在N=8时,x2(n )和x3(n )的幅频特性会相同吗?为什么?N=16呢? 答:在N=8时,x 2(n)和x 3(n)的幅频特性相同,x 3(n)= x 2((n-4))8,0≤n ≤7 DFT(x 3(n))= e -j(2π/8)k4X 2[k]=e -j πk X 2[k],所以x 2(n)和x 3(n)的幅频特性相同。

N=16时不相同。

N=16时,x 2(n)和x 3(n)均需补零,不再满足循环位移。

2、通过对x4(n ),x5(n )的分析,你发现这两个信号有哪些频率成分?你得出什么结论?答:DFT 采样结果因采样点数不同而变化。

3、如果周期信号的周期预先不知道,如何用FFT 进行谱分析?答: 如果周期信号的周期预先不知道,可先截取M 点的进行FFT ,即 ~()()()M M x n x n R n =•()[()]M M X k DFT x n =01k M ≤≤- 再将截取长度扩大1倍,截取~22()()()M M x n x n R n =•22()[()]M M X k DFT x n =021k M ≤≤- 比较()M X k 和2()M X k ,如果二者的主谱差别满足分析误差要求,则以()M X k 或2()M X k 可近似表示 ~()x n 的频谱,否则,继续截取长度加倍,直 至前后两次分析所得主谱频率差别满足误差要求。

相关文档
最新文档