高考数学大一轮复习 1.1集合 理
2021-2022年高考数学大一轮复习 第一章 集合与常用逻辑用语精品讲义 理(含解析)
2021-2022年高考数学大一轮复习 第一章 集合与常用逻辑用语精品讲义理(含解析)一、重视教材习题的母题功能你知道高考题是怎样命制的吗?看完本讲内容,洞晓了高考命题的5大常用手段,你就明白了教材经典题目的重要性.你还会陷入“高考高于天,教材放一边”的备考误区吗?编写本讲的目的,我们旨在提醒您:一轮复习要“抓纲靠本”,“纲”就是考纲,“本”就是课本.要重拾起被遗忘忽视的课本,重温基础知识,重做典型题目,重视教材“母题”的引领作用,发挥教材母题做一当十的功效.在此,仅以xx 新课标全国卷两套试题为例进行说明,以佐证教材习题的重要性.教材这样练《人教A 版·必修4》P119 B 组第1题第(4)小题.已知D ,E ,F 分别是△ABC的边BC ,CA ,AB 的中点,且=a ,=b ,=c ,则①=12c -12b ;②=a +12b ;③=-12a +12b ;④++=0中正确的等式的个数为( )高考这样变(xx·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则+=( )教材这样练《人教A 版·选修2-1》P69例4.斜率为1的直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A,B两点,求线段AB的长.高考这样变(xx·新课标全国卷Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A.303B.6C.12 D.73教材这样练《人教A版·必修5》P14例5.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北高考这样变(xx·新课标全国卷Ⅰ)如图,为测量山高MN,选择A 和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;教材这样练《人教B版·必修5》P30练习A.写出下面数列{a n}的前5项:1.a1=2,a n=12an-1(n=2,3,4,…);高考这样变(xx·新课标全国卷Ⅱ)数列{a n}满足a n+1=15°的方向上,行驶5 km后到达B处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD(精确到1 m).从C点测得∠MCA=60°,已知山高BC=100 m,则山高MN=________m.总之,教材中的例题、习题是经过精心挑选而设计的,它蕴藏着丰富的思想方法和研究资源.不少试题所涉及的思想方法,都源于教材.高考数学一轮复习中,要做到对教材中的经典题目能够熟练地求解,掌握它的通性通法、答题规范、思路分析及知识内涵.研读教材、汲取营养,充分发挥例题、习题潜在的功能,发挥教材“母本”的作用.为减少考生翻阅教材、查找典型题目之苦,充分发挥我们编者占有广泛教学资源的优势,我们在人教A版、人教B版、北师大版等教材中优中选优地筛选了一些经典题目,做为课前自检基础知识使用,就是充分发挥教材母题的引领带动作用.本讲内容是上一讲内容的顺承和拓展,其主旨还是让学生在做题的过程中学会多思考和多领悟.如果说上一讲是教给学生“做什么”的问题,那么这一讲是教给学生“怎么做”的问题.在平时的复习备考中,做海量试题必不可少,但绝非上策.应当充分发挥典型试题的带动作用和举一反三的功能,注意培养多题一解、一题多解和一题多变思维能力的养成.多题一解有利于培养学生的求同思维,一题多解有利于培养学生的求异思维,一题多变有利于培养学生思维的灵活性与深刻性.教材这样练《人教A版·必修1》P39B组第3题.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.高考这样变(xx·新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.多题一解和一题多解主要靠学生在平时做题的过程中,发挥主观能动性,多思考,多总结,而一题多解则需要教师多找一些典型题目多拓展,多发散,帮学生举一反三、悟通练透.本书在“一题多变”上主要做了以下两方面的尝试: (一)经典“题根”的发散茫茫题海,寻根是岸.木有本,水有源,题有根.在平时的训练中,可将一些经典的题目做为“题根”,在题目发散中,要学会演变题目条件、背景,变换设问,在不断变换的过程中,将此类问题厘清弄透,从一个个小问题中获取大知识,让其“枝繁叶茂”、“生机盎然”,从而彻底打通各知识点间的关节.示例:利用基本不等式求最值(二)考查角度的发散高考中的一些热门考点,虽知年年必考,但学生往往却在这类考点上失分,究其原因,主要是此类考点考查灵活、角度多变.为将这类考点练深练透,有必要对这类考点进行多维探究.备考不留死角,高考不留遗憾!若本题条件变为:已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.本题的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1c 的最小值为________.本题的条件和结论互换,即:已知a >0,b >0,1a +1b =4,则a +b 的最小值为________.已知a >0,b >0,a +b =1,则1a +1b的最小值为________.[解析] ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.[答案] 4已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n 的最小值为________.本题的条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立. (2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.(4)利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2[类题通法] 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.(4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.第一章集合与常用逻辑用语第一节集__合基础盘查一元素与集合(一)循纲忆知1.了解集合的含义、元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(二)小题查验1.判断正误(1)一个集合中可以找到两个相同的元素( )(2)集合{x|x>3}与集合{t|t>3}表示的是同一集合( )(3)a在集合A中,可用符号表示为a⊆A( )(4)零不属于自然数集( )答案:(1)×(2)√(3)×(4)×2.(人教A版教材练习)选择适当的方法表示下列集合:(1)由小于8的所有素数组成的集合;(2)不等式4x-5<3的解集.答案:(1){2,3,5,7} (2){x|x<2}基础盘查二集合间的基本关系(一)循纲忆知1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.在具体情境中,了解全集与空集的含义.(二)小题查验1.判断正误(1)若A=B,则A⊆B( )(2)若A B,则A⊆B且A≠B( )(3)N*N Z( )(4)空集是任何集合的子集,两元素集合是三元素集合的子集( )答案:(1)√(2)√(3)√(4)×2.(人教A版教材例题改编)集合{a,b}的所有子集为________________.答案:{a},{b},{a,b},∅基础盘查三集合的基本运算(一)循纲忆知1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用韦恩(Venn)图表达集合的关系及运算.(二)小题查验1.判断正误(1)若A∩B=A∩C,则B=C( )(2)集合A与集合A在全集U中的补集没有公共元素( )(3)并集定义中的“或”能改为“和”()(4)A∩B是由属于A且属于B的所有元素组成的集合( )答案:(1)×(2)√(3)×(4)√2.(人教A版教材习题改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=________.答案:{2,4}3.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________________.答案:{x|x≤2或x≥10}考点一集合的基本概念|(基础送分型考点——自主练透)[必备知识]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示法:列举法、描述法、Venn图.2.常见数集及其表示符号自然数集用N表示,正整数集用N*或N+表示,整数集用Z表示,有理数集用Q表示,实数集用R表示.[提醒] 解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[题组练透]1.(xx·洛阳统考)已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9解析:选D 集合B 中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.2.现有三个实数的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a,1,也可以表示为{a 2,a +b,0},则a2 015+b2 015=________.解析:由已知,得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 015+b2 015=(-1)2 015=-1.答案:-13.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-32[类题通法]1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二 集合间的基本关系|(重点保分型考点——师生共研)[必备知识](1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ); (2)真子集:若集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,则A B (或B A );(3)性质:∅⊆A ;A ⊆A ;A ⊆B ,B ⊆C ⇒A ⊆C .(4)集合相等:若A⊆B,且B⊆A,则A=B.[提醒] 写集合的子集时不要忘了空集和它本身.[典题例析]1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C ⊆B的集合C的个数为( )A.1 B.2C.3 D.4解析:选D 用列举法表示集合A,B,根据集合关系求出集合C的个数.由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.已知集合A={x|x2-2 015x+2 014<0},B={x|x<m},若A⊆B,则实数m的取值范围是________.解析:由x2-2 015x+2 014<0,解得1<x<2 014,故A={x|1<x<2 014}.而B={x|x<m},由于A⊆B,如图所示,则m≥2 014.答案:[2 014,+∞)[类题通法](1)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.(2)当题目中有条件B⊆A时,不要忽略B=∅的情况![演练冲关]1.(xx·中原名校联盟一模)设A={1,4,2x},若B={1,x2},若B⊆A,则x=________.解析:由B⊆A,则x2=4或x2=2x.当x2=4时,x=±2,但x=2时,2x=4,这与集合元素的互异性相矛盾;当x2=2x时,x=0或x=2,但x=2时,2x=4,这与集合元素的互异性相矛盾.综上所述,x=-2或x=0.答案:0或-22.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.解析:当B=∅时,有m+1≥2m-1,则m≤2.当B≠∅时,若B⊆A,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4. 答案:(-∞,4]考点三 集合的基本运算|(题点多变型考点——全面发掘)[必备知识]1.集合的并、交、补运算: 并集:A ∪B ={x |x ∈A ,或x ∈B }; 交集:A ∩B ={x |x ∈A ,且x ∈B };补集:∁U A ={x |x ∈U ,且x ∉A };U 为全集,∁U A 表示集合A 相对于全集U 的补集. 2.集合的运算性质(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; (2)A ∩A =A ,A ∩∅=∅; (3)A ∪A =A ,A ∪∅=A ;(4)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .[提醒] Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.[一题多变][典型母题]已知集合A ={y |y =x 2-2x ,x ∈R },B ={y |y =-x 2+2x +6,x ∈R },则A ∩B = .[解析] y =x 2-2x =x -12-1≥-1,,y =-x 2+2x +6=-x -12+7≤7,,∴A ={y |y ≥-1},B ={y |y ≤7},,故A ∩B ={y |-1≤y ≤7}.[答案] {y |-1≤y ≤7}[题点发散1] 若集合A 变为A ={x |y =x 2-2x ,x ∈R },其他条件不变,求A ∩B . 解:因A 中元素是函数自变量,则A =R , 而B ={y |y ≤7},则A ∩B ={y |y ≤7}.[题点发散2] 若集合A 、B 中元素都为整数,求A ∩B . 解:A ∩B ⊆{y |-1≤y ≤7},又因为y ∈Z , 故A ∩B ={-1,0,1,2,3,4,5,6,7}.[题点发散3] 若集合A 、B 不变,试求∁R A ∪∁R B .解:∵A ={y |y ≥-1},B ={y |y ≤7}, ∴∁R A ={y |y <-1},∁R B ={y |y >7}, 故∁R A ∪∁R B ={y |y <-1或y >7}.[题点发散4] 若集合A 、B 变为:A ={(x ,y )|y =x 2-2x ,x ∈R },B ={(x ,y )|y =-x 2+2x +6,x ∈R },求A ∩B .解:由⎩⎪⎨⎪⎧y =x 2-2x ,y =-x 2+2x +6⇒x 2-2x -3=0,解得x =3或x =-1.于是,⎩⎪⎨⎪⎧x =3,y =3或⎩⎪⎨⎪⎧x =-1,y =3,故A ∩B ={(3,3),(-1,3)}.[类题通法]解集合运算问题应注意以下三点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.考点四 集合的新定义问题|(重点保分型考点——师生共研)[典题例析]1.如图所示的Venn 图中,A ,B 是非空集合,定义集合AB 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D 因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以AB =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.2.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1解析:选B 由于3×4与43均不属于数集{1,3,4},故A 不正确,由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确,由“权集”的定义可知a ja i需有意义,故不能有0,同时不一定有1,C ,D 错误,选B.[类题通法]解决集合创新型问题的方法(1)紧扣新定义:首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.[演练冲关]1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31解析:选B 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.2.对于任意两个正整数m ,n ,定义运算(用⊕表示运算符号):当m ,n 都是正偶数或都是正奇数时,m ⊕n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊕n =m ×n .例如4⊕6=4+6=10,3⊕7=3+7=10,3⊕4=3×4=12.在上述定义中,集合M ={(a ,b )|a ⊕b =12,a ,b ∈N *}的元素有________个.解析:m ,n 同奇同偶时有11组:(1,11),(2,10),…,(11,1);m ,n 一奇一偶时有4组:(1,12),(12,1),(3,4),(4,3),所以集合M 的元素共有15个.答案:15一、选择题1.(xx·广州测试)已知集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.2.(xx·江西高考)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)解析:选 C 由题意知,A ={x |x 2-9<0}={x |-3<x <3},∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}. 3.已知集合A ={x |y =1-x 2},B ={x |x =m 2,m ∈A },则( ) A .AB B .B AC .A ⊆BD .B ⊆A解析:选B 由题意知A ={x |y =1-x 2},∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A }={x |0≤x ≤1},∴B A ,故选B.4.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)解析:选 D 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.5.(xx·西安一模)设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x -y=3上的点,联立⎩⎪⎨⎪⎧x +y =1,x -y =3可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2,故选C.6.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”.其中,正确结论的个数是( ) A .1 B .2 C .3D .4解析:选C 因为2 014=402×5+4,又因为[4]={5n +4|n ∈Z },所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z 除以5可得的余数为0,1,2,3,4,所以③正确;若a ,b 属于同一‘类’,则有a =5n 1+k ,b =5n 2+k ,所以a -b =5(n 1-n 2)∈[0],反过来,如果a -b ∈[0],也可以得到a ,b 属于同一“类”,故④正确.故有3个结论正确.二、填空题7.已知A ={0,m,2},B ={x |x 3-4x =0},若A =B ,则m =________. 解析:由题知B ={0,-2,2},A ={0,m,2},若A =B ,则m =-2. 答案:-28.(xx·重庆高考)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解析:由题意,得U ={1,2,3,4,5,6,7,8,9,10},故∁U A ={4,6,7,9,10},所以(∁U A )∩B ={7,9}.答案:{7,9}9.(xx·昆明二模)若集合A ={x |x 2-9x <0,x ∈N *},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪4y∈N *,y ∈N *,则A ∩B中元素的个数为________.解析:解不等式x 2-9x <0可得0<x <9,所以A ={x |0<x <9,x ∈N *}={1,2,3,4,5,6,7,8},又4y∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A ∩B=B ,A ∩B 中元素的个数为3.答案:310.(xx·南充调研)已知集合A ={x |4≤2x≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2] 三、解答题11.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.12.(xx·福州月考)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).第二节命题及其关系、充分条件与必要条件基础盘查一 四种命题及其关系 (一)循纲忆知 1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(二)小题查验 1.判断正误(1)“x 2+2x -3<0”是命题( ) (2)“sin 45°=1”是真命题( )(3)命题“若p ,则q ”的否命题是“若p ,则綈q ”( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真( ) 答案:(1)× (2)× (3)× (4)√2.(人教A 版教材习题)已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤0 基础盘查二 充分条件与必要条件 (一)循纲忆知理解必要条件、充分条件与充要条件的意义. (二)小题查验 1.判断正误(1)当q 是p 的必要条件时,p 是q 的充分条件( )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立( )(3)q不是p的必要条件时,“p/⇒q”成立( )答案:(1)√(2)√(3)√2.(人教A版教材练习)在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.答案:(1)必要(2)充分(3)充要考点一命题及其相互关系|(基础送分型考点——自主练透)[必备知识]1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[提醒] 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.[题组练透]1.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.2.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④[类题通法]1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分必要条件的判定|(重点保分型考点——师生共研)[必备知识]1.充分条件与必要条件的相关概念(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇒/p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇒/q,则p是q的必要不充分条件;(5)如果p⇒/q,且q⇒/p,则p是q的既不充分又不必要条件.2.从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={p(x)},B={q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A⃘B且A⊉B,则p是q的既不充分又不必要条件.[提醒] 充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).[典题例析]1.(xx·浙江高考)设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 当四边形ABCD 为菱形时,必有对角线互相垂直,即AC ⊥BD .当四边形ABCD 中AC ⊥BD 时,四边形ABCD 不一定是菱形,还需要AC 与BD 互相平分.综上知,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.2.给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由q ⇒綈p 且綈p ⇒/ q 可得p ⇒綈q 且綈q ⇒/ p ,所以p 是綈q 的充分不必要条件.[类题通法]充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的范围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.[提醒] 区别A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[演练冲关]1.若p :|x |=x ,q :x 2+x ≥0.则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0或x ≤-1}=B ,∵AB ,∴p 是q 的充分不必要条件.2.(xx·石家庄第一次模拟)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.考点三 充分必要条件的应用|(题点多变型考点——全面发掘)[一题多变][典型母题]已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 当S =∅时满足S ⊆P ,则1-m >1+m .∴m <0. 当S ≠∅时,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是(-∞,3].[题点发散1] 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[题点发散2] 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P . ∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[类题通法]利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒/p ; (2)若p 是q 的必要不充分条件,则p ⇒/q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q .一、选择题1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.2.(xx·陕西高考)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假解析:选B 原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B.3.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.4.(xx·湖北高考)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是A ∩B ≠∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .。
2024年高考数学一轮复习第1章 §1.1 集 合
§1.1集合考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:____________、____________、____________.(2)元素与集合的关系是________或________,用符号______或________表示.(3)集合的表示法:__________、____________、____________.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N*(或N+)2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中____________都是集合B中的元素,就称集合A为集合B的子集,记作________(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且________,就称集合A是集合B的真子集,记作________(或B A).(3)相等:若A⊆B,且________,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是________________的子集,是________________________的真子集.3.集合的基本运算表示集合语言图形语言记法运算并集交集补集常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若1∈{x2,x},则x=-1或x=1.()(4)对任意集合A,B,都有(A∩B)⊆(A∪B).()教材改编题1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于() A.{-1,2} B.{1,2} C.{1,4} D.{-1,4}2.下列集合与集合A={2 022,1}相等的是()A.(1,2 022)B.{(x,y)|x=2 022,y=1}C.{x|x2-2 023x+2 022=0}D.{(2 022,1)}3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________,∁U(A∩B)=________.题型一集合的含义与表示例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为()A.0 B.1 C.2 D.3(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为()A.1 B.1或0C.0 D.-1或0听课记录:______________________________________________________________________________________________________________________________________思维升华解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是() A.0∉M B.{0}∈MC.{1}⊆M D.1⊆M(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为() A.2 B.3 C.4 D.5题型二集合间的基本关系例2 (1)(2022·宜春质检)已知集合A={x|y=ln(x-2)},B={x|x≥-3},则下列结论正确的是()A.A=B B.A∩B=∅C.A B D.B⊆A(2)设集合A={x|-1≤x+1≤2},B={x|m-1≤x≤2m+1},当x∈Z时,集合A的真子集有________个;当B⊆A时,实数m的取值范围是________.听课记录:______________________________________________________________________________________________________________________________________思维升华(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练2 (1)(多选)已知非空集合M满足:①M⊆{-2,-1,1,2,3,4},②若x∈M,则x2∈M.则集合M可能是()A.{-1,1} B.{-1,1,2,4}C.{1} D.{1,-2,2}(2)函数f(x)=x2-2x-3的定义域为A,集合B={x|-a≤x≤4-a},若B⊆A,则实数a的取值范围是________________.题型三集合的基本运算命题点1集合的运算例3 (1)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T 等于()A.∅B.S C.T D.Z(2)设全集U=R,A={x|-2≤x<4},B={x|y=x+2},则图中阴影部分表示的集合为()A.{x|x≤-2} B.{x|x>-2}C.{x|x≥4} D.{x|x≤4}听课记录:______________________________________________________________________________________________________________________________________命题点2利用集合的运算求参数的值(范围)例4 (2023·衡水模拟)已知集合A={x|y=ln(1-x2)},B={x|x≤a},若(∁R A)∪B=R,则实数a 的取值范围为()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]听课记录:______________________________________________________________________________________________________________________________________思维升华对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2022·全国甲卷)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)等于()A.{1,3} B.{0,3}C.{-2,1} D.{-2,0}(2)(2023·驻马店模拟)已知集合A={x|(x-1)·(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a 的取值范围是()A .[1,4)B .(1,4)C .[4,+∞)D .(4,+∞)题型四 集合的新定义问题例5 (1)(多选)当一个非空数集F 满足条件“若a ,b ∈F ,则a +b ,a -b ,ab ∈F ,且当b ≠0时,ab ∈F ”时,称F 为一个数域,以下说法正确的是( )A .0是任何数域的元素B .若数域F 有非零元素,则2 023∈FC .集合P ={x |x =3k ,k ∈Z }为数域D .有理数集为数域(2)已知集合M ={1,2,3,4},A ⊆M ,集合A 中所有元素的乘积称为集合A 的“累积值”,且规定:当集合A 只有一个元素时,其累积值即为该元素的数值,空集的累积值为0.设集合A 的累积值为n .①若n =3,则这样的集合A 共有________个; ②若n 为偶数,则这样的集合A 共有________个.听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4 设集合U ={2,3,4},对其子集引进“势”的概念:①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,依此类推.若将全部的子集按“势”从小到大的顺序排列,则排在第6位的子集是________.。
高三数学人教版A版数学(理)高考一轮复习教案:1.1 集合 Word版含答案
第一节 集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合间的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集. (3)能使用韦恩(Venn)图表示集合的关系及运算.知识点一 集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性. 2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉. 3.集合的三种表示方法:列举法、描述法、V enn 图法.易误提醒 在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[自测练习]1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:1a ≠0,a ≠0,a 2≠-1,只有a 2=1.当a =1时,1a =1,不满足互异性,∴a =-1.答案:-1知识点二 集合间的基本关系A必记结论若集合A中有n个元素,则其子集个数为2,真子集个数为2-1,非空真子集的个数为2n-2.易误提醒易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.[自测练习]2.已知集合A={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若A⊆R,则a=() A.1 B.-1 C.±1 D.0解析:A⊆R,∴a2-1=0,a=±1.答案:C3.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512 B.256C.255 D.254解析:由题意知当x=1时,y可取1,2,3,4;当x=2时,y可取1,2;当x=3时,y可取1;当x=4时,y可取1.综上,B中所含元素共有8个,所以其真子集有28-1=255个.选C.答案:C知识点三集合的基本运算及性质易误提醒 运用数轴图示法易忽视端点是实心还是空心. 必记结论 ∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[自测练习]4.(2015·广州一模)已知全集U ={1,2,3,4,5},集合M ={3,4,5},N ={1,2,5},则集合{1,2}可以表示( )A .M ∩NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )解析:M ∩N ={5},A 错误;∁U M ={1,2},(∁U M )∩N ={1,2},B 正确;∁U N ={3,4},M ∩(∁U N )={3,4},C错误;(∁U M )∩(∁U N )=∅,D 错误.故选B.答案:B5.(2015·长春二模)已知集合P ={x |x ≥0},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( ) A .(-∞,2) B .(-∞,-1] C .(-1,0)D .[0,2]解析:由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.答案:D考点一 集合的基本概念|1.已知集合S ={x |3x +a =0},如果1∈S ,那么a 的值为( ) A .-3 B .-1 C .1D .3解析:∵1∈S ,∴3+a =0,a =-3. 答案:A2.设集合A ={1,2,4},集合B ={x |x =a +b ,a ∈A ,b ∈A },则集合B 中的元素个数为( )A .4B .5C .6D .7 解析:∵a ∈A ,b ∈A ,x =a +b ,∴x =2,3,4,5,6,8,∴B 中有6个元素,故选C. 答案:C3.(2015·贵阳期末)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,则a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}判断一个元素是某个集合元素的三种方法:列举法、特征元素法、数形结合法.考点二集合间的基本关系及应用|(1)已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2B.3C.4 D.5[解析]依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.[答案] C(2)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1][解析]依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.[答案] B1.判断两集合的关系常有两种方法(1)化简集合,从表达式中寻找两集合间的关系.(2)用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时的两个关键点(1)将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.(2)合理利用数轴、Venn图帮助分析.1.(2015·辽宁五校联考)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是() A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.答案:A考点三集合的基本运算|(1)(2015·高考全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}[解析]由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.[答案] A(2)(2015·郑州期末)已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.[解析]本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).阴影部分用集合表示为∁A∪B(A∩B)=(-∞,0)∪(0,+∞).[答案](-∞,0)∪(0,+∞)集合运算问题的四种常见类型及解题策略(1)离散型数集或抽象集合间的运算.常借助Venn图求解.(2)连续型数集的运算.常借助数轴求解.(3)已知集合的运算结果求集合.借助数轴或Venn图求解.(4)根据集合运算求参数.先把符号语言译成文字语言,然后适时应用数形结合求解.2.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(-∞,1]解析:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.答案:A考点四集合的创新问题|设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7B.10C.25D.52[解析]A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.[答案] B解决集合创新问题的三个策略(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.(2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.(3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B1.遗忘空集致误【典例】 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.若(∁R A )∩B =B ,则实数a 的取值范围是________.[解析] ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤3,∴∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,当(∁R A )∩B =B 时,B ⊆∁R A 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.[答案] a ≥-14[易误点评] 由∁R A ∩B =B 知B ⊆∁R A ,即A ∩B =∅,又集合B 中元素属性满足x 2+a <0,当a ≥0时B =∅易忽视导致漏解.[防范措施] (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B ,若已知A ⊆B 或A ∩B =∅,则考生很容易忽视A =∅而造成漏解.在解题过程中应根据集合A 分三种情况进行讨论.[跟踪练习] 已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-12A 组 考点能力演练1.集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z |x 2-5x +4<0},则∁U (A ∪B )=( ) A .{0,1,3,4} B .{1,2,3} C .{0,4}D .{0}解析:因为集合B ={x ∈Z |x 2-5x +4<0}={2,3},所以A ∪B ={1,2,3},又全集U ={0,1,2,3,4},所以∁U (A ∪B )={0,4}.所以选C.答案:C2.已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( )A.5 B.6C.7 D.8解析:由题意,得B={0,1,2,3,2},所以A∩B={0,1,2},所以A∩B的真子集个数为23-1=7,故选C.答案:C3.(2015·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)x|-3<x<1,N={}x|-1≤x≤1,∴阴影部分表示的集合解析:由题意可知,M={}x|-3<x<-1.为M∩(∁U N)={}答案:D4.集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由题意,得A={x|x<2}.又因为A∩B=A,所以a≥2,故选D.答案:D5.(2015·山西质检)集合A,B满足A∪B={1,2},则不同的有序集合对(A,B)共有() A.4个B.7个C.8个D.9个解析:由题意可按集合A中的元素个数分类.易知集合{1,2}的子集有4个:∅,{1},{2},{1,2}.若A=∅,则B={1,2};若A={1},则B={2}或B={1,2};若A={2},则B ={1}或B={1,2};若A={1,2};则B=∅或B={1}或B={2}或B={1,2}.综上所述,不同的有序集合对(A,B)共有9个,故选D.答案:D6.(2015·广州模拟)设集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},满足C⊆(A∩B)的集合C的个数为________.解析:依题意得,A∩B={(8,-10)},因此满足C⊆(A∩B)的集合C的个数是2.答案:27.设集合S n={1,2,3,…,n},若X⊆S n,把X的所有元素的乘积称为X的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集,则S4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:78.已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________. 解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m =0. 答案:09.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∴A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}.(2)由(1)知A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2}, 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,实数a 的取值范围为{a |a ≥3}.B 组 高考题型专练1.(2014·高考课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解析:由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.答案:A2.(2014·高考课标全国卷Ⅱ)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1} B.{2}C.{0,1} D.{1,2}解析:由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.答案:D3.(2015·高考全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n+2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2,选D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅解析:因为A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=() A.[0,1) B.(0,2]C.(1,2) D.[1,2]解析:∁R P={x|0<x<2},故(∁R P)∩Q={x|1<x<2}.答案:C6.(2015·高考重庆卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A解析:由真子集的概念知B A,故选D.答案:D。
2025年高考数学一轮复习-1.1.1-集合的概念与表示【课件】
• 【学法解读】 • 在本节学习中,学生依据老师创设合适的问题情境,以 义务教育阶段所学过的数学内容为载体,学会用集合语言表 达学过的相应内容,理解元素与集合的关系、元素的特征及 集合的表示方法.
第1课时 集合的概念
必备知识•探新知
基础知识
知•识点1
元素与集合的概念
• 1.集合:一A,般B地,,C,我…们把指定的某些对象的全体称为集 合,通常用大写英文字母__________________表示.
• (2)N*和N+的含义是一样的,初学者往往会误记为N*或N +,为避免出错,对于N*和N+,可形象地记为“星星(*)在天 上,十字(+)在地下”.
基础自测
• 1.下列各组对象中不能组成集合的是
(C )
• A.清华大学2020年入校的全体学生
• B.我国十三届全国人大二次会议的全体参会成员
• C.中国著名的数学家
题型二
元素与集合的关系
例 2 若所有形如 3a+ 2b(a∈Z,b∈Z)的数组成集合 A,请判断 6-2 2是不是集合 A 中的元素.
• [分析] 根据元素与集合的关系判断,可令a=2,b=- 2.[解析] 因为在 3a+ 2b(a∈Z,b∈Z)中,
令 a=2,b=-2,即可得到 6-2 2, 所以 6-2 2是集合 A 中的元素.
•知识点2 元素与集合的关系
关系
概念
记法
读法
如果a是集合A中的元素, 属于
就说a属于集合A
a__∈____A
a属于集合A
不属于 如果a不是集合A中的元素, ___a_∉__A____ a___不__属__于___集合A 就说a不属于集合A
2020_2021学年高考数学一轮复习专题1.1集合知识点讲解理科版含解析
专题1.1 集合【核心素养分析】1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算。
4.培养学生数学抽象、逻辑推理、数学运算、直观想象能力。
【知识梳理】知识点1:元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性。
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉。
(3)集合的三种表示方法:列举法、描述法、图示法。
知识点2:集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A。
(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A。
(3)相等:若A⊆B,且B⊆A,则A=B。
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集。
知识点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}知识点4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A。
(2)A∪A=A,A∪∅=A,A∪B=B∪A。
(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A。
【特别提醒】1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个。
2.子集的传递性:A⊆B,B⊆C⇒A⊆C。
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B。
4. ∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B)。
【典例剖析】高频考点一集合的基本概念例1、(河南省平顶山一中2019-2020年模拟)已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为( )A.2 B.3C.4 D.5【答案】C【解析】因为32-x∈Z,所以2-x的取值有-3,-1,1,3,又因为x∈Z,所以x的值分别为5,3,1,-1,故集合A中的元素个数为4.【规律方法】与集合中的元素有关的问题的三种求解策略(1)研究一个用描述法表示的集合时,首先要看集合中的代表元素,然后再看元素的限制条件.(2)根据元素与集合的关系求参数时要注意检验集合中的元素是否满足互异性.(3)集合中的元素与方程有关时注意一次方程和一元二次方程的区别.【变式探究】(湖南省郴州二中2019-2020年模拟)设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为( )A.1 B.2C.3 D.4【答案】A【解析】若x∈B,则-x∈A,故x只可能是0,-1,-2,-3,当0∈B时,1-0=1∈A;当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.【举一反三】(山西省晋中一中2019-2020年模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b-a =( )A .1B .-1C .2D .-2【答案】C【解析】因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,则b a=-1,所以a =-1,b =1.所以b-a =2.【方法技巧】解决集合概念问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.本例(1)集合B 中的代表元素为实数p -q.(2)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.高频考点二:集合间的基本关系例2、(吉林长春市实验中学2019-2020年模拟)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______.【解析】(1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 【答案】(1)D (2)(-∞,1] 【方法技巧】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.【易错警示】空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.【变式探究】(安徽师大附中2019-2020年模拟)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B【解析】因为A ={x |x >2或x <0},因此A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R .故选B. 【举一反三】(福建莆田一中2019-2020年模拟)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A .7B .8C .15D .16【答案】A【解析】方法一:A ={x |-1≤x ≤3,x ∈N *}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.方法二:因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 高频考点三:集合的运算例3、(2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}【答案】C【解析】依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C。
2023年新高考数学大一轮复习专题01 集合(原卷版)
专题01 集合【考点预测】 1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。
集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合. ④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集. 3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且. 4、集合的运算性质 (1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.【方法技巧与总结】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.【题型归纳目录】题型一:集合的表示:列举法、描述法 题型二:集合元素的三大特征 题型三:集合与集合之间的关系 题型四:集合的交、并、补运算 题型五:集合与排列组合的密切结合 题型六:集合的创新定义【题型一】集合的表示:列举法、描述法 【典例例题】例1.(2022·安徽·芜湖一中三模(理))已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,4【方法技巧与总结】1.列举法,注意元素互异性和无序性,列举法的特点是直观、一目了然.2.描述法,注意代表元素.例2.(2022·山东聊城·二模)已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .5例3.(2022·安徽·寿县第一中学高三阶段练习(理))设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( )A .2B .3C .4D .无数个例4.(2022·湖南·岳阳一中一模)定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( ) A .1B .2C .3D .4例5.(2022·山东济南·二模)已知集合{}1,2A =,{}2,4B =,{},,y C z z x x A y B ==∈∈ ,则C 中元素的个数为( ) A .1B .2C .3D .4例6.(2022·全国·高三专题练习)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .0 B .1C .2D .3【题型二】 集合元素的三大特征 【典例例题】例7.(2022·重庆南开中学模拟预测)已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1- B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--【方法技巧与总结】1.研究集合问题,看元素是否满足集合的特征:确定性、互异性、无序性。
2019-2020年高考数学大一轮总复习 1.1集合与集合的运算课时作业 理
2019-2020年高考数学大一轮总复习 1.1集合与集合的运算课时作业理A级训练(完成时间:10分钟)1.(xx·四川)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}2.(xx·全国)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅3.(xx·广西)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3C.5 D.74.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B AC.A=B D.A∩B=∅5.已知集合A={0,1},满足条件A∪B={2,0,1,3}的集合B共有()A.2个B.2个C.3个D.4个6.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=()A.{1,4} B.{1,5}C.{2,3} D.{3,4}7.已知全集U=R,则正确表示集合M={0,1,2}和N={x|x2+2x=0}关系的韦恩(Venn)图是()A. B.C. D.8.集合A={x∈R||x-2|≤5}中的最小整数为________.9.(xx·重庆)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B =________.10.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.B 级训练(完成时间:15分钟)1.[限时1分钟,达标是( )否( )]设全集U =R ,M ={x |x (x +3)<0},N ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |x ≥-1}B .{x |-3<x <0}C .{x |x ≤-3|D .{x |-1≤x <0}2.[限时1分钟,达标是( )否( )](xx·江西)若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a =( )A .4B .2C .0D .0或43.[限时1分钟,达标是( )否( )]已知集合M ={x ||x -4|+|x -1|<5},N ={x |a <x <6},且M ∩N =(2,b ),则a +b =( )A .6B .7C .8D .94.[限时1分钟,达标是( )否( )](xx·上海)已知互异的复数a ,b 满足ab ≠0,集合{}a ,b ={}a 2,b 2,则a +b =________.5.[限时3分钟,达标是( )否( )]已知集合A ={x |6x +1≥1,x ∈R },B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.6.[限时4分钟,达标是( )否( )]已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .[限时4分钟,达标是( )否( )]设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .C 级训练(完成时间:8分钟)1.[限时4分钟,达标是( )否( )](xx·广东)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1302.[限时4分钟,达标是( )否( )](xx·揭阳一模)定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为P (A ),用n (A )表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有A ∈P (A );②存在集合A ,使得n [P (A )]=3;③用∅表示空集,若A ∩B =∅,则P (A )∩P (B )=∅;④若A ⊆B ,则P (A )⊆P (B );⑤若n (A )-n (B )=1,则n [P (A )]=2×n [P (B )].其中正确的命题个数为( )A .4B .3C .2D .1第一章 集合与简易逻辑第1讲 集合与集合的运算【A 级训练】1.D 解析:A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},又集合B 为整数集,故A ∩B ={-1,0,1,2},故选D.2.B3.B 解析:因为M ={1,2,4,6,8},N ={1,2,3,5,6,7},所以M ∩N ={1,2,6},即M ∩N中元素的个数为3.故选B.4.B 解析:A ={x |x 2-x -2<0}={x |-1<x <2},则B A .5.D 解析:因为A ={0,1},且A ∪B ={2,0,1,3},所以B 可能为{2,3}或{2,3,0}或{2,3,1}或{2,0,1,3},则满足条件的集合B 共有4个.6.A 解析:U ={1,2,3,4},M ={x |x 2-5x +6=0}={2,3},所以∁U M ={1,4}.7.A 解析:N 为x 2+2x =0的解集,解x 2+2x =0可得,x =0或-2,则N ={-2,0},M ∩N ={0}≠∅.8.-3 解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3.9.{7,9} 解析:因为全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},所以∁U A ={4,6,7,9},所以(∁U A )∩B ={7,9},故答案为{7,9}.10.解析:因为A =B ,所以B ={x |x 2+ax +b =0}={-1,3}.所以⎩⎪⎨⎪⎧-a =-1+3=2b =-1×3=-3,解得a =-2,b =-3. 【B 级训练】1.D 解析:M ={x |x (x +3)<0}={x |-3<x <0},由图象知,图中阴影部分所表示的集合是M ∩(∁U N ),又N ={x |x <-1},所以∁U N ={x |x ≥-1}.所以M ∩(∁U N )=[-1,0).2.A解析:当a=0时,方程为1=0不成立,不满足条件,当a≠0时,Δ=a2-4a =0,解得a =4.3.B 解析:由集合M 中的不等式,解得0<x <5,所以M ={x |0<x <5},因为N={x |a <x <6},且M ∩N =(2,b ),所以a =2,b =5,则a +b =2+5=7.4.-1 解析:第一种情况:a =a 2,b =b 2,因为ab ≠0,所以a =b =1,与已知条件矛盾,不符;第二种情况:a =b 2,b =a 2,所以a =a 4⇒a 3=1,所以a 2+a +1=0,即a +b =-1.5.8 解析:由6x +1≥1,得x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}. 因为A ∩B ={x |-1<x <4},所以有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.6.解析:(1)因为9∈(A ∩B ),所以9∈A 且9∈B .所以2a -1=9或a 2=9,所以a =5或a =-3或a =3.经检验a =5或a =-3符合题意.所以a =5或a =-3.(2)因为{9}=A ∩B ,所以9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9};当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.综上知a =-3.7.解析:由x 2-8x +15=0,得x =3或x =5.所以A ={3,5}.(1)当a =15时,由15x -1=0,得x =5.所以B ={5},所以B A . (2)因为A ={3,5}且B ⊆A ,所以,若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由方程ax -1=0,得x =1a ,所以1a =3或1a =5,即a =13或a =15.所以C ={0,13,15}. 【C 级训练】1.D 解析:由题目中“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设A ={0},B ={-1,1},分为①有2个取值为0,另外3个从B 中取,共有方法数:C 25×23;②有3个取值为0,另外2个从B 中取,共有方法数:C 35×22;③有4个取值为0,另外1个从B 中取,共有方法数:C 45×2.所以总共方法数是C 25×23+C 35×22+C 45×2=130,即元素个数为130.故选D.2.B 解析:由P (A )的定义可知①正确,④正确,设n (A )=n ,则n [P (A )]=2n ,所以②错误,若A ∩B =∅,则P (A )∩P (B )={∅},③不正确;n (A )-n (B )=1,即A 中元素比B 中元素多1个,则n [P (A )]=2×n [P (B )],⑤正确,故选B..。
2019版高考数学理科课标A版一轮复习习题:1-1 集合的
第一章集合与常用逻辑用语命题探究§1.1集合的概念及运算考纲解读分析解读 1.理解、掌握集合的表示方法,能够判断元素与集合、集合与集合之间的关系.2.能够正确处理含有字母的讨论问题,掌握集合的交、并、补运算和性质.3.要求具备数形结合的思想意识,会借助Venn图、数轴等工具解决集合运算问题.4.命题以集合的运算为主,其中基本知识和基本技能是高考的热点.5.本节在高考中分值为5分左右,属于中低档题.五年高考考点一集合的含义与表示1.(2017课标全国Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C2.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C3.(2013山东,2,5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9答案C4.(2017江苏,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为. 答案1考点二集合间的基本关系1.(2015重庆,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=⌀C.A⫋BD.B⫋A答案D2.(2013江苏,4,5分)集合{-1,0,1}共有个子集.答案8考点三集合的基本运算1.(2017课标全国Ⅰ,1,5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀答案A2.(2017课标全国Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.0答案B3.(2017天津,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B4.(2016课标全国Ⅰ,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.答案D5.(2016课标全国Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C6.(2016天津,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案D7.(2014课标Ⅰ,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A教师用书专用(8—24)8.(2017北京,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A9.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案A10.(2017山东,1,5分)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)答案D11.(2016课标全国Ⅲ,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D12.(2016北京,1,5分)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案C13.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B14.(2016山东,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C15.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案A16.(2015天津,1,5分)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案A17.(2015福建,1,5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.⌀答案C18.(2015四川,1,5分)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案A19.(2015广东,1,5分)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=()A.{1,4}B.{-1,-4}C.{0}D.⌀答案D20.(2014课标Ⅱ,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案D21.(2014辽宁,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D22.(2014浙江,1,5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.⌀B.{2}C.{5}D.{2,5}答案B23.(2015江苏,1,5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.答案524.(2016江苏,1,5分)已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=.答案{-1,2}三年模拟A组2016—2018年模拟·基础题组考点一集合的含义与表示1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B=()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D2.(2017河北冀州第二次阶段考试,1)若集合A={x|x2-7x<0,x∈N*},则集合B=中元素的个数为()A.1B.2C.3D.4答案D考点二集合间的基本关系3.(2018四川成都龙泉一中月考,2)已知集合A=,B={x|ax+1=0},且B⊆A,则a的取值组成的集合为()A.{-3,2}B.{-3,0,2}C.{3,-2}D.{3,0,-2}答案D4.(2017河南南阳、信阳等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0B.1C.2D.4答案C考点三集合的基本运算5.(2018豫南豫北第二次联考,1)已知集合A={y|y=2x},B={x|y=},则A∩B=()A.{y|y>1}B.{y|y≥1}C.{y|y>0}D.{y|y≥0}答案B6.(2018江西重点中学第一次联考,1)已知集合M=,则∁R M=()A.{x|-1<x<1}B.{x|-1<x≤1}C.{x|x<-1或x≥1}D.{x|x≤-1或x≥1}答案C7.(2017广东惠州第三次调研,1)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1,2}B.{0,1}C.{1,2}D.{1}答案D8.(2017河南濮阳第二次检测,13)已知集合A={-1,a},B={3a,b},若A∪B={-1,0,1},则a=.答案0B组2016—2018年模拟·提升题组(满分:35分时间:20分钟)一、选择题(每小题5分,共30分)1.(2018广东茂名化州二模,1)若集合A={0,1},B={y|y=2x,x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2,4}D.{0,1,2}答案B2.(2018吉林榆树第一高级中学第三次模拟,1)设全集U={1,3,5,6,9},A={3,6,9},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,5,6}C.{6,9}D.{1,5}答案D3.(2018四川南充一诊,2)已知集合A={(x,y)|y=f(x)},B={(x,y)|x=1},则A∩B中的元素有()A.1个B.1个或2个C.至多1个D.可能2个以上答案C4.(2017湖南永州二模,2)已知集合P={x|-1≤x≤1},M={a},若P∩M=⌀,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1)∪(1,+∞)答案D5.(2017河北唐山摸底,1)已知集合A⊆{1,2,3,4,5},且A∩{1,2,3}={1,2},则满足条件的集合A的个数为()A.2B.4C.8D.16答案B6.(2016江西南昌十所省重点中学二模,2)设集合A=,B={x|y=ln(x2-3x)},则A∩B中元素的个数是()A.1B.2C.3D.4答案A二、填空题(共5分)7.(2017江西九江地区七校联考,14)设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M⊗N=.答案∪(1,+∞)C组2016—2018年模拟·方法题组方法1与集合元素有关问题的解题方略1.(2016湖南衡阳八中一模,1)已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则集合B的子集个数为()A.3B.4C.7D.8答案D方法2集合间的基本关系的解题方法2.(2017河北衡水中学七调,1)已知集合A={x|log2x<1},B={x|0<x<c},若A∪B=B,则c的取值范围是()A.(0,1]B.[1,+∞)C.(0,2]D.[2,+∞)答案D3.(2018河北衡水中学模拟,13)已知含有三个实数的集合既可表示成,又可表示成{a2,a+b,0},则a2017+b2017等于.答案-1方法3集合的基本运算的解题方法4.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C5.(人教A必1,一,1-1A,7,变式)设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=()A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,4,5,6}答案C方法4求解集合新定义问题的技巧6.(2018陕西西安长安质检,2)若x∈A,且∈A,则称A是伙伴关系集合,集合M=的所有非空子集中具有伙伴关系的集合的个数是()A.31B.7C.3D.1答案B7.(2017湖北武昌一模,1)设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}答案D。
第一章 集合 —2022届高三数学一轮复习备考
第一章 第一节 集合1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合的基本关系⎪⎩⎪⎨⎧⊂⊄⊆=⊆⊆⊆≠),,(),,()()1(B A A B B A B A A B B A B A 则若真包含则若相等包含其中,若B A ⊆,则称A 是B 的子集,若B A ≠⊂,则称A 是B 的真子集.(2)空集:不含任何元素的集合叫做空集,记为φ.规定:空集是任何集合的子集、空集是任何非空集合的真子集.(3)集合中元素个数与子集个数的关系:若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2. 3.集合的基本运算(1)并集的常考性质A ⊆A ∪B,B ⊆A ∪B.A ⊆B ⇔A ∪B=B. A ∪B=∅⇔A=B=∅. (2)交集的常考性质A ∩B ⊆A,A ∩B ⊆B.A ⊆B ⇔A ∩B=A. A ∩B=A ∪B ⇔A=B. (3)补集的常考性质A ∪(∁U A)=U A ∩(∁U A)=∅∁U (∁U A)=A∁U (A ∩B)=(∁U A)∪(∁U B)∁U (A ∪B)=(∁U A)∩(∁U B).考点1 集合的含义与表示1.已知集合A ={0,1,2},则集合B =中元素的个数是( ) A .1 B .3C .5D .92.若集合A ={−1,1},B ={0,2},则集合{z|z =x +y,x ∈A,y ∈B}中的元素的个数为( ) A .5 B .4 C .3 D .23.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x −y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .104.已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为() A .2 B .3C .4D .65.已知集合A ={(x,y)│x 2+y 2=1},B ={(x,y)│y =x},则A ∩B 中元素的个数为( ) A .3B .2C .1D .06.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合A ={(x,y)|x,y 为实数,且x 2+y 2=1},B ={(x,y)|x,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1{}|,x y x A y A -∈∈8.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=.9.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或410.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}11.已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-112.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为________.考点2 集合间关系1.若P={x|x<1},Q={x|x>−1},则( )A.P⊆Q B.Q⊆P C.C R P⊆Q D.Q⊆C R P2.已知集合A={x|x2-2x>0},B={x||x−2|≤5},则( )A、A∩B=B、A∪B=RC、B⊆AD、A⊆B3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( ) A.(−∞,−1] B.[1,+∞) C.[−1,1] D.(−∞,−1] ∪[1,+∞)4.已知集合M={0,1,2,3,4},N={1,3,4,5},P=M∩N,则P的真子集共有( ) (A)2个(B)4个(C)6个(D)7个5.已知集合A={x|x2−3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.46.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( ) A.∅B.S C.T D.Z∪B=A,则m= .7.已知集合8.若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.9.已知a ∈R,b ∈R,若{ a,ln(b+1),1}={a 2,a+b,0},则a2018+b2018=________.考点3 集合间的基本运算1.已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A){1,4} (B){2,3} (C){9,16}(D){1,2}2.已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中的元素个数为( )(A) 5 (B)4 (C)3 (D)23.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则C U A ∩B =( ) A. {}1- B. {}0,1 C. {}1,2,3- D. {}1,0,1,3-4.已知全集U =R,A ={x|x ≤0},B ={x|x ≥1},则集合C U (A ∪B)=( ) A .{x|x ≥0} B .{x|x ≤1} C .{x|0≤x ≤1} D .{x|0<x <1}5.已知集合P ={x |x 2−2x ≥0},Q ={x |1<x ≤2},则(∁R P)∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]6.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,C ={x ∈R|1⩽x <3} ,则()A C B =( )A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}7.已知集合均为全集的子集,且C U (AUB )={4},,则A ∩C U B =( )A.{3} B .{4}C .{3,4}D .8.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(C n M )∪(C n N ) D .(C n M )∩(C n N )B A 、}4,3,2,1{=U {1,2}B =∅9.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩C I M =∅,则M ∪N =( )A .MB .NC .ID .∅10.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2 D .411.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}12.设集合A ={x ∈Z||x+1|≤3},B ={x|32x≤1},则A ∩B =( )A .{﹣4,﹣3,﹣2,0,2}B .{2}C .{﹣4,﹣3,﹣2,﹣1,2}D .{1,2}13.已知集合104x A xx ⎧⎫-=<⎨⎬-⎩⎭,{}2230B x x x =--≥,则A B 等于( )A .(-1,1]B .(](),11,-∞-+∞C .[3,4)D .(][),13,-∞-+∞14.已知集合02xA x x ⎧⎫=≤⎨⎬+⎩⎭,集合{}0B x x =>,则A B =( )A .{}2x x ≥-B .{}2x x >-C .{}0x x ≥D .{}0x x >15.已知全集为,集合,,则( )A .B .{x|2≤x ≤4}C .D .16.设集合 则=( )A .B .C .D .17.设全集U=R,集合A={x|2x-x 2>0},B={y|y=e x +1},则A ∪B 等于( ) A.{x|x<2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}R 112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞18.设集合A ={x||x −1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)19.设集合M ={x|x 2=x},N ={x|lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(−∞,1]20.已知全集为R,集合A={x|lgx ≤1},B={x|x 2-6x+8≤0},则A ∩(∁R B)=.21.已知U={y|y=log 2x,x>1}, P={y|y =1x ,x >2},则∁U P= ( )11A.[) B.(0,)221C.(0,)D. (,0][,)2+∞ +∞ -∞⋃+∞,22.已知集合A ={x |0<log 4x <1},B ={x |e x-2≤1},则A ∪B =( ) A .(﹣∞,4) B .(1,4)C .(1,2)D .(1,2]。
高考数学第一轮复习讲义1.1集合知识点习题及答案
§1.1高考数学第一轮复习讲义集合1.集合与元素(1)集合元素的三个特征:____________、______________、____________.(2)元素与集合的关系是________或__________关系,用符号______或______表示.(3)集合的表示法:____________、__________、__________、__________.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为__________、__________、________.2.集合间的基本关系(1)子集、真子集及其性质对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).若A⊆B,且在B中至少有一个元素x∈B,但x∉A,则________(或________).∅____A;A____A;A⊆B,B⊆C⇒A____C.若A含有n个元素,则A的子集有______个,A的非空子集有______个,A的非空真子集有______个.(2)集合相等若A⊆B且B⊆A,则A=B.3.集合的运算及其性质(1)集合的交、并、补运算交集:A∩B=________________;并集:A∪B={x|x∈A,或x∈B};补集:∁U A=________________.U为全集,∁U A表示A相对于全集U的补集.(2)集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.[难点正本疑点清源]1.正确理解集合的概念正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误. 2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅和A ≠∅两种可能的情况.3.正确区分∅,{0},{∅}∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.1.(课本改编题)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则A ∩(∁U B )=________.2.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________.3.(课本改编题)已知集合A ={-1,2},B ={x |mx +1=0},若A ∪B =A ,则m 的可能取值组成的集合为________.4.已知A 、B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}5.已知R 是实数集,M ={x |2x <1},N ={y |y =x -1},则N ∩(∁R M )等于( )A .(1,2)B .[0,2]C .∅D .[1,2]题型一 集合的基本概念例1 (1)已知A ={a +2,(a +1)2,a 2+3a +3},且1∈A ,求实数2 013a 的值;(2)x ,x 2-x ,x 3-3x 能表示一个有三个元素的集合吗?如果能表示一个集合,说明理由;如果不能表示,则需要添加什么条件才能使它表示一个有三个元素的集合.探究提高 (1)加强对集合中元素的特征的理解,互异性常常容易忽略,求解问题时要特别注意.(2)分类讨论的思想方法常用于解决集合问题.若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.题型二 集合间的基本关系例2 已知集合A ={x |0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x |-12<x ≤2.(1)若A ⊆B ,求实数a 的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.探究提高在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行分类讨论.分类时要遵循“不重不漏”的分类原则,然后对每一类情况都要给出问题的解答.分类讨论的一般步骤:①确定标准;②恰当分类;③逐类讨论;④归纳结论.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.题型三集合的基本运算例3设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,则m的值是________.探究提高本题的主要难点有两个:一是集合A,B之间关系的确定;二是对集合B中方程的分类求解.集合的交并补运算和集合的包含关系存在着一些必然的联系,这些联系通过Venn图进行直观的分析不难找出来,如A∪B=A⇔B⊆A,(∁U A)∩B=∅⇔B⊆A 等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.题型四集合中的新定义问题例4在集合{a,b,c,d}上定义两种运算和如下:那么d(a c)等于()A.a B.b C.c D.d探究提高本题新定义了两种运算,看似复杂,但事实上运算结果可以通过题目中的表格得出.借助于集合定义新运算是高考中命制创新试题的一个良好素材.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个,其中的一个是____________.1.忽略空集致误试题:(1)(5分)若集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,则由a的可取值组成的集合为__________.(2)(5分)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,则由m的可取值组成的集合为_____________________________________________________________.学生答案展示审题视角 (1)从集合的关系看,S ⊆P ,则S =∅或S ≠∅.(2)从集合元素看,第(1)小题S ≠∅时,S 中元素为-1a =-3或-1a =2,即a =13或a =-12.第(2)小题B ≠∅,必有⎩⎪⎨⎪⎧m +1≤2m -1m +1≥-22m -1≤5.正确答案 (1)⎩⎨⎧⎭⎬⎫0,13,-12 (2){m |m ≤3}解析 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解集为x =-1a,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.(2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.批阅笔记 本题考查的重点是集合间的关系及集合元素的特征.在解答本题时,存在两个突 出错误.一是忽略对∅的讨论.例如在(1)(2)需讨论S =∅和B =∅的情况;二是忽视对元素 的讨论,如(1)中,-1a =-3或-1a=2两种情况.方法与技巧1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现. 失误与防范1.空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.3.解答集合题目,认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.4.Venn图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.课时规范训练(时间:60分钟) A 组 专项基础训练题组一、选择题1.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3 2.已知集合M ={x |xx -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于 ( )A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}3.如果全集U =R ,A ={x |2<x ≤4},B ={3,4},则A ∩(∁U B )等于( )A .(2,3)∪(3,4)B .(2,4)C .(2,3)∪(3,4]D .(2,4]二、填空题4.已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =__________.5.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =__________.6.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为________. 三、解答题7.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.8.对任意两个集合M 、N ,定义:M -N ={x |x ∈M 且x ∉N },M *N =(M -N )∪(N -M ),设M ={y |y =x 2,x ∈R },N ={y |y =3sin x ,x ∈R },求M *N .B 组 专项能力提升题组一、选择题1.设集合A ={1,2,3,5,7},B ={x ∈Z |1<x ≤6},全集U =A ∪B ,则A ∩(∁U B )等于 ( )A .{1,4,6,7}B .{2,3,7}C .{1,7}D .{1} 2.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ) A .57B .56C .49D .8 3.已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P 等于( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12C .(0,+∞)D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 4.已知集合A ={x |log 2x +1>0},B ={y |y =3-2x -x 2},则(∁R A )∩B 等于( )A.⎣⎡⎦⎤0,12B.⎝⎛⎦⎤0,12 C .(-3,2] D.⎣⎡⎦⎤-3,12 二、填空题5.已知集合A =(-∞,0],B ={1,3,a },若A ∩B ≠∅,则实数a 的取值范围是________. 6.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 7.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =∅,则实数t 的取值范围是__________. 三、解答题8.已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0},(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 答案 要点梳理1.(1)确定性 互异性 无序性 2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -2 3.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测1.{2,4} 2.{x |0<x <1}3.⎩⎨⎧⎭⎬⎫0,1,-12 4.D 5.B 题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时, (a +1)2=0,a 2+3a +3=1与a +2相同, ∴不符合题意.当(a +1)2=1,即a =0或a =-2时, ①a =0符合要求.②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0. ∴2 013a =1.(2)因为当x =0时,x =x 2-x =x 3-3x =0. 所以它不一定能表示一个有三个元素的集合. 要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合.变式训练1 0或98例2 解 A 中不等式的解集应分三种情况讨论: ①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在. 当a <0时,若A ⊆B ,如图,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ; 当a <0时,若B ⊆A ,如图,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B . 由(1)、(2)知,a =2. 变式训练2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A , 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练4 6 {0,1,2,3} 课时规范训练 A 组1.C 2.C 3.A4.-1或2 5.{(0,1),(-1,2)} 6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2}, ∵A ⊆∁R B ,∴m -2>3或m +2<-1, 即m >5或m <-3.8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3}, ∴M -N ={y |y >3}, N -M ={y |-3≤y <0}, ∴M *N =(M -N )∪(N -M ) ={y |y >3}∪{y |-3≤y <0} ={y |y >3或-3≤y <0}. B 组1.C 2.B 3.A 4.A 5.a ≤0 6.-37.(-∞,-3)8.解 由x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3}, 所以A ∩(∁R B )={x |3≤x ≤5}. (2)因为A ={x |-1<x ≤5}, A ∩B ={x |-1<x <4},所以有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.。
新高考数学一轮复习考点知识专题讲解与练习 1 集合
新高考数学一轮复习考点知识专题讲解与练习第一章 集合与常用逻辑用语考点知识总结1 集合高考 概览本考点在高考中是必考知识点,常考题型为选择题,分值为5分,低难度考纲 研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集 4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集 7.能使用Venn 图表达集合的关系及运算一、基础小题1.已知集合A ={x |x 2-x -6<0},B ={x |2<x <5},则A ∪B =( ) A .(1,6) B .(-2,5) C .(2,3) D .(3,5) 答案 B解析 A ={x |-2<x <3},A ∪B =(-2,5).故选B.2.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 集合M ={a 1,a 2}或{a 1,a 2,a 4},有2个.故选B. 3.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13,则(∁R P )∩N =()A .{x |0<x <3}B .{x |0<x ≤3}C .{0,1,2,3}D .{1,2,3} 答案 C 解析 由题意,得P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -33x >0={x |x >3或x <0},则(∁R P )∩N ={x |0≤x≤3}∩N ={0,1,2,3}.故选C.4.已知集合A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 的子集共有( ) A .2个 B .4个 C .6个 D .8个 答案 A解析 由已知得B ={(2,1)},所以B 的子集有2个.故选A.5.已知集合A ={x |(x -2)(x +2)≤0},B ={y |x 2+y 2=16},则A ∩B =( ) A .[-3,3] B .[-2,2] C .[-4,4] D .∅ 答案 B解析 由题意,得A ={x |-2≤x ≤2},B ={y |-4≤y ≤4},所以A ∩B ={x |-2≤x ≤2}.故选B.6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅ 答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B ,∵A ∪B ={1,2,3},∴1∈A .又1∉A ∩(∁U B )={3},∴1∉∁U B ,即1∈B ,矛盾.故1∈B .同理2∈B .故选A.7.已知集合A ={x |y =x 2-2},集合B ={y |y =x 2-2},则有( ) A .A =B B .A ∩B =∅ C .A ∪B =A D .A ∩B =A 答案 C解析 A ={x |y =x 2-2}=R ,B ={y |y =x 2-2}=[-2,+∞),所以B ⊆A ,故A ∪B =A .故选C.8.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x <12 C .⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x <12且y ≥-4D .∅ 答案 B解析 由题意,得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12.故选B.9.若集合U =R ,A ={1,2,3,4,5},集合B ={x |0<x <4},则图中阴影部分表示( )A .{1,2,3,4}B .{1,2,3}C .{4,5}D .{1,4} 答案 C解析 集合A ={1,2,3,4,5},B ={x |0<x <4},图中阴影部分表示A ∩(∁U B ),又∁U B ={x |x ≥4或x ≤0},所以A ∩(∁U B )={4,5}.故选C.10.已知集合A ={(x ,y )|y =2x },B ={(x ,y )|y =x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 答案 B解析 由y =2x 与y =x +1的图象可知,两函数图象有两个交点,如图所示.∴A ∩B中元素的个数为2.故选B.11.(多选)已知全集U=R,函数y=ln (1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)≠∅C.M∪N=U D.M⊆(∁U N)答案AB解析由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x≥1},所以M∩(∁U N)={x|x≤0}≠∅,M∪N={x|x<1}=M,M⊆/(∁U N).故选AB.12.(多选)已知集合A={0,1,2},若A∩(∁Z B)≠∅(Z是整数集合),则集合B可以为()A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}答案ABD解析由题意知,集合A={0,1,2}.{x|x=2a,a∈A}={0,2,4},则A∩(∁Z B)={1}≠∅,A满足题意;{x|x=2a,a∈A}={1,2,4},则A∩(∁Z B)={0}≠∅,B满足题意;{x|x=a-1,a∈N}={-1,0,1,2,3,…},则A∩(∁Z B)=∅,C不满足题意;{x|x=a2,a∈N}={0,1,4,9,16,…},则A∩(∁Z B)={2}≠∅,D满足题意.故选ABD.二、高考小题13.(2022·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2} B.{2,3} C.{3,4} D.{2,3,4}答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.故选B. 14.(2022·新高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3} 答案 B解析 由题意可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.故选B.15.(2022·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4C .{x |4≤x <5}D .{x |0<x ≤5} 答案 B 解析 由已知得M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4.故选B.16.(2022·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z 答案 C解析 因为s =2n +1,n ∈Z ,当n =2k ,k ∈Z 时,s =4k +1,k ∈Z ;当n =2k +1,k ∈Z 时,s =4k +3,k ∈Z ,所以TS ,S ∩T =T .故选C.17.(2022·天津高考)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4} 答案 C解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C={0,1,2,4}.故选C.18.(2022·新高考Ⅰ卷)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 答案 C解析 A ∪B =[1,3]∪(2,4)=[1,4).故选C.19.(2022·全国Ⅰ卷)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4 答案 B 解析 ∵A ={x |x2-4≤0}={x |-2≤x ≤2},B ={x |2x +a ≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2,A ∩B ={x |-2≤x ≤1},∴-a2=1,解得a =-2.故选B.20.(2022·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6 答案 C解析 由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以A ∩B 中的元素有(1,7),(2,6),(3,5),(4,4),共4个.故选C.三、模拟小题21.(2022·江苏镇江市第一中学高三上学期期初考试)已知集合A ={x ||x |≤2,x ∈N },集合B ={x |x 2+x -6=0},则A ∩B =( )A .{2}B .{-3,2}C .{-3,1}D .{-3,0,1,2}答案 A解析集合A={x||x|≤2,x∈N}={0,1,2},集合B={x|x2+x-6=0}={-3,2},所以A∩B={2}.故选A.22.(2022·广东广州荔湾区高三上调研考试)已知全集U=R,设集合A={x|x2-x-6≤0},B={x|x-1<0},则图中阴影部分表示的集合是()A.{x|x≤3} B.{x|-3≤x<1}C.{x|-2≤x<-1} D.{x|1≤x≤3}答案 D解析由题意得,A={x|-2≤x≤3},B={x|x<1},∴∁U B={x|x≥1},∴A∩(∁U B)={x|1≤x≤3}.故选D.23.(2022·新高考八省联考)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R答案 B解析解法一:∵∁R M⊆N,∴M⊇∁R N,据此可得M∪(∁R N)=M.故选B.解法二:如图所示,设矩形区域ABCD表示全集R,矩形区域ABHE表示集合M,则矩形区域CDEH表示集合∁R M,矩形区域CDFG表示集合N,满足∁R M⊆N,结合图形可得M∪(∁R N)=M.故选B.24.(2022·河南南阳模拟)设集合P={3,log2a},Q={a,b},若P∩Q={0},则P ∪Q=()A.{3,0} B.{3,0,1}答案 B解析 ∵P ∩Q ={0},∴log 2a =0,∴a =1,从而b =0,∴P ∪Q ={3,0,1}.故选B.25.(2022·河北沧州第一中学等十五校高三上摸底考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪y = x -4x -7,集合B ={3,4,5,6,7},则A ∩B =( ) A .(3,4) B .{3,4} C .[3,4] D .{3,4,7} 答案 B解析 由x -4x -7≥0得⎩⎨⎧(x -4)(x -7)≥0,x ≠7,得x ≤4或x >7,所以A ={x |x ≤4或x >7},因为B ={3,4,5,6,7},所以A ∩B ={x |x ≤4或x >7}∩{3,4,5,6,7}={3,4}.故选B.26.(2022·湖北襄阳五中高三开学考试)已知集合M ={x |1-a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,0]C .⎝ ⎛⎦⎥⎤-∞,13D .⎣⎢⎡⎭⎪⎫13,2答案 C解析 因为M ⊆N ,而∅⊆N ,所以当M =∅时,2a ≤1-a ,则a ≤13;当M ≠∅时,M ⊆N ,则⎩⎪⎨⎪⎧1-a <2a ,1-a ≥1,2a ≤4⇒⎩⎪⎨⎪⎧a >13,a ≤0,a ≤2,无解.综上得a ≤13,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,13.故选C.27.(2022·湖南长沙长郡中学高三上开学考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,B={x |x 2-4x +m =0},若1∈A ∩B ,则A ∪B =( )A .{1,2,3}B .{1,2,3,4}答案 D 解析由题可知,A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,即2-1<2x +1<24,解得-2<x <3,又x ∈N ,所以A ={0,1,2}.因为1∈A ∩B ,则1∈B ,所以1-4+m =0,解得m =3,所以B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={0,1,2,3}.故选D.28.(多选)(2022·江苏沭阳如东中学测试)设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A .15B .0C .3D .13 答案 ABD解析 ∵x 2-8x +15=0的两个根为3和5,∴A ={3,5},∵A ∩B =B ,∴B ⊆A ,∴B =∅或B ={3}或B ={5}或B ={3,5},当B =∅时,满足a =0即可,当B ={3}时,满足3a -1=0,∴a =13,当B ={5}时,满足5a -1=0,∴a =15,当B ={3,5}时,显然不符合条件,∴实数a 的值可以是0,13,15.故选ABD.29.(多选)(2022·山东滨州模拟)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中的真命题有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集 答案 AB解析 因为两个复数的和是复数,两个复数的差是复数,两个复数的积也是复数,所以集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集,A 正确;当S 为封闭集时,因为x -y ∈S ,取x =y ,得0∈S ,B 正确;集合S ={0}显然是封闭集,但S 是有限集,C 错误;取S ={0},T ={0,1},满足S ⊆T ⊆C ,但由于0-1=-1不属于T ,故T 不是封闭集,D 错误.故选AB.30.(多选)(2022·湖南衡阳模拟)对于集合M ,定义函数f M (x )=⎩⎨⎧-1,x ∈M ,1,x ∉M .对于两个集合M ,N ,定义集合M ⊗N ={x |f M (x )·f N (x )=-1}.已知集合A ={2,4,6},B ={1,2,4},则下列结论正确的是( )A .1∈A ⊗B B .2∈A ⊗BC .4∉A ⊗BD .A ⊗B =B ⊗A 答案 ACD解析 由题意知,f A (x )=⎩⎨⎧-1,x ∈{2,4,6},1,x ∉{2,4,6},f B (x )=⎩⎨⎧-1,x ∈{1,2,4},1,x ∉{1,2,4}.当x =1时,f A (1)=1,f B (1)=-1,所以f A (1)f B (1)=1×(-1)=-1,故1∈A ⊗B ,A 正确;当x =2时,f A (2)=-1,f B (2)=-1,所以f A (2)f B (2)=(-1)×(-1)=1,故2∉A ⊗B ,B 错误;当x =4时,f A (4)=-1,f B (4)=-1,所以f A (4)f B (4)=(-1)×(-1)=1,故4∉A ⊗B ,C 正确;由定义及乘法的交换律可知,D 正确.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·江西南昌高三模拟)已知全集U =R ,集合A ={x |x 2-4x -5≤0},B ={x |2≤x ≤4}.(1)求A ∩(∁U B );(2)若集合C ={x |a ≤x ≤4a ,a >0},满足C ∪A =A ,C ∩B =B ,求实数a 的取值范围. 解 (1)由题意,得A ={x |-1≤x ≤5},∁U B ={x |x <2或x >4}, ∴A ∩(∁U B )={x |-1≤x <2或4<x ≤5}.(2)由C ∪A =A 得C ⊆A ,则⎩⎨⎧a ≥-1,4a ≤5,解得-1≤a ≤54.由C ∩B =B 得B ⊆C ,则11 / 11 ⎩⎨⎧a ≤2,4a ≥4,解得1≤a ≤2. 从而实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪1≤a ≤54. 2.(2022·云南师大附中月考)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}. (1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围. 解 (1)A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4={x |-1≤x ≤2}, ∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1,即实数b 的取值范围为[0,1].。
2024年高考数学 高三大一轮复习专题01 集合
专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。
高考数学一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念及运算练习 文-人教版高三全册数学试
§1.1 集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ2017课标全国Ⅰ,1;2017课标全国Ⅲ,1;2016某某,1选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ2013某某,3 选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ2017课标全国Ⅱ,1;2017,1;2016课标全国Ⅰ,1;2016课标全国Ⅱ,1;2016课标全国Ⅲ,1选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究五年高考考点一集合的含义与表示1.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.4答案B2.(2016某某,1,5分)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}答案A3.(2015课标Ⅰ,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2答案DA.⌀B.{2} C.{0} D.{-2}答案B5.(2013某某,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案A教师用书专用(6—8)6.(2015某某,10,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A ⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30答案C7.(2014某某,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案D8.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}答案A考点二集合间的基本关系(2013某某,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16答案C考点三集合间的基本运算1.(2017课标全国Ⅱ,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4}答案A2.(2017,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案CA.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}答案B4.(2017某某,1,5分)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)答案C5.(2016课标全国Ⅰ,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}答案B6.(2016课标全国Ⅱ,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}答案D7.(2016课标全国Ⅲ,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}答案C8.(2016,1,5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}答案C9.(2016某某,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}答案A10.(2016某某,2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3答案B11.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)答案A12.(2015某某,1,5分)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()13.(2015某某,1,5分)已知集合A={x|2<x<4},B={x|(x-1)·(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案C14.(2014某某,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D15.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C16.(2017某某,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为____.答案1教师用书专用(17—40)17.(2016某某,1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}答案C18.(2015,1,5分)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案A19.(2015某某,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]答案A20.(2015某某,1,5分)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]答案A21.(2015某某,2,5分)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()22.(2014某某,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案C23.(2014某某,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A24.(2014课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)答案B25.(2014某某,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)答案C26.(2014某某,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]答案D27.(2014大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7答案B28.(2014某某,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)答案D29.(2013,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}答案B30.(2013某某,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2,+∞)31.(2013某某,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}答案A32.(2013某某,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}答案A33.(2013某某,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.⌀B.{2}C.{-2,2} D.{-2,1,2,3}答案B34.(2013某某,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}答案B35.(2013某某,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]答案D36.(2013某某,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)答案B37.(2013某某,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}答案D38.(2015某某,11,5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=______.答案{1,2,3}39.(2014某某,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=_______.答案{3,5,13}40.(2013某某,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=__________.答案{6,8}三年模拟A组2016—2018年模拟·基础题组1.(2018某某师大附中11月模拟,1)已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3 C.2 D.1答案C2.(2017某某某某高中毕业班4月调研,2)已知集合A={1,3},B=,则A ∪B=()A.{1,3} B.{1,2,3} C.{1,3,4} D.{1,2,3,4}答案B3.(2016某某某某一模,1)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案B考点二集合间的基本关系4.(2017某某某某一模,2)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=N B.M∩N=N C.M∪N=N D.M∩N=⌀答案B5.(2016某某某某二模,1)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=⌀C.M⊆N D.M∩N=R答案C6.(2018某某某某调研,13)设集合A={1,},B={a},若B⊆A,则实数a的值为______.答案07.(2017某某八市联考,13)已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值X围是_____.答案[2,+∞)考点三集合间的基本运算8.(2018某某重点中学11月质检,1)已知集合A={x|3x>3},B={x|3x2-2x-5<0},则A∩B=()A.B.(-1,1) C.(-1,+∞)D.9.(2018某某重点中学期中联考,1)已知集合A=,B={x|(x+2)(x-1)>0},则A∩B等于()A.(0,2) B.(1,2)C.(-2,2) D.(-∞,-2)∪(0,+∞)答案B10.(2018某某某某一模,1)若集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于()A.(-1,5] B.(0,5] C.[1,4) D.[-1,4)答案B11.(2017某某百校联盟4月质检,1)已知集合A={x|2x2-7x+3<0},B={x∈Z|lg x<1},则阴影部分所表示的集合的元素个数为()A.1 B.2 C.3 D.4答案B12.(2017某某某某三模,1)已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于()A.(-∞,-1] B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)答案A13.(2017某某襄阳五中模拟,1)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁U A等于()A.{1,2} B.{1,4} C.{2,4} D.{1,3,4}答案B14.(2016中原名校四月联考,1)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3] B.(-∞,1]∪(2,+∞)C.[1,2) D.(-∞,0)∪[1,+∞)答案DB组2016—2018年模拟·提升题组(满分:55分时间:40分钟)一、选择题(每小题5分,共35分)1.(2018某某南开中学月考,1)已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁U A)∪B=()A.{1,2,4} B.{4} C.{0,2,4} D.{0,2,3,4}2.(2018某某浏阳三校联考,1)设A={x|y=},B={y|y=ln(1+x)},则A∩B=()A.{x|x>-1} B.{x|x≤1}C.{x|-1<x≤1}D.⌀答案B3.(2018某某某某重点高中联考,2)已知集合M=,N=,则M∩N=()A.⌀B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]答案D4.(2018某某五校协作体9月联考,2)已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值X围是()A.(-2,+∞)B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案C5.(2017某某某某、某某等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0 B.1 C.2 D.4答案C6.(2017某某某某第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C7.(2016某某某某瑞安八校联考,1)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1} B.{0} C.{0,1} D.⌀答案C二、解答题(每小题10分,共20分)8.(2018某某某某四校联考,17)已知三个集合:A={x∈R|log2(x2-5x+8)=1},B={x∈R|=1},C={x∈R|x2-ax+a2-19>0}.(2)已知A∩C≠⌀,B∩C=⌀,某某数a的取值X围.解析(1)∵A={x∈R|log2(x2-5x+8)=1}={x∈R|x2-5x+8=2}={2,3},(2分)B={x∈R|=1}={x∈R|x2+2x-8=0}={2,-4},(4分)∴A∪B={2,3,-4}.(5分)(2)∵A∩C≠⌀,B∩C=⌀,∴2∉C,-4∉C,3∈C.(6分)∵C={x∈R|x2-ax+a2-19>0},∴(7分)即,解得-3≤a<-2.(9分)所以实数a的取值X围是[-3,-2).(10分)9.(2017某某某某、某某联考,18)已知函数f(x)=的定义域为A,函数g(x)=(-1≤x≤0)的值域为B.(1)求A∩B;(2)若C=[a,2a-1],且C∪B=B,某某数a的取值X围.解析(1)要使函数f(x)=有意义,需log2(x-1)≥0,解得x≥2,∴A=[2,+∞).对于函数g(x)=,∵-1≤x≤0,∴1≤g(x)≤2,∴B=[1,2],∴A∩B={2}.(2)∵C∪B=B,∴C⊆B.当2a-1<a,即a<1时,C=⌀,满足条件.当2a-1≥a,即a≥1时,要使C⊆B,则解得1≤a≤.综上可得,a∈.C组2016—2018年模拟·方法题组方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2018某某某某一中11月模拟,2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠⌀,若A∪B=A,则()A.-3≤m≤4B.-3<m<4 C.2<m<4 D.2<m≤4答案D2.(2017豫北名校联考,1)已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}=()A.M∩N B.(∁U M)∩(∁U N)C.(∁U M)∪(∁U N) D.M∪N答案B3.(2016某某蓟县期中,1)函数y=的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=()A.B.C.D.答案A方法2解决与集合有关的新定义问题的方法4.(2018某某某某三校联考,4)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个__________.答案175.(2016某某中原名校3月联考,14)当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为___________.答案{0,1,4}。
高考数学大一轮复习 1.1 集合的概念与运算导学案 理(1
集合的概念与运算导学目标:1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.自主梳理1.集合元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于关系,用符号∈或∉表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ).若A ⊆B ,且在B 中至少有一个元素x ∈B ,但x ∉A ,则A B (或BA ).若A ⊆B 且B ⊆A ,则A =B . 5.集合的运算及性质设集合A ,B ,则A ∩B ={x |x ∈A 且x ∈B },A ∪B ={x |x ∈A 或x ∈B }. 设全集为U ,则∁U A ={x |x ∈U 且x ∉A }.A ∩∅=∅,A ∩B ⊆A ,∩⊆, A ∩B =A ⇔A ⊆B .A ∪∅=A ,A ∪B ⊇A ,A ∪B ⊇B , A ∪B =B ⇔A ⊆B .A ∩∁U A =∅;A ∪∁U A =U .自我检测1.(2011·长沙模拟)下列集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)} 答案 C2.(2009·辽宁)已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N 等于( ) A .{x |-5<x <5} B .{x |-3<x <5} C .{x |-5<x ≤5} D .{x |-3<x ≤5} 答案 B解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.3.(2010·湖北)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( )A .4B .3C .2D .1 答案 A 解析 易知椭圆x 24+y 216=1与函数y =3x的图象有两个交点,所以A ∩B 包含两个元素,故A ∩B 的子集个数是4个.4.(2010·潍坊五校联考)集合M ={y |y =x 2-1,x ∈R},集合N ={x |y =9-x 2,x ∈R},则M∩N等于( )A.{t|0≤t≤3} B.{t|-1≤t≤3}C.{(-2,1),(2,1)} D.∅答案 B解析∵y=x2-1≥-1,∴M=[-1,+∞).又∵y=9-x2,∴9-x2≥0.∴N=[-3,3].∴M∩N=[-1,3].5.(2011·福州模拟)已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.答案-1或2解析由a2-a+1=3,∴a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,但集合中有相同元素,舍去,故a=-1或2.探究点一 集合的基本概念例1 (2011·沈阳模拟)若a ,b ∈R ,集合{1,a +b ,a }={0,b a,b },求b -a 的值. 解题导引 解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.解 由{1,a +b ,a }={0,b a,b }可知a ≠0,则只能a +b =0,则有以下对应关系:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴b -a =2.变式迁移1 设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b . 解 由元素的互异性知,a ≠1,b ≠1,a ≠0,又由A =B ,得⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1,解得a =-1,b =0. 探究点二 集合间的关系例2 设集合M ={x |x =5-4a +a 2,a ∈R},N ={y |y =4b 2+4b +2,b ∈R},则下列关系中正确的是( )A .M =NB .M NC .M ND .M ∈N解题导引 一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.答案 A解析 集合M ={x |x =5-4a +a 2,a ∈R}={x |x =(a -2)2+1,a ∈R}={x |x ≥1}, N ={y |y =4b 2+4b +2,b ∈R}={y |y =(2b +1)2+1,b ∈R}={y |y ≥1}.∴M =N .变式迁移2 设集合P ={m |-1<m <0},Q ={m |mx 2+4mx -4<0对任意实数x 恒成立,且m ∈R},则下列关系中成立的是( )A .P QB .Q PC .P =QD .P ∩Q =∅ 答案 A解析 P ={m |-1<m <0},Q :⎩⎪⎨⎪⎧m <0,Δ=16m 2+16m <0,或m =0.∴-1<m ≤0.∴Q ={m |-1<m ≤0}. ∴P Q .探究点三 集合的运算例3 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}.当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}.当(∁R A )∩B =B 时,B ⊆∁R A , 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,a 的取值范围为a ≥-14.变式迁移3 (2011·阜阳模拟)已知A ={x ||x -a |<4},B ={x ||x -2|>3}. (1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围. 解 (1)当a =1时, A ={x |-3<x <5}, B ={x |x <-1或x >5}. ∴A ∩B ={x |-3<x <-1}. (2)∵A ={x |a -4<x <a +4},B ={x |x <-1或x >5},且A ∪B =R , ∴⎩⎪⎨⎪⎧a -4<-1a +4>5⇒1<a <3. ∴实数a 的取值范围是(1,3).分类讨论思想在集合中的应用例 (12分)(1)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可取值组成的集合;(2)若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,求由m 的可取值组成的集合.【答题模板】解 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; [2分]当a ≠0时,方程ax +1=0的解为x =-1a,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12. [4分]故所求集合为{0,13,-12}. [6分](2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; [8分] 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.[10分]故m <2或2≤m ≤3,即所求集合为{m |m ≤3}. [12分] 【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a =0时,S =∅这种情况.(2)想当然认为m +1<2m -1忽略“>”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y |y =2x },{x |y =2x },{(x ,y )|y =2x}表示不同的集合.3.注意∅的特殊性.在利用A ⊆B 解题时,应对A 是否为∅进行讨论. 4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn 图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn 图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A ∩B ≠∅时,可以利用补集思想,先研究A ∩B =∅的情况,然后取补集.(满分:75分)一、选择题(每小题5分,共25分)1.满足{1}A ⊆{1,2,3}的集合A 的个数是( ) A .2 B .3 C .4 D .8 答案 B解析 A ={1}∪B ,其中B 为{2,3}的子集,且B 非空,显然这样的集合A 有3个, 即A ={1,2}或{1,3}或{1,2,3}. 2.(2011·杭州模拟)设P 、Q 为两个非空集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q }.若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6 答案 B解析 P +Q ={1,2,3,4,6,7,8,11},故P +Q 中元素的个数是8.3.(2010·北京)集合P ={x ∈Z|0≤x <3},M ={x ∈Z|x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{1,2,3} D .{0,1,2,3} 答案 B解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}.4.(2010·天津)设集合A ={x ||x -a |<1,x ∈R},B ={x |1<x <5,x ∈R}.若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}答案 C解析 由|x -a |<1得-1<x -a <1, 即a -1<x <a +1.由图可知a +1≤1或a -1≥5,所以a ≤0或a ≥6.5.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则右图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2} 答案 C解析 题图中阴影部分可表示为(∁U M )∩N ,集合M 为{x |x >2或x <-2},集合N 为 {x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.二、填空题(每小题4分,共12分)6.(2011·绍兴模拟)设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是________.答案 4解析 由题意知B 的元素至少含有3,因此集合B 可能为{3}、{1,3}、{2,3}、{1,2,3}.7.(2009·天津)设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1, n =0,1,2,3,4},则集合B =________. 答案 {2,4,6,8}解析 A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9}, ∴B ={2,4,6,8}. 8.(2010·江苏)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____. 答案 1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 三、解答题(共38分)9.(12分)(2011·烟台模拟)集合A ={x |x 2+5x -6≤0},B ={x |x 2+3x >0},求A ∪B 和A ∩B .解 ∵A ={x |x 2+5x -6≤0} ={x |-6≤x ≤1}.(3分)B ={x |x 2+3x >0}={x |x <-3或x >0}.(6分) 如图所示,∴A ∪B ={x |-6≤x ≤1}∪{x |x <-3或x >0}=R.(9分) A ∩B ={x |-6≤x ≤1}∩{x |x <-3或x >0} ={x |-6≤x <-3,或0<x ≤1}.(12分)10.(12分)已知集合A ={x |0<ax +1≤5},集合B ={x |-12<x ≤2}.若B ⊆A ,求实数a的取值范围.解 当a =0时,显然B ⊆A ;(2分)当a <0时,若B ⊆A ,如图, 则⎩⎪⎨⎪⎧4a ≤-12,-1a >2,(5分)∴⎩⎪⎨⎪⎧a ≥-8,a >-12.∴-12<a <0;(7分)当a >0时,如图,若B ⊆A , 则⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,(9分)∴⎩⎪⎨⎪⎧a ≤2,a ≤2.∴0<a ≤2.(11分)综上知,当B ⊆A 时,-12<a ≤2.(12分)11.(14分)(2011·岳阳模拟)已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0}, (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 由x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}.(3分) (1)当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3},(6分) 所以A ∩(∁R B )={x |3≤x ≤5}.(10分) (2)因为A ={x |-1<x ≤5}, A ∩B ={x |-1<x <4},(12分)所以有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合间的基本关系
表示 关系
文字语言
符号语言
相等
集合 A 与集合 B 中的所有元素 A⊆B 且 B⊆A
都相同
⇔A=B
A 中任意一个元素均为 B 中的
子集
A⊆B 或 B⊇A
元素
编辑课件
表示 关系
文字语言
符号语言
A 中任意一个元素均为 B 中的 真子集 元素,且 B 中至少有一个元素 A B 或 B A
3.能正确地对含有一个量词的命题进行否 存在量词
定.
编辑课件
纵观近三年高考集合与常用逻辑用语题,精彩纷呈.在 设问上,体现了“新而不难,活而不偏”,这有利于试卷保 持较高的信度和效度,对中学教学杜绝题海战术,重视理解、 把握本质的数学教育价值有较好的导向.其命题及变式趋势 如下:
编辑课件
1.集合重基础、重交汇:集合是高考的必考内容之一, 一般命制一道选择题或填空题,有时也在大题中呈现,难度 为中低档题.集合注重基础知识的考查,主要考查集合之间 的关系和集合之间的运算,常与函数、方程、不等式、三角 函数等知识相结合,在知识的交汇点处命题.在集合的定义 运算方面进行了新的命题,如 2014 年全国卷Ⅰ第 9 题等.
不是 A 中的元素
空集是任何集合的子集,是任 空集
何非空集合的真子集
∅⊆A ∅ B(B≠∅)
编辑课件
符号∈与⊆有什么区别? 提示:前者表示元素与集合的关系,后者表示集合与集 合的关系.
编辑课件
3.若集合 M={x∈N|x≤ 10},a=2 2,则下面结论 中正确的是( )
A.{a}⊆M B.a⊆M C.{a}∈M D.a∉M 解析:∵M={x∈N|x≤ 10}={0,1,2,3}, ∴a∉M. 答案:D
必考部分
编辑课件
第一章
集合与常用逻辑用语
编辑课件
知识点
考纲下载
1.集合的含义与表示
(1)了解集合的含义、元素与集合的“属于”关系.
(2)能用自然语言、图形语言、集合语言(列举法或
集合 描述法)描述不同的具体问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定
集合的子集.
编辑课件
编辑课件
5.判断下列结论是否正确 (请在括号内打“√”或 “×”)
(1)对于任意两个集合 A,B,关系(A∩B)⊆(A∪B)总成 立.( )
编辑课件
通过研究《考试说明》以及分析近三年的高考试题可以 得出,在命题思路上仍然保持重基础与强调“知识网络交 汇”.有理由相信集合与充分必要条件仍是考查的重点,命 题真假判断也不能忽视,预计此种命题思路仍将延续.
编辑课件
第一节 集合
编辑课件
主干知识·整合 热点命题·突破
课堂实效·检测 课时作业
编辑课件
2.常用逻辑用语重基础、重新颖:常用逻辑用语是高 考的常考内容之一,一般命制一道选择题或填空题,主要考 查四种命题的关系、充分条件和必要条件、含有量词的命题 的否定,全称命题与特称命题,以及命题的真假性判断.在 高考卷中属于容易题,常与集合、函数、不等式、立体几何 等内容相交汇,具有一定的新颖性.
知识点
考纲下载
(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求
集合 两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含
义,会求给定子集的补集.
(3)能使用 Venn 图表示集纲下载
1.了解命题的概念.
(2){1,2,3}={3,2,1}.( ) (3)∅={0}.( ) 答案:(1)× (2)√ (3)×
编辑课件
2.设 A={-1,1,5},B={a+2,a2+4},A∩B={5}, 则实数 a 的值为( )
A.3 B.1 C.±1 D.1 或 3 解析:因为 A∩B={5},所以 a+2=5 或 a2+4=5.当 a +2=5 时,a=3;当 a2+4=5 时,a=±1,又 a=-1 时,B ={1,5},而此时 A∩B={1,5}≠{5},故 a=1 或 3. 答案:D
编辑课件
主干知识·整合 01
要点梳理 追根求源
编辑课件
元素与集合 1.集合元素的特性:_确__定__性__、__互__异__性___、无序性. 2.集合与元素的关系:若 a 属于 A,记作_a_∈__A___;若 b 不属于 A,记作__b_∉_A___. 3.集合的表示方法:_列__举__法__、__描__述__法_、图示法.
编辑课件
4 . 满 足 {0,1,2} A ⊆ {0,1,2,3,4,5} 的 集 合 A 的 个 数 为 ________.
解析:集合 A 除含元素 0,1,2 外,还至少含有 3,4,5 中的 一个元素,所以集合 A 的个数等于{3,4,5}的非空子集的个 数,即为 23-1=7.
答案:7
编辑课件
编辑课件
4.常用数集及其符号表示
自然
数集
正整数集 整数集 有理数集 实数集
数集
符号 N N*或 N+
Z
Q
R
编辑课件
0 与集合{0}是什么关系?∅与集合{∅}呢? 提示:0∈{0},∅∈{∅}或∅⊆{∅}.
编辑课件
1.判断下面结论是否正确 (请在括号中打“√”或 “×”)
(1)A = {x|y= x2 + 1} = {y|y= x2 + 1} = {(x, y)|y= x2 + 1}.( )
集合的基本运算
1.集合的三种基本运算
并集
交集
补集
符号 表示 图形
A∪B
A∩B
若全集为 U,则集合 A 的补集为∁UA
表示
{x|x∈A, {x|x∈A,
意义
{x|x∈U,且 x∉A}
或 x∈B} 且 x∈B}
编辑课件
2.活用集合的三类运算性质 并集的性质: A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔__B_⊆__A_. 交集的性质: A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔_A_⊆__B__. 补集的性质: A∪(∁UA)=_U___;A∩(∁UA)=_∅___;∁U(∁UA)=A.
命题及其关 2.了解“若 p,则 q”形式的命题及其逆命
系、充分 题、否命题与逆否命题,会分析四种命题的
条件与必要 相互关系.
条件
3.理解必要条件、充分条件与充要条件的意 义.
编辑课件
知识点
考纲下载
1.了解逻辑联结词“或”、“且”、“非” 简单的逻辑
的含义. 联结词、
2.理解全称量词与存在量词的意义. 全称量词与