北师大版高中数学选修4-2逆变换与逆矩阵教案
《金版新学案》高三一轮(北师大版)理科数学(+课时作业):选修4-2第2课时逆矩阵、特征值与特征向省
故 M=46
2 4.
(2)由(1)知,矩阵 M 的特征多项式为 f(λ)=(λ-6)(λ-4)-8=λ2-10λ
+16,故其另一个特征值为 λ=2.
设矩阵 M 的另一个特征向量是 e2=xy, 则 Me2=46xx++42yy=2xy,
工具
选修4-2 矩阵与变换
所以64xx+ +24yy= =22xy, , 所以矩阵 M 的另一个特征值对应的特征向量的坐标之间的关系是 2x+y=0.
解析: 已知方程组可以写为2 -5x=4, 3 1y 6
令 M=23
-5,其行列式为2
1
3
-51=2×1-3×(5)=17≠0,
所以 M-1=-111377
115277,所以xy=M-164=20,
பைடு நூலகம்
x=2, 即方程组的解为y=0.
工具
选修4-2 矩阵与变换
关于特征值问题的一般解法如下:
给定矩阵 A=ac
(2)求矩阵 M 的另一个特征值及对应的一个特征向量 e2 的坐标之间
的关系.
解析:
(1)设 M=ac
b, d
则a c
db11=811=88,
故ac++db==88.,
a c
db-12=-24,
工具
选修4-2 矩阵与变换
故--ac++22db==4-. 2,
联立以上两方程组解得 a=6,b=2,c=4,d=4,
阵乘法的消去律成立.
工具
选修4-2 矩阵与变换
求矩阵 A=12
3的逆矩阵. 2
解析: 方法一:设矩阵 A 的逆矩阵为 A-1=ac db,
则由2
3a
b=1
0,
1 2c d 0 1
人教版高中选修4-2一逆变换与逆矩阵课程设计
人教版高中选修4-2一逆变换与逆矩阵课程设计一、课程设计说明1.1 课程设计背景逆变换和逆矩阵是高中数学中的重要概念之一,是线性代数的基础知识。
逆变换和逆矩阵在工程、物理、经济等领域中有广泛的应用。
在高中数学选修课程中,逆变换和逆矩阵是必须掌握的知识点之一。
1.2 设计目标本课程设计旨在通过理论讲解、模型建立和题型讲解等多种方式,使学生掌握逆变换和逆矩阵的基本概念、性质和特点,培养学生运用逆变换和逆矩阵解决实际问题的能力。
1.3 设计内容本课程设计分为以下三个部分:1.逆变换的基本概念和性质2.矩阵的逆3.运用逆变换和逆矩阵解决实际问题二、课程设计实施计划2.1 教学目标在完成本课程设计后,学生应达到以下目标:1.掌握逆变换和逆矩阵的基本概念、性质和特点。
2.熟练掌握求解矩阵的逆的方法。
3.运用逆变换和逆矩阵解决实际问题的能力。
2.2 教学计划本课程设计分为以下三个部分:2.2.1 逆变换的基本概念和性质•介绍逆变换的定义和性质。
•介绍逆变换的求解方法。
•练习选择题和填空题。
2.2.2 矩阵的逆•介绍矩阵的逆的定义和性质。
•介绍求解矩阵的逆的方法。
•练习选择题和填空题。
2.2.3 运用逆变换和逆矩阵解决实际问题•给出具体的实际问题。
•引导学生将实际问题转化为数学问题。
•通过逆变换和逆矩阵求解实际问题。
•练习计算题。
三、教学方法3.1 教学理念本课程设计采用启发式教学法,注重知识的系统性、普遍性和实际性。
以应用为导向,以培养学生的数学思维能力和创新能力和发展学生综合实践能力为目标。
3.2 实施方式•讲授:采用板书、幻灯片等方式进行理论讲解。
•练习:采用大量的习题和例题进行练习巩固。
•互动:采用问答、讨论等方式提高学生的参与度。
四、考核方式4.1 考核方式以期中期末为主要考核方式,包含选择题、填空题、计算题等多个类型的考试题目。
比例约为30%的总课时。
4.2 考核标准根据学生的学习成果和教学要求,采用标准答案和量化评价相结合的方式,确保考核公正、透明、科学。
北师大版高中数学选修4-2矩阵与变换矩阵变换的性质
列行变变换换:: AAcriicrjjBB
EAiEjAij BB
AAcriikkBB AAcriikkcrjjBB
EAiE(ki ()kA) BB
AEEijj(ik()kA)B B
如:
1 0 0 a11 a12 a13 E23(k)A 0 1 k a21 a22` a23
这表明,只经过初等行变换便可将A化成单位矩阵。
用初等变换求逆矩阵
1.用初等变换求逆矩阵
设A是n阶可逆矩阵则A-1 也可逆。 从而存在初等阵P1,P2,…,Ps
使 A1 P1P2 Ps
由 A-1A=E; A-1E= A-1;
得 : P1P2…PsA=E
P1P2…PsE=A-1
结论: 若经过一系列初等行变换将A化成单位矩阵
1 2 1 0 1 0
A
E
1
2
1
0 1 0 r1r2 2
1
0 1 0 0
0 1 2 0 0 1
0 1 2 0 0 1
1 2 1 0 1 0
1 2 1 0 1 0
r2 2r10 3 2 1 2 0 r2 r30 1 2 0 0 1
,使
A=P1P2…Pk.
因初等阵是可逆矩阵,且可逆阵的积还是可逆阵,所
以A可逆。
必要性:设A是可逆阵,所以R(A)=n
A经初等变换可以化成单位矩阵E,从而经有限次初等
变换可以将E变成A,
存在有限个初等阵P1,P2,…,Pl,Pl+1,…,Pk,使 A= P1P2…PlEPl+1…Pk,
即
A= P1P2…Pk,
E时,则施行同样的一系列的初等行变换就把单位矩
高中数学选修4-2教案
2.1.1矩阵的概念1.坐标平面上的点(向量)——矩阵设O (0, 0),P (2, 3),则向量 (2, 3),将的坐标排成一列,并简记为OP → OP →[23]2.日常生活——矩阵(1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:初赛复赛甲8090乙8688(2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示:A B C D E28英寸 1 3 0 1 230英寸 5 8 6 1 232英寸 2 3 5 6 034英寸 0 1 1 0 33.图——矩阵矩阵:记号:A ,B ,C ,…或(a ij )(其中i,j 分别元素a ij 所在的行和列)要素:行——列——元素2323[80 9086 88]AB CDAB C D1 1 01 0 1 01 1 0 10 0 1 00 1 1 01 0 1 01 1 0 10 0 1 0A B C A 0 3 1B 3 0 0C 1 0 2矩阵相等⇔行列数目相等并且对应元素相等。
特别:(1)2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵(2)零矩阵(3)行矩阵:[a 11,a 12]列矩阵:,一般用α,β等表示。
[a 11a 21](4)行向量与列向量例1用矩阵表示三角形ABC ,A (-1,0),B (0,2),C (2,0)例2用矩阵表示下列关系图2.1.2矩阵的乘法1.生活实例(1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:初赛复赛甲8090乙8688如果规定歌唱比赛最后成绩由初赛和复赛综合裁定,其中初赛占40%,决赛占60%,那么甲、乙的最后成绩可用如下矩阵的形式表示:= = [80 9086 88][0.40.6][80 ⨯ 0.4 + 90 ⨯ 0.686 ⨯ 0.4 + 88 ⨯ 0.6][8687.2](2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示A B C D E28英寸 1 3 0 1 230英寸 5 8 6 1 232英寸 2 3 5 6 034英寸 0 1 1 0 3假设不同牌子的每条牛仔裤的平均利润分别为:A 为30元,B 为35元,C 为40元,D 为25元,E 为40元,试问28英寸牛仔裤在该星期内获得的总利润是多少?28英寸牛仔裤的销售量:AB CD EA[80 9086 88][1 3 0 1 2]不同牌子的平均利润3035402540M= 1 ⨯ 30 + 3 ⨯ 35 + 0 ⨯ 40 +1 ⨯ 25 + 2 ⨯ 40 = 240(元)如果要求各种规格大小的牛仔裤的总利润,就自然地得出下列的矩阵乘法1 3 0 12 30 240 28英寸牛仔裤的利润5 86 1 2 35 775 30英寸牛仔裤的利润2 3 5 6 0 40 =515 32英寸牛仔裤的利润0 1 1 0 3 25 195 34英寸牛仔裤的利润一般地:(1)行矩阵与列矩阵的乘法规则(2)二阶矩阵与列向量的乘法规则2.二阶矩阵乘列向量——几何意义[1 00 2][x y][x2y](1)=[1 00 2][x y][x2y]矩阵平面上每个向量(点)变成了向量(点),因此它是平面到平面的一个变换.这个变换实际上是把平面上的图形在y轴方向拉伸了两倍.一般地:(1)平面变换的定义(2)平面变换的记号(3)平面变换的规则2.2平面变换——恒等变换1.恒等变换将图中所示的四边形ABCD保持位置不变,能否用矩阵M来表示?-2-1123-4-3-2-112系列22.伸压变换——能否用矩阵来表示下列图形的变换?-4-20246-1.5-1-0.500.51 1.5系列1系列2例1已知曲线y =sinx 经过变换T 作用后变为新的曲线y =sin2x ,画出相关的图象,并求出变换T 对应的矩阵M 。
高二数学选修系列4-2矩阵与变换教学建议课件
关于技术的使用
两种不同层次的课件:一种用于揭示数学
的本质,一种用于分步演示。 前者要求——即时、透明、互动; 后者要求——清楚、流畅、简洁。
支架式教学( Scaffolding Instruction )
矩阵与变换
具体与抽象——通过学生熟悉的情境提出问
题,引入内容(包括数学理论、思想方 法),并在分析和解决问题过程中,加深 对数学的理解。力图通过学生熟悉的语言、 实例、图形等多种方式介绍有关数学内容, 尽量避免过度形式化。
操作与理解——系列4既不是科普读物,也
不是理论专著。应在充分的活动、操作的 基础上,使学生理解专题中的核心概念和 基本数学思想。
选修 4 - 8 —— 统筹法与图论初步
选修 4 - 9 —— 风险与决策
选修 4 - 10——开关电路与布尔代数
延伸、拓展某些中学课程内容——几何证明选 讲、不等式证明选讲、坐标系与数方程。 体现数学的应用价值——优选法与试验设计初 步、统筹法与图论初步、风险与决策。 反映重要的数学思想——矩阵与变换、数列与 差分。 体现数学的科学价值——初等数论初步、开关 电路与布尔代数。
基础与拓展 —— 从已有的内容出发,引导学
生自主探究,做适当的拓展与延伸,在处 理问题的思想方法、在思维发展上获得突 破。
局部与整体 —— 突出学生解决问题的思想方
法,不求完美的科学体系。例如,矩阵与 变换。
总结与提高 —— 学会查阅资料,整理、思考
本专题所学的内容并与同学交流。
教学过程 问 题 情 境 提 出 问 题 学 生 活 动 体 验 数 学
选修 4 - 1 —— 几何证明选讲 ★
选 修 系 列 的 个 专 题
选修 4 - 2 —— 矩阵与变换 ★
北师大版高中数学选修4-2逆变换与逆矩阵教案.docx
逆变换与逆矩阵教学目标1.理解逆矩阵的概念,了解逆变换的概念2.能判断一个矩阵是否存在逆矩阵,掌握六种变换除了投影变换不存在逆变换,其他的都有逆变换的结论3.能求一个二阶矩阵以及两个二阶矩阵乘积的逆矩阵4.理解二阶矩阵消去律的条件一.回顾复习,引入新课1.矩阵乘法的简单性质2.矩阵乘法的几何意义3.初等变换,初等变换矩阵,初等变换的复合问题:对于下列给出的变换对应的矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先A T 后B T )的结果与恒等变换的结果相同?(1)以y 轴为反射轴作反射变换;(2)绕原点逆时针旋转︒30作旋转变换;(3)纵坐标不变,沿x 轴方向将横坐标压缩为原来的21作伸压变换; (4)沿x 轴方向,将y 轴作投影变换;(5)横坐标x 不变,纵坐标依横坐标的比例增加,且)2,(),(y x x y x +→作切变变换.二.建构数学,新授内容1.逆变换2.逆矩阵3.相关结论(1)(2)(3)思考:M 的逆矩阵M 1-和函数)(x f y =的反函数)(1x fy -=有什么异同?三.应用示例,例题分析例1.用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请把它求出来;若不存在,请说明理由. (1)A ⎥⎦⎤⎢⎣⎡-=1001;(2)B ⎥⎦⎤⎢⎣⎡=3001;(3)C ⎥⎦⎤⎢⎣⎡=1000;(4)D ⎥⎥⎦⎤⎢⎢⎣⎡=12101例2.求矩阵A ⎥⎦⎤⎢⎣⎡=1223的逆矩阵.例3.求下列矩阵AB 的逆矩阵. (1)A ⎥⎦⎤⎢⎣⎡=2001,B ⎥⎥⎦⎤⎢⎢⎣⎡=10211; (2)A ⎥⎦⎤⎢⎣⎡=0211,B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=021210.思考:1.已知A,B,C为二阶矩阵,且AB=AC,若矩阵A存在逆矩阵,B=C是否成立?2.已知A,B,C为二阶矩阵,且BA=CA,若矩阵A存在逆矩阵,B=C是否成立?四.小结。
人教版高中选修(B版)4-2第二章逆矩阵及其应用课程设计
人教版高中选修(B版)4-2第二章逆矩阵及其应用课程设计一、课程设计目的本次课程设计旨在通过教学过程的展示,帮助学生进一步理解矩阵及逆矩阵的概念,掌握求解矩阵逆的方法和应用逆矩阵解线性方程组的思想,培养学生的矩阵推导和计算能力,提高学生的数学综合素质。
二、教学内容和重点难点(一)、教学内容1.逆矩阵的定义与性质2.如何求解逆矩阵3.判断矩阵是否可逆的方法4.应用逆矩阵解线性方程组(二)、重点难点1.矩阵的定义和性质2.如何求解逆矩阵3.判断矩阵是否可逆的方法4.应用逆矩阵解线性方程组的思想三、教学方法采用讲授法、举例法、解题法、练习法相结合的教学方法,注重理论和实践相结合,通过多个例题和练习,达到深化学生的思维,同时提高对所学知识的理解和记忆。
四、教学流程1.介绍矩阵的定义和性质,分析矩阵的逆的定义和性质,引出矩阵逆的概念以及求解逆矩阵的方法。
2.推导如何求解逆矩阵的方法,通过伴随矩阵求逆矩阵,通过消元法计算逆矩阵。
3.通过多个示例和练习,检查学生对逆矩阵的理解。
4.探究如何判断矩阵是否可逆,通过行列式的值判断矩阵是否可逆,让学生掌握这种方法的应用。
5.学习如何应用逆矩阵解线性方程组,通过计算逆矩阵并乘以系数矩阵,求解未知数的值。
6.现场进行练习,检查学生的应用能力和理解能力。
五、教学评价和作业(一)、教学评价在教学过程中,要注重学生的思维深度和理解能力提高。
通过教师的引导,学生能够充分理解矩阵逆的定义和性质,并能运用所学知识解决实际问题。
同时,教师需要积极引导学生,让学生在掌握基础知识的同时,能够发扬自己的创造能力,开拓思路,实现知识的更深层次的应用。
(二)、作业1.完成教师提供的逆矩阵计算题。
2.解答教师出的线性方程组题目。
3.选择一道有关逆矩阵的应用题目,并提交解答思路和结果。
六、教学效果衡量对学生的成绩与表现进行评价,并对他们的各项能力进行考核。
学生能在考试中取得较好的成绩,并能对知识点进行深入的理解和思考。
北师大版高中数学选修4-2矩阵与变换二阶行列式与逆矩阵
D1 =
9 -3 -5 2
0ห้องสมุดไป่ตู้-6 -1 2
=81,
0 4-7 6
克拉默法则 如果线性方程组的系数行列式D不等于零, 则 方程组有唯一解xj=Dj/D(j=1, 2, , n)。
2x1 x2 -5x3 x4 = 8
例1
解线性方程组
x1 x1
-3x2 x2
4x2
- x3 - 7 x3
2 -3
2
6 -6
2
-
245
=
1 3 2 1
3 -3
1
-52 -21
二、行列式的乘法定理
定理 设A、B为n阶矩阵,那么|AB|=|A||B|。
推论1 设A1,A2,……,Ar都是n阶矩阵,则 | A1A2……Ar |=|A1||A2|……| Ar |。
推论2 A可逆,则|A-1|=|A|-1。
-3x2 x2
4x2
- x3 - 7 x3
- 6x4 2x4 6x4
矩阵 A 可逆|A|0 若 A 可逆 则 A-1 = 1 A* | A|
例
2
求方阵 A = 132
2 2 4
133 的逆阵
解 由|A|=20 得知A-1存在。因为
所以
A*
=
2 -3
2
6 -6
2
-54 -2
A--11
=
|
1 A
|
A*
=
1 2
(3.5)
a11 a12 a1n 行列式 D = a21 a22 a2n 称为方程组(3.5)的系数行列式。
北师大版数学选修4-2练习:(第4章)逆变换与逆矩阵(2)(含答案)
第四章 逆变换与逆矩阵 同步练习(二)1、下列矩阵中,不存在逆矩阵的是( )A 、⎪⎪⎭⎫ ⎝⎛-2032B 、⎪⎪⎪⎪⎭⎫ ⎝⎛-221431 C 、⎪⎪⎭⎫ ⎝⎛23231 D 、⎪⎪⎭⎫ ⎝⎛-011302、=-2410152( )A 、198B 、-198C 、-270D 、2703、⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-13913214M ,则=M ( )A 、⎪⎪⎭⎫ ⎝⎛1102 B 、⎪⎪⎭⎫ ⎝⎛-227357 C 、⎪⎪⎭⎫ ⎝⎛-0142814 D 、⎪⎪⎭⎫⎝⎛11204、对于任意的矩阵A 、M 、N ,下列结论正确的是( )A 、NM MN =B 、11--=NM M NC 、N NM M =-1D 、N MN M =-15、(1)若⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-21041110211M ,则_______=M ;(2)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-210y x5312所表示的二元一次方程组为___________。
6、⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=0110,1001B A ,则_________)(1=-AB 。
7、⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1002022002110M ,则___________=M 。
8、(1)______=-818781-83;(2)_______=3cos 3sin 3sin -3cos ππππ。
9、计算下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛--=3523M ; (2)⎪⎪⎭⎫ ⎝⎛=1143M 。
10、判断下列矩阵是否存在逆矩阵,若存在,则求出逆矩阵,若不存在,说明理由。
(1)⎪⎪⎪⎪⎭⎫⎝⎛=21212323M ; (2)⎪⎪⎭⎫ ⎝⎛=1021M11、利用逆矩阵解二元一次方程组:⎩⎨⎧=+=-7y 3x 42y 3x12、已知)(,cos sin sin cos R x ∈=ααααα,求62+-=x x y 的最大值与最小值。
高中课标课程选修4-2《矩阵与变换》教学参考(二) 逆矩阵的求法与应用
高中课标课程选修4-2《矩阵与变换》教学参考(二) 逆矩阵的
求法与应用
李云杰;陈清华
【期刊名称】《福建中学数学》
【年(卷),期】2008(000)004
【摘要】本文在有关矩阵知识的基础上,向读者介绍逆矩阵的求法与应用.1.方阵A 可逆的充分必要条件(1)存在矩阵B,使AB=BA=I;
【总页数】3页(P1-3)
【作者】李云杰;陈清华
【作者单位】
【正文语种】中文
【中图分类】G633
【相关文献】
1.高中课标课程选修4-2《矩阵与变换》教学参考(三) 计算二阶矩阵n次方幂的公式及其应用 [J],
2.高中课标课程选修4-5《不等式选讲》教学参考(二) 柯西不等式 [J],
3.高中课标课程选修4-2《矩阵与变换》教学参考(四) 伸缩变换及其在有关面积求解中的应用 [J],
4.高中课标课程选修4-4《坐标系与参数方程》教学参考(三) 空间斜坐标系的建立和应用 [J],
5.高中课标课程选修4-5《不等式选讲》教学参考(六) 贝努利不等式的几个推论及应用 [J], 赵思林;吴立宝
因版权原因,仅展示原文概要,查看原文内容请购买。
矩阵变换的性质-北师大版选修4-2矩阵与变换教案
矩阵变换的性质-北师大版选修4-2 矩阵与变换教案矩阵变换是线性代数中一项重要的概念,它能够描述一个向量在变换后的位置。
在实际的计算机图形学、物理学、化学等领域中,矩阵变换都扮演着重要的角色。
本文将从矩阵变换的性质方面进行介绍。
矩阵变换的定义矩阵变换是一种将向量转换为另一个向量的数学运算,它通过给定一个矩阵A,将一个向量x变换为另一个向量y的过程。
矩阵变换的公式为:y=Ax其中,A为变换矩阵,x为原始向量,y为变换后的向量。
矩阵变换的性质1. 线性变换矩阵变换是一种线性变换,即它满足以下两个性质:•可加性:对于任意向量x1和x2,有A(x1+x2) = Ax1 + Ax2•齐次性:对于任意标量k和向量x,有A(kx) = k(Ax)这两个性质意味着,矩阵变换对向量加法和数乘保持线性。
这在实际计算中是非常有用的。
2. 逆变换矩阵变换是可逆的,即对于任意矩阵A,存在一个逆矩阵A-1,使得AA-1 = A^-1A= I。
其中,I为单位矩阵。
这意味着,任何矩阵变换都可以通过一个逆变换还原为原始向量。
3. 矩阵乘法的结合律矩阵乘法满足结合律,即对于任意矩阵A、B和C,有(AB)C = A(BC)。
这意味着,矩阵变换的顺序可以随意改变,不影响最终的结果。
4. 矩阵乘法的分配律矩阵乘法满足分配律,即对于任意矩阵A、B和C,有A(B+C) = AB + AC。
这意味着,对于一个向量,可以先将其进行某些变换,然后再将结果进行加法或减法运算,得到最终的结果。
5. 矩阵乘法的交换律矩阵乘法不满足交换律,即对于任意矩阵A和B,一般有AB ≠ BA。
这意味着,矩阵变换的顺序不能随意改变,需要根据具体的应用场景进行选择。
总结矩阵变换是线性代数中一项重要的概念,在计算机图形学、物理学、化学等领域都有广泛的应用。
本文从矩阵变换的性质方面进行了介绍,包括矩阵变换的线性性、可逆性、结合律、分配律和交换律。
这些性质都有极其重要的实际意义,能够帮助我们更好地理解和应用矩阵变换。
(2021年整理)《选修4-2矩阵与变换》教案解析
(完整)《选修4-2矩阵与变换》教案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)《选修4-2矩阵与变换》教案解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)《选修4-2矩阵与变换》教案解析的全部内容。
人教A 版《选修4—2矩阵与变换》教案第一讲 二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换一、二阶矩阵1。
矩阵的概念①错误! (2, 3),将错误!的坐标排成一列,并简记为错误!错误! ②某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:初赛 复赛甲 80 90 乙 86 88③ 概念一:象错误! 80908688⎡⎤⎢⎥⎣⎦ 23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示,横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行) ④列矩阵:错误!(仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y)都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
练习1:1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,2。
设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B,求x ,y,m,n 的值。
高中数学课件教案选修4-2第二节
【解析】(1)错误.矩阵的乘法运算不满足交换律. (2)错误.矩阵的乘法运算不满足消去律. (3)错误.当行列式Δ=0时矩阵不可逆. (4)正确.由可逆矩阵的性质可知正确. 答案:(1)× (2)× (3)× (4)√
考向 1 矩阵乘法及其应用
【典例1】(1)已知矩阵A= 1
2
1 1
,向量β=
44
x y
1 x,
2从而伸缩变换矩阵为M=
1 y,
2
,2
0
0 2
于是由MN=
2 0
2
0 2
2 2 2
2
2 2
,
1 1
1 1
2
得所求矩阵为
1
1
.
1 1
【拓展提升】矩阵乘法的方法与技巧 (1)对于某一向量进行多次矩阵变换时,通常先进行矩阵乘法运 算,使多次变换转化成一次变换,再利用矩阵与向量的乘法运算 求向量. (2)在复合变换MN中,先施行右边的矩阵N变换,再施行左边的 矩阵M变换.
1.线性变换的基本性质
(1)定理1:设A=
a c
b d
,X1=
①A(tX1)=_t_(_A_X_1)_;
x1 y1
,X2=
x2
y
2
,t,k是实数,则
②AX1+AX2=_A_(_X_1_+_X_2_); ③A(tX1+kX2)=_t_A_X_1_+_k_A_X_2.
(2)定理2:可逆的线性变换具有如下性质 ①将直线变成_直__线__; ②将线段变成_线__段__; ③将平行四边形变成_平__行__四__边__形__.
纯量矩阵
零矩阵
单位方阵
对角阵
选修4-2矩阵与变换第二节矩阵的逆矩阵、特征值与特征向量分析
第二节矩阵的逆矩阵、特征值与特征向量[主匸離构]< O O Q <定义[距阵的逆矩阵、辐征值与特征向员». _________________________________________________匸杏征值与I怖向址1 .矩阵的逆矩阵(1)—般地,设p是一个线性变换,如果存在线性变换0,使得6严p齐I,则称变换p可逆,并且称O是p的逆变换.(2)设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA= AB = E,则称矩阵A可逆,或称矩阵A是可逆矩阵,并且称B是A的逆矩阵.(3)(性质1)设A是一个二阶矩阵,如果A是可逆的,则A的逆矩阵是唯一的,A的逆矩阵记为A_I.-1 - 1 -(4)(性质2)设A,B是二阶矩阵,如果A,B都可逆,则AB也可逆,且(AB) = B A2.二阶行列式与方程组的解I—{二阶行列式与方禅丽城i<⑸二阶矩阵A =, -d 可逆,当且仅当 det A= ad — bc^ 0时,A 1 = 工d」det A—edet A对于关于x ,y 的二元一次方程组ax+ by= m , cx+ dy= n ,我们把称为二阶行列式,它的运算结果是一个数值,记为 det A =a b记为D ,m b 记为D x ,a m c dn dc n i=ad - be. de 若将方程组中行列式记为D y ,则当D 丰0时,D x x =D y y=3. 矩阵特征值、特征向量的相关概念宅 b"l(1) 定义:设矩阵A = J ,如果存在实数 入以及非零向量 匕使得A E=入,,则称入是jc d 」 矩阵A 的一个特征值,E 是矩阵A 的属于特征值 入的一个特征向量.(2) —般地,设E 是矩阵A 的属于特征值 入的一个特征向量,则对任意的非零常数 k, K E也是矩阵A 的属于特征值 入的特征向量.⑶一般地,属于矩阵的不同特征值的特征向量不共线=0为矩阵A 的特征方程.4. 特征向量的应用(1) 设A 是一个二阶矩阵,a 是矩阵A 的属于特征值 入的任意一个特征向量,则A na=fa n *€ N ).(2) 性质1设兀h 是二阶矩阵A 的两个不同特征值,&, &是矩阵A 的分别属于特征 值入,h 的特征向量,对于任意的非零平面向量 a,设a= b E i + t 2 ^2(其中t i , t 2为实数),则对任意的正整数n,有A na=2jjj 2.加石测]< o o oo答案:152 1 - a 2解析:由题意|A | =2 2=2 x (a + 1) — 1 x (1 — a ) = a + 2a + 1 = 0 ,「a = — 1.h — a — bh — a — b A = ,称 f (h =为矩阵A 的特征多项式,方程£ d_ —c — d—c h — d(4)设矩阵2.若矩阵 3可逆,则k 的值不可能是k方程组的解为 1.矩阵—1的逆矩阵是 03.若矩阵A =可逆,则实数 a 的值为答案:—1x 3+ m 一4.对任意实数x,矩阵]总存在特征向量,则m的取值范围是___________2 — m 2k- x — 3 — m 解析:由条件得f( k=m— 2 — 2=(入一x)(入一2) — (m— 2)( — 3— m)2 » …一=入一(x+ 2) H 2x+ (m+ 3)(m— 2) = 0 有实数根,2 2所有A i= (x+ 2) — 4(2x + m + m— 6) > 0对任意实数 x恒成立,2所以A2= 16 + 4(4m + 4m — 28)<0,解得m的取值范围是一3< m W 2.答案:—3< m W 2.例1 求矩阵A= 3 2的逆矩阵.2 1【解析】法一:设矩阵A的逆矩阵为|x y\丄 W —5.已知矩阵M的特征值k= 8及对应的一个特征向量e i= £ l并有特征值k= 2及对应的一个特征向量e2= — 2则矩阵M =a解析:设M =JJDa +b =8, 故|c+ d = 8,a — 2b= 2,故|c— 2d=—788?'=.-1」-8」联立以上两个方程组解得 a = 6, b= 2, c= 4, d = 4,故M = f 2热点考向一求逆矩阵L— F ——― 1[求逆矩阵]公式3x+ 2z 3y+ 2w I 即 2x+ z 2y+ w 3x+ 2z= 1, 故2x+ z= 0,解得 x=— 1, z= 2, y = 2, w = — 3,【点评】 方法一是待定系数法;方法二是公式法.£变式训练1.已知变换矩阵 A 把平面上的点 P(2, — 1)、Q(— 1,2)分别变换成点 P i (3, — 4)、Q i (0,5).(1)求变换矩阵A ;—1(2)判断变换矩阵 A 是否可逆,如果可逆,求矩阵 A 的逆矩阵A理由.—1 —1 —23■ — 1 —1丿 f 1/- 3:A-1■— 1 21 卩1! 2 一=匸卜r 2a — b = 3,i< a= 2, 2c — d =— 4,b= 1,解得:j—a+ 2b = 0,c=—1,即a b c d-- y w3y+ 2w = 0,2y+ w = 1, 从而矩阵A 的逆矩阵A —1=■— 1 -23 2= •A法,.°det A = — 1.:如不可逆,请说明I I,依题意,可得l a£X z2 13N ►Hu贝_2 1-所以所求的变换矩阵2] ⑵'.det A = 2X 2- (— 1) X 1 = 5, ••A 可逆—11、 1551 |5—5A -1=1 = 1— u — n2 I 1 255丿‘5 5丿热点考向二 利用矩阵解二兀一次方程组步骤-求|a 1 b订的逆矩阵-求方程组的解 ---- 卫2 b 2」 -----------[例2 (1)求矩阵A = f J 的逆矩阵; (2)利用逆矩阵知识,2x+ 3y — 1 = 0, x+ 2y — 3= 0.【解析】 (1)法一:设矩阵A 的逆矩阵为A -1= r b 1,x d 」2a + 3c= 1,a = 2,b =— 3, c=— 1, d = 2.知 2b + 3d = 0, a+ 2c= 0, b+ 2d =1. ••|A |= 4— 3 = 1 ,解方程组:】=I :解之得2 Z3|1 1 | f 3- 3【I-1 2-1 2-1 1 -二 31⑵二元一次方程组的系数矩阵为 A = I c,-1 2」由(1)知A- J 2 - 3]二 1 2一[2x+ 3y= 1,因此方程[x+ 2y= 3有唯一解即x=-7,|y= 5.有无数解或无解.2x+ y= 8,2.用矩阵方法求解二元一次方程组4x- 5y= 2.解析:原方程组可以写成『==I8 ',4- 5」®」-2」3 1记M = ,114 — 5a1x+ b1y= C1【点评】二兀一次方程组(a1, b1不同时为零,a2x+ b2y= C2(a1 b[系数矩阵为A= |42 b2,只有当|A|工0时,方程组有唯一解A-1|C1a2, b2不同时为零)的,若A l= 0,则方程组|x L A-1=2 X (— 5) — 1 X 4 =— 14工 0,(1)求A 的特征值4 ⑵求A B .【解析】 (1)设A 的一个特征值为 入由题意知: "X — 1 — 2~\=0,即(入一 2)( X — 3) = 0,解得 X= 2, X= 3,44 44一故 A B = A ( a+ a )= (2 a )+ (3 a )= 16 a+ 81 a =【点评】 求矩阵的特征值及对应的特征向量是矩阵与变换的重点和难点,题首先要利用行列式求出特征 徝,然后求出相应的特征向量. 请注意每一个特征值对应无数 个特征向量,选择坐标为整数的解就能使后面计算〔一11豊.'M —1=1 14r =M -11 '=! i 4,,即方程组的解为‘=3,■1X= 2时,由厂1I X L 2j,得A 属于特征值2的特征向量a 1= I 2E=3f,得A 属于特征值3的特征向量(2)由于 B = 13 L ?!711=a 1 + a .其行列式例3 给定矩阵 A = I入,h 及对应特征向量 a, a;[113 ^97解决此类问简单、方便.ion一、填空题71 3_11•已知A = | 可逆,则实数a 的取值范围是 _________________a 6」 解析:矩阵A 可逆当且仅当det(A)丰0,•'a 的取值范围为(一a, 2) L(2 ,+s ). 答案:(一a, 2) U (2 ,+a )_3,则矩阵M 的特征向量可以是- 23.已知矩阵A =3,若矩阵A 属于特征值6的一个特征向量为 d属于特征值1的一个特征向量,求矩阵A ,并写出A 的逆矩阵.解析:由矩阵A 属于特征值6的一个特征向量为=I :可得, 一仁即 c + d= 6;-3] 由矩阵A 属于特征值1的一个特征向量a= 2 ,解得* 2,d = 4P 31 ,即 A = 2 4 .2•设矩阵 可得P即 3c — 2d= — 2,A 的逆矩阵是解析:矩阵M的特征多项式由于f (为=0得矩阵M 的特征值为 入=1 , ?2=— 1.经计算可得,矩阵M属于特征值x=1的一个特征向量为^3的一个特征向量为1(空3答案:「厂I —;3「ac 3,ab+ 3a = 1答案:2 —2 3丄 2 _2x — 2y =— 1, 解析:因为方程组---的矩阵形式是2x+ 2 y= 1,3 •设可逆矩阵A =J|a 3的逆矩阵A -1-4 5」解析:由AA - 1= E 得 ab + 3a ac — 3I71占b+ 5a 4c —5,而属于特征值匕-1 4b+ 5a= 0, 即4c — 5 =解方程组得a= 2, b= — 2 c= 3 2.承―韵=—1,4.已知二元一次方程组 ,呼x+%= 1 ,从线性变换的角度求解时应把向量—1_ 1绕原点作顺时针旋转的旋转变换.方程组就是把向量:1[绕原点作顺时针旋转沪旋转变换答案:n1+、321- .3 2答案:6. 现用矩阵对信息进行加密后传递,规定英文字母数字化为:解析:因为A =『4,所以det A = I14= 2工0,42->0 2对应信息为good”.n 变换得到—1,所以解4一i一1 - 2〕所以A -1=1,而密码矩阵为 ? 1 一B = I 67J3031 8_1 故明码矩阵X= A - 1B =-21 1 2 -31] 7 15]=I , 8」-15 4」[1 - 15A = _0,则 A -11解析:A =_01- 3 •41='X 1-丄X 區1工02 2 2 •4 11, b T 2,…,Z T 26,双方约定的矩阵为1 4,发送方传递的密码为67,30,31,8,此组密码所发信息为—P2答案:good--1 5[7. 矩阵M = 5 __________________________ 的特征值与特征向量分别为勺3一5 2=(入+ 1)( X — 3) — (— 2)( — -)= f — 2 - 8 = 0,得矩阵值为 X = 4, X = — 2.&= — 2的一个特征向量.答案: &已知矩阵A = f — 1, B =『—1,,则满足方程AX = B 的二阶矩阵X =_— 4 3 _— 3 1年-11解析:・.A =「4 3 一2 — 1.•|A |== 2 X 3 — (— 1) X (— 4) = 2 工 0.—4 3 3 1 1•■A — 1=2 2::AX = B ,.・・X = A —1B ,5 1 -解析:M 的特征设属于特征值 ,则它满足方程(X+ 1)x+ (— 2)y= 0, 即卩 5x — 2y =0•故可取属于特征值 4的一个特征向量.设属于特征值 h= — 2的特征向量为x+ 2y = 0•故可取 -2为属于特征值量为综上所述,矩阵a-灯 属于■— 1 2〔有两个特征值 ?2=— 2的一个特征向量为 ?1= 4, ?2=— 2,属于入=4的一个特征向X = 4的特征向量为02\ = 4, a = || ■和 &=—2, J 5」而 A - 1AXB-B - 1= EXBB -1因为A - 1=- 3_2所以 X = A - 1CB「2 - 3110.已知矩阵A =6 2(1) 求矩阵A 的特征值及对应的特征向量; (2) 计算矩阵A n.当f= 8时,A 属于f 的特征向量为9一25-11AS2 ]7 317A = J ,B =,C =I- 2 -3」】12- 〕1C , 所以 1(A - A )XB B -1=A -1CB -19.已知矩阵 解析:AXB = 1,求满足AXB = C 的矩阵X . 0=X ( BB -1) = X , 所以 X = A - 1CB -1B -1=2 -31解析: (1)矩阵A 的特征方程为入一6=(—6)( — 4) — 8 = f - 10 入 + 16 = 0.得矩阵 A 的特征值为 f = 8, f= 2.当?2= 2时,A属于h的特征向量为⑵设A n =n n n nA a i = 8 a i, A a= 2 a,(1)求证:M和N互为逆矩阵;⑵求证:向量a同时是M和N的特征向量;(3)指出矩阵M和N的一个公共特征值.-2 — 1-j,3 — 3,2 们;1 0]解析:(1)证明:因MN = J = J ,.1 2〜2」J 1」-—3 2na + b= 8c+ d= 8n即a — 2b= 2nc-2d=— 2 2n解得a=n ^n2X 8 + 2n8 —2n8n+ 2n+i2 X 8n—2n+1c=故A n=2 X 8n+ 2n 8n—2nI 3 32 X 8n—2n+18n+ 2n+ 13 311.给定矩阵21,向量02 =且 NM = I 2所以M 和N 互为逆矩阵.(2)证明:因为M%因为故1是矩阵M 和N 的一个公共特征值. ① 若a= 2, b= 3,求M 的逆矩阵② 若曲线C: x 2+ y 2= 1,在矩阵M 所对应的线性变换作用下得到曲线2C': x+ y 2= 1,求 a, b 的值.4•'2x 1= 1,2y 1= 0,3x 2= 0,3y 2= 1. 1 1即 x = 2,y 1 = 0, X 2= 0, y 2 = 3ax= x' by= y'-0 1J所以 a 是N 的特征向量.所以 a 是N 的特征向量.-1 |⑶由⑵知,M对应于特征向量―的特征值为1, N 对应于特征向量|彳 一 1的特征值也12. (2011年福建)设矩阵M =打0( b*其中 a>0, b>0) M T ;解析:①设M -1= -| y1.X2 y2则 MM -1= I 1-0 0'又 M =[1 - J) 3JO0:y 1 y 2-0 1②设C 上任一点P(x, y),在M 作用下得点P' (x' , y')2 2即亍+ b 2y~ 1为曲线C 的方程.|a= 2,又a>0, b>0,所以[b= 1.卫答案:「1又点P'(X’,y')在C'上,所以2・+ y' 2= 1.又C 的方程为x 2+ y 2= 1,a 2= 4,b 2= 1._1X= 3时,由.1• -1 =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆变换与逆矩阵
教学目标
1.理解逆矩阵的概念,了解逆变换的概念
2.能判断一个矩阵是否存在逆矩阵,掌握六种变换除了投影变换不存在逆变换,其他的都有逆变换的结论
3.能求一个二阶矩阵以及两个二阶矩阵乘积的逆矩阵
4.理解二阶矩阵消去律的条件 一.回顾复习,引入新课 1.矩阵乘法的简单性质 2.矩阵乘法的几何意义
3.初等变换,初等变换矩阵,初等变换的复合
问题:对于下列给出的变换对应的矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先A T 后B T )的结果与恒等变换的结果相同? (1)以y 轴为反射轴作反射变换; (2)绕原点逆时针旋转 30作旋转变换;
(3)纵坐标不变,沿x 轴方向将横坐标压缩为原来的
2
1
作伸压变换;
(4)沿x 轴方向,将y 轴作投影变换;
(5)横坐标x 不变,纵坐标依横坐标的比例增加,且)2,(),(y x x y x +→作切变变换. 二.建构数学,新授内容 1.逆变换 2.逆矩阵 3.相关结论 (1) (2) (3)
思考:M 的逆矩阵M 1-和函数)(x f y =的反函数)(1
x f y -=有什么异同?
三.应用示例,例题分析
例 1.用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请把它求出来;若不存在,请说明理由.
(1)A ⎥⎦⎤⎢⎣⎡-=1001;(2)B ⎥⎦⎤⎢⎣⎡=3001;(3)C ⎥⎦⎤
⎢⎣⎡=1000;(4)D ⎥⎥⎦
⎤⎢⎢⎣⎡=12101
例2.求矩阵A ⎥⎦
⎤⎢⎣⎡=1223的逆矩阵.
例3.求下列矩阵AB 的逆矩阵.
(1)A ⎥⎦⎤⎢⎣⎡=2001,B ⎥⎥⎦
⎤⎢⎢⎣⎡=10211
;(2)A ⎥⎦⎤⎢⎣⎡=0211,B ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡
-=02
1210.
思考:1.已知A,B,C为二阶矩阵,且AB=AC,若矩阵A存在逆矩阵,B=C是否成立?
2.已知A,B,C为二阶矩阵,且BA=CA,若矩阵A存在逆矩阵,B=C是否成立?四.小结。