清华大学物理化学B-相平衡-2

合集下载

清华大学考研物理化学化试题

清华大学考研物理化学化试题

清华大学考研物理化学化试题Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】1.有一绝热的刚性密闭容器内抽成真空,通过阀门和大气隔离,当阀门打开 时,空气(可视为理想气体)进入容器,此时容器内气体的温度将:(A)升高 (B)降低 (c)不变 (D)不能确定2.在标准压力P θ和383.15 K 时,水变为同温下的蒸气。

则该相变过程中,下 列哪个关系式不能成立(A) ΔG<0 (B) ΔH>0 (C)△S iso <O (D)△S sur <O3.某气体状态方程为m PV RT bP =+ (b 是大于零的常数),则下列结论正确的是(A)其焓H 只是温度T 的函数(B)其内能u 只是温度T 的函数(c)其内能和焓都只是温度T 的函数(D)其内能和焓不仅与温度T 有关,还与气体的体积Vm 或压力p 有关4.1mol 理想气体经历绝热膨胀过程温度从T1变化到T2,则下列关于功的计算式中哪一个是正确的 021()Q V U Q W W C T T =∆=+−−−→=- (A) 21()Cv T T - (B) 21()Cp T T -(c) 22111p V p V γ-- (D) 21()1R T T γ-- 5.已知C(石墨)和C(金刚石)在25℃和101325 Pa 下的标准摩尔燃烧焓分别为-393.4 kJ ·mol -1和 kJ ·mol -1,则该条件下金刚石的标准生成焓f m H Θ∆为:(A)-395.3 kJ?mol -1 (B)395.3 kJ?mol -1(C)-1.9 kJ?mol -1 (D)1.9 kJ?mol -16.C02在临界点处的自由度等于:(A)0 (B)1 (C)2 (D)37.对稀溶液的依数性产生的主要原因,下列表述中错误的是:(A)溶液的蒸气压较纯溶剂低(B)溶液中溶剂的化学势较纯溶剂低(c)溶液的焓较纯溶剂大(D)溶液的熵较纯溶剂大8.美国物理化学家J .Willard Gibbs 定义了状态函数G ,下列物理化学概念和 领域中不是这位科学家的贡献的是:(A)渗透压 (B)化学势 (c)相律 (D)系综理论9.对NaC1(s)与其饱和水溶液共存达平衡的两相系统,在同时考虑NaCl 与水 的电离情况下,多相系统的物种数和自由度分别为:(A)6,3 (B)6,2 (C)5,3 (D)5,2lO .下列对Bi .Cd 形成低共熔混合物的描述,正确的是:(A)低共熔点三相共存,自由度为O(B)低共熔混合物具有确定的化学组成(C)低共熔混合物是单一相合金(D)低共熔混合物是两相混合物11.反应22()2()C S O CO g +=,1/232600167.8/r m G J mol T K Θ-∆=--,若温度增加,则下列说法中正确的是:(A) r m G Θ∆变小,反应更完全; (B) r m G Θ∆变大,反应更不完全;(c) f K Θ变小,反应更不完全; (D) f K Θ变大,反应更完全。

物理化学-相平衡

物理化学-相平衡
(2) 温度平衡: T相1 = T相2 = … = T相P 仅需1个温度表示,即应扣 (P – 1) 个
= = =
p1 T1 m1 p2 T2 m2
(3) 相平衡:任一物质B各相化学势相等
m相1(B)=m相2(B) = ···=m相P(B) (P–1)等式
S 种物质存在 S(P-1) 关系,应扣 S(P-1)
恒 p 时,知 pA*(T) 和 pB*(T),可算 xB, yB
相平衡
典型相图 与p-x(y)图相比,形状相当于上下倒转
点: 单相区:如点a ,
相点与系统点一致
两相区:如点b,相
点与系统点不一致
线:气相线称露点线 液相线称泡点线
区域: 单相: P=1,F=2 两相: P=2,F=1
t/℃
110 C 100 90
形成固溶体时与液相类似。
注意: 某相存在的量很少可忽略时,则可不算。 如:凝聚系统不考虑气相。
相平衡
5. 相律F=C-P+2中的 2 表示系统T , p 可变
若T 或 p 之一不变时,只有1个强度量 可变,相律式变为
F = C-P + 1
二组分系统相图分析或凝聚系统 压力影响小可略时,常用此式。
相平衡
相平衡
本章要点
掌握:相律,单组分、双组分系统的典型 相图,杠杆规则的应用
相图:会分析,能画(稍难)
应用:多组分系统的分离、提纯 均匀性(多相性) 控制产品的质量
相平衡
5.1 相 律
问题:封闭 系统中影响相态的因素有哪些? 例如:盐与水系统达相平衡时存在多少相?
什么时候出现固相(盐析出)?为什么?

t
l+g 泡
点 线

清华大学物理化学B-热力学第二定律-2

清华大学物理化学B-热力学第二定律-2
9
273.15 K
r S (T )
θ m
0K

nC p,m( s) T
nC p,m(l) n H m dT dT 273.15K 273.15k T
l s
373.15k
nC p,m(g) ng l Hm dT 373.15K 373.15K T
423K
上述“利用量热数据”方法计算所得 的规定熵称为--量热熵 低温区(<20K),晶体的热容
(U2 T2 S2 ) (U1 T1S1 ) W
15
(U 2 T2 S2 ) (U1 T1 S1 ) W
定义:
A U TS
A W
亥姆霍兹函数 Helmholtz function
A:状态函数,广延性质,J or kJ,无明确的物理意义 三点说明: (1) 条件:封闭系统,等T (2) 公式的意义:
Debye(德拜)立方定律
Cp,m aT
3
10
3. 化学反应的熵变:
对于任意的化学反应
0 BB
B
如果所有物质均处于298.15K,标准压力p状态, 则反应的标准摩尔熵变为:
r S (298 .15 K ) B S (298 .15 K )
θ m θ m,B
(1) rSm (298.15K)可直接根据手册数据计算。
dU TdS pdV
封闭系统的热力 学基本关系式 (Gibbs公式)
dH TdS Vdp dA SdT pdV dG SdT Vdp
思考题: 适用条件?
22
过程方向和限度的判据:
熵增加原理
(孤立系统)
热力学第 二定律

物理化学(上)课件 05章 相平衡

物理化学(上)课件 05章 相平衡

• 这种情况下组分数可用以下关系确定:
组分数(C) = 物种数(S ) 独立化学平衡数 (R) 同一相中独立的浓度关系数(R) 注意: ① 这种物质之间的浓度关系的限制条件:只有在同一
相中方能应用,不同相中不存在此种限制条件。
• 例如:CaCO3 的分解体系,虽然有 nCaO = nCO2
但因 CaO (s) 和 CO2 (g) 不是同一相,所以不能作 为特殊的浓度制约关系。
② 需要指出的是,有时由于考虑问题的角度不同,体 系物种数 (S) 的确定可能不同,但组分数不会改变。
• 例如水溶液体系:
i)纯水液相体系:
若不考虑水的电离,组分数 C = 1,等于物种数 S。
• 若考虑电离:H2O H+ + OH • 则 S = 3 ,但有一化学平衡: R =1;
• 液相中浓度关系式
• 注意:体系中的物种数(S )和组分数(C )这两个概念 的区别:
• 体系中有几种物质,则物种数 S 就是多少;而组分
1)如果体系中各物种之间没有发生化学反应,一般说 来此时组分数等于物种数:C = S
• 例如:乙醇 溶于水,组分数
C= S =2 2)如果体系中各物质之间发生了化学反应,建立了化
相与相之间在指定条件下有明显的界面,在界面上宏观 性质的改变是飞跃式的。
§5.1 引 言
相平衡是热力学在化学领域中的重要应用之一 研究多相系统的平衡在化学、化工的科研和生产 中有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。 一、多相平衡:
1)液体的蒸发(液相和气相平衡) 2)固体的升华或熔化(固相与气相或液相平衡) 3)气体或固体在液体中的溶解度(气-液、固-液相平衡) 4)溶液的蒸气压(溶液各组分-气相组分平衡) 5)溶质在不同相之间的分布(溶质在两溶液相中的平衡)

物理化学chapt5-相平衡2

物理化学chapt5-相平衡2

g H m d ln P dT 2 RT
定积分: 视ΔαgHm 为常数
g P2 H m 1 1 ln ( ) P R T1 T2 1
g H m 1 不定积分: ln P C R T 可求不同温度下液体或固体的蒸气压,或求气化焓(升华焓)。
22
两相平衡线的斜率
T=273.16K 纯水
T=273.15K 饱和了空气的水 冰
水的三相点
水的凝固点

因水中溶解了O2,N2,CO2 等,ΔTf = 0.0024K 气相压力升高(610.62Pa 101.325KPa ,ΔTf = 0.0074K 凝固点降低0.01K 思考:水的相图中,OA线,OB线,OC线能否无限外延?
l 单组分体系最常遇到的相平衡是 : g , s l , s g
因这时 = 2 ,所以 f = 1,表明相平衡时, 体系的温度和压力当中只有一个是独立可变的。
13
OA线:不同温度下水的饱和蒸气压
T/K 273.15 P*H2O/kPa 0.610
一、水的相图
283.15 293.15 303.15 313.15
三条两相平衡线的斜率均可由Clapeyron-Clausius方程或 Clapeyron方程求得。
OA线 OB线 OC线
d ln p vap H m dT RT 2
d ln p gs H m dT RT 2
vap H m 0
g Hm 0 s
斜率为正。 斜率为正。
dp fus H m dT T fusV
9
二、相律
独立组分数、相数和自由度间的数学关系式 设 多相体系,含S个物种,φ个相, 体系与环境仅有热作用和力作用。

物理化学:相平衡

物理化学:相平衡
第五章 相平衡
相平衡是热力学在化学领域中的重要应用之一。研究 多相体系的平衡在化学、化工的科研和生产中有重要的 意义,例如:溶化、蒸馏、重结晶、萃取、提纯及金相 分析等方面都要用到相平衡的知识。
一、基本概念
第一节 相律
1、 相(phase) 体系内部物理和化学性质完全均匀的 部分称为相。相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。体系中相的总数 称为相数,用Φ表示。
三、自由度数(f)
自由度: 确定平衡体系的状态所必须的独立强度变量的
数目称为自由度,用字母 f 表示。这些强度变量通常是
压力、温度和浓度等。
以水为例〔注意是商量平衡态〕∶ a. 当φ=1时,例如液态水的T、p可在肯定范围内改变, φ不变 ∴ f=2 b. 当φ=2时,例如气-液平衡,指定p外,则Tb确定; 而指定T,则水有确定的平衡蒸气压p,∴ f=1 c. 当φ=3时,即气-液-固三相平衡共存时〔三相点〕,T、 p是确定的〔273.16K、6.1×102Pa、由水的性质所决定〕, ∴ f=0,如果变化T或p,则不可能三相共存〔即φ≠3〕。
一、水的相图 水的相图是依据实验绘制的。图上有:
水 的 相 图
(1) 气、液、固单相区∶f=1-1+2=2
(2) 两相平衡线∶
f=1-2+2=1
OC线∶气-液平衡
T与液态水的饱和蒸气压p蒸气的关系
或沸点Tb与p外的关系
OA线∶液-固平衡 凝固点Tf与p外的关系
OB线∶气-固平衡
T与冰的饱和蒸气压p蒸气的关系
dp/dT=ΔHm / T·ΔVm 此方程适合于任何纯物质的两相平衡
2、对于气-液或气-固两相平衡体系 近似处理∶a. 假设蒸气遵守理想气体状态方程

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及答案2-3 选择题1、水煤气发生炉中共有)()()()(22g CO g CO g O H s C 、、、及)(2g H 5种物质,它们能发生下述反应:)(2)()(2g CO s C g CO ⇒+,)()()()(222g O H g CO g H g CO +⇒+,)()()()(22g CO g H s C g O H +⇒+,则此体系的组分数、自由度为( C )A.5、3B.4、3C.3、3D.2、22、物质A 与B 可形成低共沸混合物E ,已知纯A 的沸点小于纯B 的沸点,若将任意比例的A+B 混合在一个精馏塔中精馏,则塔顶的馏出物是( C )A.纯AB.纯BC.低共沸混合物D.都有可能3、克拉贝隆-克劳修斯方程适用于( C )A.)()(22g I s I ⇔B.)()(金刚石石墨C C ⇔C.),,(),,(222112p T g I p T g I ⇔D.)()(22l I s I ⇔4、将一透明容器抽成真空,放入固体碘,当温度为50℃时,可见到明显的碘升华现象,有紫色气体出现。

若温度维持不变,向容器中充入氧气使之压力达到100kPa 时,将看到容器中( C )A.紫色变深B.紫色变浅C.颜色不变D.有液态碘出现5、在一定温度下,水在其饱和蒸汽压下汽化,下列各函数增量中那一项为零( D )A.U ∆B.H ∆C.S ∆D.G ∆6、在一定外压下,多组分体系的沸点( D )A.有恒定值B.随组分而变化C.随浓度而变化D.随组分及浓度而变化7、压力升高时,单组份体系的沸点将( A )A.升高B.降低C.不变D.不一定8、进行水蒸气蒸馏的必要条件是( A )A.两种液体互不相容B.两种液体蒸汽压都较大C.外压小于101kPaD.两种液体的沸点相近9、液体A 与液体B 不相混溶。

在一定温度T ,当有B 存在时,液体A 的蒸汽压为( B )A.与体系中A 的摩尔分数成比例B.等于T 温度下纯A 的蒸汽压C.大于T 温度下纯A 的蒸汽压D.与T 温度下纯B 的蒸汽压之和等于体系的总压力10、氢气和石墨粉在没有催化剂时,在一定温度下不发生化学反应,体系的组分数是( A )A.2B.3C.4D.511、上述体系中,有催化剂存在时可生成n 种碳氢化合物,平衡是组分数为( A )A.2B.4C.n+2D.n12、相率适用于( D )A.封闭体系B.敞开体系C.非平衡敞开体系D.以达到平衡的多向敞开体系13、某物质在某溶剂中的溶解度( C )A.仅是温度的函数B.仅是压力的函数C.同是温度和压力的函数D.除了温度压力以外,还是其他因素的函数14、在实验室的敞口容器中装有单组份液体,对其不断加热,则看到( A )A.沸腾现象B.三项共存现象C.临界现象D.生化现象15、相图与相率之间的关系是( B )A.相图由相率推导得出B.相图由实验结果绘制得出,不能违背相率C.相图决定相率D.相图由实验结果绘制得出,与相率无关16、下述说法中错误的是( C )A.通过相图可确定一定条件下体系由几相构成B.相图可表示出平衡时每一相的组成如何C.相图可表示达到相平衡所需时间的长短D.通过杠杆规则可在相图上计算各相的相对含量17、三组分体系的最大自由度及平衡共存的最大相数为( D )A.3;3B.3;4C.4;4D.4;518、定容条件下)(4s HS NH 的分解压力为1θp 时,反应)()()(234g S H g NH s HS NH +⇔的标准平衡常数是( C )A.1B.1/2C.1/4D.1/819、水的三相点附近其蒸发热为44.821-⋅mol kJ ,熔化热为5.991-⋅mol kJ ,则在三相点附近冰的升华热约为( B )A.38.831-⋅mol kJB.50.811-⋅mol kJC.-38.831-⋅mol kJD.-50.811-⋅mol kJ20、在相图上,当物系点处于哪一点时,只存在一个相( C )A.恒沸点B.熔点C.临界点D.最低共沸点21、具有最低恒沸温度的某两组份体系,在其T-x 相图的最低点有( A )A.l g x x f ==;0B.l g x x f ==;1C.l g x x f >=;0D.l g x x f >=;122、80℃时纯苯的蒸汽压为0.991θp ,纯甲苯的蒸汽压为0.382θp ,若有苯-甲苯气、液平衡混合物在80℃时气相中苯的摩尔分数为30.0=苯y 则液相组成苯x 接近于( D )A.0.85B.0.65C.0.35 D0.1423、体系处于标准状态时,能与水蒸气共存的盐可能是: CA. Na 2CO 3B. Na 2CO 3 Na 2CO 3•H 2O Na 2CO 3•7H 2OC. Na 2CO 3 Na 2CO 3•H 2OD. 以上全否24.一个水溶液共有S 种溶质,相互之间无化学反应。

清华大学物理化学B-热力学第二定律-1

清华大学物理化学B-热力学第二定律-1
27上式为????????????????????????2r1ir0tqtq01221ir????????????????????????stq102121????????????????????????stqir??????????????????????2121iriitqs对于不可逆过程系统的熵变大于该过程的热温商系统的熵变大于该过程的热温商12irrssss???????21rtq??????????tq1228ir?????tgt
15
分析可逆热机的情况:
Q2 1 Q1 T2 r 1 T1
Q1 Q2 0 T1 T2
Q2 T2 Q1 T1
由此可得等式:
特别提示:可逆过程的Q/T (简称热温商)是一个重要的 热力学物理量!
思考题:从上式给我们什么启示?
16 -尝试凝练普适性的关键科学问题!
卡诺定理:(1824) 所有工作于同温热源与同温冷源之间的热机, 以可逆热机的效率最高。 推论: 所有工作于同温热源与同温冷源之间的可逆 热机,其热机效率与卡诺机相同,而与其工作介 质无关;而不可逆热机的效率必小于卡诺机。
14
由绝热可逆过程方程:
T1V2 T1V1
因此:
r 1
T2V3 T2V4
r 1
r 1
r 1
V3 V2 V1 V4
W W1 W2 W3 W4=W1 W3=Q1 Q2
V4 / V3 ) W Q2 T2 l n ( ηr 1 1 Q1 Q1 T1 l n ( V2 / V1 ) T2 ηr 1 T1
A r ,1 A r,2
B
Q
B
Q
B
2
A
( T ) ( T )

物理化学-相平衡讲义2

物理化学-相平衡讲义2
两相平衡线:
单变量系统 (T~P有对应关系约束)
AB线:气-液平衡线,终止于临界点
(超临界状态:气液二相差别消失—密度相等)
AD线:气-固平衡(升华)线,(可延长至~0K) AC线:过冷水-蒸气平衡线(亚稳态) AE线:固-液平衡线(熔点曲线),
斜率为负(由密度差决定,不能无限延伸)
三相点(A点):
A
a
bc
a bc
熔融液l
B
温度(oC)
l+Na
7oC R
ST
Na+Na2K F Na2K +l E K+l -12oC K+Na2K
Na
Na2K
K
1. 物系点越过两相区曲线时,步冷曲线上有一转折; 2. 物系点越过三相线时,步冷曲线上有一平台。 3. 转熔温度: R-S-T线
例2. NaI与H2O可生成一种以上不稳定化合物
过滤:x y
(同时得到纯z)
加热:y d
冰+盐
加入粗盐:d p
H2O wB%
(NH4)2SO4
低共熔相图的应用
p=4kPa
(自学为主,了解即可。P152)
粗盐提纯 合金熔炼 纯度检查 药物配伍 改良剂型 结晶与蒸馏的综合利用
T/K
C p=101kPa
例:对硝基氯苯(A)与邻硝基 氯苯(B)的分离纯化
解:[1]系统开始变浑浊时,加入正丁醇的量(克)?
m1
m1 100
7.8%,m1
8.46 g
[2]正丁醇加入量为25.0克时,一对共轭相 的组成和质量?
25/(25+100) = 20% (f点, 物系点)
W水相* ef = W醇相* fg

物理化学 第三章 相平衡

物理化学 第三章 相平衡

p实际 > p理想 →正偏差 , p实际 < p理想 →负偏差
p
l
pB*
p
l
pB* g+ l
pA*
g
A
pA*
g
B A
xB→
xB→
B
一般正偏差系
一般负偏差系
pA* < p < pB*, yB > xB
( 实验结果 )
正偏差很大 负偏差很大
Tb - xB图
Tbmin
p - x B图 p max
液 气
p - x B图 p min
不定积分,可得
lnp/p0 = -△Hm/RT + C 率-△Hm/R求相变热△Hm 。
可用实验数据绘制lnp/p0~1/T曲线,由斜

(实验一)
实验:水的汽化热的测定 H m 1 ln p I ln p ~1/T关系图 R T
直线的斜率
10.8 10.6 10.4
H m 5.5819 R H m 5.5819 8.314 46.41 kJ mol1
求水的汽化热有什么用? 联系克-克方程讨论一下。
y = -5.5819x + 26.561 2 R = 0.9959
lnp
10.2 10 9.8 9.6 9.4 9.2 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
0.66 p 40.67 103 1 1 ② ln ( ) p 8.314 373 T2
T2 361.5K 88.5 ℃
T1 = 373K p1 = pθ ΔHm=40.67 kJmol-1
2.32 p 40.67 103 1 1 ③ ln ( ) p 8.314 373 T2

物理化学-相平衡

物理化学-相平衡
2c(NH3) = c(H2S) 但如果分解产物在不同相则不然,如反应:
CaCO3(s) = CO2(g) + CaO(s) c(CO2, g)和c(CaO, s)无关,则无浓度限制条件。 设浓度限制条件的数目为R’,则又有R’个关于浓度的 方程式。
上一内容 下一内容 回主目录
返回
2020/12/28
即T,p和NaH2PO4溶液浓度三个变量只有二个是 独立变量。
b. C=S –R=4–1=3 ,f =C – +2 =3–2+2=3
其意是T,p和x(AlCl3), x(H2O), x(HCl)五个变量 中有三个是独立变量。
上一内容 下一内容 回主目录
返回
2020/12/28
例题2
例题2 在某温度压力下,ZnO(s)被还原而成为平衡 系统,其中存在纯固态ZnO,液态Zn,纯碳以及CO 与CO2气体,试写出该系统中的独立化学反应的方程 式,该系统有几个强度变量,几个自由度,为什么二
dp dT
Hm T Vm
此式为克拉佩龙方程
上一内容 下一内容 回主目录
返回
2020/12/28
1. 克拉佩龙方程
dp dT
Hm T Vm
在一定温度和压力下,任何纯物质达到两相平衡
时,上式表示蒸气压随温度的变化率。
dp/dT变化值就是单组分相图(p~T图)上两相平衡
线的斜率。
对于液-气两相平衡 对于固-液两相平衡
T1 fusH m
p2 p1
由于凝聚态熔点受压力影响较小,则也可写为
T
T1
V fus m fus Hm
p
上一内容 下一内容 回主目录
返回
2020/12/28

清华大学2019物理化学B-热力学第一定律-

清华大学2019物理化学B-热力学第一定律-

c 1 (A B d Y ,)c 2 (A B d Y ,) Y B Y A Y
均不随时间而变化,则称该系统处于相平衡。
H2O(l)
糖水
均相系统 (homogeneous system)
糖水

多(复、非均)相系统 heterogeneous system 30
3. 状态函数( state functions)
(1) 状态函数定义:
用于描述系统状态的的各宏观物理性质(如温度、 压力、体积等)称为 系统的热力学性质,又称为状 态函数。
25
H2O(g) 1000C,101.325kPa
H2O(g) 1000C,101,325kPa
H2O (l) 100 oC
H2O (l) 100 oC
恒温热源(100oC)
绝热壁
热力学平衡状态
26
非平衡态 稳态
T1
air
T2 恒温热源
T T1
T2
air (T)
绝热壁
27
➢ 热力学平衡状态包括的具体内容: 热平衡
好物理化学,对于基本公式和结论要掌握来龙去脉,他们 是在什么前提下经过怎么处理之后才推导出来的!
要掌握具体问题 3、只理解和掌握概念与公式是不够的--要学好物理化学, 具体分析的解题方法或推理方法等! 高质量地解答一定数 4、读过物化课本和仅仅以为有了解题思路是不够的-- 量的基本概念思考题和习题是学好物化的重要环节。 --高质量:逻辑严密、表述准确、富有效率。。。
(3)只考虑过程的初、末态,不考虑过程的
细节,不涉及时间因素。 (知其然,不知其所以然)
23
1-2 热力学基本概念
1、系统和环境 (System and surroundings)

《物理化学》第四章(相平衡)知识点汇总

《物理化学》第四章(相平衡)知识点汇总
《物理化学》重要 知识点
第四章:相平衡
第四章 相平衡 相律
温度或压力都没有指定时,相律表达式为:
f K 2
如果指定了温度或压力,则相律表达式为:
f K 1
55
克劳修斯-克拉珀龙方程 液-气平衡
ln p Vap H m RT K
p2 Vap H m 1 1 ln ( ) p1 R T1 T2
60
最大负偏差非理想完全互溶双液系统体系
在p-x图上,p与拉乌 等温 尔计算值相比为负, 且在某一组成范围内, p < pA*, p有最小值。

p

在T-x图,与压力最
小值相对应,出现 了具有最高恒沸点 的最高恒沸物。
Aa
xBbΒιβλιοθήκη B气左侧:yB<xB 右侧:yB>xB
A
T

xB
B
A
a x B
b
B
完全不互溶的双液系统
y
z R
冰+(NH4)2SO4
E
H2O
m B%
(NH4)2SO4
二、生成化合物的相图
1.生成稳定化合物的相图 C6H5OH与C6H5NH2 化合物C C6H5OH∙C6H5NH2
C C+L
L(熔化物)
T/k
能生成具有固定熔点
A+L E1
C+L B+L B+C E2 B
C6H5NH2
A+C
A
C6H5OH
最大正偏差非理想完全互溶双液系统体系
在p-x图上,p与拉乌 尔计算值相比为正, 且在某一组成范围内, p >pB*, p有最大值。

物理化学之 相平衡

物理化学之 相平衡

§6-2 单组分系统相图
单组分系统不涉及组成,要描述其状态只需T、p两个变量 单组分系统的相图p-T图
1. 相律分析
P 1 F 2 双变量系统 面 F C P 2 P 2 F 1 单变量系统 线 3 P P 3 F 0 无变量系统 点(三相点)
求此系统的自由度数 解:系统三个平衡反应中,只有两个是独立的,故 R = 2 四种气体的分压力间存在如下定量关系 pNH3 pHI 2 pH2 R 2 pH2 pI2
F C P 2 (S R R) P 2 (5 2 2) 2 2 1
例. 在一个密闭抽空的容器中有过量的NH4I(s),同时存在
下列平衡: NH 4 I(s) NH3 (g) HI(g)
2HI(g) H 2 (g) I2 (g)
2NH 4 I(s) 2NH3 (g) H2 (g) I2 (g)
在p–x图(或T–x图)中的最高点或最低点上, yB=xB
2.温度—组成图
甲醇(A)—氯仿(B)系统 最 大 正 偏 差 最 大 T–x图上最低点( yB=xB ) 负 偏 最低恒沸点→恒沸混合物 差
氯仿(A)—丙酮(B)系统
p–x图上最高点
p–x图上最低高点
T–x图上最高点( yB=xB ) 最高恒沸点→恒沸混合物
——均成直线关系 液相线:气相总压p与液相组成xB之间的关系曲线
气相线:总压p与气相组成yB之间的关系曲线
甲苯(A)—苯(B)系统:
* * pA p pB
对易挥发组分苯B: yB xB ——易挥发组分在气相中的组成 大于它在液相中的组成
甲苯(A)—苯(B)系统

物理化学第4章-2 化学平衡

物理化学第4章-2 化学平衡

1化学反应速率与化学平衡34.3.1 可逆反应与化学平衡(一)化学反应的可逆性和可逆反应绝大多数化学反应都有一定可逆性:例如:N 2 (g) + 3 H 2 (g) 2 NH 3 (g)只有极少数反应是不可逆的:例如: 2 KClO 3(s) =2 KCl (s) + 3 O 2 (g)可逆反应:在同一条件下,能同时向两个相反方向进行的反应。

4(二)化学平衡化学平衡的特征:(1)系统的组成不随时间而改变;(2)化学平衡是动态平衡。

(3)平衡状态与达到平衡的途径无关;定义:可逆反应在一定条件下,正反应速率等于逆反应速率时,反应体系所处的状态。

4.3.1 可逆反应与化学平衡5在373 K 恒温槽中反应一段时间后,达到平衡,测得平衡时N 2O 4和NO 2 浓度。

0.1600.100NO 2开始0.370.0700.100N 2O 4从反应混合物0.0720.100NO 2开始0.370.0140N 2O 4从产物0.1200NO 2开始0.360.0400.100N 2O 4从反应物c 2(NO 2)/c (N 2O 4)平衡浓度起始浓度N 2O 4-NO 2体系的平衡浓度(mol/L )(373K )化学平衡的实例N 2O 4 (g) 2 NO 2(g)无色红棕色64.3.2 平衡常数1. 定义:在一定温度下,可逆反应达到平衡时,产物浓度的方程式计量系数次方的乘积与反应物浓度的方程式计量系数次方的乘积之比,为一常数,称为“平衡常数”。

用K 表示。

2. 意义:表示在一定条件下,可逆反应能进行的极限。

K 越大,正反应进行得越彻底。

7有关化学平衡常数的说明①化学平衡常数K 只是温度的函数。

②平衡常数不涉及时间概念,不涉及反应速率。

例如:N 2O 4(g) 2 NO 2(g)T /K 273 323 373K 5×10-4 2.2×10-2 3.7×10-12SO 2(g) + O 2(g) 2SO 3(g) K =3.6 ×1024(298K)K 很大,但常温下反应速率很小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于H2O (A) - 异丁醇 (B)形成的溶液,
在293.15 K、101325 Pa下:
83.6%B A
醇层 水层 B
8.5%B
共轭溶液
共轭溶液:两个平衡共存的液层
15 问:分层后继续加B, 两层的组成如何变化?
在一定的压力下,可测得水-异丁醇共轭溶液的组 成与温度的关系:
T/K 293.15 wB (水层) 8.5 wB (醇层) 83.6 333.15 373.15 393.15 406 9.3 70.2
所以两组分系统的相图通常用 指定温度的p-x 或 指定压力的T-x表示。
2
某一压力p下的组成分析:
p x yB p
* B B
p 指定温度T L
pA*
pB*
* y B pB xB p
g A xB (yB) → B
若pB*>pA* 即B为易挥发组分, pB*>p 可得: yB xB 结论:理想溶液中易挥发组分在气相中的含 量大于它在液相中的含量 p. y p x
6.6
77.2
14.0
61.5
37 37
16
最高临界溶解点(最高临界溶解温度Tc)
T/K
L
406 K
B在A中溶 解度曲线 A
L1+L2
B
A在B中溶 解度曲线
wB% 溶解度法绘制相图!
17 思考题:室温下,向A中逐渐加B,如何变化?
特别提醒:所有两相区平衡--统一!
对于指定的温度T1
两相区: 条件自由度 f*=2-2-0=0
(nl ng)xo nl xB ng yB
A
xB x0 yB
n ( ng ( yB xo ) l xo xB)
a
o
b
nl ao ng ob
nl ob ng oa
杠杆规则
6
nl
ng
特别注意:
对于指定的温度T1 两相区: 条件自由度 f*=2-2-0=0
T1
T
压力一定条件下 T-x相图
7
蒸馏原理 Tb,A*
温度升高 液相则
易挥发组分B:YB2大于XB2
温度降低 G
T1
T2 T3
气相则
部分冷凝
L A
部分汽化
Tb,B*
xB
B
思考题:随着温度的逐渐降低,气相组成的变化趋势? 随着温度的逐渐升高,液相组成的变化趋势?
8
精馏塔: 塔顶
冷凝 液 汽
B(l)
精馏原理 将气相和液相 分别进行反复多次部分液 化和反复多次部分汽化。
L+S(II) S(II)
S(I)
E L+S(I) L+S(I)+ S(II) S(I)+ S(II)
S(II):A(s)在B(s)中 形成的固溶体。
A(s)
如:Cu(s)-Ag(s)相图
B(s)
L S ( I ) S ( II ) 31
E点:共晶转变温度
b. 系统具有包晶转变温度的固-液相图
低共熔混合物的熔点叫低共熔点(共晶点,Eutectic Point)。
1. 低共熔点代表一个特定的温度,低共熔混合 物具有一个特定的组成。 2. 低共熔点处是一个三相平衡点,f*=0
为什么?
f*=C-P+1=2-3+1=0
23
利用溶解度法得到的水-盐相图
T
L
M
N
a
a
b
(NH4)2SO4(s) +L
以Bi-Cd(铋-镉)为例说明(热分析法)
纯Bi 40% 70%Cd 纯Cd T 20% L
po
L+A(s)
L+B(s)
A(s)+B(s)+L A(s)+B(s)
步冷曲线
t
Bi
具有低共熔混合物相图 22 点 /线 /面
Cd
低共熔混合物及低共熔点:
由两种或两种以上的纯固体所组成的具有最低共熔温度 的多相混合物叫低共熔混合物(共晶物)。
36
关于二元相图的基本要求
读相图、作相图(填相图)、用相图 关键是读图:能熟练地读懂由七张基本 相图组合而成的稍微复杂的相图。
① 如何找三相线上的三个相点? 读图要领: ② 如何在两相区找相点?
③ 上下看图,任意相邻两区的 相数不可能相等。
37
4.6 三组分系统的分配平衡
三组分系统的相图分析(大部分内容以自学为主) (Diagram for 3-component system)
( 6)
( 7)
具有稳定化合物的s-l相图
具有不稳定化合物的s-l图
34
(3)复杂相图是由简单相图拼凑而成
T L
Mg
x(Sn)
Sn
35
(4)几条规律
① 竖线代表纯物质(包括化合物) ② 水平线代表三相线(一般即为三个交点 代表的三相) ③ 垂直方向上相邻的相区相数不同(一般差1) (有例外) ④ 两相区共存的两相由左右相邻相(区)确 定
物理化学B
第四章 相平衡
Phase Equilibrium ( II ) 王立铎 清华大学化学系
1
4.3 两组分系统的气液平衡相图
相律分析: C=2
f=C-P+2=4-P
f=0, Pmax=4
当P=1, fmax=3
三维立体坐标 f*=3-P 平面坐标
通常固定压力p或固定温度T 若P=1, f*max=2
代表A 取代式 填隙式
27
代表B
3.1. 形成完全互溶固溶体相图
--试比较这种固液完全互溶相图和理想溶液液气完全互溶相图
T/K
L
a
xn S xn x2 x1 Ni(s) x1 x2
L+S Cu(s)
由于扩散的动力学问 题,冷却过快使得析 出的固体成分不均匀 --偏析现象
退火:缓慢降温,接近固液平衡温度。需要长时 间加热使合金内部组成均匀。
相律分析: f = 3-P+2 = 5-P Pmax = 5
P = 1 时,fmax=4(四维坐标) 若T,p指定, 则 fmax*=2
平面图
应用广泛的三组分相平衡系统:
分配平衡 三液系统 掌握
38
自学 二盐-水系统 自学
三组分系统的分配平衡(要求掌握)
分配定律:设物质B能溶于α和β两种液体中,且α和β完全 不相互溶(例如水和四氯化碳),实验表明,在等温等压下 若将B溶解在共存的α和β两种液体里,在低浓度范围内, B在两相中的浓度比等于常数。
83.6%<wB<100%
水的醇溶液
70.2%<wB<100%
61.5%<wB<100%
120 ℃ 0<wB<14%
19
其它形式的两组分部分互溶体系的液-液相图 T
L1+L2
L1+L2 L
x
最低临界溶解点
x
最高+最低临界溶解点
20
4.5 两组分固-液系统的相图
1. 简单低共熔混合物系统的相图 测定固-液相图常用的方法: 溶解度法:在确定的温度下,直接测定固液两 相平衡时液相和固相的组成(溶解度),以此 为基础绘制相图。 热分析法:先将组成恒定的系统加热,使其完 全熔化成液态,然后令其缓慢而均匀地冷却, 记录下在冷却过程中系统在不同时刻的温度, 再以温度为纵坐标,时间为横坐标,绘出T-t曲 线(称为步冷曲线),以此为基础绘制相图。 21
A+B(进料)
塔釜
(加热)
A(l)
Tb,A*
液相部 分汽化
A
G
气相部 分冷凝
L
Tb,B* xB
B
9
2. 两组分非理想溶液的气液相图
p
正偏差 不大
L
T
G L x
G p x L T
负偏差 不大
G L x
10
G x
p
正偏差很大
---p-x 图: 出现极大值
p
L G
T
G L
T-x图: 最低恒沸点
最低恒沸混合物
x
x
11
p
负偏 差很大
---p-x 图出现 极小值
x p L G x T G L x
T-x图: 最高恒沸点
最高恒沸混合物
12
在沸点-组成图中,具有最高(或最低)的温 度,称为最高(或最低)恒沸点。
恒沸物:具有恒沸点组成的溶液 特点: (1) 恒沸物上方蒸汽的组成与液相组成相同, 即: xB=yB ---浓度限制条件 (2) 恒沸物不是化合物而是混合物。其组成均 随压力不同而改变,甚至可能消失。 (3) 对具有恒沸混合物的系统,不能用精馏的 方法得到两个纯组分。 (4) 在一定压力下,恒沸点处的自由度数为0。
如:Hg-Cd L L+ S(II)
S(I)+L
S(II)
S(I)
A
S(I)+S(II) B
三相线: L 结:
(1)相图点、线、面的含义, f* 等压=2-P+1
(2)相图的基本形状共七种(简称为七张基本相图)
T
( 1)
T
( 2)
T
( 3)
A A A p. y B p B xB
3
a. p-x相图
p
指定温度T
L 液相点
G+L
物系点
pB*
G
pA*
气相点 xB XB yB xB→ B
4
A
b. T-x图
T T A* a
L A
指定压力P
G c O b
d
xB
TB* B
O点:物系点 a,b:相点
现第一个液滴时的温度叫露点。 气泡产生时的温度叫泡点。
相关文档
最新文档