二次函数图象和abc的关系、二次函数和x轴的交点

合集下载

二次函数图像与abc符号关系

二次函数图像与abc符号关系

例:已知关于x的二次函数,当x=-1时,函数值为
10,当x=1时,函数值为4,当x=2时,函数值为7,求这
个二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
-1 O
3
A -1
x
-9
B
图13
解:(1)将x=-1,y=-1;x=3,y=-9分别代入 y ax2 4x c
得 1 a (1)2 4 (1) c, 解得 9 a 32 4 3 c.
ca
1, 6.
∴二次函数的表达式为. y x2 4x 6
x 2 (2)对称轴为
;顶点坐标为(2,-10).
对称轴在y轴左侧
a、b同号
对称轴在y轴右侧
a、b异号
对称轴是y轴
b=0
(4)b2-4ac的符号:由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0 b2-4ac<0
如果y=ax2+bx+c的图象与x轴的交点
为A(x1,0),B(x2,0);
范无围论. m为何值时, 0.
抛物线与x轴总有交点,且当=0时,即m=3时,
抛物线与x轴只有一个交点. (2)另一个交点坐标为(1,0) (3)当m>-1且m≠3时,抛物线的顶点在第四象限
用待定系数法求二次函数解析式,要根据给定条件 的特点选择合适的方法来求解
一般地,在所给条件中已知顶点坐标时,可设顶点 式y=a(x-h)2+k,在所给条件中已知抛物线与x轴 两交点坐标或已知抛物线与x轴一交点坐标与对称 轴,可设交点式y=a(x-x1)(x-x2);在所给的三个条 件是任意三点时,可设一般式y=ax2+bx+c;然后 组成三元一次方程组来求解。

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数与abc的关系总结

二次函数与abc的关系总结

二次函数与abc的关系总结二次函数是一种常见的数学函数形式,由以下一般式表示:f(x) =ax^2 + bx + c。

其中,a、b、c为常数,且a不等于零。

在研究二次函数的性质和特征时,了解a、b、c三个参数的作用是至关重要的。

本文将总结二次函数与abc的关系,帮助读者更好地理解和应用二次函数。

关系一:a的正负决定抛物线开口方向二次函数的抛物线图像通常呈现开口方向,而a的正负就决定了抛物线开口的方向。

当a为正数时,抛物线开口向上;当a为负数时,抛物线开口向下。

这是因为a控制了二次函数的平移和拉伸效果。

具体而言,a的绝对值越大,抛物线越窄且敏感,而当a接近于零时,抛物线趋于平缓。

关系二:a的绝对值决定抛物线的挤压程度除了决定抛物线的开口方向外,a的绝对值还决定了抛物线的挤压程度。

当a的绝对值较大时,抛物线更为陡峭;当a的绝对值较小时,抛物线更为平缓。

换言之,a的绝对值越大,抛物线越接近于直线;反之,则抛物线越加弯曲。

这一关系也意味着,二次函数的a值可以用来调整函数图像的形态。

关系三:b的作用是抛物线的横向平移二次函数中的b参数对应着抛物线图像的横向平移。

当b为正数时,抛物线向左平移;当b为负数时,抛物线向右平移。

这是因为b的绝对值越大,抛物线平移的距离越远。

尤其当a接近于零时,b的影响将更为显著。

需要注意的是,b的变化不会改变抛物线的开口方向和形状。

关系四:c影响二次函数的纵向平移最后一个参数c是二次函数图像的纵向平移。

当c为正数时,抛物线向上平移;当c为负数时,抛物线向下平移。

和b类似,c的绝对值越大,平移的距离越远。

与a和b不同的是,c的变化既不会改变抛物线的开口方向,也不会改变其形状。

综上所述,二次函数的abc参数分别控制了抛物线图像的开口方向、形状和位置。

其中,a的正负决定开口的方向,a的绝对值决定抛物线的挤压程度;b控制了抛物线的横向平移,而c影响二次函数的纵向平移。

通过了解这些关系,我们可以更好地理解和应用二次函数,用于解决实际问题和进行数学建模。

二次函数与abc的关系总结

二次函数与abc的关系总结

二次函数与abc的关系总结二次函数是高中数学中的重要内容之一,它的一般形式可表示为f(x) = ax² + bx + c,其中a、b、c均为常数,且a不为零。

在本文中,我将总结二次函数与abc的关系,进一步深化对二次函数的理解。

1. 关系一:a的取值范围a是二次函数中的一项系数,它决定了抛物线的开口方向。

具体来说:- 当a大于零时,抛物线开口向上;- 当a小于零时,抛物线开口向下;- 当a等于零时,二次函数不再是二次函数,而变为一次函数。

2. 关系二:a的绝对值与抛物线的形状a的绝对值大小决定了抛物线的狭长程度。

具体来说:- 当|a|大于1时,抛物线较为狭长,即纵向压缩;- 当|a|小于1时,抛物线较为扁平,即纵向拉伸。

3. 关系三:b的取值范围b是二次函数中的另一项系数,它对称轴的位置产生影响。

具体来说:- 当b大于零时,抛物线向左平移;- 当b小于零时,抛物线向右平移;- 当b等于零时,抛物线与y轴平行。

4. 关系四:c的取值范围c是二次函数中的常数项,它影响抛物线与y轴的交点。

具体来说:- 当c大于零时,抛物线与y轴的交点在y轴上方;- 当c小于零时,抛物线与y轴的交点在y轴下方;- 当c等于零时,抛物线与y轴相交于原点。

通过对二次函数与abc的关系总结,我们可以更好地理解和应用二次函数。

了解这些关系将有助于我们准确地绘制二次函数的图像,进一步分析和解决与二次函数相关的问题。

除了以上总结的关系,二次函数还有很多其他方面的性质和应用,比如顶点坐标、对称轴等。

这些内容在二次函数的学习中也十分重要,但本文将重点总结了与abc的关系。

在实际应用中,我们需要综合考虑二次函数的各个方面来解决问题,利用图像、方程等方法进行分析和计算。

总结而言,二次函数与abc之间有着密切的关系。

a决定了抛物线的开口方向和形状狭长程度,b影响抛物线的水平平移,c影响抛物线与y轴的交点。

掌握这些关系,可以更准确地理解和应用二次函数,进一步拓展数学知识的应用领域。

二次函数与abc的关系总结

二次函数与abc的关系总结

二次函数与abc的关系总结在数学中,二次函数是一个具有以下形式的函数:$f(x) = ax^2 + bx + c$。

其中,$a$、$b$和$c$是常数。

二次函数在数学分析、物理学、经济学等领域中都有广泛的应用。

本文将总结二次函数与$a$、$b$和$c$之间的关系。

关系一:二次函数的图像开口方向与$a$的正负有关。

当$a>0$时,二次函数的图像开口向上;当$a<0$时,二次函数的图像开口向下。

这是因为当$a>0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向上;当$a<0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向下。

关系二:二次函数的图像是否与$x$轴相交与$c$的正负有关。

当$c>0$时,二次函数的图像与$x$轴有两个交点;当$c=0$时,二次函数的图像与$x$轴有一个交点(相切);当$c<0$时,二次函数的图像与$x$轴没有交点。

关系三:二次函数的顶点坐标与$a$和$b$有关。

对于二次函数$f(x) = ax^2 + bx + c$,它的顶点的$x$坐标为$x =\frac{-b}{2a}$,$y$坐标为$y = f(\frac{-b}{2a})$。

根据$a$和$b$的不同取值,顶点可以位于$y$轴的上方或下方,并且根据$a$的正负可以确定顶点的凹凸性质。

当$a>0$时,顶点位于图像的下方(凹);当$a<0$时,顶点位于图像的上方(凸)。

综上所述,二次函数与$a$、$b$和$c$之间存在着紧密的关系。

通过对$a$、$b$和$c$的取值进行分析,可以推断出二次函数的图像特征、对称性以及与$x$轴的交点情况等。

这种关系在数学中具有重要的意义,对于解题和应用中的问题分析都起到了重要的作用。

了解和掌握这些关系,有助于提高对二次函数性质的理解和应用能力。

在实际应用中,二次函数与$a$、$b$和$c$的关系也有着重要的应用。

二次函数与abc的关系总结

二次函数与abc的关系总结

二次函数与abc的关系总结二次函数是一种常见的函数形式,可以表示为y=ax^2+bx+c的形式,其中a、b、c为常数。

通过观察和研究,我们可以总结出二次函数与a、b、c之间的关系。

1. a的影响:a决定了二次函数的开口方向和开口程度。

当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

同时,a的绝对值越大,开口越陡峭。

当a=1时,二次函数呈现标准形式;当a>1或a<1时,二次函数有比例变化。

2. b的影响:b决定了二次函数的对称轴位置。

对称轴的方程为x=-b/(2a),平移时只需改变x的坐标即可。

当b>0时,对称轴向右平移;当b<0时,对称轴向左平移。

同时,b的绝对值越大,平移越远。

3. c的影响:c决定了二次函数与y轴的位置关系。

当c>0时,二次函数与y轴有正的纵向距离;当c<0时,二次函数与y轴有负的纵向距离。

4. 二次函数的顶点:二次函数的顶点是其抛物线的最高或最低点,可以通过式子x=-b/(2a)求得。

顶点的纵坐标则通过将x的值代入二次函数得到。

5. 零点和交点:二次函数的零点是使得函数值为0的x的值。

零点可以通过将y=0代入二次函数得到,然后解方程求解得出。

同时,二次函数与x轴的交点有可能是零点,也有可能没有。

通过以上总结,我们可以看出二次函数与a、b、c之间有着密切的关系,每个参数都对函数的形状和位置产生影响。

了解这些关系可以帮助我们更好地理解和分析二次函数的性质。

总结完毕。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

二次函数与abc的关系

二次函数与abc的关系

二次函数的图像及其性质
二次函数的图像是一条抛物线,具有开口方向、曲率、对称性等特点。通过研究图像性质,我们可以更深入地 理解二次函数。
二次函数的应用实例
通过实际应用例子,我们可以看到二次函数在各个领域的具体应用,如物理、 经济、工程等。
解决实际问题时如何运用二次 函数
在解决实际问题时,我们可以运用二次函数的特性和公式,进行建模和求解, 从而得到准确的结果。
水平方向伸缩对二次函数的影 响
水平方向伸缩是改变二次函数图像形态的一种变换。通过伸缩,我们可以调 整二次函数图像在x轴上的宽度。
竖直方向伸缩对二次函数的影响
竖直方向伸缩是改变二次函数图像形态的一种变换。通过伸缩,我们可以调整二次函数图像在y轴上的高度。
二次函数与三角函数的关系
二次函数与三角函数之间存在一定的关联性,通过研究二次函数与三角函数 的关系,我们可以发现它们在数学中的互相影响。
二次函数的单调区间
二次函数的单调区间是指函数在该区间内的增减情况。通过研究单调区间, 我们可以了解二次函数的增减趋势。
二次函数的交点
二次函数可以与其他函数、直线或曲线相交,通过求解交点,我们可以获得二次函数与其他图形的交点坐标。
二次函数的点坐标
二次函数的点坐标是指函数图像上的特定点的横纵坐标值。通过求解点坐标, 我们可以了解二次函数的具体图像。
二次函数与abc的关系
在这个演示中,我们将探讨二次函数及其与参数a、b和c之间的关系。通过深 入研究这些关系,我们将揭示二次函数的各种特征和应用。
二次函数的一般式
二次函数的一般式定义了二次函数的基本形式,为y = axa、b和c是常数。
定义二次函数中的a、b和c
a表示二次函数的二次项系数,决定二次函数图像的开口方向和曲率。b表示二次函数的一次项系数,决定二 次函数图像的位置和斜率。c表示二次函数的常数项,决定二次函数图像与y轴的交点。

专题训练(二) 二次函数系数a,b,c与图象的关系

专题训练(二)  二次函数系数a,b,c与图象的关系

专题训练(二)二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的关系知识储备二次函数y=ax2+bx+c的图象与字母系数a,b,c 之间的关系:项目字母字母的符号图象的特征a a>0 开口向上a<0 开口向下bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧c c=0 经过原点c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4ac b2-4ac=0与x轴有一个交点(顶点)b2-4ac>0 与x轴有两个交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c;当x=-1时,y=a-b+c当x=2时,y=4a+2b+c;当x=-2时,y=4a-2b+c若a+b+c>0,则当x=1时,y>0若a-b+c>0,则当x=-1时,y>0当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1时,2a-b=0;判断2a+b的值大于还是小于0,看对称轴与直线x=1的位置关系;判断2a-b的值大于还是小于0,看对称轴与直线x=-1的位置关系▶类型一利用二次函数图象考查以上表格中的问题1.[2020·宁波江北区期末]二次函数y=ax2+bx+c(a≠0)的图象如图1所示,则下列关系式错误的是()A.a<0B.b>0C.b2-4ac>0D.a+b+c<0图 1 图22.[2020·宁波]如图2,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是A.abc<0 B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c3.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()图 3▶类型二利用二次函数图象考查ma+nc或mb+nc(m,n为非零整数)与0的关系4.如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()图4A.1个B.2个C.3个D.4个5.[2020·遵义改编]抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4, 0)和点(-3,0)之间,其部分图象如图5所示,下列结论中正确的有()①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等的实数根;④b2+2b>4ac.图5A.1个B.2个C.3个D.4个▶类型三利用二次函数图象考查am2+bm+c(a≠0,a,b,c为常数)与a+b+c的关系6.已知二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,其图象如图6所示,现有下列结论:①abc>0,②b-2a<0,③a-b+c>0,④a+b>n(an+b)(n ≠1),⑤2c<3b.其中正确的是()A.①③B.②⑤C.③④D.④⑤图6 图77.抛物线y=ax2+bx+c(a≠0)的一部分如图7所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1,有下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有() A.5个B.4个C.3个D.2个▶类型四利用二次函数图象解一元二次方程或不等式8.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=59.二次函数y=ax2+bx+c(a≠0)的图象如图8所示,则关于x的不等式ax2+bx+c>0的解是()图8A.x<-1B.x>3C.-1<x<3D.x<-1或x>3▶类型五利用一次函数、二次函数的图象解一元二次方程或不等式10.如图9所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解为()图9A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥911.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图10所示,则方程ax2+(32b x+c=0的两根之和()图10A.大于0B.等于0C.小于0D.不能确定专题二教师详解详析1.D[解析] 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.故选D.2.D[解析] ∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a.又∵a>0,∴b>0.∵抛物线与y轴正半轴交于点C,∴c>0,∴abc>0,故A错误;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,∴4ac-b2<0,故B错误;∵b=2a,∴当x=-1时,y=a-b+c=c-a<0,故C 错误;当x=-n2-2(n为实数)时,y=a(-n2-2)2+b(-n2-2)+c=a(-n2-2)2+2a(-n2-2)+c=a( n2+1)2-a+c.∵n为实数,∴n2≥0,(n2+1)2≥1.又∵a>0,∴a(n2+1)2-a≥0,∴y≥c,故D正确,因此本题选D.3.C4.C[解析] ∵抛物线开口向下,∴a<0.∵抛物线交y轴于正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确;∵抛物线的对称轴为直线x=1,∴-b2a=1,∴-b=2a,∴2a+b=0,故③错误;∵抛物线与x轴的两个交点关于对称轴对称,∴点(3,0)关于直线x=1的对称点为(-1,0),即抛物线经过点(-1,0),∴a-b+c=0,故④正确.综上可知,正确的结论有①②④,共3个.5.C[解析] 由-b2a=-2,得4a-b=0,故①正确;由抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,当x≤-2时,y随x的增大而增大,可知当x=-3时,y>0,由抛物线的对称性可知,当x=-1时,y>0,即a-b+c>0.又4a=b,∴a-4a+c>0,即c>3a.故②错误; 由图象得,关于x的方程ax2+bx+c=2有两个不相等的实数根正确; 由4ac-b24a=3,得4ac-b2=12a,∴4ac=12a+b2=3b+b2.易知a<0,b<0,c<0,∴4ac<2b+b2 ,故④正确.故选C.6.D[解析] ①由图象可知:a<0,b>0,c>0,∴abc<0,故此选项错误;②当x=-2时,y=4a-2b+c<0,即b-2a>c2>0,故此选项错误;③当x=-1时,y=a-b+c<0,故此选项错误;④当x=1时,y的值最大,此时,y=a+b+c,而当x=n 时,y=an2+bn+c,所以a+b+c>an2+bn+c(n≠1),故a+b>an2+bn,即a+b>n(an+b)(n≠1),故此选项正确.⑤由抛物线的对称性可知当x=3时函数值小于0,即y=9a+3b+c<0.∵抛物线的对称轴为直线x=-b2a=1,∴a=-b2,代入9a+3b+c<0,得9-b2 +3b+c<0,得2c<3b,故此选项正确;故④⑤正确.因此本题选D.7.B8.D9.D[解析] 根据图象可知,当y=0时,对应的x的值分别为x1=-1,x2=3.当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,当函数值y>0时,x的取值范围是x<-1或x>3.故选D.10.A[解析] 由图象可以看出:二次函数y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的图象的交点的横坐标分别为-1,9.而当y1≥y2时,对应的图象正好在两交点之间,所以-1≤x≤9.故选A.11.A。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。

4.b2-4ac的作用:与x轴交点的个数。

5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c),(-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。

针对训练:1.判断下列各图中的a、b、c及△的符号。

(1)a___0;b___0;c___0;△__0.(2)a___0; b___0; c___0;△__0.(3)a___0; b___0; c___0;△__0.(4)a___0; b___0; c___0;△__0.(5)a___0; b___0; c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0; b___0; c___0; a+b+c__0; a-b+c__0.3.二次函数y=ax 2+bx+c 的图象如图1所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-ba )在第 象限.5.已知 a <0,b >0,c>0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号:(1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ;(7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为: .(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。

二次函数与a,b,c的关系

二次函数与a,b,c的关系

几种特殊情况:x=1时,y=a + b + c ;x= -1 时,y=a - b + c .当x = 1 时,① 若y > 0,贝V a + b + c >0 ;® 若y < 时0,贝V a + b + c < 0 当x = -1 时,①若y > 0,贝V a - b + c >0 :②若y < 0,贝V a - b + c < 0 .等)的符号4. (2017四川省广安市)如图所示,抛物线y=ax2+bx+c的顶点为B (- 1, 3),与x轴的交点A 在点(-3, 0)和(-2, 0)之间,以下结论:①b2-4ac =0 :②a+b+c>0 :③2 a- b=0;④c- a=3其中正确的有()A. 1B. 2C. 3D. 45. (2017四川省眉山市)若一次函数y=( a+1)x+a的图象过第一、三、四象限,则二次函数y二ax2 - ax ()A. 有最大值- B .有最大值-- C.有最小值- D.有最小值--4 4 4 41. (2017贵州遵义第11题)如图,抛物线y=ax2+bx+c经过点(-1, 0),对称轴丨如图所示,则下列结论:①abc> 0;②a- b+c=0:③2a+c v0 :④a+b v 0,其中所有正确的结论是()A.①③ B .②③ C.②④ D.②③④9. (2017黑龙江齐齐哈尔第10题)如图,抛物线y=ax2・bx(a = 0)的对称轴为直线x = -2 , 与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①4a-b = 0 •,②c ::: 0 ;9 5 12③-3a0 :④4a -2b at bt (t为实数);⑤点(-―,yj ,(-一小),(-一山)是该抛物线上2 2 2的点,则%::: y2 :::y,正确的个数有()A. 4个B. 3个C. 2个 D . 1个6 . (2017四川省绵阳市)将二次函数y =x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A. b>8 B . b>- 8 C. b>8 D . b>- 8223. (2017浙江金华第6题)对于二次函数y=-[x-1 • 2是图象与性质,下列说法正确的是()A.对称轴是直线x =1,最小值是2 B .对称轴是直线x = 1,最大值是2C对称轴是直线x = T,最小值是2 D .对称轴是直线x = -1,最大值是22. (2017四川省南充市)二次函数y=ax2,bx < (a、b、c是常数,且a工0)的图象如图所示,下列结论错误的是()2A . 4ac v b B. abc v 0 C. b+c >3a D . a v b26. (2017新疆乌鲁木齐第15题)如图,抛物线y=ax 2・bx ・c 过点-1,0,且对称轴为直线x = 1 , 有下列结论:①abc ::: 0 :②10a 3b c 0 :③抛物线经过点 4, y 1与点_3,y 2,则y i • y 2;④无论a,b,c 取何 值,抛物线都经过同一个点—£,0 :⑤am 2 bm 0,其中所有正确的结论是 ______________________ .I a 丿15. (2017贵州黔东南州第9题)如图,抛物线y =ax 2+bx +c (a 工0)的对称轴为直线 x =- 1,给出下 列结论:①b 2=4ac ;②abc > 0;③a >c ;④4a - 2b +c >0,其中正确的个数有( )A. 1个B . 2个C . 3个D . 4个16. (2017山东烟台第11题)二次函数y 二ax 2 • bx • c (a = 0)的图象如图所示,对称轴是直线x = 1 ,① ab :0 :② b 2 . 4ac :③ a b c :: 0 :④ 3ac :: 0 •其中正确的是( )A.①④B •②④ C. ①②③ D•①②③④个交点坐标为(4, 0),其部分图象如图所示,下列结论: ① 抛物线过原点; ② 4a+b+c=0; ③ a - b+c v 0;④ 抛物线的顶点坐标为(2, b ); ⑤ 当x v 2时,y 随x 增大而增大. 其中结论正确的是()12题)已知抛物线y=ax 2+bx+c (a ^0)的对称轴为直线x=2,与x 轴的一 y 与x 的函数的是(17. ( 2017四川泸州第8题)F 列曲线中不能表示16. (2017山东日照第A.①②③B.③④⑤C.①②④D.①④⑤112. ( 2017江苏盐城第6题)如图,将函数y =(x — 2) 2+1的图象沿y 轴向上平移得到一条新函数2的图象,其中点 A (1 , m , B ( 4, n )平移后的对应点分别为点 A 、B •若曲线段AB 扫过的面积为 9 (图中的阴影部分),则新图象的函数表达式是(A. 1B. 2C. 3D. 44. (2017浙江宁波第10题)抛物线y =x 2- 2x + m 2+2( m 是常数)的顶点在()A.第一象限B. 第二象限C. 第三象限D. 第四象限3分)抛物线y=2x 2- 2 ~x+1与坐标轴的交点个数是点选择180。

二次函数图象与系数a、b、c的关系

 二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .12.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .44.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .15.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .56.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有()A .1个B .2个C .3个D .4个8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有()A .1个B .2个C .3个D .4个10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是()A .1B .2C .3D .412.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有()A .1个B .2个C .3个D .4个13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a bc->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .315.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4。

二次函数与abc的关系

二次函数与abc的关系

几种特殊情况:x=1时,y=a + b + c;x= -1时,y=a - b + c.当x = 1时,①若y > 0,则a + b + c >0;②若y < 时0,则a + b + c < 0 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c ;反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c以及它们组合成的一些关系结构例如对称轴−b2a ; 判别式b 2−4ac ; y =a +b +c ……等等的符号4.2017四川省广安市如图所示,抛物线c bx ax y ++=2的顶点为B ﹣1,3,与x 轴的交点A 在点﹣3,0和﹣2,0之间,以下结论:①042=-ac b ;②a +b +c >0;③2a ﹣b =0;④c ﹣a =3其中正确的有A .1B .2C .3D .45.2017四川省眉山市若一次函数y =a +1x +a 的图象过第一、三、四象限,则二次函数2y ax ax =-A .有最大值4aB .有最大值﹣4aC .有最小值4aD .有最小值﹣4a1. 2017贵州遵义第11题如图,抛物线y =ax 2+bx +c 经过点﹣1,0,对称轴l 如图所示,则下列结论:①abc >0;②a ﹣b +c =0;③2a +c <0;④a +b <0,其中所有正确的结论是A .①③B .②③C .②④D .②③④9. 2017黑龙江齐齐哈尔第10题如图,抛物线2y ax bx c =++0a ≠的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+t 为实数;⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有 A .4个 B .3个 C .2个 D .1个6.2017四川省绵阳市将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >﹣8C .b ≥8D .b ≥﹣82.2017四川省南充市二次函数2y ax bx c =++a 、b 、c 是常数,且a ≠0的图象如图所示,下列结论错误的是A .4ac <b 2B .abc <0C .b +c >3aD .a <b23. 2017浙江金华第6题对于二次函数()212y x =--+是图象与性质,下列说法正确的是A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2C . 对称轴是直线1x =-,最小值是2D .对称轴是直线1x =-,最大值是226. 2017新疆乌鲁木齐第15题如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .15.2017贵州黔东南州第9题如图,抛物线y =ax 2+bx +ca ≠0的对称轴为直线x =﹣1,给出下列结论:①b 2=4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有A .1个B .2个C .3个D .4个 16.2017山东烟台第11题二次函数)0(2≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论:①0<ab ;②ac b 42>;③0<++c b a ;④03<+c a .其中正确的是A .①④B .②④ C. ①②③ D .①②③④17.2017四川泸州第8题下列曲线中不能表示y 与x 的函数的是A. B. C. D.16. 2017山东日照第12题已知抛物线y=ax2+bx+ca≠0的对称轴为直线x=2,与x轴的一个交点坐标为4,0,其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为2,b;⑤当x<2时,y随x增大而增大.其中结论正确的是A.①②③B.③④⑤C.①②④D.①④⑤12.2017江苏盐城第6题如图,将函数y=12x-22+1的图象沿y轴向上平移得到一条新函数的图象,其中点A1,m,B4,n平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9图中的阴影部分,则新图象的函数表达式是A.y=12x222 B.y=12x22+7 C.y=12x225 D.y=12x22+47.2017广西贵港第10题将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是A.()211y x=-+ B.()211y x=++C.()2211y x=-+ D.()2211y x=++8.2017贵州安顺第10题二次函数y=ax2+bx+c≠0的图象如图,给出下列四个结论:①4ac ﹣b2<0;②3b+2c<0;③4a+c<2b;④mam+b+b<am≠1,其中结论正确的个数是A.1 B.2 C.3 D.44.2017浙江宁波第10题抛物线22y x x m m是常数的顶点在22A.第一象限B.第二象限C.第三象限D.第四象限1.2016·山东省滨州市·3分抛物线y=2x2﹣2x+1与坐标轴的交点个数是A.0 B.1 C.2 D.32.2016·山东省滨州市·3分在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是A.y=﹣x﹣2﹣B.y=﹣x+2﹣C.y=﹣x﹣2﹣D.y=﹣x+2+点评本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.3.2016广西南宁3分二次函数y=ax2+bx+ca≠0和正比例函数y=x的图象如图所示,则方程ax2+b﹣x+c=0a≠0的两根之和A.大于0 B.等于0 C.小于0 D.不能确定4.2016贵州毕节3分一次函数y=ax+ba≠0与二次函数y=ax2+bx+ca≠0在同一平面直角坐标系中的图象可能是A.B.C.D.5.2016·福建龙岩·4分已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=A.a+b B.a﹣2b C.a﹣b D.3a10.2016贵州毕节3分一次函数y=ax+ba≠0与二次函数y=ax2+bx+ca≠0在同一平面直角坐标系中的图象可能是A.B.C.D.11. 2016·浙江省绍兴市·4分抛物线y=x2+bx+c其中b,c是常数过点A2,6,且抛物线的对称轴与线段y=01≤x≤3有交点,则c的值不可能是A.4 B.6 C.8 D.1012. 2016·湖北随州·3分二次函数y=ax2+bx+ca≠0的部分图象如图所示,图象过点﹣1,0,对称轴为直线x=2,下列结论:14a+b=0;29a+c>3b;38a+7b+2c>0;4若点A﹣3,y1、点B﹣,y2、点C,y3在该函数图象上,则y1<y3<y2;5若方程ax+1x﹣5=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有A.2个B.3个C.4个D.5个13.2016·四川南充抛物线y=x2+2x+3的对称轴是A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=214.2016·四川泸州已知二次函数y=ax2﹣bx﹣2a≠0的图象的顶点在第四象限,且过点﹣1,0,当a﹣b为整数时,ab的值为A.或1 B.或1 C.或D.或15.2016·四川攀枝花如图,二次函数y=ax2+bx+ca>0图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形16.2016·黑龙江齐齐哈尔·3分如图,抛物线y=ax2+bx+ca≠0的对称轴为直线x=1,与x轴的一个交点坐标为﹣1,0,其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是A.4个B.3个C.2个D.1个17.2016·湖北黄石·3分以x为自变量的二次函数y=x2﹣2b﹣2x+b2﹣1的图象不经过第三象限,则实数b的取值范围是A.b≥B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2 18.2016·湖北荆门·3分若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=719.2016·青海西宁·3分如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B 两点同时出发,在运动过程中,△PBQ的最大面积是A.18cm2 B.12cm2 C.9cm2 D.3cm221. 2016·四川眉山·3分若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为A.y=x﹣22+3 B.y=x﹣22+5 C.y=x2﹣1 D.y=x2+4 4.2016·四川南充已知抛物线y=ax2+bx+c开口向上且经过点1,1,双曲线y=经过点a,bc,给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+a﹣1x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是填写序号5.2016·四川泸州若二次函数y=2x2﹣4x﹣1的图象与x轴交于Ax1,0、Bx2,0两点,则+的值为7.2016·湖北荆州·3分若函数y=a﹣1x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为8. 2016·辽宁丹东·10分某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.1求y与x之间的函数关系式;2在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克3当增种果树多少棵时,果园的总产量w千克最大最大产量是多少12.2016·四川内江12分某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米如图14所示,设这个苗圃园垂直于墙的一边长为x米.1若苗圃园的面积为72平方米,求x;2若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗如果有,求出最大值和最小值;如果没有,请说明理由;3当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.18m苗圃园图1416.2016·黑龙江龙东·6分如图,二次函数y=x+22+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A﹣1,0及点B.1求二次函数与一次函数的解析式;2根据图象,写出满足x+22+m≥kx+b的x的取值范围.21.2016·内蒙古包头一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.1求y与x之间的函数关系式;2若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.24. 2016·山东潍坊旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x元是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.1优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元注:净收入=租车收入﹣管理费2当每辆车的日租金为多少元时,每天的净收入最多。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学计划教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. (6)由对称轴公式x=,可确定2a+b 的符号.二、基础练习1、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( D ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,则正确的结论是( D ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( C )1\2\3A 、1B 、2C 、3D 、4任课教师学科 版本 年段 辅导类型 上课时间 学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号的确定方法课次教学目标 掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

4、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是(B )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是(A4 ) A 、1 B 、2 C 、3 D 、46、(如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有(D2) A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说法正确的是(C ) A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是(B )1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是(D ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(B ) A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足(A )A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0C 、a <0,b >0,c >0,2b -4ac <0D 、a >0,b <0,c >0,2b -4ac >013、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是(B ) A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,则下列结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有(C ) A 、②③ B 、②④ C 、①③ D 、①④15、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是(C ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如图所示,下列结论错误的是(B ) A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a >0B 、c <0C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( C )个.1/2/3A 、1B 、2C 、3D 、4三、能力练习1.已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0 2.已知二次函数c bx ax y ++=2(a ≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤03.二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,ca)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.若二次函数c bx ax y ++=2的图象如图,则ac_____0(“<”“>”或“=”)第4题图 5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断正确的是( ) A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=ab2-时,y 有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab2-时,y 有最大值,例题.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ). (1)求抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?五、中考真题回顾: (09佛山)19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分, 满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).(11·佛山)21.如图,已知二次函数y =ax 2+bx +c 的图像经过A (-1,-1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图像;【答案】解:(1)根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3 ………………2分解得a =-1,b =2,c =2………………4分ab ac y 442-=最小值ab ac y 442-=最大值xy O第19题图xyoABC1所以二次函数的解析式为y =-x 2+2x +2………………5分(2)二次函数的图象如图………………8分 给分要点:顶点、对称、光滑(各1分)(12佛山)22.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的部分数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:(1)方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a , 解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y (三种选其一即可)(2)1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点x -1 0 1 2 3 y343xyoABC14、交y轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像(2013•佛山)24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).分析:(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。

二次函数图像与abc的关系

二次函数图像与abc的关系

3
等于0
抛物线会转移到y轴的位置。
二次函数图像与参数c的关系
大于0
二次函数图像上下平移c个单位。
小于0
二次函数图像下移c个单位。
等于0
不会影响抛物线的位置。
二次函数图像与顶点坐标的关系
向上移动
当抛物线向上移动时,顶点的y 坐标会增加。
向下移动
当抛物线向下移动时,顶点的y 坐标会的x坐标会随之变化。
二次函数图像与弦长的关系
纵坐标高度差
弦长
0
2|a|
2|a|
2
4|a|
2√2
6|a|
4
二次函数图像与参数a的关系
大于1
二次函数图像会变得更加扁宽, 而且始终开口向上。
在0和1之间
二次函数图像会变得更加窄高, 而且始终开口向上。
小于0
二次函数图像始终开口向下,而 且会变得更加窄高。
二次函数图像与参数b的关系
1
大于0
参数b控制了抛物线的位置,而且抛物线上下振动的程度。
2
小于0
虽然抛物线的开口方向不变,但会上下反转。
二次函数图像与abc的关 系
二次函数图像是数学中的重要概念。了解它的形状和性质对于学习和掌握二 次函数至关重要。
二次函数图像的形状和位置
形状
二次函数图像可以是开口向上的 抛物线或开口向下的抛物线。
位置
二次函数图像可以沿着x轴或y轴 移动。
宽度
二次函数图像可以被拉宽或压缩。
二次函数图像的平移和伸缩
平移
当二次函数图像沿x轴移动a个单位,则f(x)=a(xh)^2+k,其中(a≠0)。这将导致整个图像移动到左 或右方。当二次函数图像沿y轴移动k个单位, 则f(x)=a(x-h)^2+k,其中(a≠0)。这将导致整个图 像移动到上或下方。

二次函数abc的关系

二次函数abc的关系

二次函数abc的关系二次函数是一种形如$f(x) = ax^2 + bx + c$的函数,其中$a,b,c$是常数且$a\neq 0$。

二次函数在数学中有着广泛的应用,例如在物理学、经济学、统计学等领域中都有着重要的作用。

下面我们来详细地讲解二次函数中$a,b,c$三个常数之间的关系。

首先,我们来看二次函数的图像。

二次函数的图像一般为一个开口向上或向下的抛物线,其开口方向由$a$的正负号决定。

当$a>0$时,抛物线开口向上;当$a<0$时,抛物线开口向下。

接着,我们来分别讨论$a,b,c$三个常数对二次函数图像的影响。

1. $a$对图像的影响由于$a$决定了抛物线开口方向,因此它对图像有着重要的影响。

当$a>0$时,随着$x$增大,$f(x)$也会增大;当$a<0$时,随着$x$增大,$f(x)$会减小。

此外,在绝对值相等的情况下,越小的$a$使得抛物线越扁平;越大的$a$则使得抛物线越尖锐。

2. $b$对图像的影响$b$对图像的影响主要体现在抛物线的位置上。

当$b>0$时,抛物线向右移动;当$b<0$时,抛物线向左移动。

此外,在绝对值相等的情况下,越小的$b$使得抛物线移动得越远;越大的$b$则使得抛物线移动得越近。

3. $c$对图像的影响$c$对图像的影响主要体现在抛物线与$x$轴交点上。

当$c>0$时,抛物线与$x$轴交点在原点上方;当$c<0$时,抛物线与$x$轴交点在原点下方。

此外,在绝对值相等的情况下,越小的$c$使得抛物线与$x$轴交点越高;越大的$c$则使得抛物线与$x$轴交点越低。

综上所述,二次函数中$a,b,c$三个常数之间有着密切的关系。

它们分别决定了二次函数图像的开口方向、位置和与$x$轴交点高度等特征。

因此,在使用二次函数进行问题求解时,我们需要仔细分析其$a,b,c$三个常数之间的关系,并根据具体问题选择合适的数值进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点8:待定系数法求二次函数的解析式,二次函数图象的位置与a,b,c之间的关系,二次函数与x轴的交点情况及与一元二次方程根与系数之间的在联系
一、选择题
1.若A(),B(),C()为二次函数的图象上的三点,则的大小关系是()
A.B.
C.D.
2.已知:二次函数的图像为下列图像之一,则的值为( )
A.-1 B. 1 C. -3 D. -4
3.已知二次函数的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数的图象上,则下列结论正确的是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
4.已知点,均在抛物线上,下列说法中正确的是()
A.若,则B.若,则
C.若,则D.若,则
5.已知二次函数的图象如图所示,令,则
()
A.M>0 B. M<0 C. M=0 D. M的符号不能确定
6.二次函数的图象如图4所示,则下列说法不正确的是()
A.B.
C.D.
7.二次函数的图象与轴有交点,则的取值围是【】
A. B. C. D.
8.已知反比例函数的图象如下右图所示,则二次函数的图象大致为【】
14. (2008)在同一直角坐标系中,函数和(是常数,且)的图象可能
..是()
9下列命题:
①若,则;
②若,则一元二次方程有两个不相等的实数根;
③若,则一元二次方程有两个不相等的实数根;
④若,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是().
A.只有①②③B.只有①③④C.只有①④D.只有②③④.10.已知二次函数(其中),
关于这个二次函数的图象有如下说法:
①图象的开口一定向上;
②图象的顶点一定在第四象限;
③图象与轴的交点至少有一个在轴的右侧.
以上说确的个数为()
A.0 B.1 C.2 D.3
11.已知函数的图象如图所示,则下列结论正确的是()
A.a>0,c>0 B.a<0,c<0 C.a<0,c>0 D.a>0,c<0
12.在平面直角坐标系中,抛物线与轴的交点的个数是()
A.3 B.2 C.1 D.0
13.已知二次函数的大致图象如图所示,那么函数的图象不经过()
A.一象限B.二象限C.三象限D.四象限
14..已知抛物线与轴的一个交点为,
则代数式的值为()
A.2006 B.2007 C.2008 D.2009
15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;
③a-b+c<0;④a+c>0,其中正确结论的个数为().
A、4个
B、3个
C、2个
D、1个
16. (2008)函数在同一直角坐标系的图象大致是()
二、填空题
1如图为二次函数的图象,在下列说法中:
①;②方程的根为,;
③;④当时,随着的增大而增大.
正确的说法有.(请写出所有正确说法的序号)
2.抛物线与轴只有一个公共点,则的
值为
3.已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值围是.
4.二次函数图象如图所示,则点在第象限.
5、已知函数的部分图象如图所示,则c=______,当x______时,y随x的增大而减小.
6.如图是二次函数图像的一部分,该图在轴右侧与轴交点的坐标是
三、简答题
1.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)
2.如图,矩形的长、宽分别为和1,且,点,连接.
(1)求经过三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形放大,使放大后的五边形的边长是原五边形对应边长的3倍.请在下图网格中画出放大后的五边形;
(3)经过三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
3.如图9,,,……在函数的图像上,,,,……都是等腰直角三角形,斜边、、,……都在轴上
⑴求的坐标
⑵求的值
4.已知二次函数y1=ax2+bx+c(a≠0)的图像经过三点(1,0),(-3,0),(0,-).(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分)(2)若反比例函数y2=(x>0)的图像与二次函数y1=ax2+bx+c(a≠0)的图像在第一象限交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;(4分)
(3)若反比例函数y2=(x>0,k>0)的图像与二次函数y1=ax2+bx+c(a≠0)的图像在第一象限的交点A,点A的横坐标x0满足2<x0<3,试数k的取值围.(5分)
5.如图,在平面直角坐标系中,点的坐标分别为.
(1)请在图中画出,使得与关于点成中心对称;
(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的
关系式.
6.已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于.
(1)求这条抛物线的函数关系式;
(2)设直线交轴于是线段上一动点(点异于),过作轴交直线于,过作轴于,求当四边形的面积等于时点的坐标.
7.已知,如图,直线经过和两点,它与抛物线在第一象限相交于点P,又知的面积为4,求
的值.
8.在直角坐标平面中,O为坐标原点,二次函数的图象与y轴交于点A,与x轴的负
半轴交于点B,且.
(1)求点A与点B的坐标;
(2)求此二次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.。

相关文档
最新文档