气体动理论

合集下载

气体动理论

气体动理论
(答案:前者是由于分子碰撞次数增加导致,后者是由于运动 加剧导致)
2.两种不同种类的理想气体,压强相同,温度相同,体积不同, 试
问单位体积内的分子数是否相同?
(答案:相同)
3.两瓶不同种类的气体,分子平均平动动能相同,但气体的分 子数密度不同,试问他们的压强是否相同? (答案:不同)
4.两瓶不同种类的气体,体积不同,但温度和压强相同,问气体 分子的平均平动动能是否相同?单位体积中的分子的总平动 动能是否相同?方均根速率是否相同?(答案:相同,相同,不同)
2. 理想气体的内能包括哪些? 理想气体的内能=所有气体分子动能量的总和;
3. 内能与机械能有什么区别?
机械能可以为零,而内能永不为零。
一摩尔理想气体的内能:
Emol N
i KT i RT
2
2
M千克理想气体的内能: E M i RT i vRT
M mol 2
2
问题:
1.三个容器内分别储有1mol氦气(He),1mol氢气(H2),1mol氨 气(NH3)( 三种气体均 视为刚性分子的理想气体),若它们的 温度都升高 1K , 则三种气体内能的增加分别是多少? (答案:12.5J, 20.8J, 24.9J) 2.写出下列各量的表达式:
(2) 分子沿各个方向运动的机会是均等的,没有任何一个 方向上气体分子的运动比其它方向更占优势。即沿着各 个方向运动的平均分子数应该相等;
(3) 分子速度在各个方向的分量的各种平均值相等。
五、气体动理论的统计方法 (statistical metheds)
用对大量分子的平均性质的了解代替个别分子的 真实性质。对个别分子(或原子)运用牛顿定律求 出其微观量,如:质量、速度、能量等,再用统计的 方法,求出大量分子关于微观量的统计平均值,并 用来解释在实验中直接观测到的物体的宏观性质, 如:温度、压强、热容等。

气体动理论的基本假设

气体动理论的基本假设

气体动理论的基本假设气体动理论是研究气体行为和性质的学科,它基于一系列假设和原理,用于解释气体分子的运动和相互作用。

这些假设是对实际情况的简化和理想化,使得我们能够通过数学模型更好地理解气体的行为。

本文将就气体动理论的基本假设进行探讨。

1. 气体分子是微观粒子气体动理论的基本假设之一是将气体看作是由大量微观粒子组成的物质。

这些微观粒子可以是分子,也可以是原子。

根据这一假设,气体的物态特性可以通过对这些微观粒子的运动和相互作用进行研究来解释。

这种假设可以追溯到19世纪早期,由波尔特曼和马克斯韦尔等人提出。

2. 碰撞是气体分子的基本作用基于气体分子是微观粒子的假设,气体动理论认为气体分子之间的碰撞是其基本作用。

这些碰撞会导致分子的运动和相互作用,从而决定了气体的性质。

在碰撞中,气体分子之间会交换能量和动量,使得气体分子的速度和方向发生改变。

碰撞的频率和能量转移的大小会受到温度等因素的影响。

3. 气体分子运动是无规则的气体动理论假设气体分子的运动是无规则的。

这意味着在宏观层面上,气体分子的运动是随机的,无法准确预测。

每个气体分子根据自身能量和速度的微小差异,会呈现出不同的运动轨迹和行为。

尽管分子的总体行为是未知的,但是通过大量气体分子的统计平均,可以得到气体的宏观性质,如压强、温度和体积等。

4. 分子之间的相互作用力可以忽略不计气体动理论的另一个基本假设是忽略气体分子之间的相互作用力。

这意味着在描述气体分子的运动时,我们不考虑分子之间的引力或斥力等相互作用。

这一假设在许多情况下是合理的,尤其是当气体分子之间的距离足够远时,相互作用力可以忽略不计。

因此,气体动理论可以建立在这种简化的假设下,更好地解释气体的宏观性质。

总的来说,气体动理论基于一系列假设和原理,用于解释气体分子的运动和相互作用。

这些基本假设包括气体分子是微观粒子、碰撞是气体分子的基本作用、气体分子运动是无规则的以及分子之间的相互作用力可以忽略不计。

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体分子的运动规律和性质的科学理论。

在研究气体动理论时,我们常常会用到一些重要的公式来描述气体的状态和性质。

下面我们将对一些常用的气体动理论公式进行总结和归纳,以便更好地理解和应用这些公式。

1. 理想气体状态方程。

理想气体状态方程是描述气体状态的重要公式之一,它表达了气体的压强、体积和温度之间的关系。

理想气体状态方程的数学表达式为:PV = nRT。

其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量,R为气体常数,T表示气体的温度。

这个方程描述了理想气体在一定条件下的状态,对于理想气体的研究和应用具有重要意义。

2. 理想气体内能公式。

理想气体内能是气体分子的平均动能,它与气体的温度有直接的关系。

理想气体内能的数学表达式为:U = (3/2)nRT。

其中,U表示气体的内能,n表示气体的物质量,R为气体常数,T表示气体的温度。

这个公式表明了理想气体内能与温度的关系,对于研究气体的热力学性质和能量转化具有重要意义。

3. 理想气体压强公式。

理想气体的压强是描述气体状态的重要参数之一,它与气体的温度和体积有直接的关系。

理想气体压强的数学表达式为:P = (nRT)/V。

其中,P表示气体的压强,n表示气体的物质量,R为气体常数,T表示气体的温度,V表示气体的体积。

这个公式描述了理想气体的压强与温度、体积的关系,对于理想气体的状态和性质具有重要意义。

4. 理想气体密度公式。

理想气体的密度是描述气体物质分布的重要参数,它与气体的压强和温度有直接的关系。

理想气体密度的数学表达式为:ρ = (nM)/V。

其中,ρ表示气体的密度,n表示气体的物质量,M表示气体的摩尔质量,V 表示气体的体积。

这个公式描述了理想气体的密度与物质量、摩尔质量、体积的关系,对于理想气体的物质分布和性质具有重要意义。

5. 理想气体平均速度公式。

理想气体分子的平均速度是描述气体分子运动规律的重要参数,它与气体的温度和摩尔质量有直接的关系。

大学物理气体动理论

大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和

气体分子动理论

气体分子动理论

气体分子动理论气体分子动理论是物理学中研究气体行为的理论框架。

它基于原子和分子在气体中的微观运动,试图解释和预测气体的宏观性质。

本文将介绍气体分子动理论的基本原理和相关概念。

分子运动和气体行为气体由大量分子组成,这些分子在气体容器中不断运动,并与容器和其他分子发生碰撞。

气体的宏观性质,如温度、压力和体积,可以从分子的运动状态推导出来。

气体分子动理论通过研究分子之间的相互作用和运动规律,解释了气体的行为。

分子运动规律根据气体分子动理论,分子具有以下运动规律:1.分子无规则运动:分子在气体容器中呈现无规则、自由的运动状态。

它们在容器内沿不同方向高速运动,并不断改变运动方向和速度。

2.分子之间的弹性碰撞:分子之间发生弹性碰撞,碰撞后能量和动量守恒,但在碰撞中的分子可能会发生运动速度和方向的改变。

3.平均运动速度:分子的速度服从Maxwell-Boltzmann分布,即分子的速度呈现连续分布,平均速度与温度相关。

4.分子间距和碰撞:分子之间的距离很大,相对于分子的体积而言,分子之间的相互作用可以忽略不计。

然而,当分子靠近时,它们之间的碰撞会对气体的性质产生影响。

气体宏观性质的解释气体分子动理论通过分子的运动规律,解释了气体的一些宏观性质:1.压力:气体分子运动产生的碰撞力对容器壁施加压力,压力与分子速度和碰撞频率有关。

2.温度:气体分子的平均动能与其速度平方成正比,因此温度可以视为分子的平均运动速度的度量。

3.体积:气体分子之间的距离较大,在碰撞时每个分子所占的体积可以忽略不计,因此气体没有固定的形状和体积,可以完全填满容器。

气体状态方程气体状态方程描述了气体的状态和性质。

根据气体分子动理论,可以推导出理想气体状态方程:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的温度。

这个方程表明,在一定温度下,气体的压力和体积成正比,与摩尔数成正比。

该方程也可以用来推导气体的其他性质。

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。

它主要研究气体分子的速度、能量、碰撞等方面的性质。

气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。

下面将总结一些常见的气体动理论公式。

1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。

它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。

2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。

它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。

3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。

它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。

4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。

它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。

5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。

它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。

6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。

它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。

以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。

利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。

同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。

气体动理论

气体动理论

气体动理论(kinetic theory of gases)是19世纪中叶建立的以气体热现象为主要研究对象的经典微观统计理论。

气体由大量分子组成,分子作无规则的热运动,分子间存在作用力,分子的运动遵循经典的牛顿力学。

根据上述微观模型,采用统计平均的方法来考察大量分子的集体行为,为气体的宏观热学性质和规律,如压强、温度、状态方程、内能、比热以及输运过程(扩散、热传导、黏滞性)等提供定量的微观解释。

气体动理论揭示了气体宏观热学性质和过程的微观本质,推导出宏观规律,给出了宏观量与微观量平均值的关系。

它的成功印证了微观模型和统计方法的正确性,使人们对气体分子的集体运动和相互作用有了清晰的物理图像,标志着物理学的研究第一次达到了分子水平。

气体分子动理论

气体分子动理论

气体分子动理论气体是物质存在的其中一种形态,它的分子运动对于我们理解气体的性质至关重要。

气体分子动理论是一种描述气体性质的科学理论,它通过解释气体分子的运动行为和碰撞规律,为我们提供了对气体行为的深入认识。

1. 分子运动的基本规律气体分子的运动有其基本规律,其中最重要的是玻尔兹曼分布规律。

根据玻尔兹曼分布规律,气体分子的速度分布服从高斯分布,即呈现一个钟形曲线。

这意味着气体分子的速度有一定的平均值,同时也存在一定的速度分散。

这种分布规律的存在,决定了气体的宏观性质,如压强、温度等。

2. 碰撞与压强气体分子之间的碰撞是气体压强产生的主要原因。

当气体分子运动速度较慢,分子之间碰撞不频繁时,气体的压强较低。

相反,当气体分子运动速度较快,分子之间碰撞频繁时,气体的压强较高。

根据气体分子动理论,气体压强与温度呈正相关,其数学关系为压强和温度的乘积与分子间平均速度的平方成正比。

3. 温度与分子速度气体分子运动的速度与气体的温度有着密切的关系。

根据气体分子动理论,气体温度与分子平均动能成正比。

换句话说,温度越高,气体分子的平均动能越大,分子的平均速度也会增加。

这也解释了为什么在相同温度下,不同气体的分子速度可能不同的原因。

例如,氢气分子较轻,根据等温分子速度公式,它的速度较大;而氮气分子较重,其速度相对较低。

4. 分子扩散与扩散速率分子扩散是气体分子运动的另一个重要现象。

根据气体分子动理论,气体分子会自发地从高浓度区域向低浓度区域扩散。

扩散速率受到多种因素的影响,如温度、分子间相互作用力以及分子质量等。

高温下的气体分子动能较大,扩散速率较快;而分子间的相互作用力越大,扩散速率越慢。

5. 分子间相互作用力气体分子间存在一定的相互作用力,这种作用力对气体性质有着重要影响。

分子间相互作用力可以分为吸引力和斥力。

对于吸引力较大的气体分子,它们的运动速度相对较慢,而分子间距离较小。

这种相互作用力称为范德华力。

相反,当气体分子间的斥力较大时,其运动速度较快,分子间距离较大,这种相互作用力被称为排斥力。

气体动理论

气体动理论
i U RT 2
i U RT 2
理想气体的内能是 温度的单值函数!
例题 理想气体系统由氧气组成,压强P =1 atm,温度T = 27oC。 求(1)单位体积内的分子数;(2)分子的平均 平动动能 和平均转动动能;(3)单位体积中的内能。
解(1) 根据
p nkT
p 1.013 10 5 25 3 n 2 . 45 10 m kT 1.38 10 23 300 3 21 J (2) 平 kT 6.21 10 2
理想气体由大量自由、无规则运动 着的弹性质点组成!
统计规律
必然事件 必然发生。
必然不发生。 随机事件 ——在一次试验中是否发生不能事先确定, 但是,大量重复试验,遵从一定的规律。 例:抛硬币N次, NA次正面向上。 N不大时,
NA 1 N很大时, N 2
NA N
不确定;
NA 1 p A lim N N 2
2 a 3v 0
N
2 mol 氢气
1 mol 氧气
U
H2
U O 2 U H 2O U H 2O

7.5 6 25% 6
16.4
麦克斯韦速率分布
一、速率分布函数 处于平衡态的气体,每个分子 朝各个方向运动的概率均等。 一个分子,某一时刻速度
可是大量分子速度分 量的方均值相等。
v
2 i
通常 v xv y v z
分子的每一个自由度对应一份相同的能量 分子的每一个平动自由度对应一份相同的能量 单原子 总 分子平均 总动能
二、能量均分定理

i kT 2
双原子 多原子
3 kT 2 5 总 kT 2
总 3kT

气体动理论公式总结

气体动理论公式总结

1.自由度i=t+r
单原子分子 i=t=3
刚性双原子 i=t+r=3+2 刚性三原子i=t+r=3+3
2.分子平均平动动能
t
t 2
kT
3 2
kT
3.分子平均转动动能
r
r 2
kT
4.分子平均动能
k
i kT 2
5.气体内能
E
i RT
2
i pV 2
2
四、麦克斯韦速率分布律
1.速率分布函数: f (v) dN Ndv
3、均匀带电无限长直导线
E 2 0 r
4.半径为R的均匀带电球面
E外
q
4 0r 2
E内 0
q
q
U外 4 0r U内 40R
5.无限大均匀带电平面
E
2 0
15
七、静态平衡时的导体 1. 导体内部场强为0。导体表面附近场强方向与导
体表面垂直。 2.导体为等势体(电势处处相等)。
3. 导体内无电荷,所有电荷分布于表面。
(1)
D dS q0 电场的高斯定律
(2)
E dl
L
S
B
d
S
电 场 的
环路定理
t
(变化的磁场激发电场)
(3) B d S 0
磁场的高斯定律
(4)
S
H dl
L
Ic
d D
dt
Ic
D dS t
磁 场 的 环 路 定 理 (变化的电场激发磁场)
27
第13 章量子物理
一、黑体辐射
v2 b v2 f (v)dv / b f (v)dv
a

气体动理论

气体动理论

1 k m0 v 2 2 3kT 3 RT 2 v T, 3 m0 M k kT 2 2 称为方均根速率 (root-mean-square speed) v
例 . 在273K时: 3 k kT 5.65 10 21 J 2
2
3.53 10 eV
i E RT 2
pV RT
i E pV 2
i E NkT 2
i E RT 2
蓝皮书p50:35
若理想气体的体积为V,压强为p,温度为T,一个分子 的质量为m,/ m . (B) pV / (kT). (C) pV / (RT). (D) pV / (mT).
10-2 理想气体状态方程的微观解释
一 理想气体压强的统计意义
前提: 平衡态, 忽略重力, 分子看成质点 (即只考虑分子的平动); 讨论对象: 同 一种气体,分子质量为 m0 , N…… 总分子数, ……体积, V
N ……分子数密度(足够大), n V
设第i 组分子的速度在 vi vi d vi
一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后 理想气体的温度 (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.
把所有分子按速度分为若干组,在每一 组内的分子速度大小,方向都几乎相等。
区间内。
Ni 速度为第 组的分子数密度, i ni V N N i , n ni
压强公式的推导步骤:
i i
器壁


一个分子对器壁的冲量
一组分子对器壁的冲量 各组分子对器壁的冲量
i

dS
x

整个气体对器壁的压强
3 k kT 2 m m R N NA M M k

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体运动的基本理论,涉及到气体的压力、体积、温度等性质。

在研究气态物质的行为和性质时,气体动理论公式是非常重要的工具。

本文将对一些常用的气体动理论公式进行总结和解析。

1. 状态方程公式状态方程是描述气体状态的物理方程,常见的状态方程包括理想气体状态方程和范德华方程。

理想气体状态方程:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的绝对温度。

范德华方程:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德华常数,和实际气体分子之间的作用有关。

2. 理想气体状态方程的推导理想气体状态方程可以通过气体分子的平均动能推导得到。

根据气体分子的平均运动能量定理,可得到以下公式:KE = (3/2)kT其中,KE表示气体分子的平均动能,k为玻尔兹曼常数,T表示气体的绝对温度。

另外,气体分子的动能与气体分子的速度和质量有关:KE = (1/2)mv^2其中,m为气体分子的质量,v为气体分子的速度。

将上述两个公式相等,可以得到:(1/2)mv^2 = (3/2)kT由此,可以推导出理想气体状态方程:PV = (1/3)Nm<v^2>其中,N为气体分子的个数,<v^2>表示气体分子速度的平方的平均值。

3. 分子平均自由程公式分子平均自由程是指气体分子在碰撞间隔期间所飞过的平均距离。

分子平均自由程与气体分子的摩尔数、体积和气体分子直径有关。

分子平均自由程的公式为:λ = (1/√2) * (V/nπd^2)其中,λ表示分子平均自由程,V表示气体的体积,n表示气体的摩尔数,d表示气体分子的直径。

4. 均方根速度公式气体分子的运动速度可以用均方根速度来描述,均方根速度是指所有气体分子速度平方的平均值的平方根。

均方根速度的公式为:v(rms) = √(3kT/m)其中,v(rms)表示气体分子的均方根速度。

气体动理论

气体动理论

2 x
2 y
2 z
1 2
3
二、理想气体的压强公式
对压强的统计解释
气体的压强是由大量分子 在和器壁碰撞中不断给器 壁以力的作用所引起的, 压强是气体分子给容器壁 冲量的统计平均量。
例: 雨点对伞的持续作用。
压强公式的推导:
单位时间内分子a作用在A面上的作用力:
l3 l2 z
y
v a vx A
Fa 2mvx vx 2l
§1 气体的微观图像
一、原子(atom)
“假如在一次浩劫中所有的科学知识都被摧毁, 只剩下一句话留给后代,什么语句可用最少的 词包含最多的信息?我相信,这是原子假说,即 万物由原子(微小粒子)组成.”——费曼
道尔顿确立 了原子概念
原子是化学元素的基本单元
现代的仪器已可以观察和测量原子的大小 以及它们在物体中的排列情况, 例如 X 光 分析仪,电子显微镜, 扫描隧道显微镜等.
引言
气体动理论是从气体分子热运动的观点出发, 运用统计方法研究大量气体分子的宏观性质和统 计规律的科学,它是统计物理学最基本的内容。 本章将根据气体分子模型,研究气体的压强与温 度等宏观性质和分子速率分布规律与能量分布规 律等统计规律,从微观角度揭示这些性质和规律 的本质,同时穿插介绍这些理论的一些应用.
2 x
2 y
2 z
v y
o
vv x
2
2 x
2 y
2 z
v z
12
2 1x
12y
12z
22
2 2x
22y
2 2z
……
N112 N112x N112y N112z N222 N222x N222y N222z
……

气体动理论

气体动理论
v0

0
a vd v Nv0
2 v0
v0

a dv 1 N
2N a 3v0
八 热学
1 N N Nf ( v ) d v a d v av0 2 3 1.5 v0 1 .5 v 0
2 v0 2 v0
a 2 v vf ( v ) d v v dv Nv0 0 0
T ( K),t ( o C)
平衡态
t T 273.15
若某种气体处于热平衡、力学平衡与化学平衡之中, 就说它处在热力学平衡状态。
八 热学
与外界没有能量交换,内部没有能量转换,
也没有外场作用。 气体分子的热运动和相互碰撞永不停息,
在宏观上表现为热动平衡状态——
密度均匀、温度均匀、压强均匀。
M mol N A m
M 代入 pV RT M mol
分子数密度
M Nm
N R p T V NA
N n V
p nkT
R 玻尔兹曼常量 k 1.38 10 23 J/K NA
八 热学 2 理想气体的压强公式和温度公式 分子热运动的统计规律 分子热运动具有无序性与统计性。 气体处在平衡状态时,在容器中密度处处 均匀,因此—— 沿各个方向运动的分子数目相等,分子速 度在各个方向的分量的各种平均值也相等。
8 RT M mol RT 1.60 M mol
八 热学 2)方均根速率2 Nhomakorabeav
0
2
v v 2 f ( v) d v

v
2
3k T m

3RT RT 1.73 M mol M mol
八 热学
3)最概然速率 v p

气体动理论

气体动理论

3
统计规律有以下几个特点: 2、统计规律有以下几个特点:
(1)只对大量偶然的事件才有意义。 只对大量偶然的事件才有意义。 (2)它是不同于个体规律的整体规律。 它是不同于个体规律的整体规律。 (3)总是伴随着涨落。 总是伴随着涨落。 但就前面其中的每一次实验来看, 但就前面其中的每一次实验来看,所得的分布曲线只能 近似重合,不能完全一致,由此说明,在统计规律中一 近似重合,不能完全一致,由此说明, 定出现起伏或涨落现象。 定出现起伏或涨落现象。
p,V ,T
2、气体压强 :作用于容器壁上单位 面积的正压力 压强-----帕斯卡 压强---帕斯卡 1 a =1 ⋅ m 2 P N −
1 atm= 760 m g = 1.013×105 P m H a
气体冷热程度的量度. 3、温度 : 气体冷热程度的量度. 温度---开尔文 温度---开尔文 --T ) = 273.15+ t(0C (K )
(N、V、M)
l3
l2 B
A
O
l1
X
设一个分子的质量为 m
Z
仅讨论大量分子与一面A的碰撞产生的压强 压 强
23
个分子与A面发生碰撞时 面发生碰撞时, 第i个分子与 面发生碰撞时,由于碰撞为完全弹性的 并且分子的质量远远小于器壁的质量。 ,并且分子的质量远远小于器壁的质量。 Y 面所受到的冲量为: 所以A面所受到的冲量为:
T1 = T2
p1 = p 2
M PV= R T M mol
(D) 那种的密度较大是无法判断的 那种的密度较大是无法判断的.
[A ]
M ρ= V
1
M mol 1 ρ1 = ρ 2 M mol 2
H2 O2
2

气体动理论ppt课件

气体动理论ppt课件

一 自由度
kt
1 mv2 2
3 kT 2
v
2 x
v
2 y
v2z
1 v2 3
z
oy
x
1 2
m
v
2 x
1 2
mv2y
1 2
mv2z
1 kT 2
28
第六章 气体动理论
单原子分子平均能量
3 1 kT
2
刚性双原子分子
分子平均平动动能
kt
1 2
mvC2 x
1 2
mvC2 y
1 2
mvC2 z
29
第六章 气体动理论
摩尔热容比
E m i RT M2
dE m i RdT M2
CV ,m
i 2
R
C p,m
i
2 2
R
Cp,m i 2
CV ,m i
36
第六章 气体动理论
7-6 麦克斯韦气体分子速率分布律
一 测定气体分子速率分布的实验
实验装置
接抽气泵
2
l v vl
Hg
金属蒸汽 狭缝
l
显 示

37
第六章 气体动理论 分子速率分布图
12
第六章 气体动理论
二 分子力
现主为要当斥表力 现r; 为当 引r力0r时.,r分0时子,力分主子要力表
F
o
r 109 m, F 0
r0 ~ 1010 m
r0
r
分子力
三 分子热运动的无序性及统计规律
热运动:大量实验事实表明分子都在作永不停止的
无规运动 . 例 : 常温和常压下的氧分子
v 450m/s ~ 107 m; z ~ 1010次 / s

气体运动理论

气体运动理论

气体运动理论气体是物质的一种形态,其分子在空间中自由运动并具有一定的独立性。

气体的运动行为被广泛研究,形成了气体运动理论。

本文将从分子速度分布、气体扩散、气体压强和气体温度等几个方面探讨气体运动的基本原理和相关理论。

一、分子速度分布气体分子在运动过程中具有不同的速度。

根据气体分子的速度分布可以揭示气体内部的动力学特性。

根据麦克斯韦-波尔兹曼速度分布定律,气体分子的速度服从高斯分布。

高斯分布的曲线呈钟形,其峰值对应着最常见的分子速度,而曲线两侧的尾部则表示了高速和低速分子的相对少见性。

高速分子的出现频率低于中等速度分子,而低速分子的出现频率也较低。

这一分布规律揭示了气体运动中分子速度分布的统计特性。

二、气体扩散气体扩散是指气体分子沿其浓度梯度自发传播的过程。

根据弗里克定律,气体扩散速率与气体分子的平均速度成正比,与气体分子的自由程成反比。

气体分子的平均速度越大,扩散速率越快;气体分子的自由程越小,扩散速率越慢。

气体扩散的速率还受到温度、压强和介质粘度等因素的影响。

温度升高会增加气体分子的平均速度,进而加快扩散速率;而压强升高会使气体分子更加密集,扩散速率也会相应增加。

介质的粘度越小,气体分子的碰撞频率越低,扩散速率越大。

三、气体压强气体的压强是指气体分子对容器壁面单位面积所产生的压力。

根据动理学理论,气体压强与气体分子的碰撞频率和分子速度的平均平方值成正比。

气体分子的碰撞频率与分子浓度成正比,分子速度的平均平方值与温度成正比。

因此,气体的压强与气体的浓度、温度和分子质量有关。

四、气体温度气体的温度是指气体分子运动的热度程度。

根据运动理论,气体分子的速度与温度成正比。

气体温度的单位是开尔文(K),其与摄氏度(℃)的换算关系是K = ℃ + 273.15。

绝对零度为0K,即-273.15℃,在此温度下气体分子的速度趋近于零。

随着温度的升高,气体分子的速度和能量也相应增加。

结语气体运动理论是研究气体分子运动行为的重要理论体系。

气体分子动理论

气体分子动理论

气体分子动理论气体分子动理论是指根据分子动力学原理来描述气体分子的运动和行为的理论。

它的提出和发展对于解释气体的物理性质和行为具有重要的意义。

本文将就气体分子动理论的起源、基本假设和应用等方面进行探讨。

一、气体分子动理论的起源气体分子动理论的起源可以追溯到19世纪。

在那个时候,科学家们对气体的行为和性质提出了许多疑问。

为了解释这些现象,克劳修斯和麦克斯韦等科学家开始研究气体分子的运动规律,并提出了气体分子动理论。

二、气体分子动理论的基本假设气体分子动理论的基本假设有以下几点:1. 气体分子是微小的无质量的粒子,它们之间没有相互作用。

2. 气体分子的运动是完全混乱的,没有任何规律性。

3. 气体分子之间的碰撞是弹性碰撞,即在碰撞过程中能量守恒、动量守恒。

4. 气体分子之间的平均距离远大于分子本身的大小。

这些假设为描述气体的性质和行为提供了基础。

三、气体分子动理论的应用气体分子动理论在许多方面都有广泛的应用,下面将就几个重要的应用领域进行介绍。

1. 描述气体的物态变化:根据气体分子动理论,当气体受到加热时,分子的平均动能增加,分子之间的碰撞频率和力量都会增加,从而导致气体的压强增加。

当气体受到冷却时,则相反。

2. 热力学理论的基础:气体分子动理论为热力学的发展提供了理论基础。

根据理论的推导,可以得到诸如理想气体状态方程和分子平均动能与温度的关系等重要的热力学性质。

3. 涨落理论:根据气体分子动理论,气体分子的运动是混乱的,因此气体在微观尺度上会存在一定的涨落。

这种涨落现象不仅在气体中存在,在固体和液体中也同样适用。

4. 扩散和输运现象:气体分子动理论对于扩散和输运现象的研究有很大的帮助。

通过分析气体分子的速度和运动方式,可以更好地理解扩散和输运的原理和机制。

总结:气体分子动理论是对气体分子运动和行为进行描述的理论。

它的起源可以追溯到19世纪,科学家们根据气体的性质和行为提出了基本假设,并在许多领域中得到了应用。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。

气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。

下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。

一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。

因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。

1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。

分子的速度与温度、分子的种类有关。

分子受温度影响,速度随温度的升高而增加。

2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。

分子的运动具有随机性,在时间、位置上无法精确定位。

3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。

二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。

2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。

在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。

3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。

4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。

5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。

三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量的关系为:(A) n 不同,(E K /V )不同,不同.(B) n 不同,(E K /V )不同,相同. (C) n 相同,(E K /V )相同,不同.(D) n 相同,(E K /V )相同,相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M M pV mol =→RTpM V Mmol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。

[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;②⎰21)(v v dv v Nf ——表示速率分布在v 1~v2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;Nn V =,当V 增大时,n 减小; ∴Z 减小。

②v Z λ==,可见,当n 减小时,λ增大。

[ B ]5、(自测提高3)若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)00. (B) 400. (C) 900. (D) 2100. 【提示】127315288T K =+=,227327300T K =+=;由状态方程1122pV N kT N kT ==,得 121211pV pVN N kT kT pV N kT --==212T T T -=124%300= [ C ](自测提高7)一容器内盛有1 mol 氢气和1 mol 氦气,经混合后,温度为 127℃,该混合气体分子的平均速率为 (A) πR 10200. (B) πR10400. (C))210πR . (D) +πR10(400)210πR. 【提示】已知273127400T K =+=,3, 2210(/)mol H M kg mol -=⨯,3, 410(/)mol H e M kg mol -=⨯,根据平均速率的定义,混合气体分子的平均速率为:v =1Nii vN==∑22211()()222H H H H H H AA A v v v v ee v v e N N N +=+=+∑∑∑∑,其中 ππRM RT v H l mo H 10400822,==, H e v ==, v ∴=)210πR二.填空题1、(基础训练11) A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶C w =1∶2∶4,则它们的压强之比A p ∶B p ∶C p = 1:1:1 . 【提示】压强公式:t w n p 32=→ A p ∶B p ∶C p =n A A w ∶n B B w ∶n C C w =1∶1∶1 2、(基础训练14)在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为f (v )、分子质量为m 、最概然速率为v p ,试说明下列各式的物理意义:(1)()d pf ∞⎰v v v 表示_速率分布在v p~∞区间内的分子数占总分子数的百分率;(2)()201v v d v 2m f ∞⎰ 表示 分子平动动能的平均值__.3、(基础训练15)用总分子数N 、气体分子速率v 和速率分布函数f(v)表示下列各量:(1) 速率大于v 0的分子数=⎰∞)(v dv v Nf ;(2) 速率大于v 0的那些分子的平均速率=⎰⎰∞∞0)()(v v dvv f dvv vf ;(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=⎰∞)(v dv v f .【提示】(1)NdNdv v f =)(表示v~v+dv 区间内的分子数dN 占总分子数N 的百分比→速率大于v 0的分子数为:⎰∞v dN =⎰∞0)(v dv v Nf(2)速率大于v 0的分子的平均速率:00000()()()()v v v v v v vdN vNf v dv vf v dvv dN Nf v dvf v dv∞∞∞∞∞∞===⎰⎰⎰⎰⎰⎰(3)某一分子的速率大于v 0的概率→分子速率处于0v ~∞区间的概率→0v ~∞区间的分子数占总分子数的百分数⎰∞)(v dv v f .4、(基础训练17)一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为0.24 kg/m 3,则可确定此种气体是 氢 气;并可求出此气体分子热运动的最概然速率为 1578.92 m/s . 【提示】① 3, 210/, mol mol M MRT RTpV RT M kg mol M V pp ρ-⎛⎫=∴===⨯ ⎪⎝⎭∴是氢气; ②1578.92/p v m s == 5、(自测提高12)储有氢气的容器以某速度v 作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 K ,则容器作定向运动的速度v =_ 121 _m/s ,容器中气体分子的平均动能增加了232.410 -⨯J .【提示】(1)5i =,()215v 22mol M E R T νν=∆=∆ →v 121/m s ==; (2)52k kT ε=→ 2352.4102k k T J ε-∆=∆=⨯.6、(自测提高16)一容器内盛有密度为 的单原子理想气体,其压强为p ,此气体分子;单位体积内气体的内能是32p .【提示】①RT M M pV mol =→ρpM pV M RT mol == →∴ρpM RT v mol 332==; ② 单原子分子3i =,故333222RT pV E p V V V ν===三.计算题1、(基础训练21)水蒸气分解为同温度T 的氢气和氧气H 2O →H 2+21O 2时,1摩尔的水蒸气可分解成1摩尔氢气和21摩尔氧气.当不计振动自由度时,求此过程中内能的增量. 解:内能E 2i RT ν=,水蒸汽:i =6,ν=1,∴6132E RT RT =⨯⨯=水; 分解为氢气和氧气后,i =5,22O 11, 2H νν==,225511512224H O E E E RT RT RT∴=+=⨯⨯+⨯⨯=334RT 25%43RT E E E E E RT-∴-===水水水,,即内能增加了25%2、(基础训练24)有N 个粒子,其速率分布函数为00()(0)()0()f v C v v f v v v =≤≤=>,,试求其速率分布函数中的常数C 和粒子的平均速率(均通过0v 表示)解:由归一化条件00()01f v dv Cd d C υυυυυ∞∞=+==⎰⎰⎰, ∴01υ=Cυ= 0()f d υυυ∞⎰=0001d υυυυ⋅⎰=2120υυ⋅=20υ3、(自测提高21)试由理想气体状态方程及压强公式,推导出气体温度与气体分子热运动的平均平动动能之间的关系式.解:理想气体状态方程 p nkT =,理想气体的压强公式:t n p ε32=, 比较(1),(2)两式得,气体分子的平均平动动能t ε与温度的关系为 kT t 23=ε 4、(自测提高22)许多星球的温度达到108 K .在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少 (2) 氢核的平均平动动能是多少电子伏特解:(1) 氢核 M mol =1×103 kg ·mol 1=61.5810(/)m s ==⨯ (2)23815433 1.381010 2.0710 1.291022t kT J eV ε--==⨯⨯⨯=⨯=⨯。

相关文档
最新文档