学案 3.1直线与圆的位置关系(3)
直线与圆的位置关系 学案 导学案 课件
![直线与圆的位置关系 学案 导学案 课件](https://img.taocdn.com/s3/m/5e2d70d8cc175527062208aa.png)
课题:直线与圆的位置关系【学习目标】理解直线与圆的位置关系;会利用点到直线的距离公式求圆心到直线的距离;会判断直线和圆的位置关系【重点难点】重点是直线与圆的位置关系;难点是直线与圆的位置关系的判定. 一【问题导学】1、直线与圆有三种位置关系:(1)相交,有两个公共点;(2)相切,只有一个公共点;(3)相离,无公共点。
2、直线与圆位置关系的判定①利用直线与圆的位置直观特征导出几何判定:比较圆心到直线的距离d 与圆的半径r(a )点在圆外 ⇔(b )点在圆上⇔(c ) 点在圆内⇔②看直线与圆组成的方程组有无实数解:有解,直线与圆有公共点,有一组则相切;有两组,则相交;无解,则相离。
3、探究:新知1:设直线的方程为:0l ax by c ++=,圆的方程为22:0C x y Dx Ey F ++++= 圆的半径为r ,圆心(,)22D E --到直线的距离为d , 则判别直线与圆的位置关系的依据有以下几点:⑴当d r >时,直线l 与圆C 相离;⑵当d r =时,直线l 与圆C 相切;⑶当d r <时,直线l 与圆C 相交;新知 2:如果直线的方程为y kx m =+,圆的方程为222()()x a y b r -+-=,将直线方程代入圆的方程,消去y 得到x 的一元二次方程式20Px Qx R ++=,那么: ⑴当0∆<时,直线与圆没有公共点;⑵当0∆=时,直线与圆有且只有一个公共点;⑶当0∆>时,直线与圆有两个不同的公共点;二【小试牛刀】1、已知圆的方程x 2 + y 2 = 2,直线y = x + b ,当b 为何值时,(1)圆与直线有两个公共点;(2)圆与直线只有一个公共点;(3)圆与直线没有公共点.2、直线y x =与圆()2221x y r +-=相切,求r 的值3、求圆心在直线230x y --=上,且与两坐标轴相切的圆的方程.三【合作、探究、展示】例1 用两种方法来判断直线3460x y -+=与圆22(2)(3)4x y -+-=的位置关系.【规律方法总结】_________________________________________________例2 如图,已知直线l :3x + y – 6 = 0和圆心为C 的圆x 2 + y 2 –2y – 4 = 0,判断直线l 与圆的位置关系;如果相交,求它们交点的坐标.【规律方法总结】_________________________________________________变式训练:求直线50x y --=截圆224460x y x y +-++=所得的弦长.例3 已知过点M (–3,–3)的直线l 被圆x 2 + y 2 + 4y –21 = 0所截得的弦长为45,求直线l 的方程.【规律方法总结】_________________________________________________ 变式训练:已知直线0l y +-=,圆22:4C x y +=求直线l 被圆C 截得的弦长四【达标训练】1. 直线3460x y -+=与圆22(2)(3)4x y -+-= ( )A .相切B .相离C .过圆心D .相交不过圆心2. 若直线0x y m ++=与圆22x y m +=相切,则m 的值为( ).A .0 或 2B .2CD .无解3 已 知 直 线l 过 点 (- 2,0) , 当 直 线l 与圆222x y x +=有两个交点时,其斜率k 的取值范围是( ).A .(-B .(C .(,44-D .11(,)88- 4、直线l: x sina+y cosa=1与圆x 2+y 2=1的关系是( )A.相交B.相切C. 相离D.不能确定5、直线 x+y+a=0与 y= 21x -- 有两个不同的交点,则a 的取值范围是( ) A. [1, 2 ) B.[1, 2 ] C.[ -2 , -1] D ( -2 ,-1]6 过点(2,2)M 的圆228x y +=的切线方程为 .。
《直线与圆的位置关系》教案
![《直线与圆的位置关系》教案](https://img.taocdn.com/s3/m/5039ea4b53d380eb6294dd88d0d233d4b14e3ffc.png)
《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
《直线与圆的位置关系》 导学案
![《直线与圆的位置关系》 导学案](https://img.taocdn.com/s3/m/ea62205782c4bb4cf7ec4afe04a1b0717ed5b360.png)
《直线与圆的位置关系》导学案一、学习目标1、理解直线与圆的三种位置关系:相交、相切、相离。
2、掌握直线与圆位置关系的判定方法,包括代数法和几何法。
3、能运用直线与圆的位置关系解决相关的实际问题。
二、学习重难点1、重点(1)直线与圆的三种位置关系的定义及判定。
(2)直线与圆位置关系的判定方法的应用。
2、难点(1)几何法判定直线与圆位置关系的原理。
(2)灵活运用直线与圆的位置关系解决综合问题。
三、知识链接1、圆的标准方程:\((x a)^2 +(y b)^2 = r^2\),其中\((a, b)\)为圆心坐标,\(r\)为圆的半径。
2、点\(P(x_0, y_0)\)到直线\(Ax + By + C = 0\)的距离公式:\(d =\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}\)四、学习过程(一)引入通过展示一些生活中直线与圆的位置关系的实例,如太阳升起时地平线与太阳的位置关系、自行车车轮与地面的位置关系等,引出直线与圆的位置关系这一课题。
(二)直线与圆的位置关系的定义1、相交:直线与圆有两个公共点。
2、相切:直线与圆只有一个公共点。
3、相离:直线与圆没有公共点。
(三)直线与圆位置关系的判定方法1、代数法将直线方程与圆的方程联立,消去\(y\)(或\(x\))得到一个关于\(x\)(或\(y\))的一元二次方程,然后根据判别式\(\Delta\)的值来判断直线与圆的位置关系。
(1)\(\Delta > 0\),直线与圆相交。
(2)\(\Delta = 0\),直线与圆相切。
(3)\(\Delta < 0\),直线与圆相离。
2、几何法计算圆心到直线的距离\(d\),与圆的半径\(r\)进行比较。
(1)\(d < r\),直线与圆相交。
(2)\(d = r\),直线与圆相切。
(3)\(d > r\),直线与圆相离。
(四)例题讲解例 1:已知圆\(C\):\(x^2 + y^2 2x 4y 4 = 0\),直线\(l\):\(x 2y 2 =0\),判断直线\(l\)与圆\(C\)的位置关系。
名师教学设计《直线与圆的位置关系》完整教学教案
![名师教学设计《直线与圆的位置关系》完整教学教案](https://img.taocdn.com/s3/m/92143d507ed5360cba1aa8114431b90d6c858986.png)
(四)归纳总结,布置作业
本环节采用填写表格,师生协作的方式,对所学的知识进行小结,培养学生的归纳能力。
师生协作的方式
作业布置试图通过阅读、练习和思考等不同形式的教学活动,加深对所学知识的理解和运用。
作业:
(1)阅读:教材第78-80页;
(2)练习:教材第80页A组1题。
(3)思考:教材第80页B组2题。
(三)运用新知,解决问题
例题与练习是掌握、应用知识和技能所必需的,根据学生的认知特点,我设计了如下例题与练习。
1.例题分析
例1判断直线 与圆 的位置关系。
例2是教材上的例题。作为对圆与直线的位置关系的理解和初步应用,可以让学生自主完成。
判断下列各题中的直线与圆的位置关系。
(1)直线2x-3y+1=0,圆 ;
学生动手画时,教师进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
学生动手画时,我进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
通过观察,我们已经知道直线和圆的位置关系有三种,引导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
练习1:主要反馈学生对定义本身的掌握程度,由学生抢答,培养学生的分析能力和数学语言表达能力。
判断圆与直线的位置关系。
圆的直径为10cm,直线到圆心的距离分别为
3
5
练习2我设计了一个小型对抗赛:将全班同学分为两个小组,一组出题另一组回答,答题组再出题,对方回答,依次类推。看哪个组答题既准又快,对优胜组和表现突出的同学进行表扬。
3、掌握直线和圆三种位置关系的判定方法。
直线与圆的位置关系(教案)
![直线与圆的位置关系(教案)](https://img.taocdn.com/s3/m/de81225a3d1ec5da50e2524de518964bcf84d2c6.png)
4.2.1直线与圆的位置关系【三维目标】1.知识与技能(1)理解直线与圆的三种位置关系;能根据直线、圆的方程,判断直线与圆的位置关系;(2)能用直线和圆的方程解决一些简单的问题;2. 过程与方法(1)响应高考发展的趋势,培养学生自主探究,动手实践,并适应合作交流的学习方式;(2)强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力;3. 情感态度与价值观(1)让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;(2)加深对解析法解决几何问题的认识,激发学习热情,培养学生的创新意识和探索精神;【重点难点】1.重点:直线与圆的位置关系及其判断方法;2.难点:体会和理解解析法解决几何问题的数学思想;【教学准备】多媒体课件【教学设计】一.情境引入以生活中常见的具体实例(日出的过程)演示直线与圆的位置关系,并引导学生回忆初中阶段判断直线与圆的位置关系的思想过程.二.探索新知1.引出课题——直线与圆的位置关系问题1:通过情境引入中的动画演示提出问题,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?如何定义?师生活动:展示出直线与圆的位置关系的图形和定义,用表格展示,使问题更直观形象.2在已有知识的基础上,通过一组题目,让学生分组展开活动:如何判断直线与圆的位置关系?能否利用直线与圆的方程判断它们之间的位置关系呢?<分组活动>1.请判断直线02=-+y x 与圆221x y +=的位置关系. 2.请判断直线01=-+y x 与圆221x y +=的位置关系. 3.请判断直线02=-+y x 与圆222x y +=的位置关系师生活动:以小组为单位进行讨论研究,教师巡视指导,讨论有结果的小组可以派代表回答。
问题2:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“几何法”).请问用“几何法”的一般步骤如何?师生活动:比较d 与r 的大小,确定直线与圆的位置关系.分类情况如下:①当r d >时,直线l 与圆C 相离;②当r d =时,直线l 与圆C 相切;③当r d <时,直线l 与圆C 相交。
中考数学专题第四讲《直线与圆的位置关系》导学案教案教学设计
![中考数学专题第四讲《直线与圆的位置关系》导学案教案教学设计](https://img.taocdn.com/s3/m/de390bb485868762caaedd3383c4bb4cf7ecb72c.png)
第四讲直线与圆的位置关系【知识点】※1. 直线和圆相交、相切相离的定义:(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.(3)相离: 直线和圆没有公共点时,叫做直线和圆相离.※2. 直线与圆的位置关系的数量特征:设⊙O的半径为r,圆心O到直线的距离为d;①d<r <===> 直线L和⊙O相交.②d=r <===> 直线L和⊙O相切.③d>r <===> 直线L和⊙O相离.※3. 切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.※4. 切线的性质定理:圆的切线垂直于过切点的半径.※推论1 经过圆心且垂直于切线的直线必经过切点.※推论2 经过切点且垂直于切线的直线必经过圆心.※分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.①垂直于切线; ②过切点; ③过圆心.※5. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.※6. 三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.【例题分析】1.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.2. 如图,直线与⊙O 相切于点D ,过圆心O 作EF ∥交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE ,AF ,并分别延长交直线于B 、C 两点; (1)求证:∠ABC+∠ACB=90°;(2)若⊙O 的半径5=R ,BD=12,求tan ∠ACB 的值.3.如图,AB 为的直径,点C 在⊙O 上,点P 是直径AB 上的一点(不与A ,B 重合),过点P 作AB 的垂线交BC 的延长线于点Q 。
数学《直线与圆的位置关系》教案
![数学《直线与圆的位置关系》教案](https://img.taocdn.com/s3/m/08f9193d91c69ec3d5bbfd0a79563c1ec5dad72c.png)
数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。
2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。
3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。
教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
教学方法:1. 讲授法和实践法相结合。
2. 采用板书、多媒体等方式进行教学。
3. 鼓励学生积极思考、多动手实践。
教学内容:1. 直线与圆的位置关系的定义。
2. 直线与圆的切线、割线、切点、割点等概念的讲解。
3. 直线与圆的位置关系的基础推理方法的应用。
教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。
这时候,我们就需要了解直线与圆的位置关系了。
二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。
2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。
3. 鼓励学生积极思考、多动手实践,参与课堂讨论。
四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
五、学习结果1. 了解直线与圆的位置关系。
2. 掌握直线与圆的切线、割线、切点、割点等概念。
3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。
六、作业1. 完成课后习题。
2. 预习下一节课内容。
直线与圆的位置关系教案
![直线与圆的位置关系教案](https://img.taocdn.com/s3/m/fe176e905ebfc77da26925c52cc58bd630869300.png)
直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。
2. 学会利用直线与圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 直线与圆的位置关系的判定。
2. 直线与圆的位置关系的应用。
教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。
2. 解决实际问题时,如何正确运用直线与圆的位置关系。
教学准备:1. 教学课件或黑板。
2. 直线与圆的位置关系的相关例题和练习题。
教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。
在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。
通过练习题的训练,使学生巩固所学知识,提高解题能力。
第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。
学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。
这些性质包括交点的数量、切点的位置、距离的关系等。
教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。
引导学生通过几何推理证明这些性质。
提供练习题,让学生应用这些性质解决具体问题。
教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。
《直线与圆的位置关系》教案
![《直线与圆的位置关系》教案](https://img.taocdn.com/s3/m/a85b69dccd22bcd126fff705cc17552706225e55.png)
《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。
2. 学会运用直线与圆的位置关系解决实际问题。
过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。
2. 培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点重点:1. 直线与圆的位置关系的判定。
2. 直线与圆相交、相切、相离的性质。
难点:1. 直线与圆的位置关系的推理论证。
2. 运用直线与圆的位置关系解决实际问题。
三、教学准备教具:1. 直尺、圆规、铅笔。
2. 直线与圆的位置关系的图片或模型。
学具:1. 直尺、圆规、铅笔。
2. 直线与圆的位置关系的练习题。
四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。
1.2 学生分享观察到的直线与圆的位置关系。
2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。
3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。
3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。
4. 练习:4.1 学生独立完成练习题,巩固所学知识。
4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。
关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。
六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。
七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。
直线与圆位置关系优秀教案
![直线与圆位置关系优秀教案](https://img.taocdn.com/s3/m/5b9e71ccb8f67c1cfad6b89f.png)
练习1判断下列命题是否正确.(投影打出)
(1)经过半径外端的直线是圆的切线
(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.
(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.
采取学生抢答的形式进行,并要求说明理由,教师给予及时肯定或纠正.
判定一条直线是圆的切线,有三种方法:
(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线.
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.
图(1)中直线l经过半径外端,但不与半径垂直;
图(2)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
最后引导学生分析,定理实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端,并且垂直于这条半径的直线是圆的切线”这种形式.因此,定理不必另加证明.
课前预习自主探究交流展示
课前准备
圆规小黑板
教学过程
教学步骤
教师活动
学生活动
设计意图
复习提问
导入新课
探究新知
感悟收获
自我检测
布置作业
一、从学生已有的知识结构提出问题
1.投影打出直线与圆的三种位置关系.(图7-102)
根据图7-102,请学生回答以下问题
(1)在图7-102中,图(1)、图(2)、图(3)中的直线l分别和⊙O是什么关系?
《直线和圆的位置关系》教学设计
![《直线和圆的位置关系》教学设计](https://img.taocdn.com/s3/m/ded0a2ec9fc3d5bbfd0a79563c1ec5da50e2d6ae.png)
《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。
教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。
《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
直线与圆的位置关系(教案与学案)
![直线与圆的位置关系(教案与学案)](https://img.taocdn.com/s3/m/cbc8d846336c1eb91a375dba.png)
直线与圆的位置关系(教案与学案)一、学习目标(1) 知识目标:理解直线与圆的位置关系;会利用点到直线的距离公式求圆心到直线的距离; 会判断直线和圆的位置关系二、学习重点、难点:重点:根据给定直线和园的方程,判断直线与圆的位置关系 难点:判断方法的选择三、学习方法:先学后教,自主探究 合作交流 四、学习思路:通过创设情景五、知识链接:直线方程、圆的方程、圆的特征有关知识预习教材 P126~ P128,找出疑惑之处)1.把圆的标准方程222()()x a y b r -+-=整理为圆的一般方程 . 把220x y Dx Ey F ++++=整理为圆的标准方程为 .(2240D E F +->) 2.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km 处,受影响的范围是半径为30km 的圆形区域.已知港口位于台风中心正北 40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?3.直线与圆的位置关系有哪几种呢?4.我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?八、新课导学 ※ 学习探究新知1:设直线的方程为:0l ax by c ++=,圆的方程为22:0C x y Dx Ey F ++++=圆的半径为r ,圆心(,)22D E--到直线的距离为d , 则判别直线与圆的位置关系的依据有以下几点:⑴当d r >时,直线l 与圆C 相离; ⑵当d r =时,直线l 与圆C 相切; ⑶当d r <时,直线l 与圆C 相交;新知 2:如果直线的方程为y kx m =+,圆的方程为222()()x a y b r -+-=,将直线方程代入圆的方程,消去y 得到x 的一元二次方程式20Px Qx R ++=,那么: ⑴当0∆<时,直线与圆没有公共点;⑵当0∆=时,直线与圆有且只有一个公共点; ⑶当0∆>时,直线与圆有两个不同的公共点;※ 典型例题例1 用两种方法来判断直线3460x y -+=与圆22(2)(3)4x y -+-=的位置关系.例 2 如图 ,已知直线l 过点(5,5)M 且和圆22:25C x y +=相交,截得弦长为,求l 的方程变式:求直线50x y --=截圆224460x y x y +-++=所得的弦长.※ 动手试试练 1. 直线x y =与圆222(1)x y r +-=相切,求r 的值.练 2. 求圆心在直线230x y --=上,且与两坐标轴相切的圆的方程.例3、例4、(三)、总结提升 ※ 学习小结判断直线与圆的位置关系有两种方法 ① 判断直线与圆的方程组是否有解a.有解,直线与圆有公共点.有一组则相切?有两组,则相交 ;b. 无解,则直线与圆相离 ② 如果直线的方程为0Ax By C ++=,圆的方程为222()()x a y b r -+-=则圆心到直线的距离d =⑴如果d r >时,直线与圆相离; ⑵如果d r =时,直线与圆相切; ⑶如果d r <时,直线与圆相交;八、自我检测(时量:5分钟 满分:10分)计分: 1. 直线3460x y -+=与圆22(2)(3)4x y -+-= ( ) A .相切 B .相离 C .过圆心 D .相交不过圆心2. 若直线0x y m ++=与圆22x y m +=相切,则m 的值为( ). A .0 或 2 B .2 CD .无解3 已 知 直 线l 过 点 (- 2,0) , 当 直 线l 与圆222x y x +=有两个交点时,其斜率k 的取值范围是( ).A.(- B.( C.()44-D .11(,)88-4. 过点(2,2)M 的圆228x y +=的切线方程为 .5. 圆2216x y +=上的点到直线3x y -=的距离的最大值为 .九、课后作业1.求圆222430x y x y +++-=上到直线:10l x y ++=.2. 若直线430x y a -+=与圆22100x y +=⑴相交;⑵相切;⑶相离;分别求实数a 的取值范围.。
“直线与圆的位置关系”教案
![“直线与圆的位置关系”教案](https://img.taocdn.com/s3/m/f222177958eef8c75fbfc77da26925c52cc591f7.png)
解得x=-1.
将x=-1代入①式得y=1.
所以直线l和圆O有且只有一个公共点(-1,1),即直线l和圆O相切.
课堂练习:判断直线 和圆 的位置关系
新的问题:类比于点与圆的位置关系,能否借助于数量关系判断直线与圆的位置关系?
用圆心到直线的距离和圆半径的数量关系来揭示圆和直线的位置关系.
结论:直线l:Ax+By+C=0圆C:(x-a)2+(y-b)2=r2(r>0)
(1) 直线与圆相交
(2) 直线与圆相切
(3) 直线与圆相离
例2的另一种解法:圆心(0,0),半径
圆心到直线的距离
所以直线与圆相切
例3:判断下列各直线与圆的位置关系
(1)直线 ,圆
(2)直线 ,圆
(3)直线 ,圆
三.课堂小结
判定直线与圆的位置关系的方法有两种:
(1)根据定义,由直线与圆的公共点的个数来判断;
(2)根据性质,由圆心到直线的距离与半径的关系来判断.
在实际应用中,常采用第二种方法判定.
布
置
作
业
1.《创新学案》
2.《导学与同步训练》
教
学
后
记
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——黄昏日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后要求学生自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着回顾之前讲点与圆位置关系时用数量关系来判断的方法,引导学生探索直线与圆的位置关系中是否也可以用数量关系来判断直线与圆的位置关系。由“做一做”进行应用,最后去解决实际问题。
《直线和圆的位置关系(3)》教案
![《直线和圆的位置关系(3)》教案](https://img.taocdn.com/s3/m/58becaa633d4b14e852468af.png)
24.2.2 直线和圆的位置关系(第三课时)切线长定理和三角形内切圆一、教学目标(一)学习目标1.了解切线长定义,切线长定理,并进行有关计算。
2.会作三角形内切圆并理解作图原理。
3.掌握三角形内切圆、内心的概念及性质,利用性质进行推理论证、计算。
(二)学习重点1.切线长定理及其应用。
2.尺规作图作三角形内切圆。
3.三角形内心性质。
(三)学习难点1.运用切线长定理进行有关计算。
2.尺规作图作三角形内切圆。
3.运用三角形内心性质进行有关计算、证明。
二、教学设计(一)课前设计1.预习任务(1)切线长定义:在经过圆外一点的切线上,这一点和切点间的线段叫做这点到圆的切线长。
(2)切线长定理:过圆外一点有两条圆的切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。
(3)三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
2.预习自测(1)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4B.8C.【知识点】圆的切线长定理;等边三角形判定与性质【数学思想】数形结合【解题过程】解:∵PA,PB是圆O的两条切线∴PA=PB∵∠APB=60°∴△PAB是等边三角形∵PA=8∴AB=PA=8故选B【思路点拨】由圆的切线长定理得PA=PB,又∠APB=60°,所以△PAB是等边三角形。
【答案】B2.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP= 度.【知识点】切线长定理、直角三角形两锐角互余【数学思想】数形结合【解题过程】解:∵PA、PB分别切⊙O于A、B,∠APB=50°∴∠APO=12∠APB=25°,∠OAP=90°∴∠AOP=90°﹣25°=65°【思路点拨】根据切线长定理、切线的性质定理得到∠OAP=900,再根据直角三角形的两个锐角互余进行求解。
《直线和圆的位置关系》优秀教学设计精选全文
![《直线和圆的位置关系》优秀教学设计精选全文](https://img.taocdn.com/s3/m/cdae297c492fb4daa58da0116c175f0e7dd11902.png)
可编辑修改精选全文完整版《直线和圆的位置关系》优秀教学设计《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。
《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。
2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。
(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。
(三)感情目标:1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。
教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。
教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。
(把太阳看做圆,把海平线看做直线。
)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。
)让学生在本子上画出直线与圆三种不同的位置图。
(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案----3.1直线与圆的位置关系(3)
姓名:班级:
【我们要掌握的】
1、已知⊙A的直径为6,点A的坐标为(-3,-4),
则⊙A与X轴的位置关系是_____,⊙A与Y轴的位置
关系是______。
思考:圆心A到X轴、Y轴的距离各是多少?
2、设⊙O的半径为r,点O到直线a的距离为d,若
⊙O与直线a至多只有一个公共点,则d与r的关系是……………………()
A、d≤r
B、d<r
C、d≥r
D、d=r
3、设⊙O的半径为r,直线a上一点到圆心的距离为d,若d=r,则直线a与⊙O的位置关系是…………………()
A、相交
B、相切
C、相离
D、相切或相交
【我们要完成的】
合作学习
切线的性质:
1、如图,直线AT与⊙O相切于点A,连结OA.∠OAT等于
多少度?在⊙O上再任意取一些点,过这些点作⊙O的切
线,连结圆心与切点,半径与切线所成的角为多少度?由此
你发现了什么?
几何语言:∵∴
2、任意画一个圆,作这个圆的一条切线,过切点作切线的垂线,你发现了什么?你的发现与你同伴发现相同吗?
几何语言:∵∴
例1 木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C,记角尺的直角顶点为B,量得AB=8cm,BC=16cm.求⊙O的半径.
T
A O
例2 如图,直线AB 与⊙O 相切于点C,AO 与⊙O 交于点D,连结CD.求证:COD ACD ∠=
∠2
1
弦切角:概念:
性质:
随堂自测
练一练:1、如图,AB 切⊙O 于点B,割线ACD 经过圆心O,若∠BCD=700, 则∠A 的度数为( )
A.20°
B.50°
C.40°
D.80°
2、如图, ⊙O 切PB 于点B,PB=4,PA=2,求⊙O 的半径。
3、如图:PA,PC 分别切圆O 于点A,C 两点,B 为圆O 上与A,C 不重合的点,若∠P=50°,求∠ABC 的度数。
4、如图,已知:AB 与⊙O 相切于点C ,OA=OB ,⊙O 的直径为6cm ,AB=8cm,则OA=_____cm. 若AB 等于6cm ,则∠AOB=_______.
5、如图,∠APC=50°,PA、PC、DE都为⊙O的切线,则∠DOE为。
变式:改变切线DE的位置,则∠DOE=;
6、如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于E、F、G,⊙O 是△CGF的外接圆;
求证:CE是⊙O的切线。
7、如图,在直角梯形ABCD中,∠B=90°,AD∥BC, ∠C= 30°,AD=1,AB=2. 试猜想在BC是否存在一点P,使得⊙P与线段CD、AB都相切,如存在,请确定⊙P的半径。
课堂小结
1.切线的性质:
2.切线性质的应用:
3.常用的辅助。