《常微分方程》期末模拟试题教学提纲

合集下载

常微分方程复习提纲

常微分方程复习提纲

常微分方程复习与考试提纲一、复习与分值结构总体分三块,解方程部分,包括第2,4,5章,这部分内容分值在60分左右;理论部分,就是,主要是第三章,第四章,第五章等的解的存在唯一性定理以及解的结构定理20分左右;应用部分20分左右; 其次从试题难度上看70左右的基础题、常规题,20分左右的,具有一定灵活性的问题,10左右难题。

二、知识点解析(一) 解方程部分分一阶、高阶与方程组三部分1、一阶微分方程:解方程的三个思想:可分离变量类型,全微分(恰当)微分方程,参数方程法(1)可分离变量类型及其可化为可分离变量类型的方程的类型,这部分习题主要集中在P42-43,P49-50;a .齐次方程 ()y y xϕ'=,令 y x μ=即可; b .111222a x b y c y f a x b y c ⎛⎫++'= ⎪++⎝⎭;c .一些简单的组合变换,如P43,2(1),(2),(5)等;d .一阶线性微分方程及其通解公式(含伯努利方程,黎卡提方程),见P44-45,其主要思想是常数变异法,其实质是变量分离;特别提示一阶线性微分方程是目前解决的最为彻底的一类方程,应该好好掌握。

(2)全微分(恰当)微分方程及其可化为全微分微分方程的类型,这部分习题主要集中在P60-61;a .全微分(恰当)微分方程的定义及其判定的充要条件;b .要求熟记的一些简单二元函数的全微分,见P54及课堂提供;c .(,)(,)0M x y dx N x y dy +=分别具有形为()x μ、()y μ、()x y μ+和()x y μ-的充要条件及其推导,见P52;d .方程变换前的积分因子与方程变换前的积分因子之间的关系,P61,5我给大家提供的第二种解法等;e .常见用到的结论,如P61,4,5,8,11等;f .难点问题:P61 2(11),10等。

(3) 参数方程法,主要习题见P70,与P73 1 (10)(19)(20)等;a .(,),y f x y '=或(,)x f y y '=,可设y p '=(参数),然后求解;b .(,)0,F x y '=或(,)0F y y '=,视问题而灵活设定。

《常微分方程》期末模拟试题.doc

《常微分方程》期末模拟试题.doc

5 + 4Z一一 心一心氐一必Z一《常微分方程》模拟练习题及参考答案一、填空题(每个空格4分,共80分)1、 n 阶线性齐次微分方程基本解组中解的个数恰好是门个。

2、 一阶微分方程空=2x 的通解为 y = x 2 + C (C 为任意常数),方程与通过点(2, 3)的特解为dx -- --------------------------丫"_1,与直线y 二2X +3相切的解是 y =,满足条件『)必=3的解为丫二“一?。

3、 李普希兹条件是保证一阶微分方程初值问题解惟一的必要 条件。

4、 对方程芈二(兀+刃2作变换"二x+y ,可将其化为变量可分离方程,其通解为—dxy = tan (x+C )-x 。

5、方程学詡® 过点(?,1)共有 无数 个解。

dx 2it Q y 4 丫26、方程y = x - 1的通解为 尸吉-牛+ "*2 '满足初始条件鳥=2, y |日二5的特解为12*x 4 x 2 1 9 y = ------------- 1— x H — o ~T2~7、方程』y _ x + x 无奇解o ck9^方程= y/y 的奇解是y 二0 。

dx 10、 竺+ 2/0 = 3是_阶常微分方程。

dx dx11、 方程© =疋+才满足解得存在唯一性定理条件的区域是 my 平面°dx12、 微分方程@工_4©-5尸()通解为y = C0 + G 厂 ,该方程可化为一阶线性微分方程组dx~ dx2微分方程等£一6 口可化为-阶线性微分方程组[5dx—=z + 6v、dx8、13、二阶线性齐次微分方程的两个解y = %(兀),y =輕(兀)成为英基本解组的充要条件是线性无关14、设人=_1 3_,则线性微分方程组^ = AX 有基解矩阵。

(/)=304 2_-e 一 4e 5二、解方程(每个小题8分,共120分)1、(x + 2y)dx - xdy = 0答案:方程化为学= 1 + 2厘dx x令『 =则史二u +兀包,代入上式,得x — = \ + udx dx dx分离变量,积分,通解为u = Cx-l ・•・原方程通解为y = Cx 2-x答案:齐次方程的通解为y = Ce~3r令非齐次方程的特解为y = C(^)e-3x C(x) = |e 5^ + C 代入原方程,确定出原方程的通解为y = Ce'3A +|e 2r■丿「1-3 1%T 对应特征向量应满足4 1-3?1_0 可确定出 1 ?1_ = _2_特征根为2] = 3 ,人=一1。

常微分方程期末复习提要(1)

常微分方程期末复习提要(1)

常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。

本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。

2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。

(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。

3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。

常微分方程期末复习提纲

常微分方程期末复习提纲

y ce p(x)dx, c为任意常数
20 常数变易法求解
dy P(x) y Q(x) dx
(1)
(将常数c变为x的待定函数 c(x), 使它为(1)的解)
令y c(x)e p(x)dx为(1)的解,则
dy dc(x) e p(x)dx c(x) p(x)e p(x)dx dx dx
代入(1)得
X x Y y ,
则方程化为
dY a1 X b1Y dX a2 X b2Y
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10
解方程组aa21xx
b1 b2
y y
c1 c2
0 ,
0
得解 yx
,
20
作变换YX
x y
,
方程化为
dY dX
a1 X a2 X
b1Y b2Y
第一章:绪论
一、常微分方程与偏微分方程
定义1: 联系自变量、未知函数及未知函数导数(或微分)的关 系式称为微分方程.
如果在一个微分方程中,自变量的个数只有一个,则这 样的微分方程称为常微分方程.
如果在一个微分方程中,自变量的个数为两个或两个以上,称 为偏微分方程.
二、微分方程的阶
定义2 :微分方程中出现的未知函数的最高阶导数或微分的 阶数称为微分方程的阶数.
方程两边同乘以 1 , 得
( y)
1 dy f (x)dx 0,
( y)
1
( f (x)) 0 ( y)
y
x
是恰当方程.
对一阶线性方程:
dy (P(x) y Q(x))dx 0, 不是恰当方程.
方程两边同乘以e P(x)dx , 得
e
P(

《常微分方程》福师期末试卷参考指南

《常微分方程》福师期末试卷参考指南

《常微分方程》福师期末试卷参考指南一、考试大纲1. 知识范围:本试卷主要考查常微分方程的基本概念、解法及应用。

2. 题型结构:试卷包括选择题、填空题、判断题、计算题和应用题,满分100分,考试时间120分钟。

二、重点知识梳理1. 基本概念:(1)微分方程:描述自然界和工程技术中具有相依变量关系的方程。

(2)常微分方程:含有未知函数及其导数的方程。

(3)阶:微分方程中未知函数导数的最高次数。

(4)线性与非线性微分方程:未知函数及其导数之间是线性关系与否。

2. 解法:(1)分离变量法:将方程中的变量分离,使方程转化为独立变量的积分。

(2)积分因子法:寻找一个函数,使原方程乘以该函数后成为可积方程。

(3)变量替换法:通过合适的变量替换,将方程简化为已知类型的方程。

(4)常系数线性微分方程解法:利用特征方程求解。

3. 应用:(1)初值问题:给定初始条件,求解微分方程的解。

(2)边界值问题:给定边界条件,求解微分方程的解。

(3)微分方程在实际问题中的应用:如物理、化学、生物等领域。

三、复建议1. 理解基本概念,掌握微分方程的分类及特点。

2. 熟练掌握各种解法,并能灵活运用解决实际问题。

3. 多做练题,培养解题思路和运算能力。

4. 关注历年期末试题,了解考试题型及难度。

四、答题技巧1. 仔细审题,明确微分方程的类型及要求。

2. 梳理解题思路,选择合适的解法。

3. 计算过程中,注意公式的运用和数据的准确性。

4. 对于应用题,先将实际问题转化为微分方程,再进行求解。

5. 检查答案,确保符合题意。

祝大家期末考试顺利!。

常微分方程复习提纲

常微分方程复习提纲

2012-2013第二学期常微分方程期末复习提纲第一章绪论掌握微分方程的概念, 能正确判断微分方程的阶数以及是否线性方程.第二章一阶微分方程的解法1 掌握变量分离方程的解法.2 掌握恰当方程的判定以及求解方法. 对于非恰当方程, 重点掌握如何求只与x或y有关的积分因子, 并由此求解方程.3 了解一些常见的能够化为变量分离方程的类型以及所用的变换. 例如齐次方程ddy ygx x⎛⎫= ⎪⎝⎭, 111222dda xb y cyx a x b y c++=++, ()ddyf ax by cx=++等类型.重点掌握形如111222d da xb y cyx a x b y c++=++的方程的求解方法.第三章一阶微分方程的解的存在定理1 简要理解解的存在性定理.2 了解利普希兹(Lipschitz)条件与偏导连续的关系.第四章高阶微分方程1 熟悉齐次与非齐次线性方程的解的结构以及性质定理2 掌握Wronsky行列式与线性相关或无关的关系.3 掌握基本解组相关概念.4 重点掌握常系数高阶非齐次线性微分方程的求法.特征根法和比较系数法.5 了解常见的可以降阶的高阶方程的类型, 重点掌握不显含未知函数的高阶方程的降阶求解法.第五章方程组1 熟悉基解矩阵的概念.2 掌握Atexp与基解矩阵的关系.3 重点掌握利用特征值求基解矩阵以及标准基解矩阵Atexp的方法.(只考虑有n个特征值的情形即可)。

常微分方程期末复习提要

常微分方程期末复习提要

dY AY 的系数阵 A 的 n 个特征根 1 , 2 , , n 彼此互 dx
y y ( y , p, C ) 0 或参数形式 y p ,则参数形式解为: x f ( y , p) x f ( y , p)
7.了解可降阶的高阶方程的可积类型,掌握高阶方程的三种降阶法.
, y ( k 1) , , y ( n ) ) 0. (k 1) ; n 第二种可降阶的高阶方程 F ( y, y , , y ) 0 ; (n) ( n 1) 假如方程 F ( x, y , y , , y ) 0 的左端恰为某一函数 ( x, y , y , , y ) 对 x 的导
一、复习要求和重点 第一章 初等积分法
1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程, 解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: 当 g 0 时,通过积分
U ( x, y ) .
( 2 ) 如 果 存 在 连 续 可 微 函 数 ( x, y ) 0 , 使 方 程 ( x, y )M ( x, y )dx
( x, y ) N ( x, y )dy 0 成为全微分方程,则称 ( x, y ) 积分因子.
6.了解一阶隐式微分方程的可积类型,掌握隐式方程类型I、II的参数解法. 隐式方程 F ( x, y, y ) 0 ,若能把 y 解出,得一个或几个显式方程
y ( x), ( x0 ) y 0 。其中 h0 min( a,
2.了解解的延展、延展解、不可延展解的概念,了解局部李普希兹条件,理解解的延 展定理,了解其证明方法. 3.了解奇解定义、包络线概念,掌握不存在奇解的判别法、包络线的 C-判别式,掌 握奇解的包络线求法. (1)不存在奇解的判别方法: 若方程在全平面上解唯一,则方程不存在奇解; 若不满足解唯一的区域上没有方程的解,则方程无奇解. (2)求奇解的包络线求法. 若 L 是曲线族 (C ) : ( x, y, C ) 0 的包络线, 则其满足 C—判别式

临沂大学《常微分方程》期末考试复习题及参考答案

临沂大学《常微分方程》期末考试复习题及参考答案
15、满足初值条件的解称为它的(2.0)
A、 阶 B、 解 C、 通解 D、 特解
正确答案: D
16、如果 f(x,y),f(x,y)/y 都在 xoy 平面上连续,那么方程 dy/dx= f(x,y)的任一解的存在区间 (2.0)
A、 必为(-∞,+∞) B、 必为(0,+∞) C、 必为(-∞, 0) D、 将因解而定
A、 y2-x=C B、 y-√x=C C、 y=x+C D、 y=-x+C
正确答案: BCD
三、 判断题 (共 10 题,20 分)
1、dy/dx=1+x+y2+xy2 是可分离变量的微分方程(2.0)
正确答案: 正确
2、方程 xydx + (2x2 + 3y2-20)dy = 0 的只与 y 有关的积分因子为 y(2.0)
正确答案: ABC
9、下列方程中,全微分方程为(2.0)
A、 (3x2 + 6xy2)dx+ (6x2y +4y2)dy=0 B、 edx+ (x·eY-2y)dy= 0 C、 y(x- -2y)dx-x2dy= 0 D、 (x2-y)dx-xdy= 0
正确答案: ABD
10、微分方程 2ydy-dx = 0 的通解不为(2.0)
6、微分方程 y" -2y + 2y= ex 的通解为 y=ex(c*cosx+c*sinx+1)(2.0)
正确答案: 正确
7、三阶常系数齐线性方程 y" -2y" +y= 0 的特征根是 1(2.0)
正确答案: 错误
8、微分方程 y -2y-3y = 0 的通解为 y=c*e-x+c*e3x(2.0)

常微分方程期末复习提纲共74页

常微分方程期末复习提纲共74页
常微分方程期末复习提纲
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

福师《常微分方程》期末考试资料

福师《常微分方程》期末考试资料

福师《常微分方程》期末考试资料1. 课程概述本课程旨在介绍常微分方程的基本概念、理论和解法,以及其在实际问题中的应用。

通过本课程,学生将能够掌握常微分方程的基本理论和解法,以及运用这些知识解决实际问题的能力。

2. 考试内容本次期末考试将涵盖以下主题和知识点:2.1 常微分方程基本概念- 常微分方程的定义与分类- 初值问题和边值问题的区别- 常微分方程的解与解的存在唯一性2.2 常微分方程的解法- 可分离变量法- 齐次方程的解法- 一阶线性方程的解法- 恰当方程的解法- Bernoulli方程的解法- 二阶常系数线性齐次方程的解法2.3 常微分方程的应用- 物理学中的常微分方程应用- 生物学中的常微分方程应用- 经济学中的常微分方程应用- 工程学中的常微分方程应用3. 考试要求- 熟练掌握常微分方程的基本概念、理论和解法。

- 能够灵活运用所学知识解决实际问题。

- 具备良好的数学推理和分析能力。

- 能够清晰、准确地表达解题过程和结果。

4. 复建议- 复课堂笔记和教材中的重点内容。

- 完成课后题和练题,巩固所学知识。

- 参考相关参考书和学术论文,扩充知识面。

- 制定复计划,合理安排时间。

- 主动与同学讨论、交流,共同提高。

5. 考前注意事项- 提前熟悉考试规则和要求。

- 准备好必备文具和计算器。

- 注意考试时间,合理安排答题顺序。

- 审题仔细,理清思路后再答题。

- 注意书写规范和逻辑性。

以上是关于福师《常微分方程》期末考试的资料,请同学们按照考试要求进行复,合理安排时间,加油!。

常微分方程期末复习提要

常微分方程期末复习提要

常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。

本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。

2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。

(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。

3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。

(完整版)高等数学期末复习考试之常微分方程部分.doc

(完整版)高等数学期末复习考试之常微分方程部分.doc

第 11 章 常微分方程习题课一 .内容提要1.基本概念含有一元未知函数 y( x) ( 即待求函数 )的导数或微分的方程 ,称 为常微分方程 ;其中出现的 y( x) 的最高阶导数的阶数称为此微分方 程的阶; 使微分方程在区间 I 上成为恒等式的函数 y( x) 称为此微分方程在 I 上的解 ;显然一个微分方程若有解 ,则必有无穷多解 ;若 n 阶微分方程的解中含有 n 个不可合并的任意常数 ,则称其为此微分方程的 通解 ;利用 n 个独立的附加条件 (称为定解条件 )定出了所有任意常数的解称为 特解 ;微分方程连同定解条件一起 ,合称为一个定解问题 ;当定解条件是初始条件(给出 y, y ,, y ( n 1) 在同一点x 0 处的值 )时 ,称为初值问题 .2.一阶微分方程 y f ( x, y) 的解法(1)对于可分离变量方程dy(x) ( y) ,dx先分离变量 (当 ( y) 0 时)得 dy(x)dx ,ψ( y)再两边积分即得通解dy (x)dx C .( y)dyf y ,x(2)对于齐次方程 dx作变量代换y,即 yxu ,可将其化为可分离变量的方程 ,分x u 离变量后 ,积分得dudx C 再以y代替 u 便得到齐次方f (u) uxx程的通解 .(3)形如dyf ( ax by c) 的方程 , dxa 1 xb 1 yc 1 ①若 c,c 1 均为零 ,则是齐次方程 ;②若 c,c 1 不全为零 ,则不是齐次方程 ,但当ab k 时 ,只要作变换 va 1xb 1 y ,即可化为可分离a 1b 1变量的方程dvb 1 f (kvc ) a 1 ;dxv c 1当 a b时,只要作平移变换Xx x 0, 即a 1b 1 Y y y 0 x X x 0 ( 其中 (x 0 , y 0 ) 是线性方程组 ax byc 0 的惟一y Y y 0 a 1 x b 1 y c 1 0解 ),便可化为齐次方程dYf ( aX bY) .dXa 1 Xb 1Y(4)全微分方程若 方 程 P(x, y)dx Q ( x, y) dy 0 之 左 端 是 某 个 二 元 函 数u u( x, y) 的全微分 ,则称其为 全微分方程 ,显然 u( x, y)C 即为通解 ,而原函数 u( x, y) 可用曲线积分法、不定积分法或观察法求得.通常用充要条件 PQ 来判定 P( x, y)dx Q(x, y)dy 0 是否yx为全微分方程.对于某些不是全微分方程的P( x, y)dx Q(x, y)dy0 ,可乘上一个函数 (, x, y) 使之成为全微分方程P(x, y)dx Q (x, y)dy 02/19(注意到当 ( x, y) 0 时 P( x, y)dx Q (x, y)dy0 与原方程同解 ),并称(, x, y) 为积分因子 ;一般说来 ,求积分因子比较困难 ,但有时可通过观察得到 .(5)一阶线性微分方程 yp(x) y Q( x) 的通解公式当 Q( x) 不恒为零时 ,称其为一阶线性非齐次微分方程 ;当 Q(x) 恒为零 ,时,即 y p( x) y0 称为一阶线性齐次微分方程,这是一个可分离变量的方程 ,易知其通解为 Y Cep ( x )dx;由此用“常数变易法”即可得到非齐次微分方程的通解y ep ( x)dx(CQ(x)e p( x)d x dx ).(6) 对于 Bernoulli 方程 yp( x) y Q (x) y n ( n 0,1 ),只需作变换z y1 n,即可化为一阶线性方程 dz (1 n) p( x)z (1 n)Q( x) .dx3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程 y (n) f ( x) ,令 z y (n 1) 化为 zf (x) ; 在实际求解中 ,只要对方程连续积分 n 次 ,即得其通解ydxf (x)dx C 1 x n1C n 1 x C n .n 次(2)对于 y f ( x, y ) (不显含 y ),作变换 P y ,则 y P ,于是化一阶方程 P f (x, P) ;显然对 y ( n)f (x, y ( n 1) ) 可作类似处理 .(3)对于 yf ( y, y ) (不显含 x ),作变换 Py ,则 yPdP,于是dy可化为一阶方程 PdPf ( y, P) .dy4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解 .(2)线性齐次微分方程解的结构若 y1 , y2 , , y n是 n 阶线性齐次微分方程的线性无关的解,则其通解为Y c1 y1c2 y2c n y n.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解 y 之和 ,即y Y y .(4)线性非齐次微分方程的叠加原理1 设 y k( k 1,2, , m )是方程y ( n ) p1 (x) y( n 1) p n 1 (x) y p n ( x) y f k ( x)m的解 ,则y k 是方程k 1y ( n) p1 ( x) y (n 1) mp n 1 (x) y p n ( x) y f k (x)k 1的解 .2 若实变量的复值函数 u( x) i v( x) 是方程y (n) p1 ( x) y (n 1) p n 1 (x) y p n ( x) y f 1 ( x) if 2 ( x)的解 ,则此解的实部u( x)是方程y ( n)p1 ( x) y( n 1)p n 1 (x) y p n (x) y f1 ( x)的解 ;虚部v(x)是方程y ( n )p1 (x) y( n 1)p n 1 (x) y p n ( x) y f 2 ( x)的解 .(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1 写出y(n ) p1y( n 1) p n 1 y p n y 0 的特征方程r n p1 r n 1 p n 1 r p n 0 ,并求特征根;2 根据特征根是实根还是复根以及重数写出通解中对应的项(见下表 )特征根 r 为给出通解中的单实根 1 项: Ce rxk 重实根k 项: e rx(C1 C 2 x C k x k 1 )一对单复根 2 项: e x(C1cos x C 2 sin x)r1,2 i一对 k 重复根 2 k 项 : e x[( C1 C2 x C k x k 1 ) cos xr1,2 i(D1 D 2 x D k x k 1 ) sin x](2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解1对于 f ( x) P m (x)e x,应设特解y x k Q m ( x)e x x k ( a0 x m a1 x m 1a m 1 x a m )e x,其中 k 等于为特征根的重数( 0 k n ), a0, a1,L , a m是待定系数 .将 y 代入原方程,可定出 a0, a1,L , a m,从而求得 y .2 对于 f ( x) e x [ P l ( x) cos x P s sin x] (0 ),应设特解yx k e x [ R m (x) cos x T m ( x) sin x] ,其中 k 等于i 为特征根的重数 ( 0 kn), R m ( x),T m ( x) 是2待 定 的 m max{ l , s} 次 多 项 式 . 将 y 代原方程,即可定出R m ( x),T m ( x) ,从而求得 y .或因为 f ( x) e x [ P l ( x) cos x P s (x)sin x]Re e x (P l (x) iP s ( x))(cos x isin x)Re Q m ( x)e ( i ) x(其中 Q m ( x) P l ( x) iP s ( x) 是 m max{ l , s} 次的复系数多项式) .对于方程y ( n)1 ( n 1)L p n 1y nyQ m ( x)e (i ) xp yp可设其特解Yx k Z m ( x)e (i ) x,( Z m ( x) 是 m 次待定复系数多项式, k 等于 i 为特征根的重数),将 Yx k Z m (x)e ( i ) x代入方程y ( n )p 1 y ( n 1) Lp n 1 y p n y Q m ( x)e (i ) x中,可定出 Z m (x) ,于是 Yx k Z m ( x)e ( i ) x ,从而原方程的特解y Re Y .3o特例当 f ( x) e x P l ( x)cos x 或f (x) e x P l ( x)sin x 时,设Y Z l ( x)e ( i ) x , 将其代入y ( n) p 1 y ( n 1) Lp n 1 yp n y P l ( x)e ( i ) x ,6/19求得 Y ,则原方程的一个特解y ReY 或 y ImY .6.Euler 方程的解法(1)形如x n y (n )p1 x n 1 y( n 1)p n 1xy p n y f (x)的线性变系数微分方程称为 Euler 方程 ,是一种可化为常系数的变系数微分方程 .(2)解法只需作变换x e t,即t ln x ,即可将其化为常系数线性微分方程 .d ,则若引入微分算子 Ddtxy D y , x2 y D(D 1) y ,, x n y (n )D(D 1) (D n1) y , 于是很容易写出对应的齐次方程的特征方程.7.应用常微分方程解决实际问题的一般步骤(1)在适当的坐标系下 ,设出未知函数y y( x) ,据已知条件写出相关的量 ;(2)根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程 ;(3)提出定解条件 ;(4)求定解问题的解 ;(5)分析解的性质,用实践检验解的正确性 .二 .课堂练习 (除补充题外 ,均选自复习题12)1.填空题22(1)已知 y 1 e x 及 y 2xe x 是方程 y4xy( 4x 2 2) y0 的解 ,2则其通解为e x (C 1 C 2 x) .222解 : 因 y 1e x , y 2 xe x 都是解 ,且线性无关 ,故 e x (C 1 C 2 x) 是通解 .(2)设一质量为 m 的物体 ,在空气中由静止开始下落 .若空气阻力为 R kv,则其下落的距离 s所满足的微分方程是 sksg ,m 初始条件是 s(0) 0, s (0) 0 .解 : 因为 F ma 而 F mg k v v s , a s , 故得方程 O s(0), ,mg k sms ,化简得 sk sg ;s(t )m在如图所示的坐标系下 ,初始条件为 s( 0)0, s (0) 0.s(3) 微 分 方 程 y 2 y y 6xe x 的 特 解 y的形式为x 2 (axb)e x .解 : 因为特征方程为 r 2 2r 1 0 , r 1 r 21, 而 1 是二重特征根 ,故应设 yx 2 (ax b)e x .(4)若 y 1x 2 , y 2x 2e 2 x , y 3 x 2e 2xe 5x 都是线性非齐次微分 方 程 yp( x) y q( x) yf (x)的解,则其通解为C 1e 2x C 2e 5xx 2 .解:由线性非齐次方程的解与对应的齐次方程解的关系可知 ,Y 1y 2 y 1 e 2 x , Y 2 y 3 y 2 e 5 x 都是对应的齐次方程的解,且 线 性 无 关 ,故 对 应 的 齐次方 程 的 通 解 为Y C 1Y 1 C 2 Y 2 C 1e 2 xC 2 e 5 x ; 由非齐次方程解的结构得其通解y Y y 1C 1e 2 x C 2e 5 x x 2 .(5)(补充 )已知 f ( x) 满足 xf ( x)1x 2f (t) dt ,则 f (x)x2t 1 e 2 .x解 :两边对 x 求导得 f ( x)xf (x) x 2 f (x) ,整理得f ( x)x1f ( x) ,xx 2ln c ,即 f (x)x 2分离变量后积分得 ln f ( x)ln x ce 2, x 0 ;2xx 1时(1) 11t 2 1(e 111又当 , f2c e 2d tc 21) ,即 ce 21 ce 2ct1 ,所以 f (x)x 2故 c 1 e 2 .x(6)( 补 充 ) 设 f ( x) 有 连 续 导 数 , 且 f (0) 1.若曲线积分 Lyf (x)dx[ f ( x) x 2 ]dy 与路径无关 ,则 f ( x)3e x 2x 2 .解 : 记 P yf ( x), Qf ( x) x 2.因为积分与路径无关,故有PQ,亦即.它的通解为 yx ,即f ( x) f (x) 2xf ( x) f ( x)2xf ( x) dxdxc] e x [ 2xe xdx c]2x2 ce x .e[ 2 xe dx由 f (0) 1 得 c 3 ,于是 f (x)3e x 2x 2 .(7)( 补充 ) 已知 yy( x)在任意点 x 处的增量 yy x , 其中 =o( x),21xπy(0) π,则 y(1) πe 4.解:由题设知,dyy .dx1 x 2分离变量得dydx ,积分得 ln y arctanx C 1,即 y Ce arctan x .y1 x 2π由 y(0) π得C π,故y(1) πe 4 .2.选择题(1)函数 yc 1e 2x c 2 ( c 1 ,c 2 为任意常数 )是微分方程 yy 2 y 0的(A) 通解 .(B) 特解 .(C) 不是解 .(D) 解,但不是通解 ,也不是特解 .答(D)解 :因为 y c 1e 2 x c 2 ce 2x ,经检验是解 ,但含有任意常数 ,故不是特解 ,又因为只含一个独立的任意常数 ,故也不是通解 .(2)微分方程 y2 y2 sin 2 2x ,其特解形式为 y(A) A B cos4x C sin 4x . (B) A Bx cos4x Cx sin 4x .(C) Ax B cos4x C sin 4x .(D) Ax Bx cos4x Cxsin 4x .答( C) 解 : y 2 y 2 sin 2 2x1 cos4x 特解为 y y 1 y2 .,因为r 22 r0 , r1 0, r22 而 0 是特征方程的单根 , 故应, 设 y 1 Ax ; 而i4i 不是特征方程根,故应设y 2B cos 4xC sin 4x ,因此 y y 1 y 2Ax B cos4 x C sin 4x .(3)微分方程 (2 x y)dy (5x 4y)dx 是(A) 一阶线性齐次方程 .(B) 一阶线性非齐次方程 .(C) 齐次方程 .(D) 可分离变量方程 .答(C)解 :原方程可化为dy5x 4 y5 4 yx . dx 2x y y2x(4)(补充 )具有特解y1 e x, y2 2xe x, y3 3e x的三阶常系数线性齐次微分方程是(A) y y y y 0 . (B) y y y y 0 .(C) y y y y 0 . (D) y y y y 0 .答(B) 解 : 由方程的特解可知 ,其特征根为r1 r2 1, r3 1 ,于是特征方程为 ( r 1)2 ( r 1) 0 即 r 3 r 2 r 1 0 ,故方程为y y y y0 .(5)( 补充 ) 方程y9 y 0 通过点 ( , 1) 且在该点处与直线y 1 xπ相切的积分曲线为(A) y C1 cos3x C2 sin3x . (B) y cos3x C2 sin 3x .(C) y cos3x. (D) y cos3x 1sin3x .3答( D)解 : 因为r2 9 0 , r1, 2 3i ,故通解为 y C 1 cos3x C2 sin3x .由初始条件 y( ) 1, y ( ) 1得C1 1,C2 1,所以所求积分曲线3为y x 1sin 3x.cos3 3(6)(补充 ) 方程 y( 4 ) y e x 3sin x 的特解应设为(A) Ae x B sin x . (B) Ae x B cos x C sin x .(C) Axe xB cos xC sin x .(D) x(Ae xB cos xC sin x) .答(D)解 :对应的齐次方程的特征方程为 r 4 1 0 ,特征根为r 1 1, r 2 1, r 3 i, r 4 i .令 f ( x)e x 3sin xf 1 (x) f 2 (x) .对于 f 1 ( x) e x ,因1 是单特征根 ,故设 y 1 Axe x ; 对于 f 2 ( x) 3sin x ,因ii 是单特征根 ,故设y 2 x(B cos x C sin x) ;从而 yy 1 y 2x( Ae xB cos xC sin x) .(7)(06 考研 )函数 y C 1e x C 2e 2x xe x 满足的一个微分方程是 (A) y y 2y 3xe x .(B) y y 2 y 3e x .(C) yy2y 3xe x .(D) yy 2 y 3e x .答(D)解 :因为 r 1 1,r 22 ,即特征方程为 r 2 r 2 0 ,故排除( A )、(B ).由1是特征方程的单根,知 f (x)Ae x ,故排除( C ) .3.求下列方程的通解(2)dyy x ; dx2 ln y解 :方程化为dx2 x2ln y 是一阶线性方程.dyy y ,1 22ln y y 2 dy Cx2 y d y2y dydy C1ey ln yey 2y1121 212.y 222 y ln y4y Cln y 2 Cy(5) xdx ydyydx xdy0 ;x2y2解 :原方程可化为 1 21 2 d arctanx,故通解为d 2 x d 2 yy1 x21 y2arctanxC .22y(10) y x x 2 y .解 :设 ux2y ,即 u2x2y ,则dy2u du2x .代入原方程得dx dxdu1 x 1 .此为齐次方程 ,再设 v u ,则 duv xdv,故方程化dx 2 ux dxdx为 v x dvv 1.分离变量为2vdv11dx ,两边积分得dx2v2v 2 v x1 ln 2v 2v 1 1ln 2v 1 1ln v 1 ln x ln C 1 .2 3 3代回原变量并整理得 x 2 3 x 3 3 xy C .y24.求下列微分方程满足所给初始条件的特解(1) y 3dx 2 x 2xy 2 dy 0 , y x11 ;解 :原方程化为 y 3dx 2 xy 2x2,即dx2 x 2 x 2 .dydyyy 3令 Z x 1dZ 22,得 dy y Zy 3.221Ze yd y2 e y d ydyC 2 ln y C ,即 y 3y 21 12 ln y C 故通解为 y2x 2 ln y C .x y 2 ,由 y x 1 1 ,得 C 1 ,所以特解为 y 2 x 2 ln y 1 . (3) 2ysin 2 y 0 , y 02 , y 0 1 ;解:令 Py ,则 yPdP,原方程化为 2PdP2 sin y cos y ,即dydy2PdP 2 sin yd sin y .积分得 P 2sin 2 y C .由 y 0, y 0 1,sin y .解之得 ln tany2得 C 0 ,故 yPx C .由 y 0, C 0 .2arctan e x .22故特解为 y5(补充).设y e x是微分方程xy p(x) y x 的一个解,求此微分方程满足条件 y(ln 2)0 的特解.解 : 将y e x代入微分方程得 xe x p(x) e x x ,解之得p( x) xe x x ,于是此微分方程为 xy ( xe x x) y x ,即y (e x1) y 1 .x其对应的齐次方程的通解为Y Ce e x ,于是此微分方程的通Ce e x x e x 1解为 y . 由y(ln 2) 0得 C e 2,故特解为e x x1y e x e 2 .6(补充).设L : y y( x) 是一条向上凸的连续曲线,其上任意一点( x, y) 处的曲率为 1 ,且此曲线上点(0,1) 处的切线方程为1 y 2y x 1 ,求该曲线的方程.解 : 因为曲线向上凸 ,故y 0 ,于是有y 1 ,化简y 2 )3(1 1 y 2得二阶方程 y (1 y 2 ) .令 P y ,则 y P ,故方程化为P (1 P 2 ) .分离变量后积分得arctanP C1 x . 由题设有P(0) y (0) 1 ,于是可定出 C1 4 ,所以y P tan( 4x) ,再积分π得 y ln cos(πx) C2 . 由y(0) 1得C2 11ln 2 ,因此该曲线4 2L : y ln cos(πx) 11ln 2 .4 27(补充).某湖泊的水量为V ,每年排入湖泊内含污染物 A 的污水量为 V ,流入湖泊内不含 A 的水量为 V ,流出湖泊的水量为 V.已知 6 6 31999 年底湖中 A 的含量为 5m 0 ,超过国家规定指标 .为了治理污染,从 2000 年初起 ,限定排入湖泊中含 A 污水的浓度不超过m 0.V问至少需经过多少年 ,湖泊中污物 A 的含量降至 m 0 以内 ?(注 :设湖水中 A 的浓度是均匀的 .)解 :设 2000 年初 (记此时 t 0 )开始 ,第 t 年湖泊中污物 A 的总量为 m ,浓度为m,则在时间间隔 [t , t dt] 内,排入湖泊中污染物 A 的量为Vm 0 V dtm 0dt ,流出湖泊的水中 A 的量为 m Vdtmdt ,因而在 V6 6 V 3 3此间隔内湖泊中污染物 A 的改变量为 dm(mm)dt , m t 0 5m 0 .63m 0 t9m 0 , 故分 离 变 量 解 得 mCe 3, 由 m t 05m 0 得 C2t2mm 0(1 9e 3 ) .2令 m m 0 ,解得 t 6 ln 3 ,即至少需经过 6 ln 3 年湖泊中污物 A 的含量降至 m 0 以内 .8.求下列 Euler 方程的通解(2) x 2 y 4xy6 y x .解 :设 xt,方程化为d 2 y dy6 y edt 25r2dt5r 6 0r 1 2 , r 23 .设 y ae t ,代入方程( * ),得 e ta1, 故 y 1e t.从而原方程的通解为 2 2e t . .(* )y C 1e 2 t C 2e 3 t.a 5a 6ae t .由此定出y C 1 x 2C 2 x 31x .2设对于半空间 , 都有内任意的光滑有向封闭曲面xf ( x)dydz xyf ( x)dzdx e 2 x zdxdy 0 ,S其中 f x 在 0,内具有连续的一阶导数 , 且 limf x 1 , 求x 0f x .解 :由曲面积分与曲面无关的条件PQ R 0, 有xyzxf xf xxf xe2x0 , 即 f x1 1f x 1 e 2 x .xx11所以 f xe1 xdx2 x e 1 x dxC1 edxxe x 1 1 e 2x e x xdx C1 e x e x C .x x x由 lim f x 1, 即 lim 1 e x e xC 1 ,可求出 C1 ,故 x 0x 0 x f x 1 e x e x 1 .x10(补充 ).设函数 y( x)( x 0) 二阶可导且 y (x)0, y(0) 1 .过曲线yy(x) 上任意一点 P( x, y) ,作该曲线的切线及 Ox 轴的垂线 ,上述二直线与 Ox 轴所围成的三角形的面积记为S 1 ,区间 [0, x] 上以y y(x) 为曲边的曲边梯形面积记为 S 2,并设 2S 1 S 2 恒为 1,求此曲线 yy(x) 的方程 .解 :曲线 y y( x) 上点 P(x, y) 处的切线方程为 Y yy (x)( X x) . 切 线 与 Ox 轴 的 交 点 为 (xy( x), 0) . 由 y ( x)0, y(0) 1 , 知y ( x)y( x) 0 ,于是S 11y( x) xx y( x)2( x); 而 S 2y(t )dt ( x 0 ); 故由yx2y ( x)2 y (x)1得y2x条件 2S 1 S 2y(t )dt1,由此还可得 y (0)1.y将y 2x( y )2 .令 y P ,y(t )dt 1 两边对 x 求导并整理得 yyy则 yPdP, 于 是 方 程 化为 ydPP , 解之 得 y P C 1 y , 由dydyy (0) 1和 y( 0) 1得 C 1 1,于是 yy ,从而 yC 2e x .再由 y(0) 1得 C 2 1 ,故所求曲线方程为 ye x .11 .) 内具有二阶导数,且(06 考研 ) 设函数 f (u) 在 (0,zf ( x222z 2z0 .y) 满足等式2y 2x ( 1) 验证 f(u)f (u) ;u( 2) 若 f (1) 0, f (1) 1,求函数 f (u) 的表达式 .解 : (1)由 zf (u),ux 2 y 2 ,得z f (u)x,2z f (u)x 2 f (u)y 2,x x 2y 2 x 2x 2y 2y 23x 2 2z f (u)y,2zf (u)y 2f (u)x 23.yx 2y 2 y 2x 2y 2y 2x 2 2 因为2z2z0 ,所以有 f(u)f (u) 0 ,即x 2 y 2x 2y 2f (u) f (u) 0 .u(2)由(1)得 f (u) 1C ,由f (1) 1 知 C0 ,即 f (u) 1 ;u11u于是得 f (u) ln u C 2 ,由 f (1) 0,得 C 2 0 ,所以 f (u)ln u .12(07 考研 ).解初值问题y ( x y 2 )y ,y(1)1, y (1)1.解:令 y P, 则 y P ,原方程化为 P (x P 2 ) P, 即dx1 x P. dP P1dPC1 1dPP C1 dP P(C1 P).于是 x e P Pe P dP由 P x 1 y (1) 1,得C1 0,且P x,即dyx. dx31,故 y 31 .解得 y 2 x2 C2 , 又由 y(1) 1得C2 2 x23 3 3 312(07 考研). 设幂级数a n x n在 ( , ) 内收敛,其和n 0函数 y(x)满足y 2xy 4y 0, y(0) 0, y (0) 1.(I )证明a n2 2 a n ,n 1,2,L ;n 1(I I )求y( x)的表达式.解:( I )对yn 0a n x n求一、二阶导数,得y na n x n 1 , y n( n 1)a n x n 2 ,n 1 n 2代入 y 2xy 4 y 0并整理得( n 1)(n 2) a n 2 x n 2na n x n 4a n x n 0.n 0 n 1 n 0于是2a2 4a0 0,(n 1)(n 2)a n 2 2(n 2)a n 0, n 1,2,L ,从而有2a n 2 n 1an,n1,2,L .( II )因为y(0) a0 0, y (0) a1 1, 故a0, k 0,1,2L ;a2k 12 a2 k 11a 2k 11 1 a2 k 3L1 a 1 1 , k 0,1,2,L .2kkk k 1k ! k !所以ya n x na 2k 1x 2k 1x 2 k 1 ( x 2 )kx2).k 0k !xk!xe , x ( ,n 0k 0k 0补充 设 满足 xf ( x) 3 f (x) 6x 2 , 且由曲线y 与 13( ). f (x)f (x) 直线 x 1及 x 轴所围的平面图形 D 绕x 轴旋转一周得到的旋转体的体积最小 , 求 f (x).解:满足的方程 可写为. f (x)y3 y6x,x3 d x3dx31其通解xxyf (x) eC6xedxxC6 dxx 2Cx 3 6x 2 .旋转体的体积为V (C) π01 f 2 (x)dx π01 (Cx 3 6x 2 )2 dxπ01 (C 2 x 6 12Cx 5 36x 4 )dx π C 2 2C36 .75令 V (C) 2C 2 ,得惟一驻点 C 7, 且 V (C)2π 0, π 7 0 7 故 C 7是极小值点,也是最小值.点于是f (x)6x 2 7 x 3 .19/19。

学生版《常微分方程》课程复习提纲

学生版《常微分方程》课程复习提纲

《常微分方程》课程复习提纲 ( 共8页 )一.计算方面----常微分方程主要可求解类型及解法要点1. 一阶方程(1) 一阶变量可分离方程:)()(y h x g dx dy = ;)(xydx dy ϕ= ;)(222111c y b x a c y b x a dx dy ++++=ϕ (2) 一阶线性方程:)()(x q y x p dx dy += ;R)n , 0,1(n )()(∈≠+=n y x q y x p dxdy(3) 一阶恰当方程:)y M (0),(),(xNdy y x N dx y x M ∂∂=∂∂=+ 积分因子:))(y M)((0),(),(xN dy y x N dx y x M ∂∂=∂∂=+μμμμ 单变量积分因子:)(1x N N M dx d X Y ϕμμ≡-= ; )(1y MM N dy d YX ϕμμ≡-= 恰当方程解法:分项组合法(又称凑微分法)或者用偏积分法:)(),(),(y dx y x M y x U ϕ+=⎰yy)dx M(x,y)N(x, )(∂∂=⎰一dy y d ϕ(4) 一阶隐方程:),( , ),( )(y y f x y x f y '='=II 型解法:0),( , 0),( )(='='∏y y F y x F∏型解法:2.n 阶线性常系数方程(1) n 阶线性常系数齐次方程:),(a 0i 1111R t R x a dt dxa dt x d a dt x d n n n n n n ∈∈=++++--- 特征方程:0111=++++--n n n n a a a λλλ(2) n 阶线性常系数非齐次方程:),(a )(i 1111R t R t f x a dt dxa dt x d a dt x d n n n n n n ∈∈=++++--- 其特解的求法:a ) 常数变易法:令)()()()()(11*t x t c t x t c t x n n ++=则:⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛''---)(0)()()()()()(1)1()1(111t f t x t x t x t x t c t c n n n n n b) 待定系数法:t m e t p t f 0)()()(λ=I ,可待定t m k e t q t t x *0)()(λ=,其中0λ是k 重特征根 t n m e t t B t t A t f ] sin )( cos )([)( )(αββ+=∏,可待定tl l k e t t q t t p t t x *] sin )( cos )([)(αββ+=,其中0λ=i βα±是k 重特征根,l=max{m,n} c) 拉斯变换法:)()( 0)(,0)0( )()()()]([)*(*s A s F s B x s A s B s F t x L i ==+=时当3.高阶可降阶方程: 0),,,()()(=n k x xt F ,0),,,()(='n x x x F4.一阶n 维线性常系数方程组(1).一阶n 维线性常系数齐次方程组:),(a )()()()(ij 111111R t R t x t x a a a a t x t x n nn n n n ∈∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛''基解矩阵Ate t =Φ)(求法:a ) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=t t n n e e A λλλλ00e , 001At1则 b ) A 可相似对角化,即存在可逆阵P ,使得:1-Λ=P P A(特:A 具有n 个不等的特征根n λλ ,1) 则:1At0e1-⎪⎪⎪⎭⎫ ⎝⎛=P e e P t t n λλ( 此种情况下()n t t tp e p e Pen λλ,,11 =∆也是方程的基解矩阵 ,但有可能是复的)c )A 只有一个n 重特征根λ则:k n k kt EtAt t AtE A k t e ee e)(!10 λλλλ-==∑-=-d ) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=t D t D s S e e D D A0e , 001At1则 其中: 的阶数为i i k i i n k ktEtt D t tD D nE D k teee ei i i I i i ,)(!10 λλλλ-==∑-=- *e ) A 不可相似对角化,也不属于上述其他类型,这时可用约当标准型法第一步, 对A E -λ作初等变换至对角阵,得约当阵J 第二步,求P 使得PJ AP =,第三步,1-=P Pe Jt Ate(2).一阶n 维线性常系数非齐次方程组:),(a )()( )()()()(ij 1111111R t R t f t f t x t x a a a a t x t x n n nn n n n ∈∈⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛'' 其特解的求法:常数变异法(特殊自由项可用待定系数法)令)()()()()()()(11*t C t t X t c t X t c t X n n Φ=++=则:)()()()()()()()()()(11111111t f t t f t f t x t x t x t x t c t c n nn n n n --Φ=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛''满足初始条件0)(0*=t X 的特解:⎰⎰--=ΦΦΦ=tt s t A Attt ds s f e e t ds s f s t t X )( 1*)( )( )()()()(⎰⎰--+=ΦΦΦ+Φ=tt s t A At At tt ds s f e C e e t ds s f s t C t t X )( 10)( )( )()()()()(通解## 练习:求解下列方程及方程组。

常微分方程复习提纲

常微分方程复习提纲
内江师范学院数学与信息科学学院 吴开腾 制作
四、应用领域
几乎所有现实生活中每一种变化的现象均 可用一微分方程( 可用一微分方程(组)师范学院数学与信息科学学院 吴开腾 制作
五、后续内容(课程) 后续内容(课程)
微分方程定性理论; 微分方程定性理论; 分支理论; 分支理论; 非线性方程和偏微分方程-正真的生活! 非线性方程和偏微分方程-正真的生活!
2
d y dy x2 + 3 + 2y = e 2 dx dx
内江师范学院数学与信息科学学院 吴开腾 制作
5、微分方程组的求解(基解矩阵的求法:特征根方法): 、微分方程组的求解(基解矩阵的求法:特征根方法):
5 X′ = 0
x1 2 X ,其中 X = x 5 2
六、例题分析
(二)基本概念
• 微分方程的定义及其解的定义(解、通解和特解,以 微分方程的定义及其解的定义( 通解和特解, 及奇解); 及奇解); • 微分方程解的结构(包括非齐次线性微分方程(组) 微分方程解的结构(包括非齐次线性微分方程( 与齐次线性微分方程( 与齐次线性微分方程(组)解的结构之间的关系、解 解的结构之间的关系、 空间的维数和高阶线性微分方程与线性微分方程组之 间的等价关系转化等); 间的等价关系转化等); • 函数组(向量函数组)的线性相关性; 函数组(向量函数组)的线性相关性; • 微分方程组的奇点、零解稳定性等概念的定义; 微分方程组的奇点、零解稳定性等概念的定义;
内江师范学院数学与信息科学学院 吴开腾 制作
六、例题分析
(三)主要求解方法
分量变量方法求解微分方程; 分量变量方法求解微分方程; 恰当方程(积分因子)求解微分方程; 恰当方程(积分因子)求解微分方程; 常数变易方法求解微分方程; 常数变易方法求解微分方程; 高阶微分方程求解方法(特征根方法、常数变易方法和 高阶微分方程求解方法(特征根方法、 降阶) 降阶) 线性方程组的求解方法(存在唯一定理、一般理论、 线性方程组的求解方法(存在唯一定理、一般理论、解 的结构、常数变易方法、基解矩阵及其计算) 的结构、常数变易方法、基解矩阵及其计算) 奇点的计算和方程近似解的计算

福师《常微分方程》期末考试资料解析

福师《常微分方程》期末考试资料解析

福师《常微分方程》期末考试资料解析I. 考试大纲概览A. 考试目的本次考试旨在检验学生对《常微分方程》课程的理解和掌握程度,包括理论知识与应用能力的评估。

B. 考试形式期末考试采取闭卷笔试形式,满分100分,考试时间150分钟。

C. 考试内容考试内容涵盖课程全部章节,包括:1. 微分方程的基本概念与解的存在性2. 线性微分方程的理论3. 非线性微分方程的理论4. 常微分方程的解法5. 常微分方程组6. 微分方程在物理、工程等领域的应用II. 重点难点解析A. 微分方程的基本概念- 重点掌握微分方程的阶数、线性与非线性、显式与隐式微分方程的判别。

- 难点:理解解的概念及其在不同情况下的性质,如局部解、全局解、解的存在性与唯一性。

B. 线性微分方程- 重点:齐次与非齐次线性微分方程的解的结构,特解与通解的概念。

- 难点:理解线性微分方程组的解的结构,学会求解线性微分方程组。

C. 非线性微分方程- 重点:掌握一阶非线性微分方程的解法,如变换法、迭代法等。

- 难点:理解并掌握高阶非线性微分方程的解法,如特征线法、Lie群法等。

D. 常微分方程的解法- 重点:掌握分离变量法、积分因子法、变量替换法等常见解法。

- 难点:理解并掌握解法的适用条件与局限性,学会在不同情况下选择合适的解法。

E. 常微分方程组- 重点:理解常微分方程组的解的结构,学会求解线性微分方程组。

- 难点:掌握求解非线性微分方程组的策略与方法。

F. 微分方程的应用- 重点:理解微分方程在物理、工程等领域的应用背景。

- 难点:学会将实际问题转化为微分方程问题,并应用所学知识解决实际问题。

III. 复习建议A. 理论学习1. 系统复习课程教材,加强对重点知识点的理解。

2. 针对难点知识点,通过查阅资料、请教教师等方式,直至理解透彻。

B. 练习巩固1. 完成教材后的练习题,加强对知识点的应用能力。

2. 挑选近年来福师的《常微分方程》期末考试真题进行练习,熟悉考试题型与解题方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《常微分方程》期末模拟试题《常微分方程》模拟练习题及参考答案一、填空题(每个空格4分,共80分)1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。

2、一阶微分方程2=dyx dx的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 21=-y x ,与直线y=2x+3相切的解是 24=+y x ,满足条件33ydx =⎰的解为 22=-y x 。

3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。

4、对方程2()dyx y dx=+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。

5、方程过点共有 无数 个解。

6、方程''21=-y x的通解为 4212122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 421912264=-++x x y x 。

7、方程无 奇解。

8、微分方程2260--=d y dyy dx dx 可化为一阶线性微分方程组 6⎧=⎪⎪⎨⎪=+⎪⎩dyz dx dz z y dx。

9、方程的奇解是 y=0 。

10、35323+=d y dyx dx dx是 3 阶常微分方程。

11、方程22dyx y dx=+满足解得存在唯一性定理条件的区域是 xoy 平面 。

21d d y x y -=)1,2(πx x y xy +-=d d y xy=d d12、微分方程22450d y dy y dx dx--=通解为 512-=+x xy C e C e ,该方程可化为一阶线性微分方程组 45⎧=⎪⎪⎨⎪=+⎪⎩dy z dxdz z y dx。

13、二阶线性齐次微分方程的两个解12(),()y x y x ϕϕ==成为其基本解组的充要条件是 线性无关 。

14、设1342A ⎡⎤=⎢⎥⎣⎦,则线性微分方程组dXAX dt =有基解矩阵 25253()4φ--⎡⎤=⎢⎥-⎣⎦t t tt e e t e e 。

二、解方程(每个小题8分,共120分) 1、 答案:方程化为令,则,代入上式,得分离变量,积分,通解为∴ 原方程通解为2、答案:特征方程为 即。

特征根为 ,对应特征向量应满足 可确定出 同样可算出对应的特征向量为∴ 原方程组的通解为 。

0d d )2(=-+y x x y x xy x y 21d d +=xu y =x u x u x y d d d d +=u xux +=1d d 1-=Cx u x Cx y -=2⎪⎪⎩⎪⎪⎨⎧+=+=y x ty y x tx4d d d d 01411=--=-λλλE A 0322=--λλ31=λ12-=λ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--0031413111b a ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2111b a 12-=λ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡2122b a ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--t t t t C C y x 2e e 2e e 23313、答案:齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+4、2-=x y dydx ; 答案:2-=x y dydx是一个变量分离方程 变量分离得22y x dy dx =两边同时积分得22y x c =+(其中c 为任意常数) 5、答案:积分: 故通解为:6、{}0)(22=-+-xdy dx y x x y答案:0)(22=+--dx y x x xdy ydx两边同除以22y x +得022=-+-xdx y x xdy ydx ,即021)(2=-dx y x arctg d , 故原方程的解为C x y x arctg =-2217、2453dxx y dtdy x y dt⎧=-⎪⎪⎨⎪=-+⎪⎩ .x y xy 2e 3d d =+xC y 3e-=xx C y 3e)(-=C x C x +=5e 51)(xC y 3e -=x2e 51xy e xydx dy =+xy xe xy e dx dy xy xy-=-=dx y xe xdy xy )(-=dx xe ydx xdy xy =+dxxe dxy xy =xdx e dxyxy =c x e xy+=--2210212=++-c e x xy答案:方程组的特征方程为203A E λλλ---==--45即(2)(3)(4)(5)0λλ----⨯-=,即25140λλ--= 特征根为17λ=,22λ=-对应特征向量应满足1127405370a b --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,可得1145a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦ 同样可算出22λ=-时,对应特征向量为2211a b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∴ 原方程组的通解为72127245--⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦t t t t x e e C C y e e8、答案:线性方程的特征方程故特征根是特征单根,原方程有特解代入原方程A=-B=0 不是特征根,原方程有特解代入原方程B=0 所以原方程的解为9、0)2()122(=-++-+dy y x dx y x 答案:,令z=x+y ,则 所以 –z+3ln|z+1|=x+, ln =x+z+即10、220++=d x dxx dt dt答案:所给方程是二阶常系数齐线性方程。

sin cos2x x t t ''+=-0x x ''+=210λ+=i λ=±1()sin f t t =i λ=(cos sin )x t A t B t =+122()cos 2f t t =-2i λ=cos2sin 2x A t B t =+13A =1211cos sin cos cos223x c t c t t t t =+-+2)(1)(2-+-+-=y x y x dx dy dx dydx dz +=1,212121+-+=---=z z z z dx dz dx dz z z =++-121C 3|1|+z 1C yx Ce y x +=++23)1(其特征方程为210λλ++=特征根为1122λ=-+,2122i λ=--∴方程的通解为111()()2221212(cos sin )22t t t x c e c ec c e ---=+=+11、312+++-=y x y x dx dy 答案: (x-y+1)dx-(x++3)dy=0xdx-(ydx+xdy)+dx-dy-3dy=0即d -d(xy)+dx--3dy=0所以三、证明题(共160分)1、(12分)证明如果满足初始条件的解,那么。

证明:设的形式为=(1)(C 为待定的常向量)则由初始条件得= 又= 所以C==代入(1)得= 即命题得证。

2、(12分)设在区间上连续.试证明方程的所有解的存在区间必为。

证明 :由已知条件,该方程在整个平面上满足解的存在唯一及解的延展定理条件。

显然是方程的两个常数解。

任取初值,其中,。

记过该点的解为, 由上面分析可知,一方面可以向平面无穷远处无限延展;2y 2y 212x 331dy C y y x xy x =--+-3312132Ax x t =/)是(ϕηϕ=)(0t =)(t ϕ[]η)(0t t A e -)(t ϕ)(t ϕC e At )(0t ϕη=C e At 01)(0-At e0At e -1)(0-At e η0At e -η)(t ϕηη)(00t t A AtAt e e e --=)(x ϕ),(∞+-∞y x xysin )(d d ϕ=),(∞+-∞xoy 1±=y ),(00y x ),(0∞+-∞∈x 10<y )(x y y =)(x y y =另一方面又上方不能穿过,下方不能穿过,否则与惟一性矛盾; 故该解的存在区间必为。

3、(12分)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C 使得=C .证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为 由已知条件,得 故这两个解是线性相关的;由线性相关定义,存在不全为零的常数, 使得, 由于,可知.否则,若,则有,而,则, 这与,线性相关矛盾.故4、(12分)叙述一阶微分方程的解的存在唯一性定理的内容,并给出唯一性的证明。

定理:设00:||,||R x x a y y b -≤-≤.(1)(,)f x y 在R 上连续,(2)(,)f x y 在R 上关于y 满足利普希茨条件:120,(,),(,)L x y x y R ∃>∀∈,总有1212|(,)(,)|||f x y f x y L y y -≤-.则初值问题00(,)()dyf x y dx y x y ⎧=⎪⎨⎪=⎩存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初值条件00()x y ϕ=,这里(,)min(,),max |(,)|x y R bh a M f x y M∈==.1=y 1-=y ),(∞+-∞)(1x y )(2x y 0)()(=+'+''y x q y x p y )(01x y )(02x y 0)(1≠x y )(),(x q x p ),(∞+-∞),(0∞+-∞∈x )(2x y )(1x y )(1x y )(2x y ),(∞+-∞)()()()()(2121x y x y x y x y x W ''=0)()(0)()()()()(0201020102010=''=''=x y x y x y x y x y x y x W 21αα,0)()(2211=+x y x y αα),(∞+-∞∈x 0)(1≠x y 02≠α02=α0)(11=x y α0)(1≠x y 01=α)(1x y )(2x y )()()(11212x Cy x y x y =-=αα唯一性:设()x φ是积分方程在区间00[,]x h x h -+上的解,则()()x x φϕ=. 证明:00()(,())xx x y f d φξφξξ=+⎰,001()(,())xn n x x y f d ϕξϕξξ-=+⎰,1,2,......n =首先估计0x x ≥.000|()()||(,())|()xx x x f d M x x ϕφξφξξ-≤≤-⎰,10|()()||(,())(,())|xxx x f f d ϕφξϕξξφξξ-≤-⎰2000|()()|()()2!x xx x MLL d LM x d x x ϕξφξξξξ≤-≤-=-⎰⎰ 设10|()()|()(1)!nn n ML x x x x n ϕφ+-≤-+成立,则 001210|()()||(,())(,())||()()|()(2)!n xxn n n n x x ML x x f f d d x x n ϕφξϕξξφξξϕξφξξ+++-≤-≤-=-+⎰⎰这就证明了对任意的n ,总成立估计式:110|()()|()(1)!(1)!n n n n n ML ML x x x x h n n ϕφ++-≤-≤++. 因此,{()}n x ϕ一致收敛于()x φ,由极限的唯一性,必有00()(),[,]x x x x h x h φϕ=∈-+.5、(10分)求解方程组的奇点,并判断奇点的类型及稳定性。

相关文档
最新文档