光学谐振腔的分类之一

合集下载

光学谐振腔

光学谐振腔

(c) TEM20
2009
18
第18页/共36页
激光谐振腔内电场横模分布示意图
TEM00
2009
19
第19页/共36页
激光谐振腔内电场横模分布示意图
TEM11
2009
20
第20页/共36页
激光多横模振荡示意图
2009
21
第21页/共36页
横模(自再现模)的形成
u1 u3 …
理想开腔:两块反射镜的
2009
11
第11页/共36页
激光器中出现的纵模数
• 工作原子自发辐射 的荧光线宽越大, 可能出现的纵模数 越多。
• 激光器腔长越大, 相邻纵模的频率间 隔越小,同样的荧 光谱线线宽内可以 容纳的纵模数越多。
2009
12
第12页/共36页
激光谐振腔内低阶纵模分布示意图
2009
13
第13页/共36页
2009
4
第4页/共36页
第一节 光学谐振腔的作用
1. 提供光学正反馈作用 : 2. 产生对振荡光束的控制作用
使得振荡光束在腔内行进一
改变腔的参数如:反射镜、几何形状、
次时,除了由腔内损耗和通 过反射镜输出激光束等因素
曲率半径、镜面反射率及配置
引起的光束能量减少外,还 能保证有足够能量的光束在
1.
• 纵模的测量方法:法卜里-珀洛F-P扫描干涉仪测量,实 验中利用球面扫描干涉仪
2009
23
第23页/共36页
纵模的测量方法:球面扫描干涉仪测量
测量原理:通过测量激光输出的频率谱来判定模式
2009
24
第24页/共36页
球面扫描干涉仪

第3章光学谐振腔理论

第3章光学谐振腔理论



凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组

第二章 光学谐振腔

第二章 光学谐振腔

2009
湖北工大理学院
14
激光谐振腔内低阶纵模分布示意图
2009
湖北工大理学院
15
激光纵模分布示意图
2009
湖北工大理学院
16
横模-横向X-Y面内的稳定场分布
激光的模式用符号: TEMmnq
q为纵模的序数(纵向驻波波节数),m,n (p,l)为横模的序数。 对于方形镜,M表示X方向的节线数, N表示Y方向的节线数; 对于圆形镜, p 表示径向节线数,即暗环数,l表示角向节线数,即暗直径数
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 后来又广泛采用了由两块具 有公共轴线的球面镜构成的 谐振腔。从理论上分析这些 腔时,通常认为侧面没有光 学边界,因此将这类谐振腔 称为开放式光学谐振腔,简 称开腔
闭腔
固体激光器的工作物质通 常具有比较高的折射率, 因此在侧壁上将发生大量 的全反射。如果腔的反射 镜紧贴激光棒的两端,则 在理论上分析这类腔时, 应作为介质腔来处理。半 导体激光器是一种真正的 介质波导腔。这类光学谐 振腔称为闭腔 2009
示波器的锯齿波扫描电压,对激光允许通过的频率作周期性的扫描
光电探测器:接收扫描到的激光频率
双凸薄透镜:待测的激光光束变换为无源腔的高斯光束。使待测激 光束的全部能量耦合到无源腔的基模中去。
偏振器和1/4波片组成光学隔离器,防止光重新回到待测激光器中去
2009 湖北工大理学院 27
小结:光学谐振腔的构成、分类、作用和模式
C q阶纵模频率可以表达为: q q 2L C 基纵模的频率可以表达为: 1 2L
谐振腔内q阶纵模的频率为基纵模频率的整数倍(q倍) 纵模的频率间隔:
2009
q q 1 q

光学谐振腔

光学谐振腔

稳定性分析
重点: • 几何光学近似(近轴光线) • 传播矩阵 • 腔内光束的传播矩阵 • 腔稳定性条件 • 典型介稳腔 难点: • 光学元件与传播矩阵的等价 • 非稳腔的共轭像点
稳定性分析
一、光束的传播矩阵表示
旁轴光线满足
r(z1)
r'(z) dr(z) tan sin dz

c
2L
腔镜反射率高,损耗小,腔内光子寿命长,线宽R窄
光学谐振腔的描述参量
损耗描述参数
d vR
Q
R
R

Q
2
d di
i
1
1

Q i Qi
1
1

R i Ri
R

L'
dc
Q 2 L'
dC
vR
Q 2R
1 R 2 R
v Ri
研究谐振腔的目的正确设计和使用输出光束特性达到要求研究方法几何光学理论波动光学衍射理论场振幅相位分布谐振频率衍射损耗光腔稳定性条件本征积分方程光腔的模参数光学谐振腔内可能存在的电磁场的本征态从光子的观点来看腔内可能区分的光子状态腔的模式激光的模式光学谐振腔理论就是激光模式理论一构成和分类固体介质波导腔半导体光纤常用开放式谐振腔气体空心波导腔气体激光器平行平面腔fp腔两个共轴球面镜折叠腔环形腔复合腔等常用谐振腔激光器中常见的谐振腔形式平行平面腔双凹球面镜腔反哺维持振荡遗传前振荡特征1提供光学正反馈影响反馈的因素
q
相邻纵模的波长差还是常量吗?
光学谐振腔的描述参量
q

2 L
q
,
q

q
c
2 L
q

第5章谐振腔

第5章谐振腔

三、谐振腔的几何参数 1、RL参数 参数
R1 L R2
R1、R2:两镜面曲率半径,L:腔长 两镜面曲率半径, : 2、g参数 参数
L g1 =1− R 1 L g2 =1− R2
§2 光线变换矩阵 一、光线坐标矩阵
r θ
θ r
r:光线位置到轴线距离 轴线上方为正 光线位置到轴线距离(轴线上方为正 光线位置到轴线距离 轴线上方为正) 光线方向与轴线方向(水平 所夹锐角(向 水平)所夹锐角 θ: 光线方向与轴线方向 水平 所夹锐角 向 上传播为正) 上传播为正
∴-1< 2g1g2 −1<1
(2) g1=g2=0 证
A= 2g2 −1= −1
B = 2Lg2 = 0
2 C = − (g1 + g2 −2g1g2 ) = 0 L D = 4g1g2 −2g2 −1= −1
−1 0 T = 0 −1
−1 0 −1 0 1 0 T = 0 −1 0 −1 = 0 1
例 稳定: 稳定: 非稳: 非稳:
例 判断谐振腔的稳定性 单位 判断谐振腔的稳定性(单位 单位:mm) (1)R1=80,R2=40,L=100 解
100 1 g1 =1− =− 80 4 g1g2 = 3 8
100 3 g2 =1− =− 40 2
R1 R2
稳定
(2)R1=20, R2=10, L=50 解
ϕ = arccos 1 (A+ D) 2
A、B、C、D:往返一周的光线变换 矩阵元素 ix −ix
e −e sin x = 2i
§3 谐振腔的稳定性 一、稳定腔的概念 1、物理意义 镜面上任一点发出的近轴光线,往返无 镜面上任一点发出的近轴光线, 限次而不逸出 2、数学意义 Tn各元素当 n →∞时,保持有界 保持有界

光学谐振腔基本概念

光学谐振腔基本概念
T = T4T T2T 3 1
1 L T = T3 = 1 0 1
1 T2 = 2 − R 2 0 1
1 T4 = 2 − R 1
0 1
R1 ④
① ③
② R2
L
1 T = 2 − R 1
01 L 1 2 0 1 − R 1 2
2、实例 (1)单程传播L (1)单程传播L距离 单程传播 证
θ1 r1 θ2 r2 L
1 ∴T = 0 L 1 1 T = 0 L 1
r2=r1+Lθ1 +Lθ θ2= θ1
(2)球面反射镜 (2)球面反射镜
1 0 T = 2 − 1 R
θ2 = i
r α≈ F r r =2 F R
o i F α F
R
θ2 r
R = 2F
1 0 T = 0 1 →
r2 r = 1 θ θ 2 1

R=∞ 或 F =∞
即平面镜的反射定律
θ1
θ2 θ1
2、非稳定腔
(1)g >1(2) (2)g <0(3) =0或 =0(4) (3)g (4)g (1)g1g2>1(2)g1g2<0(3)g1=0或g2=0(4)g1g2=1 =∞,平行平面腔, 如g1=g2=1, 即R1=R2=∞,平行平面腔,则
F
讨论 (1)若r =0,θ 任意 (1)若 1=0,θ1
r2 1 = 1 θ − 2 F 0 0 0 = 1θ1 θ1
θ2 θ1
过光心的 光线不改 变方向
-θ2 θ2
(2)若 任意, (2)若r1任意, θ1=0

量子电子学-光学谐振腔

量子电子学-光学谐振腔

平平腔
R
g1g2 1
共心腔 l R1 R2 , g1g2 1,
g -1 对称共心腔
共焦腔
l R1 2 R2 2
R1 R2 l, g 0 对称共焦
③ 广义谐振腔--自洽场
广义谐振腔(多元谐振腔): 对于如右图所示的复杂结构的谐振腔,其 模式稳定条件可以通过自洽场方法获得。
(z) tan1( z )
z0
z0

nw02
基于此,球面腔设计的基本问题包括
a) 已知光束的基本特性(比如w0),设计腔特性参数R1、R2、l
R1
R2
l
b) 已知腔特性参数R1、R2、l,求光束特性
(3)光学谐振腔的代数运算
① 问题:已知w0,求位置z1、z2处腔镜的曲率半径R1、R2
2

举例: Maser,封闭腔
3109 Hz ( 10cm)
腔体积 V 100cm3
工作介质谱宽, 109 Hz
腔内模式数
N
V
8
c3
2


100cm3

8 (3109 )2
(3108 )3
109
1
First laser paper!!
举例: Laser,开放腔 封闭腔 开放腔: 泄模
L 1 R1R2 el 1 elln R1R2
1 (1l ln R1R2 ) l ln R1R2
E0
E0el
E0e2l R2R1 E0el R2
M1
M2
② 光子寿命tc-光子在腔内滞留的平均时间
n(t) n0et /tc (t) n0hvet /tc

第5章光学谐振腔的基本理论

第5章光学谐振腔的基本理论

B sin n
sin
D sin n sin (n 1)
sin
arccos
1 2
(A
D)
1、值是实数(-1<cos<1)时, Tn各元素有界谐
振腔为稳定腔。 2、值有虚部时(-1>cos或者cos>1),旁轴 光线往返有限次后便会逸出谐振腔,谐振腔为非
稳腔。
3、值等于0或者π(cos=±1),Tn各项元素的值
38
§3 谐振腔的衍射理论基础
激光器中所使用的谐振腔是一种开腔, 在这种没有侧面边界的区域内是否存在电磁 场的本征态,即不随时间而变化的稳态场分 布?如何求出这种场分布?这些问题需要用谐 振腔的衍射理论来解决。本节首先给出理想 开腔的模型——孔阑传输线,在此基础上引 入稳态场分布——自再现模的概念。
T
2 R1
10
1 0
L 1
1 2
R2
10
1 0
L 1
1 L 1 L
2 R1
1
2L R1
2 R2
1
2L R2
2L
1 R2
2 R1
2 R2
4L R1R2
2L2
2L R1
2L R2
(1 2L )(1 R1
2L R2
)
=
A C
B
D
15
A
1
2L R2
2(1
L R2
)
1
2g2
1
2L2
L
B 2L R2 2L(1 R2 ) 2Lg2
4L 2 2 2 L L 2L2
C
( )
R1R2 R1 R2
L R1 R2 R1R2

第9讲 光学谐振腔的基本概念

第9讲 光学谐振腔的基本概念
ቤተ መጻሕፍቲ ባይዱ
9.3 光学谐振腔的光波模式
驻波概念简要回顾
驻波,也称为稳态波,是由同频率、同振幅、传播方向 相反的两列波叠加而成的一种波形。 通常,一列波是另一列的反射波。
例如,
y1 y0 sin(kx t),

y2

y0
sin(kx
t),
9.3 光学谐振腔的光波模式
迭加后形成的驻波场为:
9.1 光学谐振腔的类型
平行平面腔 平凸腔
平凹腔 凹凸腔
双凹腔 双凸腔
9.1 光学谐振腔的类型
激光器的基本结构示意图
全反射镜
光学谐振腔 输出反射镜
工作物质
激光输出
泵浦
9.2 光学谐振腔的作用
光学谐振腔的作用
提供轴向正反馈; 通过谐振腔镜面的反射,光波可在腔内往返传播,多次 通过激活介质而使受激辐射不断放大,形成自激振荡。
9.3 光学谐振腔的光波模式
这种经过一次往返传播后能“自再现”的稳定场分布通常 称为自再现模,也称为横模。
自再现条件的公式表示
第9讲 光学谐振腔的基本概念
教学内容
9.1 光学谐振腔的类型 9.2 光学谐振腔的作用 9.3 光学谐振腔的光波模式
9.1 光学谐振腔的类型
光学谐振腔的基本结构
通常的谐振腔是由两块相对的球面或平面反射镜组成, 这两块反射镜光轴重合,这样的谐振腔称为共轴球面腔, 它是光学谐振腔的基本结构。
共轴球面腔的常见构型
控制振荡光束模式特性。 通过采用不同的结构参数,可实现对光波模式的控制。
9.3 光学谐振腔的光波模式
什么是腔模
根据麦克斯韦电磁理论,在具有一定边界条件的空腔内, 电磁场只能存在于一系列分立的本征状态中,场的每种本 征状态将具有一定的振荡频率和空间分布。通常将谐振腔 内可能存在的电磁场本征态称为腔的模式,简称腔模。 腔模可分为纵模(与振荡频率有关)和横模(与空间分布有关)。

光学谐振腔的分类之一

光学谐振腔的分类之一

光学谐振腔的分类之一腔内傍轴光线几何逸出损耗的高低:稳定腔、非稳腔、临界腔。

稳定腔:腔内傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔。

非稳腔:腔内光线经过有限次往返传播后逸出腔外的谐振腔。

临界腔:能够保证截面平行于反射镜面的光束在反射镜间传播不逸出。

什么样几何形状的谐振腔?共轴球面腔的三个参数:腔镜的曲率半径R 1、R 2、腔长L 需要满足什么样的条件呢?本节讨论光学谐振腔的稳定性条件。

1.共轴球面谐振腔的稳定性条件光线在球面谐振腔内往返n 次的光学变换矩阵:=往返n 次后光线的空间位置坐标与方向坐标:如果在无论n 取多大值、任何值的情况下,An 、Bn 、Cn 和Dn 都是在一定范围内的有限值,那么 和 就是有限值,只要反射镜的镜面横向尺寸足够大,就可以保证傍轴光线在腔内往返任意次、无限次而不会从侧面逸出。

从M n 的表达式中可以看出,角度 的大小对矩阵中的四个元素An 、Bn 、Cn 和Dn 起着决定性的作用。

和 取值大小,反映的是光线偏离光轴能力的大小,即造成激光几何损耗的大小。

下面我们就分三种情况对 角的取值加以讨论,并希望能从中寻找出谐振腔的稳定性条件。

n n nn n A B M C D ⎡⎤=⎢⎥⎣⎦⎥⎦⎤⎢⎣⎡----ϕϕϕϕϕϕϕ)1sin(sin sin sin )1sin(sin sin 1n n D n C n B n A 1111n n n n n n r A r B C r D θθθ=+⎫⎬=+⎭ϕn r n θn r n θ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧---=+-=-=-=1212121222)21)(21()11(24)1(221R L R L R L D R R R R L C R L L B R L A讨论 的取值情况:1) 为实数且不等于往返n 次的变换矩阵:=谐振腔的稳定性条件: 或二者等价。

)(21arccos D A +=ϕ221LA R =-{121222(1)(1)L L LD R R R =---121L LA 2(1)(1)12R R =---(+D )ϕϕk π121<+D A 12L L 0(1)(1)1R R <--<1122Lg 1R L g 1R ⎧-⎪⎪⎨⎪-⎪⎩==1201g g <<n n nn n A B M C D ⎡⎤=⎢⎥⎣⎦⎥⎦⎤⎢⎣⎡----ϕϕϕϕϕϕϕ)1sin(sin sin sin )1sin(sin sin 1n n D n C n B n A 1111n n n n n n r A r B C r D θθθ=+⎫⎬=+⎭121<+D A 1201g g <<、 均为有限值,随n 做周期性变化,只要反射镜的镜面横向尺寸足够大,就可以保证傍轴光线在腔内往返无限次而不会从侧面逸出。

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。

光学谐振腔

光学谐振腔

光学谐振腔的构成与分类
根据结构,性能和机理等方面的不同,谐振腔有不同的分类方式. 根据结构,性能和机理等方面的不同,谐振腔有不同的分类方式. 按能否忽略侧面边界,将谐振腔分为开放式光学谐振腔, 按能否忽略侧面边界,将谐振腔分为开放式光学谐振腔, 封闭腔以及气体波导腔. 封闭腔以及气体波导腔.根据腔内近轴光线的几何逸出损 耗的高低,开腔又可分为稳定腔和非稳定腔. 耗的高低,开腔又可分为稳定腔和非稳定腔. 按腔镜的形状和结构,谐振腔可分为球面腔和非球面腔. 按腔镜的形状和结构,谐振腔可分为球面腔和非球面腔. 按腔内是否插入透镜之类的光学元件, 按腔内是否插入透镜之类的光学元件,或者是考虑腔镜以 外的反射表面,谐振腔可分为简单腔和复合腔. 外的反射表面,谐振腔可分为简单腔和复合腔. 按腔中辐射场的特点,可分为驻波腔和行波腔. 按腔中辐射场的特点,可分为驻波腔和行波腔. 按反馈机理不同,可分为端面反馈腔和分布反馈腔. 按反馈机理不同,可分为端面反馈腔和分布反馈腔. 按构成谐振腔反射镜的个数,可分为两镜腔和多镜腔. 按构成谐振腔反射镜的个数,可分为两镜腔和多镜腔. 仅讨论最简单和最常用的由两个球面镜构成的开放式光学谐振腔. 仅讨论最简单和最常用的由两个球面镜构成的开放式光学谐振腔.
g 1
L R1 = R2 = 2 共焦腔
( R = R = ∞) 1 2 平行平面腔
稳定谐振腔的条件
L L 0 ≤ 1 1 ≤ 1 R R 1 2
g
L R1 = R2 = 2 共心腔
2
图中( 图中(0<g1g2<1)区域是 ) 满足稳定性条件的区域
光腔损耗
有了稳定的光学谐振腔, 有了稳定的光学谐振腔,有了能实现粒子束反转的工作物 还不一定能一起受激辐射的光振荡而产生激光. 质,还不一定能一起受激辐射的光振荡而产生激光.因为 工作物质在光学谐振腔内虽然能够引起光放大, 工作物质在光学谐振腔内虽然能够引起光放大,但是在光 学谐振腔内还存在许多损耗因素 反射镜的吸收, 反射镜的吸收,透射和衍射工作物质不均与造成的折射或 散射 这些损耗中, 这些损耗中,只有通过部分反射镜而透射出的才是我们需 要的, 要的,其他一切损耗都应尽量避免 如果由于损耗,使得工作物质的放大作用抵偿不了损耗, 如果由于损耗,使得工作物质的放大作用抵偿不了损耗, 就不可能在谐振腔内形成雪崩式的光放大过程, 就不可能在谐振腔内形成雪崩式的光放大过程,就不能得 到激光输出.因此要产生激光振荡, 到激光输出.因此要产生激光振荡,对于光放大必须满足 一定的条件---阈值条件 一定的条件 阈值条件

光学谐振腔.ppt

光学谐振腔.ppt
线方向传播时,在腔内往返一周回到原来位置
时,应该与初始出发电磁波同相,相差为2∏的整
数倍。
(3)横模:输出光束在垂直于光束传播方向,即光束横截面内的能 量空间分布。激光的模式一般用符号TEM mnq来标记,其中TEM表示 横向电磁场。q为纵模的序数,即纵向驻波波节数。m,n为横模的序 数,用正整数表示,它们描述镜面上场的节线数。当m=0,n=0时, TEM00q称为基模(或横向单模),模的场集中在反射镜中心,而其他 的横模称为高阶横模。
的限制。
四、光学谐振腔的模式 (1)驻波条件:当光波在腔镜上反射时,入射波和反射波会发生 干涉,为了在腔内形成稳定的振荡,要求光波因干涉而得到加强。 由多光束干涉理论,相长干涉的条件是:光波在腔内沿轴线方向 往复传播一次所产生的相位差为2∏的整数倍。
(2)纵模:输出光束在沿光束传播方向的能量分
布。激光纵模应满足谐振条件即光波在腔内沿轴
光学开腔的损耗大致包含以下几个方面:几何损耗、衍 射损耗、腔镜反射不完全引起的损耗、非激活吸收散射等其
他损耗。
谢谢观赏!
激 光 器
组 成 之
讲解人:
光 学 谐 振 腔
崔晓抡
主要内容
一、相关简介 二、光学谐振腔类型与作用 三、光学谐振腔的模式
四、光学谐振腔的评价指标
相 光学谐振腔是激光器的三个主要组成部分之一,是 关 产生激光的外在条件。它的基本结构是由激活物质两 简 端适当地放置两个反射镜所组成。 介
研究光学谐振腔的目的,就是通过了解谐振腔的 特性来正确设计和使用激光器的谐振腔,使激光器的 输出光束特性达到应用的要求。
平面镜腔、双凹球面镜腔、平面—凹面镜腔、特殊腔
等。
三、光学谐振腔的作用
谐振腔是激光器的重要组成部分之一,对大多数激光工作物质,适当结构

c2.1光学谐振腔结构与稳定性

c2.1光学谐振腔结构与稳定性

A B T C D
2L A 1 R2
L B 2 L(1 ) R2
2 2 2 L C 1 R1 R1 R2
2 L 2 L 2 L D 1 1 R1 R2 R1
L L 0 (1 )(1 ) 1 R1 R2
§2.1.1 共轴球面腔的稳定性条件
一、腔内光线往返传播的矩阵表示 1. 光线矩阵
一条傍轴光线可以用r、 两个参数表示: 其中 r:光线离轴线的距离

r
:光线与轴线的夹角
符号规则:出射方向在轴线上方取
出射方向在轴线下方取
r 一条傍轴光线可以用列 矩阵表示,为
r3 r4 1 L r3 0 1 TL 3 4 3
3.谐振腔内光线往返传播矩阵
④最后又在M1上发生反射
1 r5 2 5 R 1 0 r4 T r4 R1 1 4 4
光学谐振腔的构成
§2.1 光学谐振腔结构与稳定性
二、谐振腔分类
a. 谐振腔的开放程度,闭腔、开腔、气体波导腔
(开腔通常可以分为 稳定腔、非稳腔、介稳腔)
b. 反射镜形状,球面腔与非球面腔,
端面反馈腔与分布反馈腔
c. 反射镜的多少,两镜腔与多镜腔,简单腔与复合腔
折叠腔 环形腔
谐振腔分类பைடு நூலகம்
侧面没有光学边界的谐振 腔称为开放式光学谐振腔, 简称开腔。
如图(2-2)所示,图中没有斜线的部 分是谐振腔的稳定工作区,其中包 括坐标原点。图中画有斜线的阴影 区为不稳定区,在稳定区和非稳区 的边界线上是临界区。

光学谐振腔

光学谐振腔
• 假设初始时在镜面1上有分布为u1的电磁场从镜面1向镜面 2传输,经过一次渡越,在镜面2上有分布为u2的场,在经 过反射后再次渡越回到镜面1时场的分布为u3,如此反复。 • 受到各种损耗的影响,不仅每次渡越会造成能量的衰减, 而且振幅横向分布也会由于衍射损耗的存在而发生改变; • 由于衍射损耗仅发生在镜面的边缘,因此只有中心振幅大, 边缘振幅小的场才会尽可能少的受到衍射损耗的影响。经 过多次渡越后,这样的模式除了振幅整体下降,其横向分 布将不发生变化,即在腔内往返传输一次后可以“再现” 出发时的振幅分布。
该叠加的场分布的振幅在沿z方向上有一个余弦分布。 – 在z点处的振幅为 e( x) 2 E 0 cos 2 z / z q, q 0,1, 2, 时,振幅有最大值 e max 2 E 0 ,称此 – 当 位置为波腹; – 当 z (2q 1), q 0,1, 2, 时,振幅有最大值 e min 0 ,称此位 置为波节; – 驻波频率为平面波频率,而且可以为任意值。
– 图中空白部分是谐振腔的稳 定工作区,其中包括坐标原 点。 – 图中阴影区为不稳定区;
g2
g1
– 在稳定区和非稳区的边界上 是临界区。对工作在临界区 的腔,只有某些特定的光线 才能在腔内往返而不逸出腔 外。
3.1.3光学谐振腔稳定性判别性
• 稳定性简单判别法
– 若一个反射面的曲率中心 与其顶点的连线与第二个 反射面的曲率中心或反射 面本身二者之一相交,则 为稳定腔; – 若和两者同时相交或者同 时不相交,则为非稳腔; – 若有两个中心重合,则为 临界腔;
4 2
3.2.1平平腔的驻波
• 平行平面腔中的驻波
– 当光波在腔镜上反射时,入射波与反射波发生干涉,而多次往复 反射形成的多光束干涉,稳定的振荡要求干涉加强,发生相长干 涉的条件为:波从某一点出发,经腔内往返一次再回到原位时, 相位应与初始出发时相差2π的整数倍。 2 4 2 L ' L q 2 – 以Δφ表示往返一周后的相位差: – 其中的q为任意正整数,将满足上式的波长以 0 q 来标记,则有:

2光学谐振腔

2光学谐振腔

由两块相距上、平行放置的平面反射镜构成3)平面—凹面镜腔。

相距为4)特殊腔。

如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,3、谐振腔的作用提供光学正反馈作用)变成(x1,θ1),则两者间关系为而由光路可逆2当光线在腔内经过n次往返后,其参数变换矩阵可表示为三.谐振腔的稳定性1、稳定腔的概念1 物理意义镜面上任一点发出的近轴光线,往返无限次而不逸出2 数学意义Tn各元素当n →∞时,保持有界2、稳定性条件(证明略)(1) 稳定腔1 0<g1g2<12 g1=g2=0(2) 非稳定1 g1g2>12 g1g2<03 g1=0或g2=04 g1g2=13、稳区图4、g与R的符号关系以两块反射镜的曲率半径为直径做相应反射镜面的两个内切圆(对于凸面反射镜为外,则谐振腔稳定,缘故。

4. 横模的形成机理自再现模或横模:经过足够多次的往返传播之后,腔内形成这样一种稳态场,它的相对分布不再受衍射影响,它在腔内往返一次后能够“自再现”出发时的场分布。

这种稳态场经一次往返后唯一可能的变化,仅是镜面上各点的场振幅按同样的比例衰减,各点的相位发生同样大小的滞后。

●这种在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布称为在实际情况中,谐振腔的截面是受腔中的其它光阑所限制如气体激光器,放电管孔径就是谐振腔的限制孔。

为了形象地理解开腔中自再现模的形成过程,把平行平面谐振腔中光波来回反射的传播过程,等效于光波在光阑传输线中的传播。

这种光阑传输线如下图所示,它由一系列间距为L、直径为2a的同轴孔径构成,这些孔径开在平行放置无限大、完全吸收的屏上。

5、激光模式的测量方法1)横模的测量方法:不同横模的光强在横截面上有不同的分布。

●对连续可见波段的激光器,只须在光路中放置一个光屏,即可观察激光的横模光斑形状,可粗略地给以判别;●或者利用拍照的方法,小孔或刀口扫描方法也可直接扫描出激光束的强度分布从而确定激光横模的分布形状。

3.1 光学谐振腔的一般问题

3.1 光学谐振腔的一般问题
(2)可震荡纵模数。
例题
例题2:上题的激光器,如果腔长L=5cm 求:可震荡纵模数。
例题3:一台红宝石激光器,腔长L=10cm,介质 折射率η =1.76,求:纵模间隔。
例题
例题4:有一复合腔,由折射率分别为η 1、η 2、 η 3……η n,对应的长度分别为L1、L2、L3……Ln的n 种介质组成,求:纵模频率和纵模间隔。
四、纵模与横模
横模的概念:
谐振腔内本征电磁场的横向光场分布。 (描述光斑的强度分布)
TEMmn m,n代表延坐标方向的横模序数。
五、光学谐振腔的研究方法
1.直接求解Maxwell方程
固体激光器、波导气体谐振腔中波导管内的场。
2.几何光学方法
稳定性问题、非稳腔,忽略衍射效应。
3.标量衍射理论
求解谐振腔的衍射积分方程,不能忽略衍射效应。
三、腔与模的一般联系
对于开腔—R1,R2,L
给定了腔的具体几何结构,振荡模式的特征就 确定了。
模的基本特征: (1)每一个模的电磁场分布,特别是腔的横截 面内的场分布; (2)模的振荡频率; (3)模的损耗情况; (4)模的发散角。
四、纵模与横模
纵模的概念:
谐振腔内本征电磁场的纵向光场分布。 (存在于谐振腔内的驻波光场)
一、光学谐振腔的构成与分类
3. 气体波导腔
气体波导腔示意图
一、光学谐振腔的构成与分类
其它腔型
环形腔
折叠腔
一、光学谐振腔的构成与分类
本课程中:
开腔--------重点讨论 闭腔--------不讨论 气体波导腔—简要介绍
二、光学谐振腔的作用
1. 提供光学反馈 反馈的效果和特征决定于
(1)组成腔的两个反射镜的反射率。 (2)反射镜的几何形状和它们之间的组合方式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学谐振腔的分类之一
腔内傍轴光线几何逸出损耗的高低:稳定腔、非稳腔、临界腔。

稳定腔:腔内傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔。

非稳腔:腔内光线经过有限次往返传播后逸出腔外的谐振腔。

临界腔:能够保证截面平行于反射镜面的光束在反射镜间传播不逸出。

什么样几何形状的谐振腔?共轴球面腔的三个参数:腔镜的曲率半径R 1、R 2、腔长
L 需要满足什么样的条件呢?
本节讨论光学谐振腔的稳定性条件。

1.共轴球面谐振腔的稳定性条件
光线在球面谐振腔内往返n 次的光学变换矩阵:
=
往返n 次后光线的空间位置坐标与方向坐标:
如果在无论n 取多大值、任何值的情况下,An 、Bn 、Cn 和Dn 都是在一定范
围内的有限值,那么 和 就是有限值,只要反射镜的镜面横向尺寸足够大,就可以保证傍轴光线在腔内往返任意次、无限次而不会从侧面逸出。

从M n 的表达式中可以看出,角度 的大小对矩阵中的四个元素An 、Bn 、Cn 和Dn 起着决定性的作用。

和 取值大小,反映的是光线偏离光轴能力的大小,即造成激光几何
损耗的大小。

下面我们就分三种情况对 角的取值加以讨论,并希望能从中寻找出谐振腔的稳定性条件。

n n n
n n A B M C D ⎡⎤=⎢⎥⎣⎦⎥⎦

⎢⎣⎡----ϕϕϕϕ
ϕϕϕ)1sin(sin sin sin )1sin(sin sin 1n n D n C n B n A 1111n n n n n n r A r B C r D θθθ=+⎫⎬
=+⎭
ϕn r n θn r n θ⎪⎪⎪⎪⎩
⎪⎪⎪
⎪⎨⎧
-
--=+-=-=-=1212121222)21)(21()
11(24)1(221R L R L R L D R R R R L C R L L B R L A
讨论 的取值情况:
1) 为实数且不等于
往返n 次的变换矩阵:
=
谐振腔的稳定性条件: 或
二者等价。

)
(21
arccos D A +=ϕ2
21L
A R =-
{
121
222(1)(1)L L L
D R R R =-
--12
1L L
A 2(1)(1)12R R =---(+D )ϕϕk π
12
1
<+D A 12
L L 0(1)(1)1R R <-
-<1
122L
g 1R L g 1R ⎧-⎪⎪

⎪-⎪⎩
==1201
g g <<n n n
n n A B M C D ⎡⎤=⎢⎥⎣⎦⎥⎦⎤⎢⎣⎡----ϕϕϕϕϕϕϕ)1sin(sin sin sin )1sin(sin sin 1n n D n C n B n A 1111n n n n n n r A r B C r D θθθ=+⎫

=+⎭
12
1
<+D A 1201
g g <<
、 均为有限值,随n 做周期性变化,只要反射镜的镜面横向尺寸足够大,
就可以保证傍轴光线在腔内往返无限次而不会从侧面逸出。

典型稳定光学谐振腔:
(a)平凹稳定腔
需要有一点说明:
规定凹面镜的曲率半径为正: 凸面镜的曲率半径为负: 2) 时
k 为奇数 (-1) k 为偶数 (+1)
n r n θ0
R >0
R <sin 0ϕ=1
arccos ()2A D ϕ=+=k π()1=+2
1
D A
满足该式之一的腔称为临界腔
典型临界腔:
平行平面腔,能够保证垂直于两谐振腔镜的光 束在反射镜间往返传播不逸出。

通过公共中心的光线能在腔内往返无限多次, 而所有不通过公共中心的光线在腔内往返有限次 后必然横向逸出腔外。

3) 为复数值时
由于 、 均会随n 的增大按照指数规律增长。

An 、Bn 、Cn 、Dn 以及 和 也会随n 增大按指数规律增大。

傍轴光线在腔内往返有限次后必将横向逸出腔外。

满足该式之一的腔称为非稳腔
典型非稳腔
对称凸面镜腔---都是不稳定的。

121
(A D)112
g g +=⇒=121
(A D)102
g g +=-⇒
=ϕsin(n 1)ϕ-sin ϕ
n r
n θ121
(A D)112g g +>⇒
>121
(A D)102
g g +<-⇒
<
距离大于两倍焦距的不 稳定平凹腔:A1—A2—B1 —B2—C1—逸出。

不稳定平凹腔
稳定腔:矩阵元素 g 因子
非稳腔:矩阵元素 g 因子
临界腔:矩阵元素 g 因子
1. 试求平凹共轴球面腔的稳定性条件。

解:平凹共轴球面镜,即R 1=∞,R 2>0
因此, ,
根据稳定性条件 ,知 得 2R L >
2. 试求双凹共轴球面腔的稳定性条件。

解:双凹共轴球面镜,即R 1>0,R 2>0
因此,
根据稳定性条件 ,知 得 或 3. 试求凹凸共轴球面镜。

解:R 1>0,R 2<0
因此, >0
根据稳定性条件 ,知 ()1 12
A D +<1201
g g <<()1
12A D +>121g g >120g g <()1
12
A D +=121g g =120
g g =1111L g R =-=22
1L
g R =-
1201g g <<2
011
L
R
<-<2
21L
g R =-1201g g <<11
1L g R =-120111
L L R R ⎛⎫⎛⎫<--< ⎪⎪⎝⎭⎝⎭
12R L
R L
>⎧⎨>⎩121200R L
R L
R R L <<⎧⎪<<⎨⎪+>⎩111L g R =-2
2
1L
g R =-1201g g <<120111
L L R R ⎛⎫⎛⎫
<--< ⎪⎪⎝⎭⎝⎭
1
12R L
R R L
>⎧⎨
+<⎩。

相关文档
最新文档