基于PLC高层电梯控制系统设计方案

合集下载

《2024年基于PLC的四层电梯控制系统的设计》范文

《2024年基于PLC的四层电梯控制系统的设计》范文

《基于PLC的四层电梯控制系统的设计》篇一一、引言随着现代建筑的高度和复杂性不断增加,电梯作为垂直交通的重要工具,其安全性和效率性显得尤为重要。

本文将详细介绍一种基于PLC(可编程逻辑控制器)的四层电梯控制系统的设计,该系统旨在提高电梯的运行效率、安全性和用户体验。

二、系统概述本系统采用PLC作为核心控制器,通过编程实现对四层电梯的逻辑控制、信号处理和安全保护等功能。

系统包括电梯轿厢、厅门、控制系统、电源系统等部分,能够实现电梯的上下行、开关门、信号响应等基本功能。

三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,能够满足电梯控制系统的需求。

2. 传感器:包括位置传感器、门状态传感器、超载传感器等,用于检测电梯的状态和信号,为控制系统提供输入信息。

3. 执行器:包括电机、电磁铁等,根据控制系统的指令执行开关门、上下行等操作。

4. 电源系统:为整个电梯控制系统提供稳定的电源,确保系统的正常运行。

四、软件设计1. 编程语言:采用梯形图或指令表等编程语言,实现电梯的逻辑控制和信号处理。

2. 控制逻辑:根据电梯的实际需求,设计合理的控制逻辑,包括上下行控制、开关门控制、信号响应等。

3. 安全保护:通过设置各种安全保护措施,如超载保护、防撞保护、紧急制动等,确保电梯的安全运行。

4. 故障诊断:通过故障诊断程序,对电梯的故障进行检测和定位,方便维护和检修。

五、系统功能1. 上下行控制:根据乘客的需求和电梯的实际情况,自动或手动控制电梯的上下行。

2. 开关门控制:通过传感器检测门的状态和乘客的需求,自动控制电梯的开关门。

3. 信号响应:通过接收来自厅外的召唤信号和内部指令信号,实现电梯的响应和调度。

4. 安全保护:通过设置各种安全保护措施,确保电梯在运行过程中的安全性和稳定性。

5. 故障诊断与维护:通过故障诊断程序对电梯进行检测和定位,方便维护和检修。

同时,提供详细的维护记录和报告,以便对电梯的运行状态进行评估和优化。

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计1. 介绍电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于城市的正常运转至关重要。

为了实现电梯的安全和高效运行,基于PLC(可编程逻辑控制器)的电梯控制系统应运而生。

本文将深入研究基于PLC 的电梯控制系统设计,并探讨其在实际应用中的优势和挑战。

2. 电梯工作原理在深入研究基于PLC的电梯控制系统设计之前,我们需要了解电梯的工作原理。

一般而言,电梯由机房、轿厢、轿厅、对讲系统、门机等组成。

当乘客按下轿厅或轿内按钮时,信号将传递给PLC进行处理,并通过门机控制开关门。

3. 基于PLC的电梯控制系统设计3.1 PLC在电梯控制中的优势基于PLC实现电梯控制具有许多优势。

首先,PLC具有高度可编程性和灵活性,可以根据不同需求进行程序开发和修改。

其次,PLC可以实现多任务处理,并能够处理多个输入和输出信号,提高电梯的运行效率和安全性。

此外,PLC还具有可靠性高、抗干扰能力强等特点,能够保证电梯的正常运行。

3.2 基于PLC的电梯控制系统设计要点在设计基于PLC的电梯控制系统时,需要考虑以下要点。

首先是安全性,包括轿厢超载保护、轿厅门和轿内门安全保护等。

其次是效率,包括调度算法设计、门机控制优化等。

还需要考虑可靠性和可扩展性,以适应未来可能的升级和扩展需求。

4. 基于PLC的电梯调度算法4.1 传统调度算法传统调度算法主要基于电梯内外按钮信号来实现调度决策。

常见的算法有先来先服务(FCFS)、最短寻找时间(SSTF)等。

这些算法简单易实现,但在高峰时段可能导致某些楼层长时间等待。

4.2 基于PLC的改进调度算法基于PLC的改进调度算法可以更好地优化电梯运行效率。

例如,在高峰时段可以实现优先服务特定楼层的功能,以减少等待时间。

此外,基于PLC的电梯调度算法还可以根据电梯负载情况进行智能调度,以避免超载和提高电梯的运行效率。

5. 基于PLC的门机控制优化门机控制是电梯运行过程中关键的一环。

基于PLC的五层电梯控制系统的设计

基于PLC的五层电梯控制系统的设计

基于PLC的五层电梯控制系统的设计引言电梯作为现代建筑中不可或缺的一部分,为人们提供出行便利。

本文旨在设计一个基于可编程逻辑控制器(PLC)的五层电梯控制系统,以确保电梯安全、高效地运行。

系统设计1. 电梯控制器PLC作为电梯控制系统的核心部分,负责处理和响应各种指令和信号。

其主要功能包括:- 接收来自用户的请求信号,如上行、下行、停止等;- 监控电梯运行状态,如位置、速度等;- 控制电梯运行,包括开启、关闭门以及楼层间的移动;- 处理故障和紧急情况,如停电和火灾。

2. 急停系统为了确保乘客和电梯的安全,我们设计了一个可靠的急停系统。

当系统检测到紧急情况时,PLC将立即向电梯发送停止信号,停止在当前楼层并打开门以供乘客疏散。

3. 楼层选择系统为了方便乘客选择所需的楼层,我们设计了一个楼层选择系统。

在电梯门口和每一层楼的电梯入口处安装触摸屏,乘客可以通过触摸屏选择所需的楼层。

PLC将接收到的楼层信号转化为控制指令,使电梯按照所选楼层运行。

4. 电梯调度算法为了提高电梯的运行效率和乘客体验,我们采用了一个高效的电梯调度算法。

该算法根据乘客的楼层选择、电梯的当前位置和运行状态,智能地决定电梯的移动方向和最佳路径,使电梯能够以最短的时间满足乘客请求。

5. 门控制系统为了确保乘客和电梯的安全,我们设计了一个可靠的门控制系统。

当电梯运行时,门将自动关闭并锁定,以防止乘客意外摔落。

当电梯到达目标楼层时,门将自动开启,乘客可安全进出电梯。

结论基于PLC的五层电梯控制系统的设计可以有效地提高电梯的运行效率和乘客体验,并保证乘客和电梯的安全。

这个系统通过使用PLC作为核心控制器、急停系统、楼层选择系统、电梯调度算法和门控制系统等模块,实现了自动化、智能化和可靠性强的电梯控制功能。

在未来的研究中,我们可以进一步优化和改进设计,以适应更高楼层和更复杂的电梯环境。

基于plc的5层电梯控制系统设计

基于plc的5层电梯控制系统设计

基于PLC的5层电梯控制系统设计摘要本文介绍了基于PLC(可编程逻辑控制器)的5层电梯控制系统的设计方案。

首先,对电梯系统的结构和工作原理进行了简要概述。

然后,提出了基于PLC的控制系统设计方案,并详细解释了其各个组成部分的功能和工作流程。

最后,本文重点讨论了安全性和可靠性优化措施,以确保电梯系统的正常运行和乘客的安全。

1. 引言电梯作为现代建筑中必备的交通工具之一,在大楼中的运行和控制起着重要作用。

为了确保高效、安全和可靠的运行,设计一套稳定的电梯控制系统至关重要。

本文提出了一种基于PLC的电梯控制系统设计方案,通过对PLC技术的应用,可以实现对电梯的精确控制和故障检测,以及对电梯系统的安全性和可靠性的提升。

2. 电梯系统概述电梯系统一般由电梯本体、控制系统和门禁系统组成。

其中,电梯本体包括电动机、起重机、门机等,控制系统负责控制电梯的运行和停靠,门禁系统用于控制电梯的进出门。

3. 基于PLC的电梯控制系统设计基于PLC的电梯控制系统主要由以下几个部分组成:3.1 按键输入模块按键输入模块用于接收乘客在每层楼按下的上升和下降按钮信号。

当有乘客按下按钮时,按键输入模块将信号发送给PLC进行处理。

3.2 PLC 控制模块PLC控制模块是整个电梯控制系统的核心部分,它负责根据接收到的信号控制电梯的运行和停靠。

基于现场输入信号,PLC控制模块可以判断电梯当前的运行状态,并根据设定的算法确定下一步的运行方向和目标楼层。

3.3 转动电机控制模块转动电机控制模块负责控制电梯本体的电动机以实现电梯的上升和下降。

根据PLC控制模块的指令,转动电机控制模块调整电动机的转速和转向,以使电梯到达目标楼层。

3.4 门禁控制模块门禁控制模块用于控制电梯的门的打开和关闭。

当电梯到达目标楼层时,门禁控制模块会接收到PLC控制模块的信号,然后打开门,允许乘客进出电梯。

同时,门禁控制模块还负责检测门的状态,以确保乘客的安全。

4. 安全性和可靠性优化措施为了提高电梯系统的安全性和可靠性,我们可以采取以下措施:•安装紧急停车按钮:乘客可以在紧急情况下按下按钮停止电梯运行。

基于PLC的电梯控制系统设计

基于PLC的电梯控制系统设计

1、应用领域
PLC电梯控制系统被广泛应用于各种类型的电梯,如住宅电梯、办公楼电梯、 商场电梯等。通过PLC控制系统的应用,可以提高电梯的安全性、舒适性和效率, 为乘员创造更加安全、便捷的乘坐体验。
2、优缺点分析
2、优缺点分析
采用PLC作为电梯控制系统的核心元件具有以下优点: a.高可靠性:PLC具有较高的抗干扰能力,能在复杂环境下稳定运行。 b.灵 活性:PLC的编程简单易学,方便进行功能扩展和修改。 c.高效性:PLC的运算 速度快,能实现高速实时控制。
4、系统仿真与实验
在系统仿真和实验过程中,我们需要注意以下几点: (1)仿真测试和实验的环境需要尽可能接近实际运行环境,以保证测试和实 验结果的可靠性。
4、系统仿真与实验
(2)在仿真测试过程中,我们需要针对不同的工况条件进行测试,以检查系 统的适应性和鲁棒性。
4、系统仿真与实验
(3)在实验过程中,我们需要对系统的各个指标进行监测和分析,以检查系 统在实际运行中的性能表现。
谢谢观看
基于PLC的电梯控制系统设计
目录
01 PLC电梯控制系统概 述
02 需求分析
03 系统设计
04 实现与测试
05 应用与总结
06 参考内容
内容摘要
随着现代电梯行业的不断发展,电梯控制系统的性能和稳定性越来越受到人 们的。可编程逻辑控制器(PLC)作为一种通用工业控制器,具有高可靠性、抗 干扰能力强、编程简单易学等特点,被广泛应用于各种工业控制领域。本次演示 将主要介绍基于PLC的电梯控制系统设计,以期为相关领域的研究和应用提供有 益的参考。
实现与测试
1、实现方法
1、实现方法
在实现方面,首先需要将PLC与电梯控制系统进行连接,并完成相应的参数设 置。然后,根据控制算法编写程序,并进行调试和优化。最后,完成对控制系统 的整体测试和验收。

基于PLC的电梯控制系统设计及优化方案

基于PLC的电梯控制系统设计及优化方案

基于PLC的电梯控制系统设计及优化方案一、引言电梯作为现代城市生活中不可或缺的交通工具之一,其安全性和可靠性对于人们的生活质量起着重要的作用。

本文就基于可编程逻辑控制器(PLC)的电梯控制系统进行设计和优化,旨在提高电梯的运行效率和安全性。

二、电梯控制系统的设计1. 系统结构设计电梯控制系统主要由PLC、人机界面(HMI)、电机驱动器和传感器组成。

其中,PLC负责控制电梯的运行状态,HMI用于操作和显示电梯的运行信息,电机驱动器控制电梯的运行方向和速度,传感器用于感知电梯的位置和负载情况。

2. 控制逻辑设计基于PLC的电梯控制系统需要考虑多重因素,包括电梯的运行状态、外部乘客需求和电梯的安全性。

可以采用以下控制逻辑进行设计:- 根据外部信号确定电梯的运行方向:当电梯处于静止状态时,根据上下行按钮的信号确定电梯的运行方向。

- 响应楼层请求:当电梯处于运行状态时,监测电梯上下移动过程中每一层的请求,根据最近楼层请求和电梯当前所处楼层确定是否停靠。

- 控制电梯的加速度和减速度:根据电梯的负载情况和运行状态,控制电梯的加速度和减速度,以平稳地进行上下运动。

3. 安全保护设计为了保证电梯的安全性,需要在电梯控制系统中设计各种安全保护机制,包括速度保护、超载保护、门把手保护和故障诊断等。

- 速度保护:通过传感器监测电梯的速度,设置速度上下限,一旦检测到速度超出设定范围,立即停止电梯运行。

- 超载保护:通过传感器监测电梯的负载情况,设置负载上限,一旦检测到超载,禁止进入更多的乘客,确保电梯的正常运行。

- 门把手保护:在电梯门上设置安全传感器,一旦检测到门把手或其他物体卡住,立即停止电梯门的关闭过程。

- 故障诊断:通过PLC的自动故障诊断功能,可以及时发现电梯控制系统的故障,并进行报警或者自动处理。

三、电梯控制系统的优化方案1. 智能调度算法在电梯控制系统中,采用智能调度算法可以优化电梯的运行效率和乘客的等待时间。

基于PLC的住宅楼电梯控制系统设计

基于PLC的住宅楼电梯控制系统设计

基于PLC的住宅楼电梯控制系统设计一、引言随着城市化进程的加速,住宅楼的高度不断增加,电梯成为了人们日常生活中不可或缺的垂直交通工具。

为了提供安全、高效、舒适的乘梯体验,设计一个可靠的电梯控制系统至关重要。

可编程逻辑控制器(PLC)以其稳定性高、可靠性强、编程灵活等优点,在电梯控制系统中得到了广泛的应用。

二、电梯控制系统的需求分析(一)功能需求1、能够实现电梯的上升、下降、停止等基本运行操作。

2、具备楼层呼叫功能,乘客在轿厢内和各楼层均可发出呼叫请求。

3、实现电梯的自动开关门控制,确保乘客安全进出。

4、具有超载检测和报警功能,防止电梯超载运行。

(二)性能需求1、响应迅速,确保乘客的呼叫能够及时得到处理。

2、运行平稳,减少电梯启停时的冲击和振动。

3、精度高,能够准确停靠在指定楼层。

(三)安全需求1、配备多种安全保护装置,如限速器、安全钳、缓冲器等。

2、具备电气安全保护功能,如短路保护、过载保护、漏电保护等。

3、具有故障诊断和报警功能,以便及时发现和排除故障。

三、PLC 选型与硬件设计(一)PLC 选型根据电梯控制系统的输入输出点数、控制要求和性能指标,选择合适型号的 PLC。

例如,可以选择西门子 S7-200 系列、三菱 FX 系列等。

(二)输入输出设备1、输入设备楼层呼叫按钮:安装在各楼层和轿厢内,用于发出呼叫请求。

门开关传感器:检测电梯门的开关状态。

超载传感器:检测轿厢内的载重情况。

位置传感器:用于确定电梯的位置。

2、输出设备电机驱动器:控制电梯电机的运行。

门机驱动器:控制电梯门的开关。

指示灯:显示电梯的运行状态和楼层信息。

(三)硬件电路设计设计 PLC 与输入输出设备之间的连接电路,包括电源电路、输入电路和输出电路。

确保电路的稳定性和可靠性,同时考虑抗干扰措施。

四、电梯控制系统的软件设计(一)控制流程设计1、初始化电梯上电后,进行系统初始化,包括设置初始楼层、清除呼叫信号等。

2、上升和下降控制根据楼层呼叫信号和当前电梯位置,判断电梯的运行方向。

基于S71200PLC单部六层电梯控制系统设计

基于S71200PLC单部六层电梯控制系统设计
基于S71200PLC单部六层电梯 控制系统设计
目录
01 一、电梯控制系统概 述
02
二、使用S PLC的优 势
03
三、S PLC电梯控制 系统设计
04 四、结论
05 参考内容
标题:基于S PLC单部六层电梯 控制系统的设计
在现代高层建筑中,电梯已成为不可或缺的一部分。本次演示主要讨论了使 用S PLC(可编程逻辑控制器)设计单部六层电梯控制系统的主题。
3、硬件设计:在硬件设计方面
4、调试与优化:在完成系统设 计和硬件配置后,我们需要进行 系统调试
5、故障诊断与维护:我们还需 要设计一套故障诊断系统
6、安全性考虑:安全性是电梯 控制系统的首要任务
四、结论
通过使用S PLC,我们可以实现高效、可靠、安全的电梯控制。在现代高层 建筑中,这种设计具有重要意义。它不仅可以提高电梯的运行效率,还可以增强 其安全性能,提升用户的满意度。
(4)安全保护:电梯运行过程中,如果出现异常情况,如平层失误、超载 等,系统将立即停止运行并发出警报;
(5)维护保养:定期对电梯进行保养和检修,以保证其正常运行。
2、PLC程序设计
使用TIA Portal软件编写S系列PLC程序,主要包括以下几个部分:
(1)输入输出模块分配:根据实际硬件配置,将输入输出模块的分配到对 应的I/O口;
三、S PLC电梯控制系统设计
1、系统架构:该系统主要包括S PLC、输入设备(如按钮、楼层 传感器等)、输出设备
2、软件设计:在软件设计方面
输入处理:读取并处理输入设备(如按钮、楼层传感器)传来的信号。
控制逻辑:根据输入信号和电梯当前的状态,计算出电梯应到达的楼层,并 控制电梯电机运行。

基于PLC的电梯群控的方案设计

基于PLC的电梯群控的方案设计

基于PLC的电梯群控的方案设计电梯群控是指通过集中管理和控制多台电梯的运行,提高电梯系统的效率和安全性。

而基于PLC(可编程逻辑控制器)的电梯群控方案,可以实现对电梯运行的全面管理和监控,提高电梯系统运行的可靠性和稳定性。

下面将详细介绍基于PLC的电梯群控的方案设计。

1.系统结构设计:基于PLC的电梯群控系统主要由五部分组成:控制中心、电梯PLC控制器、电梯操作盘、电梯轿厢和楼层选择器。

其中,控制中心作为整个系统的中枢,负责对电梯的控制和调度,与电梯PLC控制器进行通信。

电梯PLC控制器负责实时监测电梯的各项参数,并控制电梯的运行。

电梯操作盘用于乘客的呼梯和设定楼层。

电梯轿厢通过电梯PLC控制器接收到的指令进行运行。

楼层选择器负责显示当前楼层信息和接收乘客的呼梯需求。

2.控制中心的功能设计:控制中心是电梯群控系统的核心部分,它负责实时监测电梯的运行状态、楼层选择器的状态和乘客的呼梯需求,根据这些信息制定调度策略,并将指令发送给相应的电梯PLC控制器。

控制中心还对电梯运行过程中出现的异常情况进行监测和处理,如故障报警、紧急停车等。

3.电梯PLC控制器的功能设计:电梯PLC控制器负责实时监测电梯的状态,如轿厢位置、速度、负载等,并根据来自控制中心的指令控制电梯的运行。

在接收到呼梯指令后,电梯PLC控制器会将呼梯楼层的信息与当前电梯位置进行比较,选择合适的电梯进行响应。

同时,它还能够监测电梯运行中的故障情况,并及时报警,保障乘客的安全。

4.电梯操作盘和楼层选择器的功能设计:电梯操作盘用于乘客的呼梯和设定楼层,通过与控制中心的通信,将乘客的呼梯需求传送给控制中心。

楼层选择器负责显示当前楼层信息,并接收乘客的呼梯需求,将这些信息传送给控制中心。

5.系统通信设计:为了实现各个部分之间的信息传递和协调工作,设计合适的通信方式非常重要。

通常可以使用RS485或以太网等方式进行通信,以实现实时高效的数据传输。

基于PLC的电梯群控方案设计可以实现对电梯系统的全面管理和监控,提高电梯系统的运行效率和安全性。

基于PLC的智能电梯控制系统设计

基于PLC的智能电梯控制系统设计

基于PLC的智能电梯控制系统设计智能电梯控制系统是现代城市中不可或缺的一部分。

本文将介绍基于可编程逻辑控制器(PLC)的智能电梯控制系统设计。

1. 系统概述及需求分析智能电梯控制系统的主要功能是根据用户的需求和楼层的情况,实现电梯的安全、高效地运行。

该系统应具备以下特点:- 自动调度:根据乘客分布和楼层需求,合理分配电梯资源,降低等待时间和能源消耗。

-故障检测与报警:及时监测电梯的故障情况,并通过声音或显示屏等方式向用户发出警报。

- 安全保护:通过检测电梯内外的重量和限制人数,确保电梯的安全运行。

- 软启动和软停止:通过控制电梯的加速度和减速度,实现舒适的乘坐体验。

2. 硬件设计基于PLC的智能电梯控制系统的硬件设计需要包括以下部分:- PLC:作为控制系统的核心,负责接收和处理传感器和按钮的输入信号,并控制电梯的运行。

- 传感器:包括电梯内外的按钮、楼层传感器、重量传感器等,用于获取电梯和乘客的状态信息。

- 电梯主机:电梯的驱动设备,包括电机和减速器等,负责实现电梯的移动。

- 显示屏和声音设备:用于向用户显示当前楼层、电梯状态和发出报警声音等。

- 通信设备:可选的设备,用于与外部系统进行通信,如远程监控和管理系统。

3. 软件设计基于PLC的智能电梯控制系统的软件设计包括以下方面:- 输入信号处理:PLC需要接收来自各个传感器和按钮的输入信号,并根据信号类型进行处理。

- 运行调度算法:根据乘客分布和楼层需求,采用合适的调度算法来实现电梯的自动调度功能。

- 运动控制:根据输入信号和调度算法,控制电梯主机的运动,实现电梯的平稳启动、停止和运行。

- 状态监测和故障检测:监测电梯的状态,包括位置、速度、载荷等,及时检测故障并发出警报。

- 用户接口设计:通过显示屏和声音设备,向用户显示当前楼层、电梯状态以及发出报警声音等。

4. 系统测试与调试设计完智能电梯控制系统后,需要进行系统的测试和调试。

包括以下步骤:- 验证输入信号的传输和处理是否正确,如按钮的响应、传感器的准确性等。

基于PLC控制的五层电梯系统设计

基于PLC控制的五层电梯系统设计

基于PLC控制的五层电梯系统设计电梯作为现代城市中不可或缺的交通工具之一,为人们的生活带来了极大的便利。

而基于PLC(可编程逻辑控制器)控制的五层电梯系统设计,更是提高了电梯运行的安全性和效率。

本文将从电梯系统的基本原理、PLC控制技术、五层电梯系统设计和优化等多个方面进行深入研究,以期为相关领域研究提供一定参考。

第一章电梯系统基本原理1.1 电梯系统组成电梯系统由多个基本部件组成,包括机房、轿厢、对重、导轨、绳索等。

这些部件相互配合,实现了整个电梯运行。

1.2 传统电梯工作原理在传统的电梯工作原理中,通过控制机房中的驱动装置来实现对轿厢运行方向和速度的控制。

传感器和开关等装置用于检测轿厢位置和门开关状态。

1.3 PLC控制技术在电梯中的应用PLC控制技术的出现,为电梯系统的控制带来了革命性的变化。

通过PLC控制器,可以实现对电梯系统的全面监控和精确控制,提高了电梯运行的安全性和效率。

第二章 PLC控制技术2.1 PLC简介及特点PLC(可编程逻辑控制器)是一种专门用于工业自动化领域的可编程设备。

它具有高可靠性、实时性强、适应性广等特点,可以满足复杂工业环境下对于自动化控制的需求。

2.2 PLC在工业自动化中的应用PLC广泛应用于各个行业领域,包括生产线、机器人、交通运输等。

它通过编程实现对设备和系统运行状态的监测和调节,提高了生产效率和质量。

2.3 PLC在五层电梯系统中的优势在五层电梯系统中采用PLC控制技术,可以实现对电梯运行状态、门开关状态、楼层信息等进行精确监测和调节。

PLC具有高可靠性和强大计算能力,在提高安全性和效率方面具有明显优势。

第三章五层电梯系统设计与优化3.1 五层建筑特点及对于电梯运行需求分析五层建筑相对于高层建筑来说,楼层高度较低,电梯运行的速度和负载要求相对较低。

通过对五层建筑的特点和电梯运行需求的分析,可以确定设计和优化的目标。

3.2 基于PLC控制技术下五层建筑安全性设计方案在设计安全性方案时,可以通过PLC控制技术实现对轿厢速度、负载、门开关等参数的实时监测。

《2024年基于PLC的四层电梯控制系统的设计》范文

《2024年基于PLC的四层电梯控制系统的设计》范文

《基于PLC的四层电梯控制系统的设计》篇一一、引言随着城市化进程的加快,高层建筑越来越多,电梯作为建筑物中垂直交通的重要设备,其安全性和效率性越来越受到人们的关注。

四层电梯控制系统作为城市交通系统中不可或缺的一部分,其设计至关重要。

本文将介绍一种基于PLC(可编程逻辑控制器)的四层电梯控制系统的设计,旨在提高电梯的运行效率和安全性。

二、系统概述基于PLC的四层电梯控制系统主要由PLC控制器、传感器、执行器、人机界面等部分组成。

该系统能够实现四层楼之间的自动控制,包括电梯的启动、运行、停止、开关门等操作。

通过PLC控制器的逻辑运算和数据处理,实现对电梯的精确控制,提高电梯的运行效率和安全性。

三、系统设计1. 硬件设计硬件设计是四层电梯控制系统的基础,主要包括PLC控制器、传感器、执行器等部分的选型和配置。

(1)PLC控制器:选用高性能的PLC控制器,具有高速度、高可靠性、高精度等特点,能够实现对电梯的精确控制。

(2)传感器:包括楼层传感器、门状态传感器、载重传感器等,用于检测电梯的运行状态和外部环境信息。

(3)执行器:包括电机、电磁阀等,用于实现电梯的启动、运行、停止、开关门等操作。

2. 软件设计软件设计是四层电梯控制系统的核心,主要包括PLC控制器的程序设计、人机界面的设计等部分。

(1)PLC程序设计:根据电梯的运行需求和安全要求,编写相应的PLC程序,实现电梯的启动、运行、停止、开关门等操作。

程序应具有高可靠性、高效率、易维护等特点。

(2)人机界面设计:设计直观、易操作的人机界面,方便用户进行操作和监控。

人机界面应具有友好的用户界面、丰富的信息显示、便捷的操作方式等特点。

四、系统功能基于PLC的四层电梯控制系统具有以下功能:1. 自动控制:系统能够根据乘客的需求,自动控制电梯的启动、运行、停止、开关门等操作。

2. 楼层召唤:乘客可以在每层楼的召唤按钮上输入目标楼层,系统会根据乘客的需求自动调度电梯。

基于PLC的五层电梯控制系统设计

基于PLC的五层电梯控制系统设计

基于PLC的五层电梯控制系统设计引言:电梯是现代建筑中不可或缺的设备,它能够提供高效、便捷的垂直交通工具。

在电梯系统中,控制系统起着至关重要的作用。

本文将基于PLC技术设计一个五层电梯控制系统,通过该系统可以实现电梯的安全、稳定、高效运行。

一、需求分析1.电梯应能够响应乘客的召唤并正确运行到指定楼层。

2.电梯在运行过程中应能够对前后门进行开关控制,并对乘客进出进行控制。

3.电梯在运行过程中应能够检测楼层的精确位置,并根据乘客需求来选择运动方向。

4.电梯在运行过程中应当具备安全性能,能够在发生紧急情况时进行紧急停止和报警。

二、系统设计1.硬件设计电梯控制系统的硬件部分主要包括PLC、传感器、电机、按钮、面板等。

-PLC负责接收信号并进行运算,控制电机运动和门的开关。

-传感器用于感知电梯的运动状态和乘客的进出情况。

-电机负责电梯的升降运动。

-按钮用于乘客的召唤和指示。

-面板用于显示电梯当前状态和提供用户操作界面。

2.软件设计软件部分主要包括PLC程序的设计和逻辑控制。

-接收信号部分:PLC接收按钮的信号,根据位置信息计算电梯运动的方向和距离,并控制电机启动或停止。

-控制部分:根据电梯位置和乘客需求,控制电梯的开门和关门动作,并保证安全性能。

-状态显示部分:通过面板显示电梯的状态、当前楼层和故障信息等。

三、系统实施1.传感器安装在电梯内部和外部安装传感器,用于感知电梯的运动状态(升降、停止)和乘客的进出情况。

-运动状态传感器:用于检测电梯是否处于运动状态。

-乘客进出传感器:用于检测电梯内部乘客的人数和外部按钮的状态。

2.PLC程序设计根据硬件设计和需求分析,编写PLC程序进行逻辑控制。

-接收信号部分:通过PLC输入接口接收按钮信号和传感器信号。

-控制部分:根据电梯的运动状态和乘客的需求,控制电机运动和门的开关,并确保安全性能。

-状态显示部分:通过PLC输出接口将电梯状态信息传输给面板进行显示。

四、系统调试和运行在系统安装完毕后,进行一系列的测试和调试。

《2024年基于PLC的电梯控制系统的设计与仿真》范文

《2024年基于PLC的电梯控制系统的设计与仿真》范文

《基于PLC的电梯控制系统的设计与仿真》篇一一、引言随着城市化的进程加速,高层建筑的数量不断增长,电梯作为建筑物垂直交通的主要工具,其安全性和效率性变得尤为重要。

本文将介绍基于PLC(可编程逻辑控制器)的电梯控制系统的设计与仿真,以实现电梯的高效、安全、稳定运行。

二、系统设计1. 硬件设计基于PLC的电梯控制系统硬件主要包括PLC、触摸屏、变频器、电机、编码器、传感器等。

其中,PLC作为核心控制单元,负责接收和处理各种信号,控制电梯的启动、停止、方向等动作。

触摸屏则用于显示电梯的运行状态和指令输入。

变频器和电机负责驱动电梯的上下运行。

编码器和传感器则用于检测电梯的位置、速度、负载等状态信息。

2. 软件设计软件设计是电梯控制系统的关键部分,主要包括PLC程序设计、触摸屏界面设计等。

PLC程序设计采用梯形图或结构化控制语言,实现电梯的逻辑控制、信号处理、故障诊断等功能。

触摸屏界面设计则根据用户需求,设计直观、易操作的界面,显示电梯的运行状态和指令输入。

三、系统功能基于PLC的电梯控制系统具有以下功能:1. 信号输入与输出:系统能接收来自外部的召唤信号、指令信号等,并输出相应的控制信号,实现电梯的启动、停止、方向等动作。

2. 逻辑控制:系统采用PLC程序实现逻辑控制,确保电梯在各种情况下都能安全、稳定地运行。

3. 故障诊断:系统具有故障诊断功能,当电梯出现故障时,能及时检测并显示故障信息,方便维修人员快速定位和解决问题。

4. 节能优化:通过变频器控制电机运行,实现电梯的节能优化。

四、系统仿真为了验证基于PLC的电梯控制系统的设计和性能,我们进行了系统仿真。

仿真采用了MATLAB/Simulink等仿真软件,建立了电梯控制系统的仿真模型。

通过输入不同的信号和参数,模拟电梯在不同情况下的运行过程,验证系统的逻辑控制、信号处理、故障诊断等功能是否正常。

仿真结果表明,基于PLC的电梯控制系统具有良好的性能和稳定性,能满足实际运行的需求。

《2024年基于PLC的八层电梯模型控制系统设计与实现》范文

《2024年基于PLC的八层电梯模型控制系统设计与实现》范文

《基于PLC的八层电梯模型控制系统设计与实现》篇一一、引言随着现代城市化的快速发展,电梯作为垂直运输的重要工具,其安全性和效率性显得尤为重要。

本文旨在设计并实现一个基于PLC(可编程逻辑控制器)的八层电梯模型控制系统,以提高电梯的运行效率和安全性。

该系统结合了先进的PLC控制技术、传感器技术和通讯技术,实现对电梯的智能化管理。

二、系统设计1. 硬件设计本系统采用PLC作为核心控制器,通过与电梯的各个部件(如电机、门禁系统、传感器等)进行连接,实现对电梯的全面控制。

具体硬件组成包括PLC控制器、电机驱动器、传感器(如楼层检测传感器、门禁传感器等)、人机界面等。

2. 软件设计软件设计是本系统的关键部分,主要包括PLC程序设计、人机界面设计和通讯协议设计。

(1)PLC程序设计:采用结构化程序设计方法,将程序分为多个模块,包括主程序、输入处理程序、输出控制程序、故障处理程序等。

主程序负责整个系统的调度和协调,输入处理程序负责处理各种传感器输入信号,输出控制程序负责控制电梯的各个部件,故障处理程序负责检测和处理各种故障。

(2)人机界面设计:采用触摸屏作为人机界面,显示电梯的运行状态、楼层信息、故障信息等。

同时,通过人机界面,可以实现电梯的呼叫、开关门、紧急制动等操作。

(3)通讯协议设计:系统采用标准的通讯协议,实现PLC 控制器与上位机管理系统之间的数据交换。

通讯协议应具有高可靠性和高效率性,以保证数据的实时传输和处理。

三、系统实现1. 硬件连接根据硬件设计,将PLC控制器、电机驱动器、传感器等设备进行连接。

连接过程中应注意各设备之间的接线正确性和稳定性。

2. PLC程序设计实现根据软件设计,编写PLC程序。

在编写过程中,应注意程序的逻辑性和可靠性,确保程序能够正确控制电梯的各个部件。

同时,应进行充分的测试和调试,确保程序的正确性和稳定性。

3. 人机界面实现采用触摸屏作为人机界面,设计合适的界面布局和操作方式。

基于PLC的电梯控制系统设计-控制方案

基于PLC的电梯控制系统设计-控制方案

基于PLC的电梯控制系统设计-控制方案1. 引言电梯是现代建筑中必不可少的交通工具之一。

在电梯系统中,控制方案起着至关重要的作用,决定了电梯的安全性、效率和性能。

本文介绍了基于可编程逻辑控制器(PLC)的电梯控制系统设计方案。

2. 系统架构基于PLC的电梯控制系统主要由三个子系统组成:楼层选择子系统、电梯调度子系统和电梯执行子系统。

2.1 楼层选择子系统楼层选择子系统负责接收乘客在楼层上选择电梯的请求,并将其发送给电梯调度子系统。

该子系统通常由按钮面板和楼层选择算法组成。

2.2 电梯调度子系统电梯调度子系统根据楼层选择子系统发送的请求,决定哪个电梯应该响应,并将相应的指令发送给电梯执行子系统。

该子系统通常包括调度算法和通信模块。

2.3 电梯执行子系统电梯执行子系统负责实际控制电梯的运行。

它接收来自电梯调度子系统的指令,并根据指令来控制电梯的运行方向、开关门等操作。

该子系统通常由电机驱动和传感器组成。

3. 控制逻辑电梯控制系统的控制逻辑包括以下几个方面:3.1 乘客请求处理当乘客在楼层上按下按钮时,楼层选择子系统接收到请求,并将其发送给电梯调度子系统。

电梯调度子系统根据调度算法决定哪个电梯应该响应该请求,并将相应的指令发送给电梯执行子系统。

3.2 电梯调度电梯调度子系统根据电梯的当前状态和乘客请求,决定电梯的调度优先级。

调度算法可以考虑因素如电梯的位置、当前负载和乘客的等待时间等。

3.3 电梯运行控制电梯执行子系统接收到电梯调度子系统发送的指令后,根据指令来控制电梯的运行方向、开关门等操作。

它可以通过电机驱动来控制电梯的运行,并通过传感器来监测电梯的状态。

4. 安全性考虑在电梯控制系统设计中,安全性是至关重要的考虑因素。

以下是几个常见的安全性考虑:4.1 速度限制电梯的运行速度应该限制在安全范围内,以避免意外事故的发生。

在设计电梯控制系统时,应该考虑设置最大速度,并在必要时使用速度传感器进行监测。

《2024年基于PLC的八层电梯模型控制系统设计与实现》范文

《2024年基于PLC的八层电梯模型控制系统设计与实现》范文

《基于PLC的八层电梯模型控制系统设计与实现》篇一一、引言随着科技的发展,人们对于建筑内垂直交通的需求日益增长,电梯作为垂直交通工具,其性能与安全性成为了重要考虑因素。

近年来,可编程逻辑控制器(PLC)在电梯控制系统中得到了广泛应用。

本文旨在探讨基于PLC的八层电梯模型控制系统的设计与实现,旨在提升电梯的运行效率及安全性。

二、系统设计1. 硬件设计本系统以PLC为核心控制器,包括电源模块、输入/输出模块、通信模块等。

其中,输入模块包括楼层信号输入、按钮信号输入等;输出模块包括电机驱动、楼层指示等。

此外,系统还包括传感器模块,用于检测电梯的运行状态及故障信息。

2. 软件设计软件设计主要包括PLC程序的设计和上位机监控系统的设计。

PLC程序负责电梯的逻辑控制,包括电梯的启动、停止、定向、平层、开关门等。

上位机监控系统则用于实时监控电梯的运行状态,包括楼层显示、故障报警等。

三、控制系统实现1. PLC程序设计PLC程序采用梯形图编程,根据电梯的运行逻辑编写程序。

程序包括主程序、子程序和中断程序。

主程序负责电梯的启动、停止和定向;子程序负责平层、开关门等操作;中断程序则用于处理紧急情况,如故障时的紧急制动等。

2. 上位机监控系统实现上位机监控系统采用组态软件进行开发,实现楼层显示、故障报警等功能。

通过通信模块与PLC进行数据交换,实时获取电梯的运行状态和故障信息。

同时,上位机监控系统还可以实现远程控制,对电梯进行远程调度和监控。

四、系统测试与优化在系统实现后,进行严格的测试与优化。

测试包括功能测试和性能测试,确保系统的各项功能正常运行,性能达到预期要求。

优化主要包括对PLC程序的优化和对上位机监控系统的界面优化,提高系统的运行效率和用户体验。

五、结论本文介绍了基于PLC的八层电梯模型控制系统的设计与实现。

通过硬件和软件的设计,实现了电梯的逻辑控制和实时监控。

经过严格的测试与优化,系统的性能和稳定性得到了保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于PLC高层电梯控制系统设计方案1.1 电梯的发展历史和发展趋势1785年,英国出现了用蒸汽机驱动的升降机;1900年,以交流电动机传动的电梯开始问世。

1902年,瑞士的迅达公司研制成功了世界上第一台按钮式自动电梯,采用全自动的控制方式,提高了电梯的输送能力和安全性。

1903年,美国奥的斯公司生产了不带减速器的无齿轮高速电梯,电梯传动机构采用曳引驱动代替以往的卷筒式,为当今高层的大行程、高速度电梯奠定了基础;1976年,电梯上开始运用微处理机,之后随着大功率晶体管模块的问世,以及微机及数字调节器技术的不断成熟,人们利用调节脉冲宽度来调节电子逆变器,实现了对电梯中电动机的调压调频(VVVF),达到了线性调速的目的;1990年,电梯控制系统由并行信号传输向以串行为主的信号传输过渡,提高了整体系统的可靠性,为实现电梯的群控,智能化和远程监控提供了条件发展现状。

1.1.1 电梯的发展历史电梯作为垂直方向的交通工具,在高层建筑和公共场所已经成为重要的建筑设备而不可或缺。

随着计算机技术和电力电子技术的发展,现代电梯已经成为典型的机电一体化产品。

电梯技术的发展概况:1)电梯的速度要求越来越快,高速、超高速电梯的数量愈来愈多。

2)电梯的拖动技术有了较大的发展,直流电梯由于能耗大、维修量大等缺点。

逐步被交流电梯所替代,液压电梯由于运行平稳,机房位置灵活等特点,使得在低楼层场合得到愈来愈广泛的应用。

交流拖动电梯更是得到迅速的发展,已由以前的变频调速(AC —VP)发展成为调压调速(AC—VV)及调频调压调速(AC—VVVF),使得电梯的速度、加速度、加速度控制更加符合人们的生理要求,电梯的舒适感大为改善。

3)电梯的逻辑控制已从过去简单的继电器——接触器控制发展为可编程序控制器(PLC)和微机控制,控制方式也从手柄控制、信号控制发展为集选控制、并联控制、群控等,电梯可靠性得到很大提高。

4)电梯的管理功能不断加强,电梯广泛采用微机控制技术,不断满足用户的使用功能要求。

如紧急停车操作、消防员专用、防捣乱系统等。

5)机械传动方面,由于国际上机械加工水平的不断提高,使斜齿传动和行星齿轮传动在电梯上的应用日益广泛,已使电梯的传动形式多样化。

1.1.2 PLC的发展趋势1)结构不断紧凑化,体积不断轻型化、小巧化。

随着新技术、新结构、新材料、新工艺的发展,电梯的机械系统结构简单化、体积小型化、材料轻型化、工艺先进化、外观漂亮化。

同时,中国的电梯用户不但对产品质量要求高,而且对新技术的接受很快,所以变频变压调速技术、无机房电梯、永磁同步拖动技术、计算机控制技术、远程监控技术等推广迅速;随着我国城市化、城镇化和村镇化建设步伐的加快,尤其是西部大开发战略的实施,住宅建设势头不减,商场、机场和地铁项目明显增多,住宅电梯、自动扶梯和自动人行道的需求量继续看好;电梯是一种售后服务工作量特别大的机电产品,其使用可靠性不但取决于产品的制造与安装,而且更大程度上取决于完善的维修与保养。

在用电梯总量的不断增加给维修服务业带来了发展机遇;配套件的专业化生产对提高产品质量、降低生产成本具有十分积极的作用,受到了许多电梯公司和维修保养单位的欢迎,仍然有发展空间。

2)技术含量更高,性能更好。

电梯行业技术发展非常迅速,几年前推出的具有先进性能、高舒适性的VVVF电梯,如今已成为电梯行业的标准配置,因为永磁同步无齿轮曳引机具有更节能、更洁净、更安全、更安静、更经济的特点,所以永磁同步无齿轮曳引机逐步成为新型曳引机的主流;由于永磁技术的先进性,将来很有可能取代VVVF技术。

另外,网络控制和智能群控系统,以其控制的先进性、快速性、准确性和可靠性亦是电梯的发展潮流。

3)安装更方便、更快捷。

高效、安全、可重复使用的无脚手架安装,将是高层电梯安装的主要方式;随着新技术的开发、应用,电梯的硬件系统给安装带来更大的方便,使电梯安装更快、效率更高。

此外,电梯的双向安全装置、无底坑、无线控制,绿色环保——安全、环保、节能、舒适,也将是未来电梯的重要发展方向。

4)数控技术向智能化、开放性、网络化、信息化发展。

智能化模块主要有高速计数模块、定位控制模块、温度控制模块、闭环控制模块、以太网通信模块和各种现场总线协议通信模块等。

从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了51年的历程。

近10年来,随着计算机技术的飞速发展,各种不同层次的开放式数控系统应运而生,发展很快。

目前正朝着标准化开放体系结构的方向前进。

1.2 课题意义和主要容1.2.1 课题意义和目的作为一名自动化专业即将毕业的学生学校要求有毕业设计,大学四年学了许多的专业课程,如:单片机原理、DSP原理、PLC原理及应用等等,我们在校期间学过PLC这名课程并且做过PLC的实验和进行过PLC的课程设计,对PLC进行过系统的研究,所以我选择的课题是基于PLC的高层电梯控制系统设计。

同时也是为了我们更适应以后的工作,让我们学会查检资料、多方面的方案论证、图纸的绘制和控制线路连接。

选择本课题的意义在于大学四年的自动化专业学习将近结束了,在这四年的专业学习里,我基本掌握了所学的基础知识,为了更具体的,全面的了解本人的专业技能掌握情况,也为了给参加工作作铺垫,所以我选择此课题来进行考察。

随着高层建筑的兴建而发展起来的一种垂直运输工具,多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。

在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。

据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。

当今,电梯的使用量已成为衡量现代化程度的标志之一。

追溯电梯这种升降设备的历史,据说电梯起源于公元前236年的古希腊。

当时阿基米德设计一种人力驱动的卷筒式卷扬机,人们把它看成是现代电梯的鼻祖。

1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。

1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。

1900年还出现了第一台自动扶梯。

1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。

1971年集成电路被应用于电梯。

第二年又出现了数控电梯。

1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。

本论文主要介绍电梯的发展状况,基本结构和控制要求,详细论述在电梯控制系统的总体控制方案论证,硬件电路和控制程序的设计方面所做的工作。

1.2.2 课题的主要容本课题通过比较、分析和论证,确定电梯的总体控制方案,软硬件协调综合分析及硬件资源分配;硬件电路设计及元器件参数计算,选型;系统结构部分设计:控制柜、层楼显示及呼叫、按键盒等,软件设计等,从而可编程交流双速电梯控制系统必须要安全可靠地实现:开门→选层→定向→起动→加速→稳速运行→减速→爬行→平层→停靠→开门这一运行全过程,同时要求层站为六层;拖动电机交流变速双速电机(1000转/分,250转/分),运行速度1.0 米/秒;停靠误差为上下在0.01米;可以有/无司机运行;检修运行;消防运行及优级服务;自动开关门,自动平层;定时开关电梯,超时返回基站;完善的状态指示及保护措施;便于维修。

第2章电梯系统的概述电梯一种以电动机为动力的垂直升降机,装有箱状吊舱,用于多层建筑乘人或载运货物也有台阶式,踏步板装在履带上连续运行,俗称自动电梯。

服务于规定楼层的固定式升降设备。

它具有一个轿厢,运行在至少两列垂直的或倾斜角小于15°的刚性导轨之间。

轿厢尺寸与结构形式便于乘客出入或装卸货物。

2.1 电梯的用途根据轿厢选层指令和厅外的层楼召唤指令,集中进行综合分析处理,自动选向并顺向依次应答指令的高度自动控制功能。

它能自动登记轿厢指令和厅外的层楼召唤指令,自动关门起动运行,同向逐一应答;当无召唤指令时,电梯自动关门待机或自动返回基站关门待机,当某一层楼有召唤信号时,再自动起动应答。

根据电梯的用途可分为以下几种:乘客电梯:为运送乘客而设计的电梯,应用围广泛。

载货电梯:可以有人随乘,主要为运送货物而设计的电梯,应用在工厂厂房和仓库中。

客货电梯:以运送乘客为主,但也可以运送货物的电梯。

病床电梯:为运送病床(包括病人)及医疗设备而设计的电梯,应用在医院和医疗中心中。

住宅电梯:为便于运送乘客和家具、沙发、担架等而设计的,供住宅楼使用的电梯。

杂物电梯:轿厢空间受限制,不允许人员进入,主要用于运送少量食品、图书和文件等。

汽车电梯:用作运送车辆而设计的电梯,应用在立体停车设备中。

特种电梯:应用在一些有特殊要求场合的电梯,包括防爆电梯、防腐电梯、船用电梯等。

观光电梯:井道和轿厢壁至少有一侧透明,乘客可观看轿厢外景物的电梯,主要运送乘客。

船用电梯:指供船舶上使用的电梯。

通常用于大型轮船。

自动扶梯:是安装在两个楼层之间,以运动的梯级运送乘客的倾斜式运输设备。

倾斜角不大于35度。

分为普通型和公共交通型。

2.2电梯的基本结构电梯总体结构:驱动系统、轿厢和对重装置、导向系统、门机系统、机械安全保护系统、厅外指示及呼叫装置、控制系统等,如图1-1所示。

图1-1电梯总体结构图1)驱动部分驱动部分由曳引机(电动机、制动器、曳引轮)、钢丝绳等组成,曳引机又称主机,它是电梯的动力源分为有齿曳引机和无齿曳引机。

它是曳引驱动的动力源,曳引钢丝绳一端连接轿厢一端连接对重,通过电动机转动时曳引轮绳槽与钢丝绳的摩擦力,驱动轿厢和对重沿轨道上下运行。

2)轿厢和对重装置轿厢由轿厢架、轿厢、轿壁及轿顶组成,对重装置由对重架、对重铁块组成,对重铁块的重量要根据计算来确定,对重装置的过重或过轻都会影响整机性能和使用效果,甚至造成冲顶或蹾底的事故。

3)门机系统(轿门、厅门、开关门系统)轿门也叫厢门,在轿厢靠近层门的侧面,主要形式有左开门、右开门和中开门,层门也叫厅门,在各层楼的停靠站,通向井道轿厢的入口处。

电梯的层门是无动力的,轿厢的轿门是由门电机驱动的。

当电梯平层后,轿门门刀卡住层门,由门刀带动层门开关门。

其门围设有红外光幕保护或机械触板式门保护装置。

开关门系统就是控制电梯轿门、层门的开启和关闭。

4)导向系统导向系统包括轿厢引导系统和对重引导系统两种,这两种系统均由导轨、导轨架和导靴三种机件组成,每台电梯具有用于轿厢和对重装置的两组至少四列导轨。

5)机械安全保护系统(1)轿厢超速保护装置限速装置和安全钳就是为了防止轿厢和对重装置意外坠落的安全设施,当轿厢下行速度过大就会使限速器动作,通过机械保护装置来卡住钢丝绳,制停电梯,另一方面会使安全钳动作,切断曳引电机的交直流控制电源,使制动器制动,达到停止电梯的目的。

(2)缓冲器设在井道底坑的地面上,当发生某种原因导致轿厢或对重超越极限位置发生蹾底时,用来吸收或消耗掉轿厢或对重装置动能的制动装置。

相关文档
最新文档