非线性分析作业第2次(硕士博士非线性分析)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. For the following dynamical systems 1)''

30x x x ++=

2)'

'2(1),(1)3x

x x xy y y y xy =--=--

a) Find all fixed points and classify them. b) Sketch the phase space portrait. Solution for 1):''

30x

x x ++=

Set 121

,y x y y '==. Then, the equation becomes to , 1

23

2

11y y y y y '=⎧⎨'=--⎩ Set vector variable z, we can write

()z f z =, where 12y z y ⎡⎤

=⎢⎥⎣⎦ 213211()y y f z f y y y ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦

There is only fixed point 00z ⎡⎤

=⎢⎥⎣⎦

The Jacobian matrix 2

10

1310Df y ⎡⎤=⎢⎥--⎣⎦ Jacobian matrix for linearized system at the fixed point,

()

0110Df y ⎡⎤

=⎢⎥

-⎣⎦

Eigenvalues for this system are 12i λ=±, so they have zero real part and the method of linearization cannot decide about the stability.

Solution for 2):'

'

2(1),(1)3x

x x xy y y y xy =--=--

Jacobian matrix :243123x y x A y

y x ---⎡⎤

=⎢⎥---⎣⎦ Jacobian matrix for linearized system at the fixed point 00⎡⎤⎢⎥⎣⎦

is

2001⎡⎤⎢⎥⎣⎦

Eigenvalues for this system are 122,1λ= , repelling node, which is unstable.

2. Given the system

'''30x x x x +++=

Show that the equilibrium (0, 0) is globally asymptotically stable. Solution :

Set 121

,y x y y '==. Then, the equation becomes to , 1

23

2

211y y y y y y '=⎧⎨'=---⎩ Set vector variable z, we can write

()z f z =, where 12y z y ⎡⎤

=⎢⎥⎣⎦ 213

2211()y y f z f y y y y ⎡⎤⎡⎤==⎢⎥⎢⎥---⎣⎦⎣⎦ There is only fixed point 00z ⎡⎤

=⎢⎥⎣⎦

The Jacobian matrix 2

10

1311Df y ⎡⎤=⎢⎥---⎣⎦ Jacobian matrix for linearized system at the fixed point,

()

0111Df y ⎡⎤

=⎢⎥

--⎣⎦

Eigenvalues for this system are 120.50.866i λ=-± , so they have negative real parts. Thus, it is stable.

3. For a real number c, define the one-parameter family

()()(23),a f x x a x a x c =--++ for what values of c is there a

bifurcation in this family? Describe the bifurcations and list the bifurcation points (a, x), and Sketch the bifurcation diagram. Solution:

Suppose 0a =. Set ()212f x x =,()2f x x c =--.

()()()120a f x f x f x =⇒=

When 1

8c =, there is a bifurcation in ()a f x .

Bifurcation points: 10,4⎛

⎫- ⎪⎝

4. Show that the one parameter system

''2'2'()0x x x x x μ++-+=

undergoes a Hopf bifurcation at μ = 0. Plot the phase portraits and sketch the bifurcation diagram. Solution:

Set 12,x x x x '==, the corresponding state-space equations is

23

112221

22

x x x x x x x x μ⎧⎪⎨--+⎪⎩-'='= Solve the equations

23

1122220

x x x x x x μ⎧⎪⎨⎪⎩=--+=- Fixed points are obtained as (0,0). Jacobian matrix and Eigenvalues are

1,2,011λμ⎡⎤⎢

⎥⎢⎥⎣⎦

=

=-A

When 0μ= , there is an node center. The phase space portrait is shown next

相关文档
最新文档