第2章光波导理论基础

合集下载

《光波导理论教学课件》2.2平面电磁波

《光波导理论教学课件》2.2平面电磁波
《光波导理论教学课件》2.2平面电磁波
目录
平面电磁波的基本概念 光波导中平面电磁波的传播 平面电磁波在光波导中的模态 光波导中平面电磁波的耦合与散射 平面电磁波在光波导中的非线性效应
01
CHAPTER
平面电磁波的基本概念
平面电磁波是指电磁场振幅在空间保持不变,且以波阵面形式传播的电磁波。
定义
具有振幅、频率和相位等特性,且在传播过程中保持恒定的振幅和相位关系。
无线通信
雷达通过发射平面电磁波并接收目标反射回来的信号,实现对目标的位置和速度进行探测。
雷达探测
光学仪器中,如显微镜、望远镜等,利用平面电磁波的干涉、衍射等现象实现对物体的高精度测量。
光学仪器
平面电磁波的应用场景
02
CHAPTER
光波导中平面电磁波的传播
光波导是一种能够引导光波在其中传播的结构,通过光波导的引导作用,平面电磁波可以在其中传播并保持稳定。
分类
常见的光波导类型包括折射率引导型、干涉型、散射型等,每种类型的光波导都有其独特的传播特性。
特性差异
不同类型的光波导在传输效率、模式稳定性、光谱响应等方面存在差异,需要根据实际需求选择合适的光波导类型。
03
边界条件
光波导的边界条件决定了平面电磁波在波导端面和侧壁的反射和透射行为,进而影响光的传输特性和模式特性。
特性
定义与特性
在无障碍物的空间中,平面电磁波以球面波的形式向四面八方传播。
自由空间传播
导引传播
反射与折射
在导引介质(如波导)中,平面电磁波沿着特定的方向传播,受到导引介质的约束。
当平面电磁波遇到不同介质的分界面时,会发生反射和折射现象,遵循斯涅尔定律。
03
02

《光波导理论与技术》课件

《光波导理论与技术》课件
光计算和光传感等领域。
塑料光波导
塑料光波导具有柔韧性好、制备工 艺简单等优点,在消费电子、汽车 和医疗等领域有广泛应用前景。
玻璃光波导
玻璃光波导具有高透过率、低损耗 等优点,在高端光学仪器和特种应 用领域有重要应用。
光波导技术发展趋势
低损耗、高性能
随着光通信和光计算技术的发展,对光波导的性能要求越来越高 ,低损耗、高性能成为光波导技术的重要发展方向。
光波导的传输模式
要点一
总结词
光波导的传输模式是指光波在光波导中传播时的场分布形 态,不同的模式具有不同的能量分布和传输特性。传输模 式的研究对于光波导器件的性能优化和设计具有重要意义 。
要点二
详细描述
在光波导中,由于光波的传播受到边界条件的限制,其场 分布形态呈现出不同的模式。这些模式决定了光波的能量 分布、传输方向和相位等特性。通过对传输模式的研究, 可以深入了解光波在光波导中的传播行为,为设计高性能 的光波导器件提供重要的理论依据。在实际应用中,根据 需要选择合适的传输模式是实现高效、稳定的光信号传输 的关键。
02
光波导器件
光波导调制器
01 调制器原理
光波导调制器利用电场对光波的相位或振幅进行 调制,实现光信号的开关、调制等功能。
02 调制速度
光波导调制器的调制速度非常快,可达到几十吉 赫兹甚至更高。
03 调制方式
光波导调制器可以采用电吸收、电光效应、热光 效应等多种方式进行调制。
光波导放大器
01 放大原理
THANKS
感谢观看
集成化、小型化
随着微纳加工技术的发展,光波导的集成化和小型化成为可能,这 将有助于提高光波导的集成度和降低成本。
多功能化
光波导的应用领域不断拓展,需要实现更多的功能,如波长选择、 模式控制等,多功能化成为光波导技术的重要发展趋势。

光波导理论与技术

光波导理论与技术
境监测、医疗诊断等领域得到广泛应用。
激光雷达系统中的应用
总结词
光波导在激光雷达系统中发挥了重要作用,能够实现 高精度、高分辨率的测量和成像。
详细描述
激光雷达系统利用光波导作为传输介质,将激光雷达 发射出的光信号传输到目标物体上,并收集目标物体 反射回来的光信号。通过测量光信号的往返时间和角 度信息,可以实现对目标物体的距离、速度、形状和 表面特征等的测量和成像。光波导的高灵敏度和低损 耗特性使得激光雷达系统具有高精度、高分辨率和低 噪声等优点,在遥感测量、无人驾驶、机器人等领域 得到广泛应用。
光波导技术面临的挑战
制造工艺限制
目前,光波导器件的制造工艺仍 受限于材料和加工技术的限制, 难以实现更精细的结构和更高的
性能。
耦合效率问题
光波导器件之间的耦合效率是影响 光子集成回路性能的关键因素,如 何实现高效的光波导耦合仍是一个 挑战。
稳定性问题
光波导器件在温度、湿度等环境因 素下的稳定性问题仍需进一步研究 和改善。
开关分类
光波导开关可以分为电光开关、磁光开关和热光开关等。其中,电光开关是最常用的一种,其利用电场 改变光波导的折射率,实现对光信号的通断进行控制。
光波导耦合器
耦合器概述
光波导耦合器是一种利用光波导 结构实现光信号耦合的器件。通 过将两个或多个光波导连接在一 起,可以实现光信号在不同波导 之间的传输和能量转移。
光波导的波动理论
总结词
波动理论是描述光波在光波导中传播的基本理论。
详细描述
波动理论是研究光波在介质中传播的基础理论,它通过麦克斯韦方程组描述了 光波在空间中的分布和演化。在光波导中,波动理论用于分析光波的传播特性, 如相位速度、群速度、模场分布等。

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍光波导是一种通过光信号的传导来实现信息交互的技术。

它是利用光在介质中的传播特性来实现光的传输和调控的一种器件。

光波导已经成为现代通信、光电子技术和光器件研究领域中不可或缺的一部分。

光波导的理论基础是基于光在介质中的传播原理。

当光束通过介质分界面时,会产生折射现象。

这种折射现象可以用斯涅尔定律来描述,即入射角与折射角之间的正弦比等于两种介质的折射率之比。

光波导利用不同折射率的介质之间的折射现象,将光束从一种介质中导入到具有更高折射率的介质中,并通过光束的反射、折射和散射等效应,使光能够在介质中传播和传输。

制备光波导的方法有多种,包括经典的物理刻蚀法、化学沉积法、水热法等,以及现代的微电子加工技术和激光加工技术等。

下面将介绍几种常见的制备方法:1.光刻法:光刻法是一种常见的光波导制备方法。

它利用光刻胶的光敏性,通过光学曝光和显影,将需要刻蚀的部分暴露出来,然后使用物理或化学刻蚀方法将暴露的部分去除,从而形成光波导的结构。

2.离子注入法:离子注入法是一种通过离子注入技术来改变材料的折射率分布,从而形成光波导结构的方法。

它通过在材料表面注入高能离子,改变材料的折射率,并形成光波导结构。

3.RF磁控溅射法:RF磁控溅射法是一种通过溅射技术制备光波导的方法。

它利用高频电场对目标材料进行离子化,然后通过磁场聚焦离子束,使其瞄准到底片上,从而形成光波导结构。

4.激光加工法:激光加工法是一种利用激光器对材料进行加工的方法。

它通过调节激光的功率、扫描速度和扫描路径等参数,实现对光波导结构的制备。

激光加工法不仅可以实现直写制备光波导,还可以实现二光子聚焦制备光波导。

除了上述方法外,还有其他一些新型的制备光波导的方法,例如自组装法、溶胶-凝胶法、光聚合法等。

这些方法在光波导的制备中发挥着重要的作用,并为光波导的研究和应用提供了更多的可能性。

总之,光波导是一种基于光的传导原理来实现光信号传输和调控的技术。

第二章 2.1 2.2 光波导理论

第二章 2.1 2.2 光波导理论
k y= 0
波导中的电场可写成: 波导中的电场可写成:
β = k 0 n 1sinθ 1
E i = E 0 exp[i (± k 0 n 1 cos θ 1 x + k 0 n 1 sin θ 1z )] = E 0 exp[i (± k 0 n 1 cos θ 1 x + β z )]
光波导理论光波导理论-折射率突变型二维波导
光波导理论光波导理论-折射率突变型二维波导

光波的传输方式

波导模的色散

波导层等效厚度
光波导理论光波导理论-折射率突变型二维波导
射线光学分析法
光波的传输方式
波动光学法
光波导理论光波导理论-折射率突变型二维波导
光波的传输方式-光波的传输方式 射线光学分析法
射线光学方法:在光波波长可以忽略的极限情况下,可 射线光学方法:在光波波长可以忽略的极限情况下, 以近似的认为光能是沿着一定的曲线传输的,用射线来 以近似的认为光能是沿着一定的曲线传输的, 分析光波传播的方法称为射线光学方法或几何光学方法。 分析光波传播的方法称为射线光学方法或几何光学方法。 优点:用射线光学方法分析波导中光的传输, 优点:用射线光学方法分析波导中光的传输,可以较简 单地得到一些有用的结论,并且比较直观。 单地得到一些有用的结论,并且比较直观。 缺点:不能导出电磁场严格理论的精确结果。 缺点:不能导出电磁场严格理论的精确结果。
B C’
推导导模条件
D d θ1 B’
A A’ E F C D’
则得到入射波与反射波的相位差为: 则得到入射波与反射波的相位差为:
k 0 n(BC - B' C') 2ϕ12 - 2ϕ13 = 2mπ(m = 0, 1, 2 L ± ± 1

光波导技术

光波导技术

ei ji z ( x , y ) e i h
一个特征解为一个模式,光纤中总的光场分布则是这些 模式的线性组合:
一系列模式可以看 a e E i i j iz ( x , y ) e 成是一个光波导的 b H 场分布的空间谱。 ih i i
(均匀光波导) 横向非均匀的光波导 (非均匀光波导) 缓变光波导 迅变光波导
突变光波导
模式的概念
不同类型的光波导相应于求解不同类型的微分方程。对 于光纤,还应注意结构的特征:纵向(光纤的轴向,即光传 输的方向)和横向的差别,这是光纤的基本特征。这个基本 特征决定了光纤中纵向和横向场解的不同。对于正规光波导 ,它表现出明显的导光性质,而由正规光波导引出的模式的 概念,则是光波导理论中最基本的概念。
正交性:一个正规光波导的不同模式之间满足正交关系。
光波导技术的广阔应用领域
光波导技术
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可 以 测 量 70 多 个物理化学量
有源无源器件 光纤通信干线 光交换接入网 AON DWDM OADM OTDM FTTC,B,O,H
k 0
2 2
其中 代表 E 和H 在直角坐标系中的各个分量。
在推导的过程中,可以看到:影响光波导传输特 性的,主要是折射率的空间分布。
光波导的进一步分类
可根据折射率的空间分布,将光波导分类为:
正规光波导 (纵向均匀) 光波导 非正规光波导 (纵向非均匀)
横向分层均匀的光波导
n ( x ) cos ( x ) n ( 0 ) cos ( 0 ) 1 z 1 z

光波导理论与技术讲义

光波导理论与技术讲义

04
光波导的应用
光纤通信
光纤通信概述
光纤通信是一种利用光波在光纤中传输信息的技术。由于光纤具有低损耗、高带宽和抗电 磁干扰等优点,因此光纤通信已成为现代通信的主要手段之一。
光纤通信系统
光纤通信系统主要由光源、光纤、光检测器和传输控制设备等组成。其中,光源用于产生 光信号,光纤作为传输介质,光检测器用于接收光信号,传输控制设备负责对整个系统进 行管理和控制。
03
光波导材料
玻璃光波导
玻璃光波导是一种以玻璃为介质的光 波导器件,其具有优秀的光学性能和 机械性能,被广泛应用于光纤通信、 光传感等领域。
玻璃光波导的主要优点是光学性能优 异、机械强度高、化学稳定性好等, 但其缺点是制备工艺复杂、成本较高。
玻璃光波导的制备工艺主要包括预制 棒制作、拉丝、涂覆等环节,这些工 艺过程需要精确控制,以保证光波导 的性能和稳定性。
聚合物光波导
1
聚合物光波导是一种以聚合物为介质的光波导器 件,其具有制备工艺简单、成本低、易于加工等 特点。
2
聚合物光波导的制备工艺主要包括薄膜制作、光 刻、刻蚀等环节,这些工艺过程相对简单,有利 于大规模生产。
3
聚合物光波导的主要优点是制备工艺简单、成本 低、易于加工等,但其缺点是光学性能较差、机 械强度较低。
A
B
C
D
模块化与小型化
为了适应现代通信系统的需求,光波导放 大器正朝着模块化和小型化方向发展。
增益均衡
由于不同波长的光信号在光纤中的传输损 耗不同,因此需要实现光波导放大器的增 益均衡,以保证信号的传输质量。
光波导开关
开关原理
光波导开关利用电场或热场对光 波的传播方向进行控制,实现光

光波导技术基础

光波导技术基础

光波导技术基础(实用版)目录1.光波导技术的基本概念2.光波导技术的理论基础3.光波导技术的应用领域4.光波导技术的发展趋势正文光波导技术基础光波导技术是一种利用光在介质中传播的特性,通过特定的光学结构实现光信号的传输和控制的技术。

光波导技术在现代通信、光学传感、光学显示等领域具有广泛的应用。

为了更好地了解光波导技术,我们需要从以下几个方面介绍其基础知识。

一、光波导技术的基本概念光波导是指一种能够约束和引导光波在特定方向传播的光学结构。

根据波导结构和传输模式的不同,光波导可分为多种类型,如单模光纤、多模光纤、平面光波导等。

光波导技术的核心是利用光在介质中的传播特性,实现光信号的高效传输和精确控制。

二、光波导技术的理论基础光波导技术的理论基础主要包括几何光学、波动光学和电磁场理论。

其中,几何光学主要研究光波在光学结构中的传播规律;波动光学则关注光的传播特性,如相位、幅度等;电磁场理论则从电磁场的角度分析光波导中的光信号传输。

通过这些理论,我们可以深入理解光波导的传输特性、模式耦合、双折射现象等基本概念。

三、光波导技术的应用领域光波导技术在多个领域发挥着重要作用,主要包括以下应用领域:1.光通信:光波导技术是光纤通信的核心技术,实现了光信号在光纤中的高效传输,极大地提高了通信速率和传输距离。

2.光传感:光波导技术在光学传感器中有着广泛应用,如光纤传感器、平面光波导传感器等,可实现对温度、压力、位移等物理量的高精度检测。

3.光学显示:光波导技术在光学显示领域也具有重要应用,如光波导显示器、光波导投影仪等,能够实现高清晰度、高亮度的显示效果。

4.其他领域:光波导技术还在光学成像、光能传输、生物医学等领域具有潜在应用。

四、光波导技术的发展趋势随着科技的不断发展,光波导技术在理论研究和应用领域都取得了显著进展。

未来,光波导技术的发展趋势主要体现在以下几个方面:1.更高效的光波导传输技术:通过优化波导结构、提高材料性能等手段,进一步提高光波导的传输效率和带宽。

光波导基础知识

光波导基础知识

光波导(optical waveguide)是引导光波在其中传播的介质装置,又称介质光波导。

光波导有两大类:一类是集成光波导,包括平面(薄膜)介质光波导和条形介质光波导,它们通常都是光电集成器件(或系统)中的一部分,所以叫作集成光波导;另一类是圆柱形光波导,通常称为光纤(见光学纤维)。

传输特性光波导是引导可见光段中的电磁波的物理结构。

常见类型的光波导包括光纤和矩形波导。

光波导可用作集成光路中的组件或用作本地和长途光通信系统中的传输介质。

光波导可根据其几何形状(平面、条带或光纤波导)、模式结构(单模、多模)、折射率分布(阶梯或梯度折射率)和材料(玻璃、聚合物、半导体)进行分类光纤的传输衰减很小,频带很宽。

例如,在1.5微米波段衰减可小到0.2分贝/公里,频带宽达108/公里数量级(多模光纤)或109赫/公里数量级(单模光纤),如此优良的性能是其他传输线难以达到的,因而光纤可用于大容量信号的远距离传输。

薄膜波导和带状波导传输特性及其分析与光纤类似。

由于它们主要用来构成元件,对传输衰减与频带要求并不严格。

严格求解光波导中的电磁场的矢量解较为困难,故通常用标量近似法、射线法等近似解法分析其传输特性,包括各个模式的场分布、色散以及模式之间的耦合等。

实际应用的矩形几何光波导最容易理解为理论介质平板波导,也称为平面波导的变体。

平板波导由具有不同介电常数的三层材料组成,在平行于它们的界面的方向上无限延伸。

光可以通过全内反射限制在中间层中。

仅当中间层的介电指数大于周围层的介电指数时才会发生这种情况。

在实践中,平板波导在平行于界面的方向上不是无限的,但是如果界面的典型尺寸远大于层的深度,则平板波导模型将是非常接近的。

平板波导的引导模式不能被从顶部或底部界面入射的光激发。

光线必须从侧面注入中间层。

或者可以使用耦合元件将光耦合到波导中,例如光栅耦合器或棱镜耦合器。

引导模式中的一种模式是平面波来回反射的中间层的两个接口之间,入射角在光的传播方向和平行的或垂直的方向之间,在材料界面更大过临界角。

第2章光波导理论基础

第2章光波导理论基础

sinsc
n2, n1
sinoc
n3 n1
当 oc sc 时,则平面光波在衬底和覆盖层与波导层
的交界面处都得不到全反射,而只有部分反射,因此,会
有一部分光将辐射到衬底和覆盖层里去,称它们为辐射模
式,如图2.7a)所示。此时又称为空气模式。
当 oc sc 时,则。平面光波在覆盖层与波导层的交界面
处发生全反射,但在衬底和波导层的交界面处只发生部分
抛物线形和双曲线形。图2.2a)当中,在 axa
区域折射率为 n2 nxn1,在 x a 区域折射率为
n2
第2章 光波导的理论基础
要点与习题
什么是平面波导? 什么是条形波导? 什么是柱形波导? 什么是突变波导? 什么是渐变波导?
第2章 光波导的理论基础
2.1 光波导种类 2.2 光波导的射线光学理论 2.3 古斯-汉欣线移和有效厚度原理 2.4 光波导的电磁理论
1、波导中的平面波。平面波的表达式为:
E v (r v ,t) E v 0e x p ik v r v t
(2.2-20)
波矢量的标量形式
k
c/n1
k0n1
(2.2-21)
由图2.4可知,若入射角为 i ,则波矢量的x分量和z分量
可写为:
长春理工大学
第2章 光波导的理论基础
kx k0n1cosi
2.2.2 射线光学模型
射线光学模型就是光线在薄膜-衬底和薄膜-覆盖层 分界面上发生全内反射,沿z字形路径在薄膜中传播, 如图2.4所示。
长春理工大学
第2章 光波导的理论基础
2.2.3 光入射到介质界面处的基本定律
长春理工大学
第2章 光波导的理论基础

《光波导理论与技术李玉权版》第一、二章

《光波导理论与技术李玉权版》第一、二章

——自学《光波导理论与技术李玉权版》笔录第 1 章绪论 (2)1.1 光通讯技术 (2)1.2 光通讯的发展过程 (2)1.3 光通讯重点技术 (3)光纤 (3)光源和光发送机 (5)第 2 章电磁场理论基础 (7)2.1 电磁场基本方程 (7)麦克斯韦方程组 (7)电磁场界限条件 (8)颠簸方程和亥姆霍兹方程 (10)柱型波导中的场方程 (11)2.2 各向同性媒质中的平面电磁波 (13)无界平均媒质中的平均电磁波 (13)平面电磁波的偏振状态 (13)平面波的反射和折射 (15)非理想媒质中的平面电磁波 (16)2.3 各向异性媒质中的平面电磁波 (18)电各向异性媒质 (18)电各向异性媒质中的平面波 (18)2.4 电磁波理论的短波长极限——几何光学理论 (22)几何光学的基本方程—— eikonal 方程 (22)光芒流传的路径方程 (24)路径方程解的两个特例 (25)折射定律与反射定律 (28)第 1 章绪论1.1 光通讯技术光通讯的主要优势表此刻以下几个方面:( 1)巨大的传输带宽石英光纤的工作频次为 0.8 ~ 1.65 m,单根光纤的可用频带几乎达到了200THz。

即即是在1.55 m邻近的低消耗窗口,其带宽也超出了15THz 。

( 2)极低的传输消耗当前工业制造的光纤载 1.3 m邻近,其消耗在0.3 ~ 0.4dB/ km范围之内,在1.55 m 波段已降至 0.2dB / km以下。

(3)光纤通讯可抗强电磁扰乱,不向外辐射电磁波,这样就提升了这类通讯手段的保密性,同时也不会产生电磁污染。

1.2 光通讯的发展过程准同步数字系统( PDH)同步光网络( SONET)全光网络图 1.1.1 光纤通讯发展的三个阶段一个最基本的光纤通讯系统的构成:图 1.1.2 光纤通讯系统原理框架图1.3 光通讯重点技术1.3.1 光纤光纤是构成光网络的传输介质,当前通讯光纤所有都是以石英为基础资料制作的,它有纤芯、包层及保护层构成,横截面如图 1.1.3 所示。

《光波导理论教学课件》

《光波导理论教学课件》
光波导的损耗
光波导在传输过程中会有一定的损耗。减小 损耗是提高光波导性能的重要任务。
光波导的参数
模式场分布
光波导中的光信号可以以不同的 模式传播。模式场分布描述了光 信号在波导中的空间分布。
色散和群速度
光波导中的色散和群速度是表征 光信号传输特性的重要参数。色 散影响信号传输质量,群速度影 响传输速度。
光波导理论教学课件
欢迎大家来到《光波导理论教学课件》。本课程将为您介绍光波导的基本概 念、结构、传输特性、参数、应用以及未来发展。让我们一起探索这项令人 惊叹的领域!
简介
光波导的定义
光波导是一种用于传输和控制光信号的结构。它基于光的全内反射原理,使光能在其内部进 行传播。
光波导的分类
光波导可以根据其结构和材料的不同进行分类。常见的分类包括单模光波导和多模光波导。
光波导的带宽
光波导的带宽决定了其传输信号 的容量。提高光波导的带宽对于 扩大传输能力至关重要。
光波导的应用
光通信
光波导在光通信领域有广泛应 用。它可以实现高速、远距离 和大容量的光信号传输。
光计算
光波导在光计算中的应用正在 得到越来越多的关注。它具有 并行计算、低功耗和大规模计 算的优势。
光传感
光波导在光传感中发挥着重要 作用。它可以实时监测环境变 化、生物指标等,并具有高灵 敏度和快速响应。
光波导的层次结构
光波导可以根据其层次结构进行设 计。不同的层次结构可以影响光的 模式传播和参数。
光波导的传输特性
1
正向和反向传输
2
光波导可以实现正向和反向传输。正向传输
用于将光信号从发射端传输到接收端,反向
传输可用于监测传输质量。
3
光波导中的光传输

《光波导理论》课件

《光波导理论》课件

02
光波导的传输特性
光的全反射与临界角
光的全反射
当光线从光密介质射向光疏介质时,如果入射角大于临界角,光线将在光密介质 和光疏介质的界面上发生全反射,即光线全部反射回光密介质,不进入光疏介质 。
临界角
当光线从光密介质射向光疏介质时,光线发生全反射的入射角称为临界角。临界 角的大小取决于光密介质和光疏介质的折射率。
光波导集成技术的挑战
光波导集成技术的发展趋势
主要在于如何提高集成器件的性能、降低 成本并实现大规模集成。
随着新材料、新工艺和新结构的研究,光 波导集成技术有望在未来实现更高的性能 和更低的成本。
光波导量子技术
光波导量子技术概述
光波导量子技术利用光波导作为量子信 息的载体,实现量子信息的传输和处理

03
光波导器件
光波导调制器
定义
光波导调制器是一种利用电场或 磁场改变光波在波导中的传播特
性的器件。
工作原理
通过在波导上施加电压或电流,改 变波导的折射率,从而实现调制光 波的相位、幅度和偏振状态。
应用
用于高速光通信、光信号处理和光 传感等领域。
光波导放大器
01
02
03
定义
光波导放大器是一种利用 波导中的介质放大光信号 的器件。
随着光学信号处理和光学控制的需求增加,光波导非线性效应有望在 未来实现更高效的应用。
05
光波导理论的发展 前景
光波导在通信领域的应用前景
高速光通信
光波导理论的发展使得光波导器件在 高速光通信中具有更高的传输效率和 稳定性,为大数据、云计算等领域提 供了更可靠的技术支持。
光纤到户
随着光波导理论的不断完善,光纤到 户的覆盖范围和传输速度将得到进一 步提升,为家庭宽带接入提供更优质 的服务。

光波导理论

光波导理论

n2 N1
n2
a
a<
l
2 N12 n22
(8)
则此时也只能传输基侧模。
22
3、纵模控制: 在基横模条件满足下,由公式(6)
mnp
m
m L1
2
n L2
2
p L3
2
可知道纵向模式决定了光谱分布:
fp
pc 2neff L
模式间隔:
f c 2neff L
p=1,2,3…… (9)
17
(一)激光器选模理论
x
2E k2E 0
用分离变量法,令
L1
E(x, y, z) X (x)Y ( y)Z (z)
L2
将亥姆霍兹方程 分解为三个方程
y
d2 dx2
X
k
2 x
X
0
d2 dy 2
Y
k y2Y
0
d2 dz 2
Z
kz2Z
0
kx2 ky2 kz2 2m k2 (2)
L3
(1)
23
一般介质中的增益-频率特性是呈抛物线型。结 合基横模控制条件,只有增益系数大于损耗的模式 才能振荡;再结合纵模控制条件,有几个分立的纵 模可以被选中。
, ky
p
L3
(4)
m, n, p 0,1, 2……
把(4)代入 kx2 ky2 kz2 2m k2 得谐振波
频率为:
mnp
m
m L1
2
n L2
2
p L3
2
(5)
每一组(m, n, p)值,有一对独立偏振波模。
20
通常要求激光器工作于基横模单纵模条件下:
1、垂直横模的控制: 把源区和包层看成对称三层平面波导结构,按驻 波形成条件,以及横模m=1被截止的条件得:

波导光学第二章 光波导耦合理论与耦合器

波导光学第二章   光波导耦合理论与耦合器
第二章 光波导耦合理论与耦合器
1
光耦合的介绍:
➢光耦合:使光信号从一个光学元 件进入到另一个光学元件
➢耦合器:实现光耦合的元器件统 称为耦合器,集成光学中常用的 耦合器有棱镜,光栅,楔面等。
平板波导模式分布-导模
Cladding
Core
qi
Substrate
导模的特点: • 包层的场成指数衰减。 • 传播常数取分立的值。 • 理论上没有损耗。 • 各个导模正交。
光波导的纵向非均匀性
光波导的纵向不均匀起因:制作不完善;使用时引入;人为引入
芯包分界面不均匀
芯子直径纵向变化 重力影响导致的光纤纵向受力不均,引 起几何尺寸和折射率分布不均匀
制作不完善 ∆纵向不均匀
使用时引入
人为引入:光纤光栅, 重要的光纤器件!
定向耦合器(Directional Coupler)
Input waveguideRin A
B Rout Output waveguide
Coupling region
1
3
D
s
2
4
A0
ZL
x axis
B0
y axis
z axis
波导中传输的导模在芯层外的倏逝场由于相互作用产生耦合,引起波导间模式功 率的相互转移。
8
模式耦合
同向耦合
模式耦合
导波模
应用实例:方向耦合器、Y分支、MZ
E(x, y) Em* (x, y)dxdy
2
功率耦合效率 m
Am 2
E(x, y) E*(x, y)dxdy
E(x, y) Em* (x, y)dxdy E(x, y) E*(x, y)dxdy
13

光波导理论教学-绪论ppt课件

光波导理论教学-绪论ppt课件

绪论
• 1970年,美国康宁(Corning)公司研制成功损耗 20dB/km的石英光纤。把光纤通信的研究开发推向一个 新阶段。
• 1973年,美国贝尔(Bell) 实验室的光纤损耗降低 到2.5dB/km 。
• 1974 年降低到1.1dB/km 。
• 1976 年,日本电报电话(NTT)公司将光纤损耗降低 到0.47 dB/km(波长1.2m)
全球:光纤用量约2.36亿芯公里〔2019年) , 累计用量已超过18亿芯公里
国内:光纤用量约1.16亿芯公里〔2019年) , 累计用量光纤超过6亿芯公里
100Gb/s系统开始商用
2019年最大传输距离达10.7Tb/s 10608km、2019 年单纤最大系统容量达102.3Tb/s 240km。
绪论
光纤通信发展粗略分为三个阶段: 第一阶段〔1966~1976年): 基础研究到商业应用的开发时期 第二阶段(1976~1986年): 高传输速率和增加传输距离为研究目标和大
力推广应用的大发展时期。 第三阶段(1986~2019年): 超大容量超长距离为目标、全面深入开展新
技术研究
绪论
光通信现状:
绪论
光波导的基本概念
• 导波光:受到约束的光波 • 光波导:约束光波传输的媒介 • 介质光波导三要素: • “芯 / 包〞构造 • 凸形折射率分布,n1>n2 • 低传输损耗
绪论
光波导的分类
• 薄膜波导〔平板波导) • 矩形波导〔条形波导) • 园柱波导〔光纤) • 对称与非对称波导
绪论
光波导的进一步分类
光子集成 光电子集成 集成光路 光收发模块 光接入模块 光开关模块 光放大模块
广告显示牌 激光手术刀 仪表照明 工艺装饰 电力输送 光纤面板 医用内窥镜 潜望镜

光波导理论与技术讲义(总结)

光波导理论与技术讲义(总结)
生物传感器
通过光纤传感器与生物分子的结合,实现对生物分子 浓度的检测。
环境监测
利用光纤传感器对环境中的气体、水质等进行实时监 测。
医疗领域
光学成像
光波导在医疗成像领域有广泛应用,如内窥镜、显微镜等。
激光治疗
利用光波导将激光能量传输到病变部位,进行无创手术。
光学诊断
利用光波导技术对生物组织进行光谱分析,辅助疾病诊断。
详细描述
光波导的核心原理是光的全反射。当光波在两种不同折射率的介质交界面上满足一定条 件时,光波将在交界面上发生全反射,即光波的全部能量都将被束缚在较高折射率的介 质中传播。通过控制光波的相位和振幅,可以实现光的定向传播、分束、调制等功能。
02 光波导技术
光波导制造技术
1 2
玻璃光波导制造技术
利用高温熔融玻璃的特性,通过控制温度和拉丝 速度,制造出不同规格的玻璃光波导丝。
02
利用光波导对外部物理量的敏感特性,开发出各种光传感器,
用于测量温度、压力、位移等物理量。
光信号处理
03
利用光波导的特殊传输特性,开发出各种光信号处理器件,用
于信号的调制、解调、滤波ቤተ መጻሕፍቲ ባይዱ处理。
03 光波导发展现状与趋势
光波导发展现状
01
02
03
传统光波导材料
石英玻璃、聚合物等传统 材料在光波导领域应用广 泛,技术成熟。
适用范围
光纤主要用于长距离通信, 而光波导常用于小型化、 集成化的光学系统中。
光波导与光子集成电路的比较
集成度
光子集成电路实现了更高程度的集成,包含了多 种功能器件。光波导通常只用于单一功能。
设计灵活性
光波导可以定制化设计,以实现特定的光学特性。 光子集成电路则更注重于系统的整体优化。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2.2-4)
rs
Ers Eis
sin(i sin(i
t) t)
tpE Etip p sin(2i sint)tccooss(iit)
(2.2-5) (2.2-6)
ts
Ets Eis
2sint cosi sin(i t)
(2.2-7)
利用Snell’s law,可以将上面的四个表达式改写为
长春理工大学
n1sini n2sint
Er rEi
(2.2-1) (2.2-2) (2.2-3)
上面的三个式子给出了反射波和透射波的传播方向以 及它们与入射波的振幅关系。
长春理工大学
第2章 光波导的理论基础
2、菲涅尔公式 (Frensnel’s formula)。
rp
Erp Eip
tan(i tan(i
t ) t )
和TM模的位相满足
tanTE
n12sin2i n22 n1cosi
tanTM n12
n12sin2i n22 n22n1cosi
(2.2-16) (2.2-17)
长春理工大学
第2章 光波导的理论基础
若令 kz k0n1sin1 则
tanTE
kz2 k02n22 k02n12 kz2
(2.2-18)
1、平面(板)波导结构:平板光波导一般为三层结 构,即衬底层,导光薄膜层和覆盖层。如图2.3所示。 2、制作平面(板)波导的基本原则: n1 n2 n3 3、制作平面(板)波导的目的:要在μm量级介质薄膜 上完成光的发射,传输,调制和探测等功能。
长春理工大学
第2章 光波导的理论基础 长春理工大学
第2章 光波导的理论基础
2.2.2 射线光学模型
射线光学模型就是光线在薄膜-衬底和薄膜-覆盖层 分界面上发生全内反射,沿z字形路径在薄膜中传播, 如图2.4所示。
长春理工大学
第2章 光波导的理论基础
2.2.3 光入射到介质界面处的基本定律
长春理工大学
第2章 光波导的理论基础
1、斯涅尔定律(Snell’s law)。
i r
2.1 光波导种类
按光波导的形状、折射率分布,可分成不同的种类
2.1.1 按形状分
按形状可以将光波导分成平面(板)波导、柱形波 导和条形波导,而条形光波导又可以分为脊形、镶 入形和埋入形,如图2.1所示。
第2章 光波导的理论基础
第2章 光波导的理论基础
2.1.2 按折射率分布分
按折射率分布可以将光波导分成折射率突变波导和 折射率渐变波导,如图2.2所示
tanTM
n12 n22
kz2 k02n22 k02n12 kz2
(2.2-19)
图2.6示出了TE 对入射角 i 的依赖关系。对于固定 n 2
与 n 1 比值,TE 随入射角 i 增大而增大。
长春理工大学
第2章 光波导的理论基础 长春理工大学
第2章 光波导的理论基础
2.2.5 平面波导的导模
第2章 光波导的理论基础
2.1 光波导种类 2.2 光波导的射线光学理论 2.3 古斯-汉欣线移和有效厚度原理 2.4 光波导的电磁理论
第2章 光波导的理论基础
2.5 折射率突变波导的基本解 2.6 折射率渐变波导的基本解 2.7 条形波导的基本解 2.8 圆柱形介质光波导的基本解
第2章 光波导的理论基础
光波导种类
第2章 光波导的理论基础
1、折射率突变波导:折射率突变波导指光波导各 个区的光学性质是均匀的,只在各层交界面处发生
光学性质突变。图2.2 a)当中,在 axa
区域折射率为 n 1,在 x a 区域折射率为 n 2
2、折射率渐变波导:折射率渐变波导指波导层介 质的光学性质是逐渐变化的,其折射率分布一般为
(2.2-8) (2.2-9) (2.2-10) (2.2-11)
对于TE模,其电场垂直于波阵面法线和分界面法线构 成的入射面,相当于S波;对于TM模,其电场平行于 波阵面法线和分界面法线构成的入射面,相当于P波。
长春理工大学
第2章 光波导的理论基础
rTE=nn11ccoossii
n22 n12sin2i n22 n12sin2i
1、波导中的平面波。平面波的表达式为:
E (r,t) E 0e x p ikrt
(2.2-20)
波矢量的标量形式
k
c/n1
Hale Waihona Puke k0n1(2.2-21)
由图2.4可知,若入射角为 i ,则波矢量的x分量和z分量
第2章 光波导的理论基础
rp
Erp Eip
n2cosi n1cost n2cosi n1cost
rsE Eriss n n1 1cco ossii n n2 2cco osstt
tp
Etp Eip
2n1cosi n2cosi n1cost
ts
Ets Eis
n1co2 sn1icons2ciost
rTMnn2222ccoossii nn11
n22n12sin2i n22n12sin2i
3、全反射(Total reflection)。
(2.2-12)和(2.2-13)应当改写为
rTE
n1cosi n1cosi
i i
n12sin2i n22 n12sin2i n22
rTMnn2222ccoossii iinn11
长春理工大学
第2章 光波导的理论基础
2.2 光波导的射线光学理论
利用射线光学理论对平面波导进行分析,其 过程简单直观,对某些物理概念能给出直观的物 理意义,容易理解。但是对于结构复杂的多层波 导射线光学理论不便于应用,或只能得出粗糙的 结果。
长春理工大学
第2章 光波导的理论基础
2.2.1 平面(板)波导简介
n12sin2i n22 n12sin2i n22
长春理工大学
(2.2-12) (2.2-13)
(2.2-14) (2.2-15)
第2章 光波导的理论基础
2.2.4 全反射时的相移
由式(2.2-14)和(2.2-15)可知,当 r取复数时,其模值为1, 因此,r可以表示为:rex p i2,则在反射时,TE模
抛物线形和双曲线形。图2.2a)当中,在 axa
区域折射率为 n2 nxn1,在 x a 区域折射率为
n2
第2章 光波导的理论基础
要点与习题
什么是平面波导? 什么是条形波导? 什么是柱形波导? 什么是突变波导? 什么是渐变波导?
第2章 光波导的理论基础
2.1 光波导种类 2.2 光波导的射线光学理论 2.3 古斯-汉欣线移和有效厚度原理 2.4 光波导的电磁理论
相关文档
最新文档