离散数学(A)答案2015
离散数学试题(A卷答案)
离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学考试试题(A卷及答案)
离散数学考试试题(A卷及答案)离散数学考试试题(A卷及答案)⼀、(10分)判断下列公式的类型(永真式、永假式、可满⾜式)?1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R)3)((?P∨Q)→R)→((P∧Q)∨R)解:1)永真式;2)永假式;3)可满⾜式。
⼆、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。
解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))(0∨0)∧(0∨1)1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的⼆元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的⼆元关系有2mn个。
因为|BA|=|B||A|=mn,所以A到B的函数mn个。
四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。
解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个⼉童到公园游乐场,他们在那⾥可以骑旋转⽊马,坐滑⾏铁道,乘宇宙飞船,已知其中20⼈这三种东西都乘过,其中55⼈⾄少乘坐过其中的两种。
离散数学习题答案-2015.docx
离散数学习题答案习题一1、利用逻辑联结词把下列命题翻译成符号逻辑形式(1)他既是本片的编剧,又是导演---P ∧ Q(2)银行利率一降低,股价随之上扬---P → Q(3)尽管银行利率降低,股价却没有上扬---P ∧ Q(4)占据空间的、有质量而且不断变化的对象称为物质---M(S∧ P∧T)(5)他今天不是乘火车去北京,就是随旅行团去了九寨沟---P ▽ Q(6)小张身体单薄,但是极少生病,并且头脑好使---P ∧ Q ∧ R(7)不识庐山真面目,只缘身在此山中---P → Q (解释:因为身在此山中,所以不识庐山真面目)(8)两个三角形相似,当且仅当他们的对应角相等或者对应边成比例---S(E∨ T)(9)如果一个整数能被 6 整除,那么它就能被 2 和 3 整除。
如果一个整数能被 3 整除,那么它的各位数字之和也能被 3 整除解:设 P –一个整数能被 6 整除Q –一个整数能被 2 整除 R–一个整数能被 3 整除S –一个整数各位数字之和能被 3 整除翻译为:( P →( Q ∧ R))∧( R → S )2、判别下面各语句是否命题,如果是命题,说出它的真值(1) BASIC 语言是最完美的程序设计语言--- Y , T/F(2)这件事大概是小王干的--- N(3) x2 = 64--- N(4)可导的实函数都是连续函数--- Y , T/F(5)我们要发扬连续作战的作风,再接再厉,争取更大的胜利--- N(6)客观规律是不以人们意志为转移的--- Y , T(7)到 2020 年,中国的国民生产总值将赶上和超过美国--- Y , N/A(8)凡事都有例外--- Y , F3、构造下列公式的真值表,并由此判别哪些公式是永真式、矛盾式或可满足式(1)( P ∨(~ P ∧ Q))→ Q解:P Q~P ∧ Q P ∨(~ P ∧ Q)( P ∨(~ P ∧ Q))→ Q可满足式00001011111001011011(2) ~(4)表略:( 2)可满足式、(3)永真式、( 4)可满足式4、利用真值表方法验证下列各式为永真式(1) ~(8)略5、证明下列各等价式(3) P→( Q∨ R )(P→ Q)∨(P→ R)证明:左式~P∨ Q∨ R~P∨ Q∨~ P∨ R(~ P∨ Q)∨(~ P∨ R )(P → Q)∨( P → R )右式(4)( P∧ Q)∨( R∧ Q)∨( R∧ P )(P∨ Q)∧(R∨ Q)∧(R∨ P)证明:左式( ( P∨ R)∧ Q)∨( R∧ P )( ( P∨ R)∨ R) )∧((P∨ R)∨ P) )∧(Q∨ R)∧(Q∨ P)( P∨ Q)∧( R∨ Q)∧( R∨ P )右式6、如果果~ P P∨ Q Q∨R, 能否断定 P~ R,能否断定P R ?R ?如果P∧Q Q∧ R,能否断定P R?如解:P∨ P∨ R P∧ P∧ R 式,及有(1)如果 P∨ Q Q∨R,不能判断Q∨ R,但 P 可以不等价于R.(2)如果 P∧ Q Q∧R,不能判断Q∧ R,但 P 可以不等价于R.(3)如果~ P~R,那么有PP <-> R为永真式,所以P R.P R,因为如果Q = P∨P R,因为如果Q = P∧R,因为~ P~R,则~R,那么P∨ QR,那么P∧ QP <->~R为永真8、把下列各式用↑等价表示出来(1) (P ∧ Q) ∨~ P解:原式((P(((P ↑ Q)↑ Q)↑ (P ↑ Q))↑ (P ↑ Q))∨ (P ↑ P)↑ ((P ↑Q)↑(P↑Q)))↑((P↑ P)↑ (P ↑ P))9、证明: {~→ }是最小功能完备集合证明 :因为{~,∨ }是最小功能完备集合, 所以 , 如果 {~→}能表示出∨ ,则其是功能完备集合。
离散数学答案
2015春课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={{2,3,4},5,1},下面命题为真是 A (选择题) [ A ] A.1 ∈A; B.2 ∈ A; C.3 ∈A; D.{3,2,1} ⊆ A。
1-2 A,B,C 为任意集合,则他们的共同子集是 D (选择题) [ D ] A.C; B.A; C.B; D.Ø。
1-3 设 S = {N,Z,Q,R},判断下列命题是否正确(是非题)(1) N ⊆ Q,Q ∈S,则 N ⊆ S,否[错](2)-1 ∈Z,Z ∈S,则 -1 ∈S 。
否[错]1-4 设集合 B = {4,3} ∩Ø, C = {4,3} ∩{ Ø },D ={ 3,4,Ø },E = {x│x ∈R 并且 x2 - 7x + 12 = 0},F = { 4,Ø,3,3},试问:集合 B 与那个集合之间可用等号表示 A (选择题) [A ]A. C;B. D;C. E;D. F.1-5 用列元法表示下列集合:A = { x│x ∈N 且 3-x 〈 3 }(选择题) [D ]A. N;B. Z;C. Q;D. Z+1-6 为何说集合的确定具有任意性 ? (简答题)按照所研究的问题来确定集合的元素。
而我们所要研究的问题当然是随意的。
所以,集合的定义(就是集合成分的确定)就带有任意性。
第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且 x > y } (综合题)求:(1)domR =?; (2)ranR =?; (3)R 的性质。
所谓谓词表达法,即是将集合中所有元素的共同性质用一个谓词概括起来,如本题几例所示。
有的书上称其为抽象原则。
反过来,列元法则是遵照元素的性质和要求,逐一将他们列出来,以备下用,结果如下:R = {<1,1>,<2,2>,<3,3>};(1)DomR={R中所有有序对的x}={3,2,1};(2)RanR={R中所有有序对的y}={3,2,1};(3)R 的性质:自反,对称,传递性质.2-2 设 R 是正整数集合上的关系,由方程 x + 3y = 12 决定,即R = {〈x,y〉│x,y ∈Z+ 且 x + 3y = 12},试给出 dom(R 。
(完整版)离散数学试题及答案,推荐文档
11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
离散数学试卷及答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
《离散数学》试卷A及答案
《离散数学》试卷(A)适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、单项选择题(本大题共8小题,每小题3分,共24分)1、下述哪一个不是命题?( ) A 、离散数学是计算机系的一门必修课 B 、不存在最大偶数。
C 、若我有空,我就看书。
D 、请勿随地叶痰!2、设A={a,b,c},B={1,2,3},以下哪一个关系是从A 到B 的双射函数?( ) A 、f={<a,2>,<b,2>,<c,1>} B 、f={<a,3>,<b,1>,<c,2>} C 、f={<a,1>,<b,2>,<c,3>,<a,3>} D 、f={<a,1>,<b,2>,<a,3>}3.设<G, 。
>是群,且|G|>1,则下列命题不成立的是( )A.G 中有幺元B. G 中有零元C.G 中任一元素有逆元D. G 中除幺元外无其它幂等元 4、设A={}c b a ,,,则下列是集合A 的划分的是( ) A.{}{}{}c c b ,, B. {}{}{}c a b a ,,, C.{}{}c b a ,, D.{}{}{}c b a ,, 5.设集合A={a,{b}},下面四个命题为真的是A.a 包含于AB.φ∈AC.{b}包含于AD.φ包含于A 6、下列是命题公式p ∧(q ∨⌝r)的成真指派的是( ) A.110,111,100 B.110,101,011 C 所有指派 D.无 7、与一阶公式P(x)→VxQ(x)等值的公式是A.P(y)→VyQ(y)B.P(y)→VxQ(y)C.P(x)→VyQ(y)D.P(z)→VyQ(y)8、设A 和B 都是命题,则A →B 的真值为假当且仅当( ) A 、A 为0 ,B 为1 B 、A 为0 ,B 为0 C 、A 为1 ,B 为1 D 、A 为1 ,B 为0二、填空题(本大题共7小题,每空3分,共21分)1..设A={a,b,c},F 是A 上的二元关系,F={<a,c>,<b,a>,<c,b>},则其自反闭包为r(F)= 。
离散数学期末试题及答案A
学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
离散数学试题及答案
离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。
因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。
《离散数学》课后习题答案
1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
离散数学课后习题答案
离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。
在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。
然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。
本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。
答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。
如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。
所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。
另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。
所以x属于A或者x属于B。
如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。
所以x属于(A-B)∪(B-A)。
所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。
综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。
证毕。
二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。
答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。
所以如果p为真命题,那么¬p为假命题。
2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。
答案:假设n为奇数,即n=2k+1(k为整数)。
那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。
根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。
离散数学考试试题(A、B卷及答案)
离散数学考试试题(A卷及答案)一、证明题(10分)1) (P∧Q∧A→C)∧(A→P∨Q∨C)⇔ (A∧(P↔Q))→C。
P<->Q=(p->Q)合取(Q->p)证明: (P∧Q∧A→C)∧(A→P∨Q∨C)⇔(⌝P∨⌝Q∨⌝A∨C)∧(⌝A∨P∨Q∨C)⇔((⌝P∨⌝Q∨⌝A)∧(⌝A∨P∨Q))∨C反用分配律⇔⌝((P∧Q∧A)∨(A∧⌝P∧⌝Q))∨C⇔⌝( A∧((P∧Q)∨(⌝P∧⌝Q)))∨C再反用分配律⇔⌝( A∧(P↔Q))∨C⇔(A∧(P↔Q))→C2) ⌝(P↑Q)⇔⌝P↓⌝Q。
证明:⌝(P↑Q)⇔⌝(⌝(P∧Q))⇔⌝(⌝P∨⌝Q))⇔⌝P↓⌝Q。
二、分别用真值表法和公式法求(P→(Q∨R))∧(⌝P∨(Q↔R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。
主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。
主析取范式可由析取范式经等值演算法算得。
证明:公式法:因为(P→(Q∨R))∧(⌝P∨(Q↔R))⇔(⌝P∨Q∨R)∧(⌝P∨(Q∧R)∨(⌝Q∧⌝R))⇔(⌝P∨Q∨R)∧(((⌝P∨Q)∧(⌝P∨R))∨(⌝Q∧⌝R))分配律⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝Q)∧(⌝P∨Q∨⌝R)∧(⌝P∨R∨⌝Q)∧(⌝P ∨R∨⌝R)⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝R)∧(⌝P∨⌝Q∨R)⇔4M∧5M使(非P析取Q析取R)为0所赋真值,即100,二进制M∧6为4⇔0m∨1m∨2m∨3m∨7m所以,公式(P→(Q∨R))∧(⌝P∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
真值表法:P Q R Q↔R P→(Q∨R)⌝P∨(Q↔R) (P→(Q∨R))∧(⌝P∨(Q↔R))0 0 0 0 0 1 0 1 00 1 11 0 0 1 0 1 1 1 0 1 1 1 1111111111111111111111由真值表可知,公式(P→(Q∨R))∧(⌝P∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
(完整版)哈工大《离散数学》教科书习题答案
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
《离散数学A》试题及答案
《离散数学A》试题及答案西南科技大学2010-2011-2学期《离散数学A》本科期末考试试卷(B卷)参考答案及评分细则一、判断题(本大题共10个小题,每小题2分,共20分)将每小题的判断结果写在答题纸上,正确的写“正确”,错误的写“错误”。
1. “3+3=6”,不是命题。
(错误)2. 命题公式(P Q Q)是偶然式。
(正确)3. 若B中不含有x,则x(A(x)B)xA(x)B。
(错误)4. 如果论述域是{a,b},则xR(x) R(a)R(b)。
(错误)5. 若集合A的基数|A|=5,则A的幂集的基数|(A)|=32。
(正确)6. 设A是一个集合,则A A=。
(错误)7. 设R是非空集合A上的二元关系,则R的传递闭包t(R)=R R0。
(错误)8. 所有欧拉图的顶点次(度)数一定是偶数。
(正确)9. 无向图G是二部图当且仅当G中所有回路的长度均为偶数。
(正确)10. K5、K3,3都是非平面图。
(正确)二、简单计算题(本大题共10个小题,每小题3分,共30分)将每小题的计算结果写在答题纸上。
1. 设P:我有时间;Q:我去镇上,用逻辑符合写出命题“只有我有时间,我才去镇上。
”。
答案:Q P2. 对命题公式:P(Q R)P Q化为仅含和的等价表达式。
答案:(P Q)3. 设S(x):x是火车,L(x):x是卡车,F(x,y):x比y快。
在谓词逻辑中符号化命题“所有火车都比所有卡车快”。
答案:?x(S(x)→?y(L(y) ∧F(x , y))4. 求谓词公式xP(x)xQ(x)的前束范式。
答案:x y(P(x)Q(x))5. 在一个班级50个学生中,有26人在第一次考试中得到A,21人在第二次考试中得到A,假如17人两次考试都没有得到A,问有多少学生在两次考试中都得到A?答案:14人。
6. 假设A是n个元素的有限集合,有多少个元素在A上的最小等价关系中?答案:n个。
7. 二元关系的关系图如下图所示,则R具有哪些特性(性质)?答案:R是反自反的、对称的。
离散数学(A)答案2015
杭州师范大学钱江学院2014 —2015 学年第二学期期末试卷_ 班《 离散数学 》(A )卷命题教师_田正平_一、判断题(对的打∨,错的打⨯;每空2分,共20分)1、 “若鸟不会飞,则地球比太阳大。
” 是假命题。
( ⨯ )2、 q q p p ⌝⇒→∧⌝)(。
( ⨯ )3、 )()())()((x xB x xA x B x A x ∃∧∃⇒∧∃( ∨ )4、 有限偏序集),(≤X 必定存在最小元。
( ⨯ )5、 对称关系不一定是反对称关系。
( ∨ )6、 设集合},,{c b a X =上的关系R 的关系矩阵是⎪⎪⎪⎭⎫⎝⎛=100111101R M ,则关系R 是等价关系。
( ⨯ )7、 图G 是n 阶简单图,若对所有的1)(>⇒∈v d V v ,则在G 中有回路。
( ∨ ) 8、 在哈密顿图G 中若顶点u 和v 不相邻,则必有n v d u d ≥+)()(。
( ⨯ )9、平面图G 是n 阶简单连通图,它有e 条边,则63-≤n e 。
( ∨ ) 10、有n —1条边的n 阶图是树。
( ⨯ )题目 一 二 三 四 五 总分 分值 20 20 20 20 20 100 得分得分班级: 学号: 姓名: 装 订 线二、填空题(每空4分,共20分)1、将命题:“每列火车都比某些汽车快。
”符号化。
设个体域为交通工具。
P(x):x 是火车;Q(x):x 是汽车;R(x,y):x 比y 快。
则“每列火车都比某些汽车快。
”可以符号化为:)),()()((y x R y Q x P y x →∧∃∀ 2、全序关系),(≤X 。
集合X 上的自反,反对称和传递关系称为X 上的偏序关系,如果对于X 中的任意两个元素都是可以比较的,那么就称为全序关系。
3、简单回路。
图的一条回路,如果其中所有的边都不相同,那么就称为简单回路。
4、超立方图n Q 的色数=)(n Q χ2。
5、在简单图),(E V G 中,3-=V E ,则图),(E V G 的联通分支数=)(G ω3。
离散数学试卷及参考答案
济南大学继续教育学院离散数学试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)一、选择(每题2分,共18分)1.设简单图G所有结点的度之和为12,则G一定有 ( ) 条边。
A. 3B. 4C. 5D. 62.设G是一棵树,则G 的生成树有 ( B ) 棵A. 0B. 1C. 2D.不能确定3. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( )。
A. (1,2,2,3,4,5)B. (1,2,3,4,5,5)C. (1,1,1,2,3)D. (2,3,3,4,5,6).4. 命题∀xG(x)取真值1的充分必要条件是( )。
A.对任意x,G(x)都取真值1.B.有一个x0,使G(x0)取真值1.C.有某些x,使G(x0)取真值1.D.以上答案都不对.5.设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正确的是( )。
A. {2}∈AB. {a}⊆AC. ∅⊆{{a}}⊆B⊆ED. {{a},1,3,4}⊂B.6. 下列关于集合的表示中正确的为( )。
A.{a}∈{a,b,c}B. {a}⊆{a,b,c}C. ∅∈{a,b,c}D. {a,b}∈{a,b,c}7.下列式子正确的是 ( )。
A. p →q = q →pB. p →q = ⌝q ∨ pC. p →q,q →s ⇒ p →sD. p ↔q = (p → q) ∨ (q→ p)8.下列语句中,( )是命题。
A.请把门关上B.地球外的星球上也有人C. x + 5 > 6D. 下午有会吗?9.设G、H是一阶逻辑公式,P是一个谓词,G=∃xP(x), H=∀xP(x),则一阶逻辑公式G→H是( )。
A. 恒真的第 1 页共 13 页。
2015年北京语言大学离散数学期末考试A卷真题附答案
4.(10points)Find an explicit formula for the Fibonacci sequence defined byfn=fn-1+fn-2with initial conditionsf1=f2= 1.
does have ( C )
A. 48;B. 49; C. 50; D. 51.
(3) Letaandbbe positive integers, ifpis a prime such thatp|ab, then( A )
A.p|aorp|b;B.p|aandp|b;C.p|a;D.p|b.
(4)Consider the statement: Ifm2is odd, thenmis odd. To prove this statement using
Proof. Suppose that , then, by definition of , there exists some such that
,that is, ,by transitivity of , this means that ,
and …..10 points
6.(10points)LetA={1,2,3,4,5,6,7} and be a permutation ofA.
using the pigeonhole principle, the "pigeons" are( A )
A. theeightpeople; B. the two people;
C. the28different pairs of people; D. the days of the week.
离散数学试题与参考答案
《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。
(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州师范大学钱江学院2014 —2015 学年第二学期期末试卷
_ 班《 离散数学 》(A )卷
命题教师_田正平_
一、判断题(对的打∨,错的打⨯;每空2分,共20分)
1、 “若鸟不会飞,则地球比太阳大。
” 是假命题。
( ⨯ )
2、 q q p p ⌝⇒→∧⌝)(。
( ⨯ )
3、 )()())()((x xB x xA x B x A x ∃∧∃⇒∧∃( ∨ )
4、 有限偏序集),(≤X 必定存在最小元。
( ⨯ )
5、 对称关系不一定是反对称关系。
( ∨ )
6、 设集合},,{c b a X =上的关系R 的关系矩阵是⎪⎪⎪
⎭
⎫
⎝⎛=100111101R M ,则关系R 是等
价关系。
( ⨯ )
7、 图G 是n 阶简单图,若对所有的1)(>⇒∈v d V v ,则在G 中有回路。
( ∨ ) 8、 在哈密顿图G 中若顶点u 和v 不相邻,则必有n v d u d ≥+)()(。
( ⨯ )
9、平面图G 是n 阶简单连通图,它有e 条边,则63-≤n e 。
( ∨ ) 10、有n —1条边的n 阶图是树。
( ⨯ )
题目 一 二 三 四 五 总分 分值 20 20 20 20 20 100 得分
得分
班级: 学号: 姓名: 装 订 线
二、填空题(每空4分,共20分)
1、将命题:“每列火车都比某些汽车快。
”符号化。
设个体域为交通工具。
P(x):x 是火车;Q(x):x 是汽车;R(x,y):x 比y 快。
则“每列火车都比某些汽车快。
”可以符号化为:
)),()()((y x R y Q x P y x →∧∃∀ 2、全序关系),(≤X 。
集合X 上的自反,反对称和传递关系称为X 上的偏序关系,如果对于X 中的任意两个元素都是可以比较的,那么就称为全序关系。
3、简单回路。
图的一条回路,如果其中所有的边都不相同,那么就称为简单回路。
4、超立方图n Q 的色数=)(n Q χ2。
5、在简单图),(E V G 中,3-=V E ,则图),(E V G 的联通分支数=)(G ω3。
三、选择题(每题4分,共20分)
1、下面命题公式中,矛盾式是( C )
(A ))(Q P P ∨→ (B)P P P ⌝→⌝→)(
(C) )()(R Q Q P P ∧⌝∧→⌝∨ (D) )()(Q P Q P ⌝↔⌝→↔
2、设集合}12,10,6,4,3,2,1{=X 上的关系R 是整除关系,则关系R ( C ) (A )有最大元,有最小元 (B)有最大元,无最小元
(C) 无最大元,有最小元 (D) 无最大元,无最小元
得分
得分
3、图G 的邻接矩阵⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=0110110010100100110110010A ,则图G ( C )
(A )无欧拉通路,有哈密顿回路 (B)有欧拉回路,无哈密顿通路
(C) 有欧拉通路,无哈密顿回路 (D) 无欧拉回路,有哈密顿通路 4、设*
R 是非零实数集,下面关系中是等价关系的是( C )
(A )}0),{(>+y x y x (B) }0),{(<+y x y x
(C) }0),{(>xy y x (D) }0),{(<xy y x 5、 和谓词公式))((B x A x →∀等值的是( C )
(A )B x xA →∀)( (B) )(x xA B ∃→
(C ) B x xA →∃)( (D) )(x xA B ∀→
四、计算题(每题4分,共20分)
1、 化简命题公式))((p q p q ⌝→→→⌝。
解:
1
11)()()()())(())(())(()
)(())((=∧=⌝∨⌝∨∧∨⌝∨=⌝∧∨⌝∨=⌝∨⌝∧∨=⌝∨∨⌝⌝∨=⌝∨→⌝∨=⌝→→∨=⌝→→→⌝q p q p p q q p p q p q p q p q p q p q p q p q p q p q p q
2、集合},,,,{e d c b a X =上的关系)},(),,(),,(),,{(e d d b c b b a R =,求关系R 的传递闭包
)(R t 。
得分
解:
∅
===== 5432)}
,{()}
,(),,(),,{(R R e a R e b d a c a R
所以:
)}
,(),,(),,(),,(),,(),,(),,{),,{(,
)(321
e a e b d a c a e d d b c b b a R R R R R t n n =⋃⋃==⋃+∞
=
3、在复数集C 上定义关系}),{(d b di c bi a R =++=,给出这个等价类的几何说明。
解:}|{][R x bi x bi a R ∈+=+
所以等价类是复平面上平行于实轴的直线。
4、图G 的邻接矩阵⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=0110110010100100110110010A ,求从顶点1v 到顶点2v 长度为3的不同通路的个数。
解:
⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=06606600606006006606600603
A
所以顶点1v 到顶点2v 长度为3的不同通路的个数是6。
5、设集合}20,6,4,3,2{=X 上的关系R 是整除关系, 写出偏序关系R 的极大元、极小元。
解:偏序关系R 的极大元是6和20;极小元是2和3。
五、证明题(每题10分,共20分)
1、 图G 是简单图,若它的最小度数1)(≥≥k G δ。
证明:图G 有长度为k 的基本通路。
证明:因为G 至少有k 条边,所以有基本通路存在。
由定理知基本通路的长度不大于n-1。
设P 是所有基本通路中长度最长的一条,u 和v 分别是基本通路的起点和终点。
若P 的长度不小于k,则问题已经解决。
若P 的长度小于k ,因为k G v d ≥≥)()(δ,从顶点v 出发至少有k 条边,而基本通路P 上异于v 的点仅有k-1个;在图G 中还有另外一个点w 和点v 相邻接,这样我们得到一条新的基本通路P+{v,w},它比基本通路P 还要长,这和P 是所有基本通路中长度最长的一条这一事实相矛盾。
所以G 中最长的基本通路的长度一定不小于k 。
2、 证明:有限全序集),(≤X 必有最大元存在。
证明:有限全序集),(≤X 是偏序集,由定理知必有极大元存在 ,设为a 。
任意取X x ∈,因为),(≤X 是全序集,所以a x ≤和x a ≤至少有一个成立。
由a 是极大元知x a <是 不可能成立的。
这样由x a ≤可得x a =,即a x ≤。
所以a 就是全序集),(≤X 的最大元。
得分。