2018届上海市七宝中学高三模拟理科数学试题及答案

合集下载

上海市七宝中学2018-2019学年上学期高三期中数学模拟题

上海市七宝中学2018-2019学年上学期高三期中数学模拟题

上海市七宝中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合,,则( )A BCD2. 函数2(44)x y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .13. 已知全集U R =,{|239}x A x =<≤,1{|2}2B y y =<≤,则有( ) A .A ØB B .A B B =C .()R A B ≠∅ðD .()R A B R =ð4. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}25. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{>--=x x x B ,则=)(B C A R ( ) A .)1,1(- B .]1,1(- C .]2,1( D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.6. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABC D7. 已知实数[]4,0x ∈-,[]0,3y ∈,则点(,)P x y 落在区域00240x y y x y x ≤⎧⎪≥⎪⎨+≤⎪⎪--≤⎩内的概率为( )A .56B .12C .512D .712【命题意图】本题考查线性规划、几何概型等基础知识,意在考查基本运算能力. 8. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则ba的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 9. 已知是虚数单位,,a b R ∈,则“1a b ==-”是“2()2a bi i +=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 11.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-212.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.15 B. C.15 D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题(本大共6小题,共70分。

上海市七宝中学2017-2018学年高三上学期第一次联考数学试题

上海市七宝中学2017-2018学年高三上学期第一次联考数学试题

绝密★启用前上海市七宝中学2017-2018学年高三上学期第一次联考数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.给定集合A ,B ,定义{},,A B x x m n m A n B *==-∈∈,若{}4,5,6A =,{}1,2,3B =,则集合A B *中的所有元素之和为( )A .15B .14C .27D .14-2.已知 a b c R ∈、、,则“240b ac -<”是“函数2()f x ax bx c =++的图象恒在x 轴上方”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.如果函数()y f x =图象上任意一点的坐标(),x y 都满足方程()lg lg lg x y x y +=+,那么正确的选项是( )A .()y f x =是区间()0,∞+上的减函数,且4x y +≤B .()y f x =是区间()1,+∞上的增函数,且4x y +≥C .()y f x =是区间()1,+∞上的减函数,且4x y +≥D .()y f x =是区间()1,+∞上的减函数,且4x y +≤4.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.设集合{}1,2,3A =,{}2,3,4B =,则AB =________6.已知一元二次不等式()0f x <的解集为{}112x x x x ⎧⎫<-⋃>⎨⎬⎩⎭,则()20f x >的解集为________7.设()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩,则12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦= . 8.使关于x 的不等式1x k x ++<;有解的实数k 的取值范围是__________. 9.能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.10.已知不等式2202x xx a+≤+解集为A ,且2A ∈,3A ∉,则实数a 的取值范围是________11.已知0x ≥,0y ≥,且1x y +=,则22xy +的取值范围是_____.12.已知2243,0()23,0x x x f x x x x ⎧-+≤=⎨--+>⎩,不等式()(2)f x a f a x +>-在[,1]a a +上恒成立,则实数a 的取值范围是________13.已知直线0()f x k x b =+,与曲线2()kg x =交于点(,1),(,2),M m N n -则不等式11()()f x g x --≥的解集为_____.14.若实数x ,y 满足x 2-4xy +4y 2+4x 2y 2=4,则当x +2y 取得最大值时,的值为________.15.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =________16.设()f x 是定义在R 且周期为1的函数,在区间[)0,1上,()2,,x x Df x x x D⎧∈=⎨∉⎩其中集合1,n D x x n N n *⎧⎫-==∈⎨⎬⎩⎭,则方程()lg 0f x x -=的解的个数是____________ 三、解答题17.已知2:010x p x+≥-,22:210q x x m -+-≤(0)m >,且p 是q 的必要不充分条件.求实数m 的取值范围.18.已知函数()()()4log 41xf x kx k R =++∈为偶函数.(1)求k 的值; (2)若方程()4log 12xm f x ⎛⎫=-⎪⎝⎭有解,求实数m 的范围. 19.某市对城市路网进行改造,拟在原有a 个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x 个标段和n 个道路交叉口,其中n 与x 满足n =ax +5.已知新建一个标段的造价为m 万元,新建一个道路交叉口的造价是新建一个标段的造价的k 倍. (1)写出新建道路交叉口的总造价y (万元)与x 的函数关系式;(2)设P 是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k ≥3.问:P 能否大于120,说明理由. 20.已知函数()1log (01)1axf x a x-=<<+. (1)求函数()f x 的定义域D ,并判断()f x 的奇偶性; (2)如果当()1,x a ∈-时,()f x 的值域是(),1-∞,求a 的值;(3)对任意的m ,n D ∈,是否存在t D ∈,使得()()()f m f n f t +=,若存在,求出t ,若不存在,请说明理由.(1)若(22)h =,(3)12h =,当[1,3]x ∈时,求()h x 的最大值;(2)若2a =,1b =,且方程|()|h x t =1(02t <<有两个不相等的实根m 、n ,求mn 的取值范围;(3)若2a =,1()x h x c -=,(1,0)x c >>,且a 、b 、c 是三角形的三边长,试求满足等式:()()()h x f x g x =-有解的最大的x 的范围.参考答案1.A 【解析】 【分析】根据集合的新定义,分别表示出符合A B *的集合的元素,再求和即可 【详解】由题可知,456m ,,=,1,2,3n =, 当4m =时,1,2,3n =时,321m n ,,-= 当5m =时,1,2,3n =时,432m n ,,-= 当6m =时,1,2,3n =时,543m n ,,-= 所以{}12345A B ,,,,*=,元素之和为15 故选:A 【点睛】本题考查对新定义的理解,元素与集合的关系,解题关键在于不遗漏,m n 的取值,正确算出m n -,属于基础题 2.D 【解析】 【分析】分别研究由“240b ac -<”推出“函数2()f x ax bx c =++的图象恒在x 轴上方”和由“函数2()f x ax bx c =++的图象恒在x 轴上方”推出“240b ac -<”,得到答案.【详解】当240b ac -<时,函数2()f x ax bx c =++图象与x 轴没有交点,当0a <时,()f x 图像恒在x 轴下方,所以是不充分条件; 当函数2()f x ax bx c =++的图象恒在x 轴上方,取0,0a b c ==>,满足要求,此时240b ac -=,因此不一定能得到240b ac -<,所以是不必要条件; 故选D 项. 【点睛】本题考查充分条件和必要条件的判断,二次函数的图像问题,属于简单题. 3.C 【解析】 【分析】由给出的方程得到函数()y f x =图象上任意一点的横纵坐标,x y 的关系式,利用基本不等式求出x y +的范围,整理出()1111y x x =+≠-,可得函数在()1,+∞上的增减性,二者结合可得正确答案. 【详解】()lg lg lg lg x y x y xy +=+= 00x y x y xy >⎧⎪∴>⎨⎪+=⎩22x y xy +⎛⎫≤ ⎪⎝⎭(当且仅当x y =时取等号)22x y x y +⎛⎫∴+≤ ⎪⎝⎭,解得:4x y +≥ 由x y xy +=得:()11111111x x y x x x x -+===+≠--- 当()1,x ∈+∞时,11y x =-为减函数 111y x ∴=+-在()1,+∞上为减函数故选:C 【点睛】本题考查了函数单调性的判断,利用基本不等式求最值等知识,关键是能利用对数方程得到真数之间的关系,属于基础题. 4.D 【解析】 试题分析: 因为[()()][()()][()()]()2f xg x f xh x g x h x f x +++-+=,所以[(+)(+)][(+)(+)][(+)(+)](+)2f x Tg x T f x Th x T g x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()()][()()][()()](+)=()2f xg x f xh x g x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;增函数加减函数也可能为增函数,因此①不正确.选D.【考点】抽象函数、函数的单调性、函数的周期性【名师点睛】本题主要考查抽象函数的单调性与周期性,是高考常考内容.本题有一定难度.解答此类问题时,关键在于灵活选择方法,如结合选项或通过举反例应用“排除法”等.本题能较好地考查考生分析问题与解决问题的能力、基本计算能力等.5.{}1,2,3,4 【解析】 【分析】根据集合的并集运算,得到答案. 【详解】集合{}1,2,3A =,{}2,3,4B = 所以AB ={}1,2,3,4故答案为:{}1,2,3,4 【点睛】本题考查集合的并集运算,属于简单题. 6.11,24⎛⎫-⎪⎝⎭【解析】 【分析】设2t x =,根据()0f x <的解集,得到()0f t >的解集,即t 的范围,然后得到x 的取值范围. 【详解】 设2t x =,因为一元二次不等式()0f x <的解集为{}112x x x x ⎧⎫<-⋃>⎨⎬⎩⎭, 所以一元二次不等式()0f t >的解集为112t t ⎧⎫-<<⎨⎬⎩⎭故1122x -<<,即1124x -<<所以()20f x >的解集为11,24⎛⎫-⎪⎝⎭. 故答案为:11,24⎛⎫- ⎪⎝⎭ 【点睛】本题考查根据一元二次不等式的解集解不等式,属于简单题. 7.413【解析】 试题分析:1131314129222221314f f f f ⎡⎤⎛⎫⎛⎫⎛⎫=--=-∴=-==⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+考点:分段函数求值 8.(,1)-∞- 【解析】原不等式转化为k <x ﹣|x+1|成立, 因为y=x ﹣|x+1|=1,121,1x x x -≥-⎧⎨+<-⎩,对应图象如图,由图得其最大值为﹣1. 故只须k <﹣1即可.故答案为:(),1-∞-。

2018年上海市高考理科数学第五次模拟考试试题

2018年上海市高考理科数学第五次模拟考试试题

2018年上海市高考理科数学第五次模拟考试试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷 (选择题,共60分)一、选择题:本大题共12小题 每小题5分,共60分 在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖2. =---+++∞→12)12(31lim2n n n n A. 21 B.2 C.23 D. 323.若双曲线)0,0(12222>>=-b a b y a x 的离心率为2,则双曲线12222=-ax b y 的离心率为A .223 B .2 C .2 D .332 4. 设10<<<a b ,则下列不等式中成立的是A .12<<ab aB .0log log 2121<<a bC .12<<b ab D .222<<ab5.集合},3{2R x x y x A ∈-==,},1{2R x x y y B ∈-==,则A B =A.{(B.{1z z ≤≤C.{1z z -≤≤D.{0z z ≤≤6.设a R ∈,若函数3,axy e x x R =+∈有大于零的极值点,则( )A .a >-3B .a <-3C .a >13-D .13a <- 7. =---+++∞→12)12(31lim2n n n nA. 21B.2C.23D. 328.若双曲线)0,0(12222>>=-b a b y a x 的离心率为2,则双曲线12222=-ax b y 的离心率为A .223 B .2 C .2 D .332 9. 设10<<<a b ,则下列不等式中成立的是A .12<<ab aB .0log log 2121<<a bC .12<<b ab D .222<<a b10.设P 为ABC ∆所在平面内一点,且025=--,则PAB ∆的面积与ABC ∆的面积之比为A .15 B .25 C .14 D .53 11. 从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A .12 B .35C .012. 已知)(x f 为定义在),(+∞-∞上的可导函数,且)()(x f x f '<对于R x ∈恒成立,则A. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅> B. )0()2(2f e f ⋅<, )0()2009(2009f e f ⋅> C. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅<D.)0()2(2f e f ⋅<, )0()2009(2009f ef ⋅<第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分 把答案填在题中横线上 13.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为________.14. 表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为 . 15. 二项式6(x+的展开式中的常数项为________.(结果用数值作答).16. 如果一个函数的图象关于直线0x y -=对称,则称此函数为自反函数. 使得函数23x by x a+=-为自反函数的一组..实数,a b 的取值为________ 三、解答题:本大题共6小题,共74分 解答应写出文字说明,证明过程或演算步骤 17.(本题满分12分)已知函数()2sin()184f x x ππ=++. (Ⅰ)在所给的坐标纸上作出函数(),[2,14]y f x x =∈-的图象(不要求写出作图过程). (Ⅱ)令)()()(x f x f x g -+=,x R ∈.求函数)(x g y =的图象与x 轴交点的横坐标.18. (本题满分12分) 按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).该校高2010级一班50名学生在上学期参加活动的次数统计如图所示. (I )求该班学生参加活动的人均次数x ;(II )从该班中任意选两名学生,求他们参加活动次数恰好相等的概率0P .(III )从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.(要求:答案用最简分数表示)19.(本题满分12分)如图所示,在矩形ABCD 中,22==AB AD ,点E 是AD 的中点,将DEC ∆沿CE 折起到EC D '∆的位置,使二面角B EC D --'是直二面角. (Ⅰ)证明:D C BE '⊥;(Ⅱ)求二面角E BC D --'的正切值.123520. (本题满分12分)已知椭圆Γ的中心在原点,焦点在x 轴上,它的一个顶点B 恰好是抛物线y =41x 2的焦点,离心率等于22.直线l 与椭圆Γ交于N M ,两点. (Ⅰ)求椭圆Γ的方程;(Ⅱ) 椭圆Γ的右焦点F 是否可以为BMN ∆的垂心?若可以,求出直线l 的方程;若不可以,请说明理由.21.(本题满分12分)设函数a t at t f -+=221)(的定义域为]2,2[,记函数)(t f 的最大值为)(a g .(Ⅰ)求)(a g 的解析式;(Ⅱ)已知1()()g a g a>,试求实数a 的取值范围.22. (本题满分14分)已知正项数列{}n a 满足对一切*∈N n ,有233231n n S a a a =+++ ,其中n n a a a S +++= 21. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 求证: 当*N n ∈时, 3ln )11ln(<+nn a a .2018年上海市高三第五次模拟考试数学理答案二.填空题 13.161.; 14. 3; 15. 15; 16. 2a =,b 可以填写任意实数三、解答题 17.(Ⅰ)(Ⅱ)1)48sin(21)48sin(2)()()(++-+++=-+=ππππx x x f x f x g28cos 222)48sin(2)48sin(2+=+--+=x x x πππππ由028cos22)(=+=x x g π得228cos-=x π,从而πππk x 2438+±=,即 Z k k x ∈±=,616.所以,函数)(x g y =与x 轴交点的横坐标为Z k k ∈±,616.12分18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20. (I )该班学生参加活动的人均次数为x =1023501155*********==⨯+⨯+⨯. 3分 (II )从该班中任选两名学生,他们参加活动次数恰好相等的概率为4920250220225250=++=C C C C P . 6分 (III )从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知4925)()()1(25012012525012515=+=+==C C C C C C B P A P P ξ; 8分 494)()2(25012015====C C C C P P ξ. 10分ξ的分布列:ξ的数学期望:49492491490=⨯+⨯+⨯=ξE . 12分19.(Ⅰ)∵AD=2AB=2,E 是AD 的中点,∴△BAE ,△CDE 是等腰直角三角形, 易知,∠BEC=90°,即BE ⊥EC又∵平面D ′EC ⊥平面BEC ,面D ′EC ∩面BEC=EC , ∴BE ⊥面D ′EC ,又CD ′⊂面D ′EC ,∴BE ⊥CD ′ 6分 (Ⅱ)法一:设M 是线段EC 的中点,过M 作MF ⊥BC 垂足为F ,连接D ′M ,D ′F ,则D ′M ⊥EC ∵平面D ′EC ⊥平面BEC ,∴D ′M ⊥平面EBC , ∴MF 是D ′F 在平面BEC 上的射影,由三垂线定理得:D ′F ⊥BC ,∴∠D ′FM 是二面D ′—BC —E 的平面角.在Rt △D ′MF 中,2121,2221===='AB MF EC M D 。

上海市七宝中学2018-2019学年高三上摸底考试数学试题(简答)

上海市七宝中学2018-2019学年高三上摸底考试数学试题(简答)

七宝中学高三上九月开学考2018.09一. 填空题1. 已知集合2{|340}A x x x =--=,{|10,}B x mx m =+=∈R ,且A B A =,则所有满足条件的m 构成的集合为2. 设,a b ∈R ,则“tan b α=”是“arctan b α=”的 条件3. 294i z z +=+(i 为虚数单位),则||z =4. 若△ABC 中,4a b +=,30C ∠=︒,则△ABC 面积的最大值是5. 设直线l 过点(4,0)P -,且与直线:310m x y -+=的夹角为l 的方 程是6. 设常数0a >,9(x+展开式中6x 的系数为4,则2lim()n n a a a →∞++⋅⋅⋅+=7. 已知()y f x =是定义在R 上的奇函数,且当0x >时,11()142x x f x =-++,则此函数的值域是8. 已知函数8()log (8)a f x x x=+-在[2,)+∞上是增函数,则实数a 的取值范围是 9. 奇函数()y f x =满足对任意x ∈R 都有(2)(2)0f x f x ++-=,且(1)9f =,则(2016)(2017)(2018)f f f ++的值为10. 平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是11. 下列命题:① 关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩的系数行列式0D =是该方程组有解的必要非充分条件;② 已知E 、F 、G 、H 是空间四点,命题甲:E 、F 、G 、H 四点不共面,命题乙: 直线EF 和GH 不相交,则甲成立是乙成立的充分非必要条件;③“2a <”是“对任意的实数x ,|1||1|x x a ++-≥恒成立”的充要条件; ④“0p =或4p =-”是“关于x 的方程px p x=+有且仅有一个实根”的充要条件; 其中,真命题序号是12. 在直角坐标平面xOy 中,已知两定点1(2,0)F -与2(2,0)F 位于动直线:0l ax by c ++=的同侧,设集合{|P l =点1F 与点2F 到直线l 的距离之差等于2},22{(,)|4,,}Q x y x y x y =+≤∈R ,记{(,)|(,),}S x y x y l l P =∉∈,{(,)|(,)}T x y x y Q S =∈,则由T 中的所有点所组成的图形的面积是二. 选择题13. 设a 、b 为实数,则“01ab <<”是“1b a<”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 14. 若函数()2sin()f x x ω=在区间[,]54ππ-上存在最小值2-,则非零实数ω的取值范围 是( )A. (,2]-∞-B. [6,)+∞C. 5(,2][,)2-∞-+∞D. 15(,][6,)2-∞-+∞ 15. 已知集合{(,)|||||1}M x y x y =+≤,若实数对(,)λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“嵌入实数对”,则以下集合中,不存在集合M 的 “嵌入实数对”的是( )A. {(,)|2}λμλμ-=B. {(,)|2}λμλμ+=C. 22{(,)|2}λμλμ-=D. 22{(,)|2}λμλμ+=16. 已知函数210()(1)0x x f x f x x -⎧-+≤=⎨->⎩,则下列命题中正确命题的个数是( )① 函数()f x 在[1,)-+∞上为周期函数;② 函数()f x 在区间[,1)m m +上单调递增;③ 函数()f x 在1x m =-(m ∈N )取到最大值0,且无最小值;④ 若方程()log (2)a f x x =+(01a <<)有且仅有两个不同的实根,则11[,)32a ∈; A. 1个 B. 2个 C. 3个 D. 4个三. 解答题 17. 关于x 的不等式201x a x+<的解集为(1,)b -.(1)求实数a 、b 的值;(2)若1i z a b =+,2cos isin z αα=+,且12z z 为纯虚数,求tan α的值.18. 如图,四棱锥P ABCD -中,PD ⊥底面ABCD ,且底面ABCD 为平行四边形,若60DAB ∠=︒,2AB =,1AD =.(1)求证:PA BD ⊥;(2)若45PCD ∠=︒,求点D 到平面PBC 的距离h .19. 如果一条信息有n (1n >,n ∈N )种可能的情形(各种情形之间互不相容),且这些 情形发生的概率分别为1p 、2p 、⋅⋅⋅、n p ,则称12()()()n H f p f p f p =++⋅⋅⋅+(其中()log a f x x x =-,(0,1)x ∈)为该条信息的信息熵,已知11()22f =.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选 中”的信息熵的大小;(2)某次比赛共有n 位选手(分别记为1A 、2A 、⋅⋅⋅、n A )参加,若当1,2,,1k n =⋅⋅⋅-时, 选手k A 获得冠军的概率为2k -,求“谁获得冠军”的信息熵H 关于n 的表达式.20. 双曲线2221y x b-=(0b >)的左、右焦点分别为1F 、2F ,直线l 过2F 且与双曲线交于A 、B 两点.(1)若l 的倾斜角为2π,△1F AB 是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.21. 若定义在R 上的函数()y f x =满足:对于任意实数x 、y ,总有()()2()()f x y f x y f x f y ++-=恒成立,我们称()f x 为“类余弦型”函数. (1)已知()f x 为“类余弦型”函数,且5(1)4f =,求(0)f 和(2)f 的值; (2)在(1)的条件下,定义数列2(1)()n a f n f n =+-(1,2,3,n =⋅⋅⋅),求20172018122222log log log log 3333a a a a++⋅⋅⋅++的值; (3)若()f x 为“类余弦型”函数,且对于任意非零实数t ,总有()1f t >,证明:函数()f x 为偶函数,设有理数1x 、2x 满足12||||x x <,判断1()f x 和2()f x 的大小关系,并证明你的 结论.参考答案一. 填空题1. 1{0,,1}4- 2. 必要非充分 3. 5 4. 1 5. 4x =-或43160x y -+= 6.12 7. 55[,1){0}(1,]44--8. [4,20)- 9. 9 10. (,(3,)-∞+∞ 11. ② 12.二. 选择题13. D 14. C 15. C 16. B三. 解答题17.(1)1a =-,2b =;(2)12-.18.(1)略;(2)7. 19.(1)5;(2)422n H =-.20.(1)y =;(2). 21.(1)(0)1f =,17(2)8f =;(2)2log 13n a n =-,20182035153S =; (3)12()()f x f x <.。

上海市2018届高三5月高考模拟练习(三)数学试题(精编含解析)

上海市2018届高三5月高考模拟练习(三)数学试题(精编含解析)

2018年高考数学模拟练习3一、填空题.1. 向量在向量方向上的投影为____________.【答案】.【解析】【分析】根据投影的计算公式进行计算.【详解】向量在向量的投影为,填.【点睛】一般地,向量在向量的投影为,而的几何意义就是向量在向量的投影与模的乘积.2. 已知正数满足,则行列式的最小值为____________.【答案】3.【解析】【分析】行列式为,利用基本不等式可求最小值.【详解】.又,所以,当且仅当时等号成立,故,当且仅当取最小值,即的最小值为,填.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.3. 阅读下边的程序框图,如果输出的函数值在区间,内,则输入的实数的取值范围是____________.【答案】.【解析】试题分析:流程图表示函数,因为输出的函数值在区间内,所以考点:流程图4. 设是一元二次方程的两个虚根,若,则实数____________.【答案】4.【解析】【分析】求出方程的两个虚根,计算它们的乘积的模可得的值.【详解】,因为方程有两个虚根,所以.又原方程可化为,故两虚根为,两个虚根为共轭复数,故,故,填.【点睛】对于实系数的一元二次方程,当时,方程有两个虚根且它们是一对共轭复数满足.5. 集合,,若“”是“”的充分条件,则实数取值范围是____________.【答案】.【解析】【分析】由是充分条件得,故可求的取值范围.【详解】,当时,,因为“”是“”的充分条件,所以,故.填.【点睛】在充分条件和必要条件的判断中,注意数学语言叙述上的差异,比如:是的充分条件指若则是真命题,而的充分条件是则是若则是真命题.6. 已知椭圆的焦点在轴上,一个质点为,其右焦点到直线的距离为3,则椭圆的方程为_____________.【答案】.【解析】试题分析:据题意,椭圆方程是标准方程,,右焦点为,它到已知直线的距离为,,所以,椭圆方程为.考点:椭圆的标准方程.7. 在中,所对边分别为,若,则____________.【答案】.【解析】【分析】利用正弦定理把边角混合关系化成关于角的三角函数的关系式,再把正切化成弦,整理后可得,解出即可.【详解】由正弦定理可得,故,通分得到,.因为,所以,故即.因为,故,填.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.8. 已知数列的首项,其前项和为,若,则____________.【答案】.【解析】【分析】先求出的通项,再求的通项.【详解】因为,所以.因为,故,所以,是等比数列,公比为,首项为,故,所以.填.【点睛】一般地,与之间的关系是,我们常常用这个关系实现与之间的转化.9. 某地球仪上北纬纬线长度为,该地球仪的表面上北纬东经对应点与北纬东经对应点之间的球面距离为____________ (精确到0.01)【答案】6.21.【解析】【分析】先根据北纬的纬线长为得到地球仪的半径及的长度,再利用余弦定理算出球心与连线的夹角的余弦值,利用弧长公式可求球面距离.【详解】设地球仪的球心为,因为北纬的纬线长为,纬线所在的小圆的半径为,所以.又地球仪的半径为,所以,所以之间的球面距离为.【点睛】对于球面上两点间的球面距离的计算,关键是球心与两点的连线的夹角的大小计算,可利用纬线长、纬度及两点所在的经度计算的长度,再利用余弦定理算出的大小.10. 已知直线与抛物线相交于两点,为抛物线的焦点,若,则实数____________.【答案】.【解析】【分析】直线过点,抛物线的准线为,根据抛物线几何性质可知到准线的距离与到准线的距离之比为,故而为的中点,设,则可求的坐标,从而得到的值.【详解】设,为抛物线的准线方程,过点分别作准线的垂线,垂足为,则,,所以,所以.设,则,故,解得,故.填.【点睛】圆锥曲线中与焦点或准线有关的问题,可以考虑利用其几何性质来处理.如抛物线上的点到焦点的距离可以转化为到准线的距离,椭圆上的点到一个焦点的距离可以转化到另一个焦点的距离,也可以转化到相应准线的距离.11. 将的图像向右平移2个单位后得曲线,将函数的图像向下平移2个单位后得曲线,与关于轴对称,若的最小值为,且,则实数的取值范围为____________. 【答案】.【解析】试题分析:首先应求出的表达式,曲线对应的函数式为,曲线与关于轴对称,因此的函数解析式为,向上平移2个单位,就是函数的图象,则.,其最小值大于,说明函数的最小值大于.下面观察函数,若,则当时,,无最小值,同理当时,时,,无最小值,因此,,当且仅当时等号成立,即最小值为,从而,解得.考点:图象的变换,函数的最小值,解不等式.12. 已知“”为“”的一个全排列,设是实数,若“”可推出“或”则满足条件的排列“”共有_______个.【答案】224.【解析】【分析】中有1和6,分同在或和不同在或两种情况分类讨论即可.【详解】如果为或为,则余下4个元素无限制,共有种,如果中有1,有6,则共有种,如果中有6,有1,则共有种,综上,共有种,填.【点睛】对于排数问题,我们有如下策略:(1)特殊位置、特殊元素优先考虑,比如偶数、奇数等,可考虑末位数字的特点,还有零不能排首位等;(2)先选后排,比如要求所排的数字来自某个范围,我们得先选出符合要求的数字,在把它们放置在合适位置;(3)去杂法,也就是从反面考虑.二、选择题.13. 函数的反函数是( )A. B.C. D.【答案】D【解析】【分析】对给定的函数反解(用表示)即可得到反函数.【详解】令,因,故且,因,故,所以反函数为,其中,故选D.【点睛】求给定函数的反函数,只需反解后互换即得反函数,注意反函数的定义域就是原函数的值域且反解时注意自变量的范围.14. 直线的法向量是,若,则直线的倾斜角为( )A. B. C. D.【答案】B【解析】【分析】设为直线的倾斜角,则根据法向量可得方向向量为,故斜率为,由知,因此可用反三角函数表示倾斜角.【详解】直线的方向向量为,所以其斜率为.设其倾斜角为,则.又,所以,故且,故选B.【点睛】用反三函数表示角时,要注意反三角函数值角的范围:如,,,也要注意所要表示的角的范围,如本题中直线的方向向量若为且,因倾斜角的范围为,故直线的倾斜角为.15. 已知是单位圆上三个互不相同的点,若,则的最小值是( )A. 0B.C.D.【答案】C【解析】试题分析:记单位圆的圆心为,由于,则与同向,,,可见最小值为,(时,取得最小值).选C.考点:向量的数量积.16. 已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是( )A. (1)(3)B. (1)(4)C. (2)(3)D. (2)(4)【答案】D【解析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.三、解答题.17. 在直三棱柱中,,,.求:(1)异面直线与所成角的大小;(2)直线到平面的距离.【答案】(1).(2).【解析】【分析】(1)或其补角就是异直线与所成角,我们可证为直角三角形且,故可得异面直线所成角的大小.(2)先计算,再利用等积法求到平面的距离,它就是直线到平面的距离.【详解】(1)因为,所以 (或其补角)是异直线与所成角.因为,,,所以平面,所以.中,,所以,所以异面直线与所成角的大小为.(2)因为平面,所以到平面的距离等于到平面的距离,设到平面的距离为,因为,,可得,直线与平面的距离为.【点睛】异面直线所成角的计算,可通过平移把空间角转化为平面角,在可解的三角形中求其大小.直线到平面的距离可转化为点到平面的距离,求点面距时,注意利用题设中已有的线面垂直,如果没有,则利用面面垂直构建线面垂直,也可利用等积法求点面距.18. 已知,其中是常数.(1)若是奇函数,求的值;(2)求证:的图像上不存在两点,使得直线平行于轴.【答案】(1).(2)见解析.【解析】【分析】(1)利用可计算的值.(2)可证为上的增函数.【详解】(1)设定义域为,因为是奇函数,所以对任意,有,整理得,故.此时,,为奇函数.(2)若,则,若,则,若,则,设定义域内任意,设,..当时,总有,,得;当时,,得;当时,,,,,得,故总有在定义域上单调递增,所以总有在定义域上单调递增.的图像上不存在两点,使得所连的直线与轴平行.【点睛】求奇函数或偶函数中参数的取值,我们可以利用恒等式或来求.特别地,如果奇函数处有定义,则可利用来求参数的值(注意检验).19. 如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.【答案】(1),.(2) 时,达到最大此时八角形所覆盖面积前最大值为.【解析】【分析】(1)注意到,从而的周长为,故,所以,注意.(2)令,则,根据可求最大值.【详解】(1)设为,,,,,(2)令,只需考虑取到最大值的情况,即为,当,即时,达到最大此时八角形所覆盖面积前最大值为.【点睛】如果三角函数式中仅含有和,则可令后利用把三角函数式变成关于的函数,注意换元后的范围.20. 已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.(1)求双曲线的方程;(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;(3)过圆上任意一点作圆的切线交双曲线于两点,中点为,求证:.【答案】(1).(2).(3)见解析.【解析】【分析】(1),根据可得,利用双曲线的定义可得从而得到双曲线的方程.(2)设点,利用渐近线的斜率可以得到夹角的余弦为,利用点在双曲线上又可得为定值,故可得的值.(3)设,切线的方程为:,证明等价于证明,也就是证明,联立切线方程和双曲线方程,消元后利用韦达定理可以证明.【详解】(1)设的坐标分别为,因为点在双曲线上,所以,即,所以,在中,,,所以,由双曲线的定义可知:,故双曲线的方程为:.(2)由条件可知:两条渐近线分别为;.设双曲线上的点,设的倾斜角为,则,又,所以,故,所以的夹角为,且.点到两条渐近线的距离分别为,.因为在双曲线上,所以,所以.(3)由题意,即证:,设,切线的方程为:.时,切线的方程代入双曲线中,化简得:(,所以,.又,所以.时,易知上述结论也成立.所以.综上,,所以.【点睛】(1)过焦点且垂直于实轴的直线与双曲线交于,则(通径). (2)直线与圆锥曲线的位置关系,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系式中含有或,最后利用韦达定理证明该关系式为恒等式.21. 等差数列和等比数列中,,,是前项和.(1)若,求实数的值;(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.【答案】(1).(2) 所有的符合题意的.(3) .【解析】试题分析:(1)数列是等比数列,其前和的极限存在,因此有公式满足,且极限为;(2)由于是正整数,因此可对按奇偶来分类讨论,因此当为奇数时,等比数列的公比不是整数,是分数,从而数列从第三项开始每一项都不是整数,都不在数列中,而当为偶数时,数列的所有项都在中,设,则,展开有,这里用到了二项式定理,,结论为真;(3)存在时只要找一个,首先不能为整数,下面我们只要写两数列的通项公式,让,取特殊值求出,如取,可得,此时在数列中,由于是无理数,会发现数列除第一项以外都是无理数,而是整数,不在数列中,命题得证,(如取其它的又可得到另外的值).试题解析:(1)对等比数列,公比.因为,所以.2分解方程,4分得或.因为,所以.6分(2)当取偶数时,中所有项都是中的项.8分证: 由题意:均在数列中,当时,说明的第n项是中的第项.10分当取奇数时,因为不是整数,所以数列的所有项都不在数列中。

2018年高考 理科数学 模拟试题

2018年高考 理科数学 模拟试题

B C 或 B C 90
ABC 是等腰三角形或直角三角形.
(II)当 B C 90 时, AD
--------------------------------6 分
1 BC DC , 2
与 ADC 的三边长是连续三个正整数矛盾,
B C , ABC 是等腰三角形。
M 在 线 段 PD 上 .
EF 平 面 PAC ; ME 与 平 面 PBC 所 成 的 角 和 直 线 ME 与 平 面 ABCD 所 成
( Ⅱ )如 果 直 线 的角相等,求
PM 的值. PD
解:(Ⅰ )证明:在平行四边形 ABCD 中, 高三理科数学答案 第
4 页
(共 8 页)
n(ad bc) 2 ,n a b c d . (a b)(c d )(a c)(b d )
解: ( Ⅰ)补全的列联表如下: 重点客户群 高频用户 非高频用户 合计 100 60 160 高三理科数学答案 第
3 页
一般客户群 20 20 40 (共 8 页)
合计 120 80 200
在直角三角形 ADC 中,设两直角边分别为 n, n 1, 斜边为n 1, 由 (n 1) 2 n 2 ( n 1) 2 得 n=4, 由余弦定理或二倍角公式得 cos BAC 或 cos BAC
7 . 25
7 . 25
----------------------------------------12 分
表 2: 一 周 内 市 民 使 用 单 车 的 频 率 分 布 统 计 表 使用次数 比率 不超过 3 次 18.2% 4、 5 次 21.8% 6、 7 次 30.1% 8、 9 次 19.2% 超过 9 次 10.7%

上海市七宝中学2017-2018学年高三模拟考试理数试题 Word版含解析

上海市七宝中学2017-2018学年高三模拟考试理数试题 Word版含解析

上海市七宝中学2017-2018学年高三模拟考试理数试题一、填空题(本大题共14小题,每题4分,满分56分.)1.函数y =______________. 【答案】(0,1] 【解析】试题分析:由0log 5.0≥x 得10≤<x ,应填答案(0,1]. 考点:对数不等式的解法.2.已知{}2,M y y x x R ==∈,{}222,,N x x y x y R =+=∈,则M N =_____.【答案】⎢⎣【解析】试题分析:因02≥=x y ,而2222≤-=y x ,故22≤≤-x ,所以]2,0[=N M .考点:集合的交集运算.3.在41(1)(1)x x++的展开式中2x 项的系数为______________.【答案】10考点:二项式定理及通项公式的运用.4.已知地球的半径为R ,在北纬045东经030有一座城市A ,在北纬045西经060有一座城市B ,则坐飞机从城市A 飞到B 的最短距离是______________.(飞机的飞行高度忽略不计) 【答案】3R π【解析】试题分析:已知纬圆所在的纬度为045,则纬圆的半径为R 22,纬圆周的两点B A ,的弦长为R R AB =⋅=222,所以点B A ,所在的球的大圆面上弧所对的圆心角为3π,则大圆的弧长为R 3π.考点:球面距离及计算.【易错点晴】球面距离的定义是经过球心的大圆上的劣弧的长.解答本题的关键是求出经过B A ,大圆的圆心角AOB ∠,为此先求045纬圆上这两点B A ,连线段的长AB ,即纬圆上的弦长AB .求的长时借助纬度的概念,求出了球心与纬圆面之间的距离=d R 22与纬圆的半径相等.由经度的定义可知0190=∠B AO ,所以R R AB =⋅=222,这样AOB ∆就是等边三角形,所以点B A ,所在的球的大圆面上弧所对的圆心角为3π,则大圆的弧长为R 3π,即球面距离是R 3π.5.已知一随机变量ξ的分布列如下表,则随机变量ξ的方差D ξ=______________.【答案】11 【解析】试题分析:因为3)840(41)(,20)64160(41)(2=++==++=x E x E ,所以11920)()(22=-=-=x E x E D ξ.考点:数学期望和方差的计算. 6.在极坐标系中,点(2,),(2,)2A B ππ,C 为曲线2cos ρθ=的对称中心,则三角形ABC 面积等于________. 【答案】3 【解析】试题分析:将点B A ,化为直角坐标为)2,0(),0,2(B A -,极坐标方程化为直角坐标为0222=-+x y x ,所以圆心为)0,1(C ,所以ABC ∆的面积为32321=⨯⨯=S . 考点:极坐标方程及运用.7.高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是______________.(结果用最简分数表示) 【答案】3135【解析】试题分析:从7名学生中选3名的种数为3512356737=⨯⨯⨯⨯=C ,其中无女生的种数为41434==C C ,所以至少含有一个女生的概率为35313541=-=P . 考点:古典概型的计算公式及排列数组合数公式的运用.8.在复数范围内,若方程22012690x x ++=的一个根为α,则α=______________.考点:复数的模及计算.9.将()f x =sin cos xx 的图象按(,0)(0)n a a =->平移,所得图象对应的函数为偶函数,则a 的最小值为______________. 【答案】56π 【解析】试题分析:因为()f x =sin cos xx )6cos(sin cos 3π+=-=x x x ,所以按向量平移后所得的函数为)6cos()(π++=a x x g ,由题设可得1)60cos()0(±=++=πa g ,即ππk a =+6,也即6ππ-=k a ,所以a 的最小值为56π.考点:行列式的计算及三角函数的图象和性质.10.已知()y f x =是定义在R 上的增函数,且()y f x =的图象关于点(6,0)对称,若实数,x y满足不等式22(6)(836)0f x x f y y -+-+≤,则22x y +的取值范围是______________. 【答案】[16,36]考点:函数的单调性和圆的方程的等知识的综合运用.11.函数()f x 对任意12,[,]x x m n ∈都有1212()()f x f x x x -≤-,则称()f x 为在区间[,]m n 上的可控函数,区间[,]m n 称为函数()f x 的“可控”区间,写出函数2()21f x x x =++的一个“可控”区间 是________. 【答案】1[,0]2-的子集都可以 【解析】试题分析:因为)](1)(2[)()(212121x x x x x f x f -++=-,由可控函数的定义可得1|1)(2|21≤++x x ,即0121≤+≤-x x ,所以区间[,]m n 应为]0,21[-的一个子区间.考点:定义新概念和综合运用所学知识.【易错点晴】本题以函数的形式为背景,考查的是不等式的有关知识及推理判断的能力.结论的开放性和不确定性是本题的一大特色.解答时应充分依据题设条件,合理有效地利用好可控函数及可控区间等新信息和新定义,并以此为基础进行推理论证,从而写出满足题设条件的答案.解答本题时,借助绝对值不等式的性质进行巧妙推证,从而探寻出符合题设条件的一可控区间的区间.12.椭圆22221(0)43x y a a b+=>的左焦点为F ,直线x m =与椭圆相交于点,A B ,当FAB ∆的周长最大时,FAB ∆的面积是______________.【答案】acb S 23=考点:椭圆的定义和几何性质.13.用符号(]x 表示小于x 的最大整数,如(]3,( 1.2]2π=-=-,有下列命题:①若函数()(],f x x x x R =-∈,则()f x 的值域为[1,0)-;②若(1,4)x ∈,则方程1(]5x x -=有三个根;③若数列{}n a 是等差数列,则数列{}(]n a 也是等差数列;④若57,{,3,}32x y ∈,则(](]2x y∙=的概率为29P =. 则下列正确命题的序号是______________. 【答案】①②④ 【解析】试题分析:由定义0](1<-≤-x x ,所以其值域为[1,0)-,故①正确;由于5.0](=-x x ,因此可求得2.3,2.2,2.1=x ,所以②正确;对于③,如取数列7.4,9.2,1.1成等差数列,但4]7.4(,2]9.2(,1]1.1(===不成等差数列;对于④很容易验证是正确的.故应填①②④.考点:函数的性质及分析问题解决问题的能力.【易错点晴】本题以符号函数为背景,考查的是函数与方程、等差数列和等比数列、概率等许多有关知识和运算求解及推理判断的能力.定义新概念运用新信息是解答本题的一大特色.解答时应充分依据题设条件,对题设中提供的几个命题进行分析推断最后作出真假命题的判断.对于命题,举出一个反例,进行了推断从而说明它是假命题.运用反例是否定一个命题是真命题的有效方式和方法.14.设()cos 2()cxf x ax bx x R =++∈,,,a b c R ∈且为常数,若存在一公差大于0的等差数列{}n x(*n N ∈),使得{()}n f x 为一公比大于1的等比数列,请写出满足条件的一组,,a b c 的值【答案】0,0,0a b c ≠=>(答案不唯一,一组即可) 【解析】试题分析:由题设可取1,0,1===c b a ,此时x x x f 2cos )(+=,存在数列25,23,2πππ,满足题设,应填答案1,0,1===c b a .考点:函数与等差等比数列以及分析探究的能力.【易错点晴】本题以函数的形式为背景,考查的是等差数列和等比数列的有关知识及推理判断的能力.开放性是本题的一大特色.解答时应充分依据题设条件,想方设法构造出一个满足题设条件的数列.由于本题是一道结论开放型的问题,因此它的答案是不唯一的,所以在求解时只要求出一组符合题目要求的数据即可.如本题的解答时取1,0,1===c b a ,函数xx x f 2cos )(+=,取数列}25,23,2{πππ,则253322)25(,2)23(,2)2(ππππππ===f f f 成等比数列,故答案应填1,0,1===c b a . 二、选择题(本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)15.若直线l 的一个法向量(3,1)n =,则直线l 的一个方向向量d 和倾斜角α分别为( ) A .(1,3);arctan3d α== B .(1,3);arctan(3)d α=-=- C .(1,3);arctan3d απ==- D .(1,3);arctan3d απ=-=- 【答案】D 【解析】试题分析:由题设可知直线l 的一个方向向量是)3,1(-=,其斜率3-=k ,即3tan -=α,故3arctan -=πα,应选D.考点:直线的法向量和反正切函数.16.在ABC ∆中,“cos cos cos 0A B C ∙∙<”是“ABC ∆为钝角三角形”的( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 【答案】A试题分析:由题设条件可知C B A cos ,cos ,cos 中必有一个是负数,即三个内角中必有一个是钝角,所以是钝角三角形,是充分条件;反之,若三角形是钝角三角形,则C B A cos ,cos ,cos 的积必为负数,即是必要条件,应选答案A. 考点:解三角形.【易错点晴】本题以解三角形的问题的形式为背景,考查的是充分必要条件的有关知识及推理判断的能力. 解答好本题的关键是搞清楚钝角三角形的概念是什么?其外延是什么?其实钝角三角形的概念是有一个内角是钝角即可了.解答这个问题的过程中常常会出现三个内角都是钝角的错误,将锐角三角形的概念和钝角三角形的概念混淆在一起,从而误判得出不正确的答案.17.定义域是一切实数的函数()y f x =,其图象是连续不断的,且存在常数()R λλ∈使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“λ—半随函数”.有下列关于“λ—半随函数”的结论:①()0f x =是常数函数中唯一一个“λ—半随函数”;② “12—半随函数”至少有一个零点;③2()f x x =是一个“λ—半随函数”;其中正确结论的个数是( )A .1个B .2个C .3个D .0个 【答案】A考点:函数及新定义的概念的灵活运用.【易错点晴】本题以函数的形式为背景,考查的是函数的零点等有关知识及推理判断的能力. 命题的真假的判断及分析求解的能力是解答好本题的关键,本题给出的三个命题的真假的判断成为解答这道试题的重中之重.对于命题①,实数λ的取值是不唯一的,因此该命题是假命题;对于命题②,运用定义可得结论,显然这个方程0)(21)21(=-=+x f x f 的解是不唯一的,所以是真命题;对于命题③找不到实数λ满足题设,因此是假命题整个求解过程充满了推理和判断.18.已知数据123,,,,n x x x x 是上海普通职工n (3n ≥,*n N ∈)个人的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变;B .年收入平均数大大增大,中位数可能不变,方差变大;C .年收入平均数大大增大,中位数可能不变,方差也不变;D .年收入平均数可能不变,中位数可能不变,方差可能不变. 【答案】B 【解析】试题分析:由题设可知选择支中的A,C,D 都是不正确的,所以应选B. 考点:中位数平均数方差等概念的理解和计算.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分12分,其中第1小题6分,第2小题6分)在直三棱柱111ABC A B C -中,1AB AC ==,090BAC ∠=,且异面直线1A B 与11B C 所成的角等于060, 设1AA a =. (1)求a 的值;(2)求直线11B C 到平面1A BC 的距离.【答案】(1)1;(2)3. 【解析】试题分析:(1)运用平几的勾股定理等知识求解;(2)运用等积法求解. 试题解析:(1)∵11//BC B C ,∴1A BC ∠就是异面直线1A B 与11B C 所成的角,即0160A BC ∠=,又连接1AC ,AB AC =,则11A B AC = ∴1A BC ∆为等边三角形,由1AB AC ==,090BAC ∠=BC ⇒=∴11A B a =⇒==.(2)易知11//B C 平面1A BC ,又D 是11B C 上的任意一点,所以点D 到平面1A BC 的距离等于点1B 到平面1A BC 的距离. 设其为d ,连接1B C ,则由三棱锥11B A BC -的体积等于三棱锥11C A B B -的体积,求d ,11A B B ∆的面积12S =,1A BC ∆的面积'242S ==,又1CA A A ⊥,CA AB ⊥,∴CA ⊥平面11A B C ,所以'11333S AC S d d ∙∙=∙∙⇒=,即11B C 到平面1A BC 的距离等于3. 考点:空间的直线与平面的位置关系及几何体的体积公式.【易错点晴】立体几何是高中数学的重要内容之一,也是上海市历届高考必考的题型之一.本题考查是空间的直线与直线所成角的计算问题和直线与平面的距离的计算问题.解答时第一问充分借助已知条件中异面直线所成角的概念,通过解直角三角形而获解.关于第二问中直线与平面之间的距离问题,解答时巧妙运用转化的思想,将其转化为三棱锥的高的问题来处理,使得问题的求解过程简捷明快.20.(本小题满分14分,其中第1小题6分,第2小题8分)某海域有,A B 两个岛屿,B 岛在A 岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线C ,曾有渔船在距A 岛、B 岛距离和为8海里处发出过鱼群。

上海市2018-2019学年度七宝中学高三第二学期数学开学考试卷(解析版)

上海市2018-2019学年度七宝中学高三第二学期数学开学考试卷(解析版)

2018-2019学年上海市闵行区七宝中学高三(下)开学数学试卷(3月份)一、填空题1.已知复数z满足z(1+i)=2(i是虚数单位),则|z|=.2.已知集合A={x||x﹣1|<2,x∈R},B={x|2x≥1,x∈R},则A∩B=.3.已知f(x)=,其反函数为f﹣1(x),则f﹣1(0)=.4.已知a,b>0,2a=3b=m,且a、ab、b成等差数列,则m=5.若二项式(x+)6展开式的常项数为20,则a=.6.实数x,y满足不等式组,那么目标函数z=2x+4y的最小值是.7.长方体ABCD﹣A1B1C1D1内接于球O,且AB=BC=2,AA1=2,则A、B两点之间的球面距离为.8.已知F1,F2分别是椭圆+=1的左、右焦点,点P是椭圆上的任意一点,则的取值范围是.9.已知数列{a n}中,若a1=0,a i=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),则满足a i+a2i ≥100的i的最小值为.10.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为.11.已知函数f(x)=,记a n=f(n)(n∈N*),若{a n}是递减数列,则实数t的取值范围是.12.设整数n≥3,集合P={1,2,…,n},A,B是P的两个非空子集.则所有满足A中的最大数小于B中的最小数的集合对(A,B)的个数为:.二、选择题13.函数的最小正周期为()A.B.C.πD.2π14.二元一次方程组存在唯一解的必要非充分条件是()A.系数行列式D≠0B.比例式C.向量不平行D.直线a1x+b1y=c1,a2x+b2y=c2不平行15.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.B.C.D.16.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”.给出下列4个函数:①f(x)=sin(x);②f(x)=2x2﹣1;③f(x)=|1﹣2x|;④f(x)=log2(2x﹣2).其中存在唯一“可等域区间”的“可等域函数”为()A.①②③B.②③C.①③D.②③④三、解答题17.在正方体ABCD﹣A1B1C1D1中,棱AA1=2,E为棱CC1的中点.(1)求异面直线AE与BC1所成角的大小;(2)求三棱锥B1﹣ADE的体积.18.已知向量,,函数.(Ⅰ)求f(x)的最大值,并求取最大值时x的取值集合;(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B 为锐角,且f(B)=1,求的值.19.记数列{a n}的前n项和为S n,其中所有奇数项之和为S n′,所有偶数项之和为S n″.(1)若{a n}是等差数列,项数n为偶数,首项a1=1,公差d=,且S n″﹣S n′=15,求S n;(2)若数列{a n}的首项a1=1,满足2tS n+1﹣3(t﹣1)S n=2t(n∈N*),其中实常数t∈(,3),且S n′﹣S n″=,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.20.抛物线y2=2px(p>0)的焦点F为圆C:x2+y2﹣4x+3=0的圆心.(1)求抛物线的方程与其准线方程;(2)直线l与圆C相切,交抛物线于A,B两点;①若线段AB中点的纵坐标为4,求直线l的方程;②求的取值范围.21.若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R)是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.参考答案一、填空题1.【解答】解:∵z(1+i)=2,∴,则|z|=.故答案为:.2.【解答】解:A={x||x﹣1|<2,x∈R}={x|﹣1<x<3},B={x|2x≥1,x∈R}={x|x≥0},则A∩B={x|0≤x<3}=[0,3)故答案为:[0,3)3.【解答】解:f(x)=,∴f﹣1(x)=,∴f﹣1(0)=﹣1故答案为:﹣14.【解答】解:∵a,b>0,2a=3b=m≠1,∴a=,b=.∵a、ab、b成等差数列,∴2ab=a+b,∴2××=+.∴lgm===lg.则m=.故答案为:.5.【解答】解:二项式(x+)6展开式的通项公式:T r+1=x6﹣r=a r x6﹣2r,令6﹣2r=0,解得r=3.∴常项数为20=a3,则a=1.故答案为:1.6.【解答】解:约束条件对应的平面区域如下图示:当直线z=2x+4y过(3,﹣3)时,Z取得最小值﹣6.故答案为:﹣6.7.【解答】解:由AB=BC=2,AA1=2,得AC1=BD1=4,∴△ABO为正三角形,∠AOB=,∴A,B两点间的球面距离为2×=,故答案为:.8.【解答】解:,因为2≤PF1≤6且函数在x∈[2,6]上单调递增,所以,故.故答案为:[0,2].9.【解答】解:∵a i=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),∴a i+a2i=k2+(k+1)2≥100,故k≥7;故i的最小值为27=128,故答案为:128.10.【解答】解:∵△ABC是等边三角形,∴三角形的外接圆半径为2,以外接圆圆心O为原点建立平面直角坐标系,设A(2,0),B(﹣,3).设M(2cosθ,2sinθ),则,.∴=﹣18cosθ+6sinθ+18=12sin(θ﹣)+18.∴的最大值是18+12.故答案为18+12.11.【解答】解:要使函数f(x)=x2﹣3tx+18在x≤3(x∈N*)时单调递减,则>,解得t;要使函数f(x)=在x>3单调递减,则必须满足t﹣13<0,解得t<13.又函数f(x)在x∈N*时单调递减,则f(3)=27﹣9t>f(4)=(t﹣13)•,解得t <4.故t的取值范围是.故答案为:.12.【解答】解:设A中的最大数为k,其中1≤k≤n﹣1,整数n≥3,则A中必含元素k,另元素1,2,…,k﹣1,可在A中,故A的个数为:++…+=2k﹣1,B中必不含元素1,2,…,k,另元素k+1,k+2,…,n可在B中,但不能都不在B中,故B的个数为:++…+=2n﹣k﹣1,从而集合对(A,B)的个数为2k﹣1•(2n﹣k﹣1)=2n﹣1﹣2k﹣1,∴a n=(2n﹣1﹣2k﹣1)=(n﹣1)•2n﹣1﹣=(n﹣2)•2n﹣1+1.故答案为:(n﹣2)•2n﹣1+1.二、选择题13.【解答】解:∵=2sin(2x+),∴最小正周期T==π.故选:C.14.【解答】解:当两直当两直线共面时,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组存在唯一解当两直线异面,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组无解,故直线a1x+b1y=c1,a2x+b2y=c2不平行是二元一次方程组存在唯一解的必要非充分条件.故选:D.15.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33•A66•A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:.故选:B.16.【解答】解:①函数f(x)=sin(x)的周期是4,正弦函数的性质我们易得,A=[0,1]为函数的一个“可等域区间”,同时当A=[﹣1,0]时也是函数的一个“可等域区间”,∴不满足唯一性.②当A=[﹣1,1]时,f(x)∈[﹣1,1],满足条件,且由二次函数的图象可知,满足条件的集合只有A=[﹣1,1]一个.③A=[0,1]为函数f(x)=|2x﹣1|的“可等域区间”,当x∈[0,1]时,f(x)=2x﹣1,函数单调递增,f(0)=1﹣1=0,f(1)=2﹣1=1满足条件,∴m,n取值唯一.故满足条件.④∵f(x)=log2(2x﹣2)单调递增,且函数的定义域为(1,+∞),若存在“可等域区间”,则满足,即,∴m,n是方程2x﹣2x+2=0的两个根,设f(x)=2x﹣2x+2,f′(x)=2x ln2﹣2,当x >1时,f′(x)>0,此时函数f(x)单调递增,∴f(x)=2x﹣2x+2=0不可能存在两个解,故f(x)=log2(2x﹣2)不存在“可等域区间”.故选:B.三、解答题17.【解答】解:(1)取BC的中点,连接EF、AF,因为EF∥BC1,所以∠AEF(或其补角)为异面直线AE与BC1所成角,又AE==3,EF=,AF=,所以cos∠AEF==,又0<∠AEF<π,所以异面直线AE与BC1所成角的大小为,故答案为(2)取BB1的中点H,连接EH,则EH∥AD,则V=V=V=V==,故答案为:.18.【解答】解:(Ⅰ)==﹣2===.故f(x)max=1,此时,得.所以取得最大值的x的集合为{x|}.(Ⅱ)由f(B)=,又∵0<B<,∴.∴,∴.由a,b,c成等比数列,则b2=ac,∴sin2B=sin A sin C.∴==.19.【解答】解:(1)若数列{a n}项数n为偶数,由已知,得S″﹣S'=15=,解得n =20,Sn=1×20+=305.(2)在2tS n+1﹣3(t﹣1)S n=2t(n∈N*)中,令n=1,得a2=,∵2tS n+1﹣3(t﹣1)S n=2t(n∈N*)①可得2tS n﹣3(t﹣1)S n﹣1=2t(n∈N*,n>1)②①减去②得:=,且,∵t∈(,3),∴0<||<1,.(当t=1时,数列为1,0,0…,显然不合题意)所以,{a n}是首项a1=1,公比q=的等比数列,且公比0<|q|<1,设项数n=3,∵S'﹣S″=,∴∴,解得或(舍),由解得,∈(,3),所以,当t=﹣2时,对应的数列为1,,.设数列{a n}为无穷数列,由题意,得S'=,S″=,∵S'﹣S″=,∴=,∴q=﹣,由=﹣解得∈(,3),∴当t=时,对应的数列为:1,﹣,,…….20.【解答】解:(1)由圆C:x2+y2﹣4x+3=0配方可得:(x﹣2)2+y2=1,可得圆心C(2,0).∴抛物线的焦点F(2,0).∴=2,解得p=4.∴抛物线的准线方程为:x=﹣2.(2)设直线l的方程为:my+t=x,A(x1,y1),B(x2,y2).∵直线l与圆C相切,∴=1,化为:(t﹣2)2=m2+1≥1.∴t≥3,或t≤1.联立,化为:y2﹣8my﹣8t=0,△=64m2+32t>0.∴t>﹣2m2.∴t≥3,或﹣2m2<t≤1.∴y1+y2=8m,y1y2=﹣8t.①∵线段AB中点的纵坐标为4,∴4m=4,∴m=,∴(t﹣2)2=m2+1=4,解得t=0或t=4,故直线l的方程为x﹣y=0或x﹣y﹣4=0②•=(x1﹣2)(x2﹣2)+y1y2=(my1+t﹣2)(my2+t﹣2)+y1y2=(m2+1)y1y2+m(t﹣2)(y1+y2)+(t﹣2)2=﹣8t(m2+1)+8m2(t﹣2)+(t﹣2)2=﹣8t(t﹣2)2+8[(t﹣2)2﹣1](t﹣2)+(t﹣2)2=﹣15t2+52t﹣44,=﹣15(t﹣)2+∈(﹣∞,﹣7].∴的取值范围是(﹣∞,﹣7].21.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.。

2018年七宝中学高三年级下学期开学考试数学试卷

2018年七宝中学高三年级下学期开学考试数学试卷

2017-2018学年上海市闵行区七宝中学高三年级下学期开学考试数学试卷一、填空题 1、不等式11>x的解集是_______ 【答案】{|01}x x << 【解析】∵x 1>1 ∴x x x -=-111>0 ∴2)1(xx x ->0()10x x ⇒-> ∴0<x <1∴不等式x1>1的解集为{0x <x <1}2、已知直线023:1=+-y x l ,0533:2=-+y x l ,则直线1l 与2l 的夹角是______ 【答案】3π【解析】因为直线1l 故倾斜角为060,直线2l ,倾斜角为0120,故两直线的夹角为060,即两直线的夹角为3π. 3、函数3sin 2()2cos 1x f x x-=的最大值是_____【答案】5 【解析】x x x f cos 4sin 3)(+=)(sin 5ϕ+=x 其中4tan 3ϕ=∴()x f 最大值为5. 4、i 为虚数单位,θθ2sin 2cos 1i z -=对应的点在第二象限,则θ是第_____象限的角【答案】一、三【解析】θθ2sin 2cos 1z i -=()()θθθθθθ2sin 2cos 2sin 2cos 2sin 2cos i i i +-+=θθ2sin i 2cos += Θ对应点在第二象限∴θ2cos <0,θ2sin >0,∴2k 2ππ+<θ2<ππ+k 2,Z ∈k解得:4k ππ+<θ<2k ππ+,Z ∈k()Z n n ∈=2k 时,4n 2ππ+<θ<2n 2ππ+,θ为第一象限角()Z n n ∈-=12k 时,ππ43n 2-<θ<2n 2ππ-,θ为第三象限角综上可得:θ为第一、三象限角。

5、已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是______ 【答案】0.1 【解析】222220.30.20.10.40.55 5.1,51(0.40.30.30.4)0.15x s ---+++=+=∴=⨯+++=Q6、从二项式11)1(x +的展开式中取一项,系数为奇数的概率是______ 【答案】23【解析】二项式()111x +的展开式中通项公式rrx C T 111r =+(11...,2,1,0r =)其中11,10,9,8,3,2,1,0r =,r11C 为奇数 ∴系数为奇数的概率32128==7、命题“对任意⎥⎦⎤⎢⎣⎡∈4,0πx ,m x <tan 恒成立”是假命题,则实数m 取值范围是_______ 【答案】-1]∞(, 【解析】 当⎥⎦⎤⎢⎣⎡∈4,0πx 时,[]1,0tan ∈x 若x tan <m 恒成立,则m >1∵命题是假命题, ∴1m ≤∴实数m 取值范围是](1-,∞ 8、函数)1,0)(34(log )(2≠>+-=a a x x x f a 在),[+∞∈m x 上存在反函数,则m 的取值范围是_______ 【答案】(3,)+∞ 【解析】Θ函数()()34log 2+-=x x x f a (a >0,1≠a )在[)+∞∈,m x 上存在反函数,∴函数()()34log 2+-=x x x f a (a >0,1≠a )在[)+∞∈,m x 单调∵函数的定义域为()()∞+∞,,31-Y ,34y 2+-=x x 的对称轴为2=x∴()+∞∈,3m9、若平面向量b a ρρ,满足||2,(2)12a a b b =+⋅=r rr r ,则||b ρ的取值范围为________【答案】[2,6] 【解析】设a ρ,b ρ的夹角为θ,Θ()224cos 22122b b b b b b a ρρρρρρρ+≤+⨯⨯==⋅+θ2b ≥∴ρ或6b -≤ρ(舍)又()b b b b b b a ρρρρρρρΘ4cos 2212222-≥+⨯==⋅+θ6b 2-≤≤∴ρ综上:6b 2≤≤ρ10、已知数列}{n a ,11=a ,113nn n a a +⎛⎫+= ⎪⎝⎭,*∈N n ,则12321lim()n n a a a a -→∞++++L =______【答案】98【解析】1123452221222422212112321211,,3())(+=11(1)111119193++++11133388388319919lim()lim()8838nn n n n n n n n n n n n a a n N a a a a a a a a a a a +--------→∞→∞⎛⎫+=∈ ⎪⎝⎭∴++++++-=+=+-=-⨯⨯-∴++++=-=⨯Q L L L ()1 11、已知函数()(0)a f x x a x =+>,若对任意的1,13m n p ⎡⎤∈⎢⎥⎣⎦、、,长为)()()(p f n f m f 、、的三条线段均可以构成三角形,则正实数a 的取值范围是______【答案】11511593⎡⎫⋃⎪⎢⎭⎣(,), 【解析】函数()x a x x f +=(a >0)的导数为()21xax f -=' 当x >a 时,()x f '>0,()x f 递增; 当x <a 时,()x f '<0,()x f 递减。

2018-2019学年上海市闵行区七宝中学高三(下)开学数学试卷(3月份)-解析版

2018-2019学年上海市闵行区七宝中学高三(下)开学数学试卷(3月份)-解析版

2018-2019学年上海市闵行区七宝中学高三(下)开学数学试卷(3月份)一、选择题(本大题共4小题,共12.0分)1.函数的最小正周期为()A. B. C. D.2.二元一次方程组存在唯一解的必要非充分条件是()A. 系数行列式B. 比例式C. 向量不平行D. 直线,不平行3.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A. B. C. D.4.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”.给出下列4个函数:①f(x)=sin(x);②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=log2(2x-2).其中存在唯一“可等域区间”的“可等域函数”为()A. ①②③B. ②③C. ①③D. ②③④二、填空题(本大题共12小题,共36.0分)5.已知复数z满足z(1+i)=2(i是虚数单位),则|z|=______.6.已知集合A={x||x-1|<2,x∈R},B={x|2x≥1,x∈R},则A∩B=______.7.已知f(x)=,其反函数为f-1(x),则f-1(0)=______.8.已知a,b>0,2a=3b=m,且a、ab、b成等差数列,则m=______9.若二项式(x+)6展开式的常项数为20,则a=______.10.实数x,y满足不等式组,那么目标函数z=2x+4y的最小值是______.11.长方体ABCD-A1B1C1D1内接于球O,且AB=BC=2,AA1=2,则A、B两点之间的球面距离为______.12.已知F1,F2分别是椭圆+=1的左、右焦点,点P是椭圆上的任意一点,则的取值范围是______.13.已知数列{a n}中,若a1=0,a i=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),则满足a i+a2i≥100的i的最小值为______.14.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为______.15.已知函数f(x)=,,>,记a n=f(n)(n∈N*),若{a n}是递减数列,则实数t的取值范围是______.16.设整数n≥3,集合P={1,2,…,n},A,B是P的两个非空子集.则所有满足A中的最大数小于B中的最小数的集合对(A,B)的个数为:______.三、解答题(本大题共5小题,共60.0分)17.在正方体ABCD-A1B1C1D1中,棱AA1=2,E为棱CC1的中点.(1)求异面直线AE与BC1所成角的大小;(2)求三棱锥B1-ADE的体积.18.已知向量,,,,函数.(Ⅰ)求f(x)的最大值,并求取最大值时x的取值集合;(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B为锐角,且f (B)=1,求的值.19.记数列{a n}的前n项和为S n,其中所有奇数项之和为S n′,所有偶数项之和为S n″.(1)若{a n}是等差数列,项数n为偶数,首项a1=1,公差d=,且S n″-S n′=15,求S n;(2)若数列{a n}的首项a1=1,满足2tS n+1-3(t-1)S n=2t(n∈N*),其中实常数t∈(,3),且S n′-S n″=,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.20.抛物线y2=2px(p>0)的焦点F为圆C:x2+y2-4x+3=0的圆心.(1)求抛物线的方程与其准线方程;(2)直线l与圆C相切,交抛物线于A,B两点;①若线段AB中点的纵坐标为4,求直线l的方程;②求的取值范围.21.若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)-f(x2)|≤k|x1-x2|成立,则称函数f(x)在其定义域D上是“k-利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k-利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x是否是“2-利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R)是周期为2的“1-利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)-f(x2)|≤1.答案和解析1.【答案】C【解析】解:∵=2sin(2x+),∴最小正周期T==π.故选:C.由已知利用两角和的正弦函数公式化简函数解析式可得f(x)=2sin(2x+),利用三角函数的周期公式即可求值得解.本题主要考查了两角和的正弦函数公式,三角函数的周期公式的应用,属于基础题.2.【答案】D【解析】解:当两直当两直线共面时,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组存在唯一解当两直线异面,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组无解,故直线a1x+b1y=c1,a2x+b2y=c2不平行是二元一次方程组存在唯一解的必要非充分条件.故选:D.利用二元一次方程组存在唯一解时,系数行列式不等于0,即可得到A,B,C为充要条件,对于选项的,直线分共面和异面两种情况.本题考查二元一次方程组的解,解题的关键是利用二元一次方程组存在唯一解时,系数行列式不等于0,以及空间两直线的位置关系,属于基础题.3.【答案】B【解析】解:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33•A66•A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:.故选:B.由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有A1010;满足条件的事件要得到需要分为三步,根据分步计数原理得到结果,再根据古典概型公式得到结果.本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.4.【答案】B【解析】解:①函数f(x)=sin (x)的周期是4,正弦函数的性质我们易得,A=[0,1]为函数的一个“可等域区间”,同时当A=[-1,0]时也是函数的一个“可等域区间”,∴不满足唯一性.②当A=[-1,1]时,f(x)∈[-1,1],满足条件,且由二次函数的图象可知,满足条件的集合只有A=[-1,1]一个.③A=[0,1]为函数f(x)=|2x-1|的“可等域区间”,当x∈[0,1]时,f(x)=2x-1,函数单调递增,f(0)=1-1=0,f(1)=2-1=1满足条件,∴m,n取值唯一.故满足条件.④∵f(x)=log2(2x-2)单调递增,且函数的定义域为(1,+∞),若存在“可等域区间”,则满足,即,∴m,n是方程2x-2x+2=0的两个根,设f(x)=2x-2x+2,f′(x)=2x ln2-2,当x>1时,f′(x)>0,此时函数f(x)单调递增,∴f(x)=2x-2x+2=0不可能存在两个解,故f(x)=log2(2x-2)不存在“可等域区间”.故选:B.根据“可等域区间”的定义分别进行判断即可得到结论.本题主要考查与函数有关的新定义问题,根据“可等域区间”的定义,建立条件关系是解决本题的关键,综合性较强,有一定的难度.5.【答案】【解析】解:∵z(1+i)=2,∴,则|z|=.故答案为:.把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础的计算题.6.【答案】[0,3)【解析】解:A={x||x-1|<2,x∈R}={x|-1<x<3},B={x|2x≥1,x∈R}={x|x≥0},则A∩B={x|0≤x<3}=[0,3)故答案为:[0,3)求出集合的等价条件,结合交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.7.【答案】-1【解析】解:f(x)=,∴f-1(x)=,∴f-1(0)=-1 故答案为:-1先求出反函数,再代值计算即可.本题考查了反函数的求法及函数值的计算,属于简单题.8.【答案】【解析】解:∵a,b>0,2a=3b=m≠1,∴a=,b=.∵a、ab、b成等差数列,∴2ab=a+b,∴2××=+.∴lgm===lg.则m=.故答案为:.a,b>0,2a=3b=m≠1,利用对数换底公式化为a=,b=.根据a、ab、b成等差数列,可得2ab=a+b,代入利用对数运算性质即可得出.本题考查了对数换底公式、等差数列、指数与对数运算性质,考查了推理能力与计算能力,属于基础题.9.【答案】1【解析】解:二项式(x+)6展开式的通项公式:T r+1=x 6-r=a r x6-2r,令6-2r=0,解得r=3.∴常项数为20=a3,则a=1.故答案为:1.利用通项公式即可得出.本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.10.【答案】-6【解析】解:约束条件对应的平面区域如下图示:当直线z=2x+4y过(3,-3)时,Z取得最小值-6.故答案为:-6.本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.【答案】【解析】解:由AB=BC=2,AA1=2,得AC1=BD1=4,∴△ABO为正三角形,∠AOB=,∴A,B两点间的球面距离为2×=,故答案为:.利用长方体外接球直径为其体对角线长求得外接球半径,及AB所对球心角,得解.此题考查了长方体外接球问题,难度不大.12.【答案】[0,2]【解析】解:,因为2≤PF1≤6且函数在x∈[2,6]上单调递增,所以,故.故答案为:[0,2].利用椭圆的定义,化简,再利用函数的单调性,即可求出的取值范围.本题考查椭圆的定义,考查函数的单调性,考查学生分析解决问题的能力,属于基础题.13.【答案】128【解析】解:∵a i=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),∴a i+a2i=k2+(k+1)2≥100,故k≥7;故i的最小值为27=128,故答案为:128.由题意可得a i+a2i=k2+(k+1)2≥100,从而解得.本题考查了数列,注意i与2i的关系对k的影响即可.14.【答案】18+12【解析】解:∵△ABC是等边三角形,∴三角形的外接圆半径为2,以外接圆圆心O为原点建立平面直角坐标系,设A(2,0),B(-,3).设M(2cosθ,2sinθ),则,.∴=-18cosθ+6sinθ+18=12sin (θ-)+18.∴的最大值是18+12.故答案为18+12.求出外接圆圆心,建立平面直角坐标系,将表示成θ的三角函数,求出最.大值本题考查了三角函数的恒等变换,平面向量的数量积运算,数形结合的解题思想,属于中档题.15.【答案】,【解析】解:要使函数f (x )=x 2-3tx+18在x≤3(x ∈N *)时单调递减,则>,解得t ;要使函数f (x )=在x >3单调递减,则必须满足t-13<0,解得t <13.又函数f (x )在x ∈N *时单调递减,则f (3)=27-9t >f (4)=(t-13)•,解得t <4.故t 的取值范围是.故答案为:.要使函数f (x )=x 2-3tx+18在x≤3(x ∈N *)时单调递减,则>,解得t ,解得t ;要使函数f (x )=在x >3单调递减,则必须满足t-13<0,解得t ;又函数f (x )在x ∈N *时单调递减,则f (3)>f (4),解得t .联立解得即可.本题考查了利用函数的单调性研究数列的单调性、二次函数的单调性、一次函数的单调性,属于难题.16.【答案】(n -2)•2n -1+1【解析】解:设A 中的最大数为k ,其中1≤k≤n -1,整数n≥3, 则A 中必含元素k ,另元素1,2,…,k-1,可在A 中, 故A 的个数为:++…+=2k-1,B 中必不含元素1,2,…,k ,另元素k+1,k+2,…,n 可在B 中,但不能都不在B 中, 故B 的个数为:++…+=2n-k -1,从而集合对(A ,B )的个数为2k-1•(2n-k -1)=2n-1-2k-1,∴a n=(2n-1-2k-1)=(n-1)•2n-1-=(n-2)•2n-1+1. 故答案为:(n-2)•2n-1+1.设A 中的最大数为k ,其中1≤k≤n -1,整数n≥3,则A 中必含元素k ,另元素1,2,…,k-1,可在A 中,B 中必不含元素1,2,…,k ;元素k+1,k+2,…,k 可在B 中,但不能都不在B 中.由此能求出a n .本题考查数列的第3项的求法,考查数列的通项公式的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.17.【答案】解:(1)取BC 的中点,连接EF 、AF ,因为EF ∥BC 1,所以∠AEF (或其补角)为异面直线AE 与BC 1所成角, 又AE = =3,EF = ,AF = , 所以cos ∠AEF ==,又0<∠AEF <π,所以异面直线AE 与BC 1所成角的大小为, 故答案为(2)取BB 1的中点H ,连接EH ,则EH ∥AD , 则V=V=V=V==,故答案为:. 【解析】(1)由异面直线所成角的求法得:∠AEF (或其补角)为所求,又AE==3,EF=,AF=,即cos ∠AEF==,即异面直线AE 与BC 1所成角的大小为, (2)利用等体积法求三棱锥的体积得:则V =V=V=V==,得解.本题考查了异面直线所成角的求法及利用等体积法求三棱锥的体积,属中档题.18.【答案】解:(Ⅰ)==,,-2===.故f(x)max=1,此时,∈,得,∈.所以取得最大值的x的集合为{x|,∈}.(Ⅱ)由f(B)=,又∵0<B<,∴ <<.∴,∴.由a,b,c成等比数列,则b2=ac,∴sin2B=sin A sin C.∴==.【解析】(Ⅰ)把给出的向量的坐标代入函数解析式,化简整理后得到,直接由即可得到使函数取得最大值1的x的取值集合;(Ⅱ)由B为锐角,利用f(B)=1求出B的值,把要求的式子切化弦,由a,b,c成等比数列得到sin2B=sinAsinC,代入化简后即可得到结论.本题考查了平面向量数量积的运算,考查了正弦定理,解答此题的关键是“降幂化积”,“角边互化”.是解决此类问题常用到的办法,此题是中档题.19.【答案】解:(1)若数列{a n}项数n为偶数,由已知,得S″-S'=15=,解得n=20,Sn=1×20+=305.(2)在2tS n+1-3(t-1)S n=2t(n∈N*)中,令n=1,得a2=,∵2tS n+1-3(t-1)S n=2t(n∈N*)①可得2tS n-3(t-1)S n-1=2t(n∈N*,n>1)②①减去②得:=,且,∵t∈(,3),∴0<||<1,.(当t=1时,数列为1,0,0…,显然不合题意)所以,{a n}是首项a1=1,公比q=的等比数列,且公比0<|q|<1,设项数n=3,∵S'-S″=,∴∴,解得或(舍),由解得,∈(,3),所以,当t=-2时,对应的数列为1,,.设数列{a n}为无穷数列,由题意,得S'=,S″=,∵S'-S″=,∴=,∴q=-,由=-解得∈(,3),∴当t=时,对应的数列为:1,-,,…….【解析】(1){a n}是等差数列,则S″-S′=(a2-a1)+(a4-a3)…(a2n-a2n-1)=d+d+…d=d×求出n,再利用等差数列前n项和公式计算.(2)根据S n 与an的固有关系a n=,得出=,借助于等比数列性质解决.本题考查的知识要点:数列的通项公式的求法及应用,分组求和的应用,主要考查学生的运算能力和转化能力,属于难题.20.【答案】解:(1)由圆C:x2+y2-4x+3=0配方可得:(x-2)2+y2=1,可得圆心C(2,0).∴抛物线的焦点F(2,0).∴=2,解得p=4.∴抛物线的准线方程为:x=-2.(2)设直线l的方程为:my+t=x,A(x1,y1),B(x2,y2).∵直线l与圆C相切,∴=1,化为:(t-2)2=m2+1≥1.∴t≥3,或t≤1.联立,化为:y2-8my-8t=0,△=64m2+32t>0.∴t>-2m2.∴t≥3,或-2m2<t≤1.∴y1+y2=8m,y1y2=-8t.①∵线段AB中点的纵坐标为4,∴4m=4,∴m=,∴(t-2)2=m2+1=4,解得t=0或t=4,故直线l的方程为x-y=0或x-y-4=0②•=(x1-2)(x2-2)+y1y2=(my1+t-2)(my2+t-2)+y1y2=(m2+1)y1y2+m(t-2)(y1+y2)+(t-2)2=-8t(m2+1)+8m2(t-2)+(t-2)2=-8t(t-2)2+8[(t-2)2-1](t-2)+(t-2)2=-15t2+52t-44,=-15(t-)2+∈(-∞,-7].∴的取值范围是(-∞,-7].【解析】(1)由圆C:x2+y2-4x+3=0配方可得:(x-2)2+y2=1,可得圆心C(2,0).可得抛物线的焦点F(2,0).因此=2,解得p,即可得出.(2)设直线l的方程为:my+t=x,A(x1,y1),B(x2,y2).由直线l与圆C相切,可得:(t-2)2=m2+1≥1.t≥3,或t≤1.联立,化为:y2-8my-8t=0,△>0.进而得到t≥3,或-2m2<t≤,根与系数的关系可得y1+y2=8m,y1y2=-8t,①根据中点坐标公式即可求出m的值,可得直线方程,②利用数量积运算性质,再利用二次函数的单调性即可得出.本题考查了抛物线与圆的标准方程及其性质、直线与圆相切的性质、直线与抛物线相交问题、向量数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)若函数f(x)=,(1≤x≤4)是“k-利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|≤k|x1-x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()-f()=log2-log2=-1-(-2)=1,而2|x1-x2|=,∴f(x1)-f(x2)>2|x1-x2|,∴函数f(x)=log2x不是“2-利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)-f(x2)|≤M-m=f(a)-f(b)≤|a-b|.若|a-b|≤1,显然有|f(x1)-f(x2)|≤|a-b|≤1.若|a-b|>1,不妨设a>b,则0<b+2-a<1,∴|f(x1)-f(x2)|≤M-m=f(a)-f(b+2)≤|a-b-2|<1.综上,|f(x1)-f(x2)|≤1.【解析】(1)根据新函数的定义求出k关于x1,x2的不等式,根据x1,x2的范围即可得出k的最小值;(2)令x1=,x2=即可举出反例,得出结论;(3)设f(x)的最大值为M,最小值为m,在一个周期内f(a)=M,f(b)=m,根据|a-b|与1的大小关系和“1-利普希兹条件函数”的性质得出结论.本题考查了抽象函数的性质与应用,属于中档题.。

2018-2019学年上海市闵行区七宝中学高三(上)期中数学试卷(精编含解析)

2018-2019学年上海市闵行区七宝中学高三(上)期中数学试卷(精编含解析)

2018-2019学年上海市闵行区七宝中学高三(上)期中数学试卷一、选择题(本大题共4小题,共20分)1.“函数存在反函数”是“函数在R上为单调函数”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】函数f(x)(x∈R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必要条件显然成立【详解】“函数f(x)在R上为增函数”⇒“函数f(x)(x∈R)存在反函数”;反之取f(x)=﹣x(x∈R),则函数f(x)(x∈R)存在反函数,但是f(x)在R上为减函数.故选:B.【点睛】本题考查充要条件的判断及函数存在反函数的条件,属基本题.2.若函数的反函数为,则函数与的图象可能是A. B. C. D.【答案】A【解析】【分析】f(x)和f﹣1(x)关于y=x对称是反函数的重要性质;而将f(x)的图象向右平移a个单位后,得到的图象的解析式为f(x﹣a)而原函数和反函数的图象同时平移时,他们的对称轴也相应平移.【详解】函数f(x﹣1)是由f(x)向右平移一个单位得到,f﹣1(x﹣1)由f﹣1(x)向右平移一个单位得到,而f(x)和f﹣1(x)关于y=x对称,从而f(x﹣1)与f﹣1(x﹣1)的对称轴也是由原对称轴向右平移一个单位得到即y=x﹣1,排除B,D;A,C选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),平移后的反函数必过点(1,1),由此得A选项有可能,C选项排除;故答案为:A【点睛】本题主要考查函数与其反函数的关系,考查函数的图像的变换,意在考查学生对这些知识的掌握水平和分析推理能力. 用整体平移的思想看问题,是解决本题的关键.3.在△中,角、、所对的边分别为、、,给出四个命题:(1)若,则△为等腰三角形;(2)若,则△为直角三角形;(3)若,则△为等腰直角三角形;(4)若,则△为正三角形;以上正确命题的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】对每一个命题逐一分析得解.【详解】(1)若,则2A=2B或2A+2B=π,所以A=B或A+B=,所以△ABC是等腰三角形或直角三角形,所以该命题是错误的.(2) 若,所以sinA=sin(,所以则△不一定为直角三角形,所以该命题是错误的.(3) 若,所以A=C=,则△为等腰直角三角形,所以该命题是真命题.(4)若,所以所以A=B=C,所以△ABC是正三角形.所以该命题是真命题.故答案为:B【点睛】本题主要考查正弦定理和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.4.是定义在上的函数,且,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能取值只能是()A. 0B. 1C. 2D. 3【答案】C【解析】【分析】直接利用定义函数的应用求出结果.【详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f()=,,3时,此时得到的圆心角为,,,然而此时x=0或者x=时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当=,此时旋转,此时满足一个x只会对应一个y,故答案为:C【点睛】本题考查函数的定义的运用,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题(本大题共12小题,共36.0分)5.集合的真子集有________个【答案】【解析】【分析】直接写出集合A的真子集即得解.【详解】集合A的真子集有,{0},{1},{2018},{0,1},{0,2018},{1,2018},所以集合A的真子集个数为7,故答案为:7【点睛】本题主要考查集合的真子集及其个数,意在考查学生对这些知识的掌握水平和分析推理能力.6.设全集,,,则图中阴影部分所表示的集合是________(用区间表示)【答案】【解析】【分析】先化简集合M和N,再求M∩N,再求即得阴影部分所表示的集合.【详解】由题得M={x|x>2或x<-2},N={x|x≥0},所以M∩N={x|x>2},所以.所以阴影部分所表示的集合为[0,2].故答案为:【点睛】本题主要考查韦恩图和集合的运算,意在考查学生对这些知识的掌握水平和分析推理能力.7.命题“若实数、满足,则或”是________命题(填“真”或“假”)【答案】真【解析】【分析】先考虑其逆否命题“a>2且b>3则a+b>5”的真假,即得原命题的真假.【详解】由题得原命题的逆否命题为“a>2且b>3则a+b>5”,由不等式同向可加的性质得其逆否命题为真命题,所以原命题是真命题.故答案为:真【点睛】(1)本题主要考查原命题及其逆否命题,考查命题真假性的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2)互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同.所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性.8.某个时钟时针长6cm,则在本场考试时间120分钟内,该时针扫过的面积是______【答案】.【解析】时针所扫过的面积是以时针的长度为半径,圆心角为×2=的扇形的面积,据此解答即可.【详解】∵设扇形的弧长为l,圆心角大小为α(rad),半径为r,∴则时针所扫过的面积是以时针的长度为半径,圆心角为×2=的扇形的面积,即:r=6,α=,∴扇形的面积为S=r2α==6π.故答案为:6π.【点睛】本题弄清楚分针时针的运动轨迹,是解答本题的关键,属于基础题.9.设为奇函数,则______.【答案】【解析】【分析】根据对数的基本运算以及函数奇偶性的性质建立条件关系即可求a的值;【详解】∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴,∴,即(1+ax)(1﹣ax)=﹣(x+1)(x﹣1),即1﹣a2x2=1﹣x2,即a2=1,∴a=﹣1或a=1,若a=1,则=不满足条件,舍去,故答案为:a=﹣1.【点睛】本题主要考查利用函数奇偶性的应用求参数的值,注意取舍,属于基础题.10.函数在上单调递增,则实数的取值范围为________【答案】【解析】先对函数求导得在(1,2)上恒成立,再分离参数求出a的范围.【详解】由题得在(1,2)上恒成立,所以.故答案为:【点睛】(1)本题主要考查利用导数研究不等式的单调性和恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)一般地,函数在某个区间可导,在某个区间是增函数≥0 .11.在△中,角、、所对的边分别为、、,若,,,则△的面积为________ 【答案】【解析】【分析】利用余弦定理可得b,再利用三角形面积计算公式即可得出.【详解】∵a=,∴a2=b2+c2﹣2bccosA,∴3=4+b2﹣4b×,化为b2﹣2b+1=0,解得b=1.∴S△ABC===.故答案为:.【点睛】本题主要考查了余弦定理、三角形面积计算公式,意在考查学生对这些知识的掌握水平和分析推理能力与计算能力.12.已知函数,则的解集是________【答案】【解析】【分析】由于函数是定义域在上的增函数,所以,解不等式即得解.【详解】由于函数是定义域在上的增函数,所以故答案为:【点睛】(1)本题主要考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)处理函数的问题,一定要注意“定义域优先的原则”,本题不要漏了3x-1≥0.13.若关于的不等式在上恒成立,则正实数的取值范围为________【答案】【解析】【分析】由题得|2x-a|>-x+1,再分1<x≤2和0≤x≤1两种情况讨论恒成立问题,即得解.【详解】由题得|2x-a|>-x+1,当1<x≤2时,-x+1<0,所以不等式恒成立.当0≤x≤1时,-x+1≥0,所以2x-a>-x+1或2x-a<x-1,所以a<3x-1或a>x+1在[0,1]上恒成立,所以a<-1或a>2,因为a>0,综合得a>2.故答案为:a>2【点睛】本题主要考查绝对值不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.14.已知常数,函数的图像经过点、,若,则________【答案】【解析】【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【详解】函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=16pq,所以:a2=16,由于a>0,故:a=4.故答案为:4【点睛】本题主要考查函数的性质和指数幂的运算,意在考查学生对这些知识的掌握水平和分析推理计算能力.15.已知函数,若,则的最大值是________【答案】【解析】【分析】设g(x)=f(x)-3,再判断函数g(x)的奇偶性和单调性,再由得,再利用三角换元求的最大值.【详解】设g(x)=f(x)-3,所以g(x)=,所以所以g(-x)=-g(x),所以函数g(x)是奇函数,由题得,所以函数g(x)是减函数,因为,所以,所以g=0,所以g=g(1-,所以不妨设,所以==,所以的最大值为.故答案为:【点睛】(1)本题主要考查函数的奇偶性和单调性,考查函数的图像和性质,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)本题的解题关键有三点,其一是构造函数g(x)得到函数g(x)的奇偶性和单调性,其二是由得,其三是利用三角换元求的最大值.16.已知函数,如果函数恰有三个不同的零点,那么实数的取值范围是________【答案】【解析】【分析】先求出函数的解析式,作出函数的图像,由题得有三个不同的实根,数形结合分析得到实数k 的取值范围.【详解】当1<x≤2时,f(x)=-x+2,当时,1<2x≤2,所以f(x)=,当时,<2x≤1,所以f(x)=,当时,<2x≤,所以f(x)=,当时,<2x≤,所以f(x)=,所以函数的图像为:其图像为线段PA,EB,GC,HD,,(不包括上端点A,B,C,D,)直线y=k(x-1)表示过定点P(1,0)的直线系,由题得C(),D(),当直线在PD(可以取到)和直线PC(不能取到)之间时,直线和函数f(x)的图像有三个不同的交点,由题得.所以k的取值范围为.故答案为:【点睛】(1)本题主要考查函数的图像和性质,考查求函数的解析式,考查函数的零点问题,意在考查学生读这些知识的掌握水平和数形结合分析推理能力.(2)解答本题的关键是求出函数f(x)的解析式作出函数的图像.(3)函数的零点问题常用的方法有:方程法、图像法、方程+图像法.三、解答题(本大题共5小题,共60.0分)17.已知锐角和钝角的终边分别与单位圆交于、两点,其中点坐标.(1)求的值;(2)若,求点坐标.【答案】(1);(2).【解析】【分析】(1)先求出,再求的值.(2)由题得,解方程组即得点B的坐标. 【详解】由题得,,所以=-7.由题设B(x,y),因为是钝角,所以,所以点B的坐标为.【点睛】本题主要考查三角函数的坐标定义,考查三角恒等变换求值,意在考查学生对这些知识的掌握水平和分析推理能力.18.如图,某公园有三个警卫室、、有直道相连,千米,千米,千米.(1)保安甲沿从警卫室出发行至点处,此时,求的直线距离;(2)保安甲沿从警卫室出发前往警卫室,同时保安乙沿从警卫室出发前往警卫室,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在公园内的最大通话距离不超过3千米,试问有多长时间两人不能通话?(精确到0.01小时)【答案】(1);(2).【解析】【分析】(1)由解直角三角形可得∠C=30°,在△BPC中由余弦定理可得BP的值;(2)设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,讨论0≤t≤1时,当1≤t≤4时,分别在△AMQ和△AMB中,运用余弦定理和二次不等式的解法,即可得到所求结论.【详解】(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC=4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+16>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在警卫室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t ≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.【点睛】本题考查解三角形的实际问题的解法,注意运用余弦定理,考查化简整理的运算能力,属于 中档题.19.问题:正数、满足,求的最小值.其中一种解法是:,当且仅当且时,即且时取等号.学习上述解法并解决下列问题:(1)若实数、、、满足,试比较和的大小,并指明等号成立的条件;(2)利用(1)的结论,求函数的值域.【答案】(1),且等号成立;(2).【解析】 【分析】(1)先化简=( ,再利用基本不等式求最值即得解.(2) 令再利用结论求函数的值域.【详解】=(当时取等.令由(1)得,因为f(t)>0,所以.所以函数的值域为.【点睛】(1)本题主要考查常量代换和基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题的解题关键是对“1”的常量代换,再利用基本不等式求函数的最小值. 利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.20.定义区间、、、的长度均为,已知不等式的解集为.(1)求的长度;(2)函数(,)的定义域与值域都是(),求区间的最大长度;(3)关于的不等式的解集为,若的长度为6,求实数的取值范围.【答案】(1);(2);(3).【解析】【分析】解不等式得其解集即得区间长度.(2) 由题意求出f(x)的定义域并化简解析式,判断出区间的范围和f(x)的单调性,由题意列出方程组,转化为m,n是方程f(x)的同号的相异实数根,利用韦达定理表示出mn和m+n,由判别式大于零求出a 的范围,表示出n﹣m 利用配方法化简后,由二次函数的性质求出最大值和a的值.(3)先求出A∩B⊆(0,6),再转化为不等式组,当x∈(0,6)时恒成立. 分析两个恒成立问题即得t的取值范围.【详解】解不等式得其解为-1≤x<6,所以解集A区间长度为6-(-1)=7.(2) 由题意得,函数f(x)的定义域是{x|x≠0},∵[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).∵f(x)=在[m,n]上是增函数,∴由条件得,则m,n是方程f(x)=x的同号相异的实数根,即m,n是方程(ax)2﹣(a2+a)x+1=0同号相异的实数根.∴mn=,m+n==,则△=(a2+a)2﹣4a2>0,解得a>1或a<﹣3.∴n﹣m====,∴n﹣m的最大值为,此时,解得a=3.即在区间[m,n]的最大长度为.(3) 因为x>0,A=[-1,6),的长度为6,所以A∩B⊆(0,6).不等式log2x+log2(tx+3t)<2等价于又A∩B⊆(0,6),不等式组的解集的各区间长度和为6,所以不等式组,当x∈(0,6)时恒成立.当x∈(0,6)时,不等式tx+3t>0恒成立,得t>0当x∈(0,6)时,不等式tx2+3tx﹣4<0恒成立,即恒成立当x∈(0,6)时,的取值范围为,所以实数综上所述,t的取值范围为【点睛】本题考查一个新定义问题,即区间的长度,本题解题的关键是对于条件中所给的三种不同的题目进行整理变化,灵活解答函数的最值问题和恒成立问题.21.已知定义在上的函数满足:对任意的实数都成立,当且仅当时取等号,则称函数是上的函数,已知函数具有性质:(,)对任意的实数()都成立,当且仅当时取等号.(1)试判断函数(且)是否是上的函数,说明理由;(2)求证:是上的函数,并求的最大值(其中、、是△三个内角);(3)若定义域为,①是奇函数,证明:不是上的函数;②最小正周期为,证明:不是上的函数.【答案】(1),是S函数;,不是S函数;(2)见解析,最大值;(3)见解析.【解析】【分析】(1)利用S函数的定义证明当0<a<1时,不是上的函数.当a大于1时,不是上的函数.(2)利用S函数的定义证明是上的函数,并利用S函数的性质求的最大值.(3)利用举反例证明.【详解】任取,当同理可证,当0<a<1时,不是上的函数.(2),,,所以是上的函数.由S函数的性质有所以(3)用举反例证明,令f(x)=sinx,所以f(x)=sinx是R上的周期为π的奇函数,取所以而即在R上,f(x)=sinx不是S函数,故原命题得证.【点睛】本题主要考查新定义解题,考查学生对新定义的理解和掌握水平和利用新定义处理数学问题的能力.解题的关键是对新定义理解透彻.。

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)副标题一、选择题(本大题共4小题,共4.0分)1.若椭圆C的方程为,则是曲线C的焦点在x轴上的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】C【解析】解:椭圆C的方程为,若曲线C的焦点在x轴上,,故椭圆C的方程为,则是曲线C的焦点在x轴上的充要条件,故选:C.根据椭圆的性质即可得到曲线C的焦点在x轴上则再根据充要条件的定义即可判断.本题考查充要条件的判断与应用,椭圆的简单性质,基本知识的考查.2.方程的解的个数有A. 0B. 1C. 2D. 3【答案】A【解析】解:由于,所以,由此得到方程无解.故选:A.利用反三角函数,判断等式两侧表达式的范围,即可推出结果.本题考查反三角函数的应用,基本知识的考查.3.已知实数x,y满足,则的取值范围是A. B. C. D.【答案】B【解析】解:设为圆上的任意一点,则P到直线的距离,P到原点的距离,.设圆与直线相切,则,解得,的最小值为,最大值为,,.故选:B.构造直线,过圆上一点P作直线的垂线PM,则,求出的范围即可得出答案.本题考查了直线与圆的位置关系,距离公式的应用,属于中档题.4.实数a,b满足,,则的取值范围是A. B. C. D.【答案】B【解析】解:实数a,b满足,,可得,,令,,可得,它的可行域如图:A在与的交点,,,是双曲线关于对称,显然在A处取得最大值:,在B处取得最小值:.则的取值范围是:.故选:B.求出a,b的范围,利用换元法画出可行域,利用目标函数的几何意义求解范围即可.本题考查线性规划的简单应用,画出可行域,利用换元法同时考查转化思想,数形结合思想的应用.二、填空题(本大题共12小题,共12.0分)5.若,则______.【答案】2【解析】解:,.故答案为:2.利用对数的性质直接求解.本题考查实数值的求法,考查对数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.已知直线l垂直于直角坐标系中的y轴,则l的倾斜角为______.【答案】0【解析】解:由直线倾斜角的定义可得,垂直于直角坐标系中的y轴的直线l的倾斜角为0.故答案为:0.直接由直线的倾斜角的定义得答案.本题考查直线倾斜角的定义,是基础题.7.在复平面内,点对应的复数z,则______.【答案】【解析】解:在复平面内,点对应的复数z,则.故答案为:.求出复数,然后求解复数的模.本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.8.若角的终边经过点,则的值为______【答案】【解析】解:角的终边经过点,可得.则.故答案为:.利用角的终边经过点,求出,然后求解即可.本题考查三角函数的定义,反三角函数的化简求值,是基本知识的考查.9.若不等式的解集为,则实数t等于______【答案】1【解析】解:因为不等式的解集为,即是方程的根,所以,不等式化为,解得.所以.故答案为:1.由题目给出的绝对值不等式的解解为,可知为不等式所对应方程的两个根,求出a,然后求解实数t即可.本题考查了绝对值不等式的解法,考查了数学转化思想方法,若该题采用去绝对值的办法,去绝对值后需要分类讨论,解法变得复杂,该题属基本知识的考查.10.由参数方程为参数,,所表示的曲线的右焦点的坐标为______【答案】【解析】解:根据题意,参数方程变形为普通方程为,为双曲线,其中,,且其焦点在x轴上,则所表示的曲线的右焦点的坐标为;故答案为:.根据题意,将参数方程变形为普通方程,分析其表示的曲线为双曲线,由双曲线的几何性质分析可得答案.本题考查参数方程与普通方程的互化,关键是将参数方程变形为普通方程.11.直角坐标系xOy内有点,,,,将四边形ABCD绕直线旋转一周,所得到的几何体的体积为______.【答案】【解析】解:直角坐标系xOy中,点,,,,如图所示,由图形知四边形ABCD是矩形,将矩形ABCD绕直线旋转一周,所得几何体为底面半径为1,高为2的圆柱,该圆柱的体积为.故答案为:.由题意知四边形ABCD是矩形,矩形ABCD绕直线旋转一周得圆柱,求出圆柱的体积即可.本题考查了矩形旋转后是圆柱体的应用问题,是基础题.12.A,B二校各推荐两篇课题放在一起评比,则四篇课文在排序中没有A校命题相邻的概率为______.【答案】【解析】解:A,B二校各推荐两篇课题放在一起评比,基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,四篇课文在排序中没有A校命题相邻的概率为.故答案为:.基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,由此能求出四篇课文在排序中没有A校命题相邻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.13.已知平面直角坐标系中的两点,,O原点,有,设:,,是平面曲线上任意三点,则的最大值为______.【答案】【解析】解:由,得.该曲线表示以为圆心,以为半径的圆.如图,圆内接三角形面积最大时三角形为正三角形,且最大面积为..故答案为:.化圆的方程为标准方程,求出圆的半径,结合已知及圆内接正三角形面积最大求解.本题考查曲线与方程,明确圆内接正三角形面积最大是关键,是中档题.14.设点O在的内部,点D,E分别为边AC,BC的中点,且,则______.【答案】2【解析】解:点D,E分别为边AC,BC的中点,,,,故答案为:2.根据向量的几何意义即可求出.本题考查了平面向量加法的几何意义,是基础题.15.设函数,数列的首项,且,若数列不是单调递增数列,则的取值范围______.【答案】【解析】解:;假设,则.若,则,由此可证得是单调递增数列,这矛盾.所以.故答案为:.通过数列与函数的关系式,结合不等式,转化求解的取值范围.本题考查数列与函数的综合应用,反证法的应用,考查转化思想以及计算能力.16.给定曲线,为参数,则这些曲线在直线上所截得得弦长的最大值是______.【答案】【解析】解:将代入曲线方程得,.令,则,,弦长.故弦长的最大值是,故答案为:.联立直线与曲线方程可求交点的横坐标,,要使曲线族在直线上所截得的弦长的最大,则只要最大即可,即t最大即可,根据函数的性质即可求出.本题主要考查了直线与曲线相交求解交点、弦长,解题的关键是灵活利用三角函数的性质及弦长公式,属于中档题三、解答题(本大题共5小题,共5.0分)17.已知圆柱的底面半径为r,上底面圆心为O,正六边形ABCDEF内接于下底面圆P,OA与母线所成角为,试用r表示圆柱的表面积S;若圆柱体积为,求点C到平面OEF的距离.【答案】解:连接AP,由题意可知:OA与母线所成角为,,所以:,---2分,---4分,---6分,,---10分---14分【解析】利用已知条件,通过求解三角形推出圆柱的高,然后求解圆柱的表面积S.利用圆柱的体积,求出底面半径,通过,求解点C到平面OEF的距离.本题考查空间点线面的距离的求法,几何体的体积的求法,考查了直角三角形的解法,是基础题.18.已知向量和向量,且.求函数的最小正周期和最大值;已知的三个内角分别为A,B,C,若有,,,求AC的长度.【答案】解:,,化为.函数的周期为,最大值为2.得,即,由正弦定理得,又,,则.【解析】利用向量共线定理、两角和差的正弦公式、三角函数的性质即可得出;利用正弦定理即可得出.本题考查了向量共线定理、两角和差的正弦公式、三角函数的性质、正弦定理,属于中档题.19.业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为为常数元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,已知3年后总投入资金为研发启动时投入资金的3倍问研发启动多少年后,总投入资金是研发启动时投入资金的8倍;研发启动后第几年的投入资金的最多.【答案】解:由题意知,.所以解得所以.令,得,解得,即,所以.所以研发启动9年后,总投入资金是研发启动时投入资金的8倍.由知第n年的投入资金,当且仅当,即等号,此时.所以研发启动后第5年的投入资金增长的最多.【解析】由题意知,,代入求出p,q的值,即可得到函数的解析式,再代值计算即可求出n的值,利用作差法,求出第n年的投入资金,利用基本不等式即可求出答案.本题考查了函数模型在实际生活中的应用,以及基本不等式的应用,考查了分析问题,解决问题的能力,属于中档题.20.平面直角坐标系xOy中,抛物线:的焦点为F,过F的直线l交曲线于B,C两点.若l垂直于x轴,且线段BC的长为1,求曲线方程;若l的斜率为k,求;设抛物线上异于B,C的点A满足若的重心在x轴上,求得重心的坐标.【答案】解:联立方程,所以BC长,从而的方程为分设,,l:.由、,得到分,所以分若l垂直于x轴,则由,此时重心坐标为.以下设l:,,.设线段BC中点,则,,所以直线AD的斜率,分此时,从而直线AD:与x轴的交点即为的重心.综合有,的重心为或者分【解析】若l垂直于x轴,联立直线与抛物线方程,通过线段BC的长为1,求曲线方程即可;若l的斜率为k,设,,写出l:通过联立直线与抛物线方程,结合韦达定理转化求解;若l垂直于x轴,则由,此时重心坐标为设l:,,设线段BC中点,求出D的坐标,AD的斜率,求出直线系方程,得到定点坐标即为的重心.本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力.21.设函数在上有定义,实数a,b满足若在区间上不存在最小值,则称在区间上具有性质p.当,且在区间上具有性质p时,求常数C的取值范围;已知,且当时,,判别在区间上是否具有性质p;若对于满足的任意实数a,b;在区间上具有性质p,且对于任意,当时,有:,证明:当时,.【答案】解:当时,在上存在最小值;当时,在上存在最小值;当时,在上单调递增,所以不存在最小值.所以.因为时,,所以在区间上如果有最小值,则最小值必在区间上取到另一方面,在区间上不存在最小值,所以在区间上具有性质P.首先证明对于任意,.当时,由可知介于和之间若,则在区间上存在最小值,矛盾.利用归纳法和上面结论可得:对于任意k,,当时,.其次证明当且时,;当且时,.任取,设正整数k满足,则.若存在使得,则,即由于当时,,所以在区间有最小值,矛盾.类似可证,当且时,.最后证明:当时,.当时,成立当时,由可知,存在使得,所以.当时,有:若,则,所以在上存在最小值,故不具有性质p,故不成立.若,则假设,则在上存在最小值,故不具有性质p,故假设不成立.所以当时,对于任意都成立.又,故当、,所以,即.所以当时,则存在正整数m使得,则所以当时,,同理可证得当时,.所以当时,必然存在正整数n,使得,所以;当时,显然成立;所以综上所述:当时,.【解析】分别讨论图象的对称轴与1和2的关系,即可得出是否存在最小值,从而求出C的取值范围;由题目条件可得出在区间上如果有最小值,则最小值必在区间上取到,又在区间上不存在最小值,所以在区间上具有性质P;首先证明对于任意,;其次证明当且时,;当且时,;最后证明:当时,.本题考查了函数与方程的综合运用,需要对题目的条件充分理解和利用,证明用到了数学归纳法,属于难题.。

2018-2019学年上海市闵行区七宝中学高三(上)期中数学试卷(精编含解析)

2018-2019学年上海市闵行区七宝中学高三(上)期中数学试卷(精编含解析)

【点睛】本题主要考查集合的真子集及其个数,意在考查学生对这些知识的掌握水平和分析推理能力.
6.设全集 ,

,则图中阴影部分所表示的集合是________(用区间表示)
【答案】 【解析】 【分析】
先化简集合 M 和 N,再求 M∩N,再求
即得阴影部分所表示的集合.
【详解】由题得 M={x|x>2 或 x<-2},N={x|x≥0},所以 M∩N={x|x>2},
f 1(x 1)由 f 1(x)向右平移一个单位得到,
而 f(x)和 f 1(x)关于 y=x 对称,
从而 f(x 1)与 f 1(x 1)的对称轴也是由原对称轴向右平移一个单位得到即 y=x 1,
排除 B,D;
A,C 选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过
4. 是定义在 上的函数,且 的可能取值只能是( )
,若 的图像绕原点逆时针旋转 后与原图像重合,则在以下各项中,
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】
【分析】
直接利用定义函数的应用求出结果.
【详解】由题意得到:问题相当于圆上由 12 个点为一组,每次绕原点逆时针旋转 个单位后与下一个 点会重合.
,若
,则
的最大值是________
【答案】 【解析】 【分析】
设 g(x)=f(x)-3,再判断函数 g(x)的奇偶性和单调性,再由

,再利用三角换元求
的最大值.
【详解】设 g(x)=f(x)-3,所以 g(x)=
,
所以 所以 g(-x)=-g(x),所以函数 g(x)是奇函数,
由题得

所以函数 g(x)是减函数,

2018学年度高三第三次模拟考试理科数学试题及答案精品

2018学年度高三第三次模拟考试理科数学试题及答案精品

x2
5. 已知实数 x、y 满足约束条件 y 2 ,则 z 2 x 4y 的最大值为 (
).
xy6
A.24
B
.20
C
.16
D
. 12
6.已知向量 | a | 10,| b | 12 , 且 a b 60 ,则向量 a 与 b 的夹角为(

A. 600
B
. 1200
C
.1350
D
.150 0
7.下列命题错误的是(
17. (本小题满分 14 分)
18. (本小题满分 14 分) 1
P
E
D C
O
A
B
19. (本小题满分 14 分)
20. (本小题满分 14 分)
2018-2018 学年度高三第三次模拟考试 ( 理科 ) 数学试题参考答案
一、选择题 : (本大题共 8 小题,每小题 5 分,满分 40 分.) 1.D本题主要考察互为共轭复数的概念及复数的乘法运算.
20.(本小题满分 14 分) 设 { an} 是等差数列, {bn} 是各项都为正数的等比数列, 且 a1 b1 1 ,a3 b5 21 ,
a5 b3 13
(Ⅰ)求 { an} , { bn} 的通项公式;
(Ⅱ)求数列
an bn
的前 n 项和 Sn .
2018-2018 学年度高三第三次模拟考试

A.命题“若 m 0 ,则方程 x2 x m 0 有实根”的逆否命题为: “若方程
x2 x m 0 无实根,则 m 0 ”。
B.“ x 1 ”是“ x2 3x 2 0 ”的充分不必要条件。
C.命题“若 xy 0 ,则 x, y 中至少有一个为零”的否定是: “若 xy 0,则 x, y 都 不为零”。 D.对于命题 p : x R ,使得 x2 x 1 0 ;则 p 是 : x R ,均有 x2 x 1≥ 0 。

高三数学-2018年上海数学高考模拟卷 精品

高三数学-2018年上海数学高考模拟卷 精品

2018年全国普通高等学校统一招生考试(上海卷)数 学(模拟卷)一、填空题(本大题满分48分,每小题4分)1.已知},,121|{},21|{2M x x y y N x x M ∈-==<<-=则N M 为______________。

2.若直线),(042R n m ny mx ∈=-+始终平分圆042422=---+y x y x 的周长,则mn 的取值范围是_________________。

3.)sin ,(cos αα=a,)sin ,(cos ββ=b ,且a 与b 之间满足关系:b k a b a k -=+3,其中k >0。

则a ·b取得最小值时a 与b 夹角θ的大小为___________________。

4.某市高中把9台型号相同的电脑送给与之建立友好关系学校的三所郊县中学,若每所学校至少分得2台,不同送法的种数是________________。

5.若数列满足,且,则的值为______________。

6.设(其中),k 是的小数点后第n 位数字,…74142135623.12=,则的值等于_____________。

7.设函数是定义在R 上的奇函数,若的最小正周期为3,且,,则m 的取值范围是__________________。

8.过抛物线的焦点作直线交抛物线于两点,若521=+y y ,则线段AB 的长等于______________。

9.有一台坏天平,两臂长不相等,其余均精确,现用它称物体的重量,将物体放在左右托盘各称一次,重量分别为a 、b ,则该物体的真实重量为______________。

10.依次写出数11=a ,2a ,3a ,…法则如下:如果2-n a 为非负正整数且未写出过,则写21-=+n n a a ,否则就写31+=+n n a a ,那么=6a ______________。

11. 已知等比数列{}n a 的首项为8,n S 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现了其中一个数算错了,则该数为________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七宝中学高三
数学模拟试题(理科)
一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.为虚数单位,复数的虚部是____.
2.设函数若函数存在两个零点,则实数的取值范围是__.
3.在极坐标系中,为曲线上的点,为曲线上的点,则线段长度的最小值是__.
4.阅读如右图所示的程序框图,如果输入的的值为6,那么运行相应程序,输出的的值为__.
5.若,则方程的解为____.
6.已知正方形的四个顶点分别为,,,,点
分别在线段上运动,且,设与交于点,则点的轨迹方程是___.
7.年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人
有350人,他们的健康状况如下表:
健康指数 2 1 0 -1
60岁至79岁的人
120 133 34 13

80岁及以上的人
9 18 14 9

其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”.按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.则被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率是_____(用分数作答).
8.已知数列{}的通项公式为,则
+++的最简表达式为_____.
9 .平面的斜线交于点,过定点的动直线与垂直,且交于点,则动点的轨迹是_________________.
10.祖暅原理对平面图形也成立,即夹在两条平行线间的两个平面图形被任意一条平行于这两条直线的直线截得的线段总相等,则这两个平面图形面积相等.利用这个结论解答问题:函数、
与直线所围成的图形的面积为_______.
11.对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,
n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n -2)·(n-4)……5×3×1.
现有如下四个命题:①(2018!!)·(2018!!)=2018!;②
2018!!=21007·1007!;③2018!!的个位数是0;④2018!!的个位数不是5.正确的命题是________.
12.已知关于t的一元二次方程.当方程有实根时,则t的取值范围______.
13.已知是内部一点,,记、、的面积分别为、、,则________.
14. 在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点):与:
,其中,若同时满足:①两点列的起点和终点分别
相同;②线段,其中,则称与互为正交点列.则:的正交点列为
二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的
正确结论代号涂黑,选对得 5分,否则一律得零分.
15.已知集合,则集合的非空真子集数为()(A)14 (B) 512 (C)511 (D)510 16.已知函数.若存在,使
成立,则称为函数的一个“生成点”.函数
的“生成点”共有()
(A) 1个(B)2个(C)3个(D)4个17. 如图,梯形中,
,,, ,将沿对角线折起.设折起后点的位置为,使二面角为直二面角.给出下面四个命题:。

相关文档
最新文档