高二化学反应原理知识要点归纳

合集下载

高二化学反应原理全册知识点

高二化学反应原理全册知识点

高二化学反应原理全册知识点集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]化学反应的反应热与焓变一、反应热与键能的关系(反应物),Q 。

【总结】(1)焓变计算公式 ?H= H (产物)-H (反应物) ?H= E 吸 - E 放 (2)常见放热反应:酸碱中和、燃烧反应、活泼金属与水或酸反应、铝热反应、大多数化合反应 (3)常见吸热反应:三、酸碱中和反应的反应热测定 公式 Q=-C?m??t比热 C 水=?K -1?kg -1 溶液总质量m=m 酸+m 碱温差?t=T 2-T 1 T 1初始温度 T 2末温(反应后最高温度) 仪器---简易量热计 补充:中和热:在稀溶液中,酸与碱发生中和反应生成1molH 2O 时放出的热量,单位KJ?mol —1燃烧热:1mol 某燃料充分燃烧,生成稳定氧化物和液态水时放出的热量,单位KJ?mol —1热化学方程式及盖斯定律【教学目标】1. 掌握热化学方程式的书写和意义2. 了解盖斯定律的含义,能运用盖斯定律计算化学反应的反应热 一、热化学方程式时间能量时间吸热反应放热反应定义:把一个化学反应中的物质变化和反应的焓变同时表示出来的化学方程式。

注意事项:1.物质的状态。

固体s ,气体g ,液体l ,溶液中的溶质aq ;2.注明温度。

常温298K 可不注;3. ?H 单位kJ?mol ?14.系数加倍,则?H 加倍;反应逆向进行,?H 改变符号,绝对值不变;5.系数表示物质的量,不表示分子的个数,系数可整可分。

热化学方程式的含义含义:298K 时,1mol 2H (g)与2O (g)反应生成1mol 2H O(l),放热 含义:298K 时,2mol 2H (g)与1mol 2O (g)反应生成2mol 2H O(l),放热二、盖斯定律概念:对于一个化学反应,无论是一步完成还是分几步完成,起反应的焓变都是一样的。

应用:如果一个反应可以分步进行,则各分步反应的反应热和与该反应一步完成的反应热是相同的。

高二化学反应原理知识点归纳

高二化学反应原理知识点归纳

高二化学反应原理知识点归纳第1章、化学反应与能量转化一、化学反应的热效应1、化学反应的反应热1反应热的概念:当化学反应在一定的温度下展开时,反应所释放出来或稀释的热量称作该反应在此温度下的热效应,缩写反应热。

用符号q则表示。

2反应热与吸热反应、放热反应的关系。

q>0时,反应为吸热反应;q<0时,反应为放热反应。

3反应热的测定测量反应热的仪器为量计来,可以测到反应前后溶液温度的变化,根据体系的热容可以排序出来反应热,计算公式如下:q=-ct2-t1式中c则表示体系的热容,t1、t2分别则表示反应前和反应后体系的温度。

实验室经常测量中和反应的反应热。

2、化学反应的焓变1反应焓变小物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为h,单位为kj·mol-1。

反应产物的总焓与反应物的总焓之差称作反应焓变小,用δh则表示。

2反应焓变δh与反应热q的关系。

对于等温条件下展开的化学反应,若反应中物质的能量变化全部转变为热能,则该反应的反应热等同于反应焓变小,其数学表达式为:qp=δh=h反应产物-h反应物。

3反应焓变与吸热反应,放热反应的关系:δh>0,反应稀释能量,为吸热反应。

δh<0,反应释放能量,为放热反应。

4反应焓变小与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:h2g+o2g=h2ol;δh298k=-285.8kj·mol-1书写热化学方程式应当特别注意以下几点:①化学式后面要注明物质的聚集状态:固态s、液态l、气态g、溶液aq。

②化学方程式后面写下上反应焓变小δh,δh的单位就是j·mol-1或kj·mol-1,且δh后标明反应温度。

③热化学方程式中物质的系数加倍,δh的数值也相应加倍。

3、反应焓变小的排序1盖斯定律对于一个化学反应,无论是一步顺利完成,还是分后几步顺利完成,其反应焓变小一样,这一规律称作盖斯定律。

高二化学反应原理知识点归纳

高二化学反应原理知识点归纳

《高二化学反应原理知识点归纳》一、引言化学世界充满了神奇与奥秘,而化学反应原理则是打开这个神秘世界大门的钥匙。

在高二的化学学习中,化学反应原理是重要的组成部分,它不仅帮助我们理解化学反应的本质,还为我们解决实际问题提供了理论依据。

本文将对高二化学反应原理的知识点进行归纳总结,以便同学们更好地掌握这一重要内容。

二、化学反应与能量1. 焓变与反应热- 焓变(ΔH)是指在恒压条件下,化学反应的反应热。

反应热是指化学反应中吸收或放出的热量。

- 吸热反应:ΔH>0,反应体系从环境中吸收热量;放热反应:ΔH<0,反应体系向环境中放出热量。

2. 热化学方程式- 热化学方程式是表示化学反应中物质的变化和反应热关系的化学方程式。

- 热化学方程式应注明物质的状态、反应热的数值和单位。

3. 燃烧热和中和热- 燃烧热是指 1mol 可燃物完全燃烧生成稳定氧化物时所放出的热量。

- 中和热是指在稀溶液中,强酸和强碱发生中和反应生成1mol 水时所放出的热量。

4. 盖斯定律- 盖斯定律是指化学反应的反应热只与反应的始态和终态有关,而与反应的途径无关。

三、化学反应速率1. 化学反应速率的概念及表示方法- 化学反应速率是用来衡量化学反应进行快慢程度的物理量。

- 通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

2. 影响化学反应速率的因素- 内因:反应物的性质。

- 外因:浓度、温度、压强、催化剂等。

- 浓度:增大反应物浓度,反应速率加快;减小反应物浓度,反应速率减慢。

- 温度:升高温度,反应速率加快;降低温度,反应速率减慢。

- 压强:对于有气体参加的反应,增大压强,反应速率加快;减小压强,反应速率减慢。

- 催化剂:使用催化剂能显著改变反应速率,正催化剂加快反应速率,负催化剂减慢反应速率。

四、化学平衡1. 化学平衡状态的特征- 逆:可逆反应。

- 等:正逆反应速率相等。

- 动:动态平衡,反应仍在进行。

- 定:各物质的浓度保持不变。

高中化学反应原理知识点总结

高中化学反应原理知识点总结

高中化学反应原理知识点总结化学反应是化学变化的过程,是物质发生变化的过程。

在化学反应中,原子的组合方式发生了改变,原子之间的结合方式也发生了改变,从而形成了新的物质。

化学反应的原理知识是化学学习的基础,下面就对高中化学反应原理知识点进行总结。

1. 反应的定义。

化学反应是指两种或两种以上的物质,通过化学变化,生成新的物质的过程。

在化学反应中,原有的物质称为反应物,生成的新物质称为生成物。

2. 反应物和生成物的关系。

反应物和生成物之间的关系是通过化学方程式来表示的。

化学方程式中,反应物位于箭头的左边,生成物位于箭头的右边。

化学方程式还可以表示反应物和生成物的摩尔比关系,以及反应物和生成物的物质量关系。

3. 反应类型。

化学反应可以分为合成反应、分解反应、置换反应和双替换反应四种类型。

合成反应是指两种或两种以上的物质生成一种新的物质;分解反应是指一种物质分解成两种或两种以上的物质;置换反应是指一种物质中的原子或原子团被另一种物质中的原子或原子团替换;双替换反应是指两种物质中的原子或原子团互相交换。

4. 反应速率。

反应速率是指化学反应中反应物消耗或生成物产生的速率。

反应速率受到多种因素的影响,包括温度、浓度、催化剂等。

在化学反应中,反应速率可以通过反应物的浓度变化来表示,也可以通过生成物的浓度变化来表示。

5. 反应热效应。

反应热效应是指化学反应中放热或吸热的现象。

在化学反应中,放热反应是指反应过程中释放热量,温度升高;吸热反应是指反应过程中吸收热量,温度降低。

反应热效应可以通过热量变化来表示,也可以通过焓变化来表示。

6. 化学平衡。

化学平衡是指在一定条件下,反应物和生成物浓度保持不变的状态。

在化学平衡状态下,反应物和生成物之间的摩尔比保持不变,但是反应物和生成物之间的转化仍在进行。

化学平衡可以通过平衡常数来表示,也可以通过平衡位置来表示。

7. 反应速率与化学平衡。

反应速率和化学平衡是化学反应过程中的两个重要概念。

《选修4_化学反应原理》知识点总结整理

《选修4_化学反应原理》知识点总结整理

《选修4_化学反应原理》知识点总结整理1.化学反应基本概念-化学反应:指一种或多种物质之间发生物质或能量转化的过程。

-反应物:参与反应的起始物质。

-生成物:反应物转化为的新的物质。

-反应物质的种类:元素、化合物、离子等。

-反应物质在反应中的相对反应程度:反应速率。

2.化学平衡-化学平衡:指反应物与生成物之间浓度、压力、温度等不再发生可观测的变化的状态。

- 平衡原理:Le Chatelier原理,认为当外界条件改变时,系统会调整以抵消这种改变。

-平衡常数:用于描述反应物浓度和生成物浓度之间的关系。

-平衡常数与反应方程式:Kc表示在一定温度下,反应物浓度与生成物浓度之间的关系;Kp表示在一定温度下,反应物分压与生成物分压之间的关系。

3.化学反应速率-反应速率:反应物消失或生成物产生的速率。

-反应速率与反应物浓度之间的关系:浓度越高,反应速率越快。

-反应速率与温度之间的关系:温度升高,反应速率增加。

-反应速率与催化剂之间的关系:催化剂可以加快反应速率,但不参与反应本身。

4.化学平衡与反应速率的关系-平衡常数与反应速率:平衡常数越大,反应速率越快。

-平衡与速率之间的平衡条件:在平衡状态下,反应物的浓度、生成物的浓度以及反应速率保持不变。

5.化学反应的方向性-正向反应:从反应物转化为生成物的反应过程。

-反向反应:从生成物转化为反应物的反应过程。

-反应的方向性与平衡常数之间的关系:平衡常数大于1,正向反应偏向生成物;平衡常数小于1,正向反应偏向反应物。

6.化学反应的影响因素-温度:温度升高,反应速率增加,化学反应更快进行。

-反应浓度:浓度越高,反应速率越快。

-催化剂:能够降低反应活化能,加快反应速率。

7.化学反应类型-双反应:A+B→C+D。

-多反应:A+B→C,C→D。

-逆反应:反应物和生成物之间存在正向反应和反向反应。

以上是《选修4_化学反应原理》课程中的主要知识点总结。

通过学习这部分内容,可以了解化学反应的基本概念、化学平衡的原理、化学反应速率的影响因素以及化学平衡与反应速率之间的关系。

化学反应原理高考必备知识点

化学反应原理高考必备知识点

《化学反应原理》高考必背知识点1第一章化学反应与能量转化§1.1化学反应的热效应1.焓:表示物质所具有的能量的一个物理量。

符号为 H 。

焓变:△H=H(反应产物)-H(反应物) ;焓变的单位一般用 KJ·mol—1。

△H>0,吸热反应,△H<0,放热反应。

2.书写热化学方程式注意:要标状态,注明焓变(要写单位、注意正、负号);正逆反应焓变数值不变,符号相反;△H具体数值与方程式系数成比例。

3.盖斯定律定义:对于一个化学反应,无论是一步完成还是分几步完成,其反应焓变都是一样的,盖斯定律揭示的是反应中的能量守恒。

§1.2电能转化为化学能——电解1.电解定义让直流电通过电解质溶液或熔融的电解质,在两个电极上分别发生氧化反应和还原反应的过程叫做电解。

电解池:将电能转化为化学能的装置。

2.解答电解题应遵循什么样的思路?(1)首先,确定两个电极谁是阳极、谁是阴极?与电源正极相连的为阳极,发生氧化反应,活泼金属电极或阴离子在该电极失去电子;与电源负极相连的为阴极,发生还原反应,金属阳离子在该极得到电子。

(2)其次,注意两个电极的电极材料:如果是金属电极(金铂除外),活泼金属电极失电子;如果是惰性电极,按离子的放电顺序进行电解。

(3)分析通电前电解质电离出的阴、阳离子分别有哪些?除了电解质电离出的离子之外,溶液还要考虑水电离出的H+和OH—。

(4)通电后离子定向移动到哪个电极?阳离子移向阴极,阴离子移向阳极。

(5)在电极上的放电顺序如何?①阳极放电顺序:活泼金属电极> S2—> I—> Br —> Cl—> OH—>含氧酸根(如SO42—、NO3—等)②阴极放电顺序:与金属活动性顺序相反:K+<Ca2+<Na+>Mg2+<Al3+<Zn2+<Fe2+<Sn2+<Pb2+<H+<Cu2+<Hg2+<Ag+3.按照电解思路,写出用惰性电极电解下列熔融电解质的相关反应熔融电解质电极反应电解总反应NaCl 阴极:Na++e-=Na2NaCl(熔融)2Na+Cl2↑阳极:2Cl--2e-=Cl2↑MgCl2阴极:Mg2++2e-=MgMgCl2(熔融)Mg+Cl2↑阳极:2Cl--2e-=Cl2↑Al2O3阴极:Al3++3e-=Al2Al2O3(熔融)4Al+3O2↑阳极:2O2-- 4e-= O2↑4.写出用惰性电极电解下列溶液的相关反应:溶液电极反应电解总反应1NaCl阴极:2H++2e-=H2↑2NaCl+2H2O2NaOH +H2↑+Cl2↑电解饱和食盐水阳极:2Cl--2e-=Cl2↑CuSO4阴极:Cu2++2e-=Cu2CuSO4+2H2O2Cu+O2↑+2H2SO4 补充CuO可还原到原电解质溶液阳极:2Cl--2e-=Cl2↑AgNO3阴极:Ag++e-=Ag4AgNO3+2H2O4Ag+O2↑+4HNO3阳极:4OH--4e-=2H2O +O2↑2 硫酸、氢氧化钠、硫酸钠溶液阴极:2H++2e-=H2↑2H2O2H2↑+O2↑阳极:4OH--4e-=2H2O+O2↑3 CuCl2阴极:Cu2++2e-=CuCuCl2Cu+Cl2↑阳极:2Cl--2e-=Cl2↑盐酸阴极:2H++2e-=H2↑2HCl H2↑+Cl2↑阳极:2Cl--2e-=Cl2↑5.铜的电解精炼:粗铜作阳极,连接电源正极,精铜作为阴极,连接电源负极。

《化学反应原理》全册知识点归纳

《化学反应原理》全册知识点归纳

《化学反应原理》知识点归纳第一章化学反应与能量一、焓变反应热1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量。

2.焓变(△H)的意义:在恒压条件下进行的化学反应的热效应。

⑴符号——△H;⑵单位——kJ/mol。

3.产生原因:化学键断裂——吸热;化学键形成——放热。

键能越大,物质所含能量越低,物质越稳定;键能越小,物质所含能量越高,物质越不稳定。

放热反应——反应物的总能量高于生成物的总能量(放出的热量>吸收的热量);△H为“-”或△H<0。

吸热反应——反应物的总能量低于生成物的总能量(吸收的热量>放出的热量)△H为“+”或△H>0。

常见的放热反应:①所有的燃烧反应②酸碱中和反应③大多数的化合反应④金属与酸的反应⑤生石灰和水反应⑥钠与水的反应常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应③以H2、CO、C为还原剂的氧化还原反应④盐的水解二、热化学方程式1.能表示参加反应物质的量和反应热的关系的化学方程式,叫热化学方程式。

2.书写热化学方程式注意要点:⑴热化学方程式必须标出能量变化。

⑵热化学方程式中必须标明反应物和生成物的聚集状态(g、l、s分别表示固态、液态、气态,水溶液中溶质用aq表示)。

⑶热化学反应方程式要指明反应时的温度和压强(对于25℃、101 kPa时进行的反应可以不注明)。

⑷热化学方程式中的化学计量数可以是整数,也可以是分数。

⑸各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变。

三、燃烧热1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。

燃烧热的单位用kJ/mol表示。

2.注意点:⑴研究条件:25 ℃,101 kPa。

⑵反应程度:完全燃烧,产物是稳定的化合物。

⑶燃烧物的物质的量:1 mol。

⑷研究内容:放出的热量。

(△H<0,单位kJ/mol)四、中和热1.概念:在稀溶液中,酸跟碱发生中和反应而生成1mol H2O,这时的反应热叫中和热。

化学反应原理知识点总结大全

化学反应原理知识点总结大全

化学反应原理知识点总结大全
一热力学原理
1、热力学第一定律(熵定律):所有的自然过程都是朝着极大熵(ΔS≥0)的方向
发展的,也就是比较随机化的方向发展的。

2、热力学第二定律(能量守恒定律):处理系统所有形式的能量(包括热能、机械
能等)总量不变,只会以另一种形式释放和转化。

3、热力学第三定律(温度量定律):温度是一个绝对量,温度越高,绝对熵就越大。

二化学动力学原理
1、催化原理:催化剂可以加快反应速率,但不会改变反应的方向,也不会影响反应
的热化学原理。

2、平衡原理:动力学过程的反应速率有限,最终会趋向平衡,此时反应的反应路线(反应物与生成物之间的比例关系)就确定了,此时反应的速率为零。

3、反应速率定律:反应物的浓度大小和反应速率大小成正比;反应物的浓度变化会
影响反应速率;反应物的浓度式不同,反应速率也不同。

4、分子模型定律:反应物间共存时,分子之间相互作用的可能性越大,反应速率也
越大;分子间相互作用受到外界环境影响,反应速率也会受影响;某些环境条件有利于某
种特定反应的发生,某些环境条件则会使反应速率受到影响。

三吸收原理
吸收反应是指物质在一定气体压力或溶液浓度等环境条件下,吸取某种溶液中的特定
物质,而发生反应的一种过程,其中吸收剂在改变其构成或结构的情况下,吸收这些特定
物质而形成特定化合物。

吸收反应可以分为物质间吸收(离子质吸收或不离子质吸收)和
物质离子吸收两种。

四酸/碱的电离原理
酸的电离:当酸分子在水溶液中中断,极离子会脱水而成原子或离子,称为酸的电离,结果导致pH值降低。

《化学反应原理》知识点总结

《化学反应原理》知识点总结

《化学反应原理》知识点总结1.化学反应的定义和特征:化学反应是指物质之间发生化学变化的过程。

化学反应一般可以分为有机反应和无机反应两大类。

有机反应是指有机物之间或有机物和无机物之间发生的化学反应,而无机反应则是指无机物之间发生的化学反应。

化学反应具有可逆性、有条件性、速率性和物质守恒性的特征。

2.化学反应的方程式:化学反应可以用化学方程式来表示。

化学方程式通常由反应物、产物和反应条件三部分组成。

反应物在反应前存在,而产物在反应后生成。

反应条件包括温度、压力、催化剂等。

化学方程式中的物质之间的摩尔比称为化学反应的反应物质的化学计量比。

3.化学反应速率:化学反应速率是化学反应进展的快慢程度。

反应速率可以通过反应物浓度的变化率来衡量。

一般来说,反应速率随着反应物浓度的增加而增加。

反应速率受到温度、压力、催化剂等因素的影响。

4.化学反应的速率方程:化学反应的速率可以用速率方程来描述。

速率方程是表示反应速率与反应物浓度之间关系的数学表达式。

速率方程通常具有一定的指数关系。

例如,对于一级反应来说,速率方程可以写成r=k[A],其中r为反应速率,k为速率常数,[A]为反应物A的浓度。

5.化学平衡:化学反应在一定条件下会达到化学平衡。

化学平衡是指反应物浓度和产物浓度不再发生明显变化的状态。

在化学平衡状态下,正向反应和逆向反应的速率相等。

化学平衡可以用平衡常数来描述,平衡常数是反应物浓度和产物浓度的比值的乘积,不同反应具有不同的平衡常数。

6.动力学和热力学:化学反应的研究可以从动力学和热力学两个方面进行。

动力学研究反应速率及其影响因素,而热力学研究反应的放热、熵变等热学性质。

动力学和热力学的研究对于理解和控制化学反应过程至关重要。

7.催化剂:催化剂是能够加速反应速率的物质,它不直接参与反应,但可以通过改变反应物的活化能来提高反应速率。

催化剂可以降低反应的活化能,从而加快反应速率。

催化剂在工业生产中起到重要的作用,能够节省能源、改善产物质量等。

高二化学选修4《化学反应原理》知识点规律大全

高二化学选修4《化学反应原理》知识点规律大全

高中化学知识点规律大全(一)——化学反应与能量1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。

氧化还原反应的本质是电子转移(电子得失或电子对偏移)。

[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。

概念含义概念含义氧化剂反应后所含元素化合价降低的反应物还原剂反应后所含元素化合价升高的反应物被氧化还原剂在反应时化合价升高的过程被还原氧化剂在反应时化合价降低的过程氧化性氧化剂具有的夺电子的能力还原性还原剂具有的失电子的能力氧化反应元素在反应过程中化合价升高的反应还原反应元素在反应过程中化合价降低的反应氧化产物还原剂在反应时化合价升高后得到的产物还原产物氧化剂在反应时化合价降低后得到的产物氧化剂与还原剂的相互关系.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:2.离子反应[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++ 2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++ SO42—=Ag2SO4↓Ca2++ 2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2 + CO32—=CaCO3↓+ 2OH-b.生成难电离的物质(即弱电解质).如:H++ OH-=H2O H++ CH3COO-=CH3COOHc.生成挥发性物质(即气体).如:CO32-+ 2H+=CO2↑+ H2O NH4++ OH-NH3↑+ H2O②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe + Cu2+=Fe2++ Cu Cl2 + 2Br-=2C1-+ Br2 2MnO4-+ 16H++ 10C1-=2Mn2++ 5C12↑+ 8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时?,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+ 2OH—=CO32—+ H2O(CO2适量)CO2+ OH—=HCO3—(CO2足量)在溶液中离子能否大量共存的判断方法:几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子( 如S2-、I -、SO32-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.*(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.*(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).②在强酸性溶液中,与H+起反应的离子不能大量共存.③在强碱性溶液中,与OH-起反应的离子不能大量共存.[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++ SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++ OH-=H2O(3)生成气体.如:CO32-+ 2H+=CO2↑+ H2O3.化学反应中的能量变化[放热反应] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量+ 热量+ 其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量+ 热量+ 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.*[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和反应热放热反应吸热反应含义反应物所具有的总能量大于生成物所具有的总能量,反应物转化为生成物时放出热量反应物所具有的总能量小于生成物所具有的总能量,反应物转化为生成物时吸收热量反应本身的能量变化反应放出热量后使反应本身的能量降低反应吸收热量后使反应本身的能量升高表示符号或ΔH值“-”ΔH<0 “+”ΔH>0[热化学方程式](1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.(2)书写热化学方程式时应注意的问题:①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:H2(g) + 1/2O2(g)=H2O(g) △H=-241.8kJ·mol—1H2(g) + 1/2O2(g)=H2O(l) △H=-285.8kJ·mol—1比较上述两个反应可知,由H2与O2反应生成1 mol H2O(l)比生成1 mol H2O(g)多放出44 kJ·mol—1的热量.③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.例如:H2(g) + 1/2O2(g)=H2O(g) -241.8kJ·mol—1④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:2H2(g) + O2(g)=2H2O(g) △H l=-483.6 kJ·mol—1H2(g) + 1/2O2(g)=H2O(g) △H2=-241.8kJ·mol—1显然,△H l=2△H2.*[盖斯定律] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.高中化学知识点规律大全(二)——化学反应速率和化学平衡1.化学反应速率[化学反应速率的概念及其计算公式] (1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol ·L -1·min -1或mol ·L -1·s -1 (2)计算公式:某物质X 的化学反应速率:))或时间变化量()的浓度变化量(min )(1s L mol X X -⋅=ν 注意 ①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性. ②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q 或:qD pC nB mA )()()()(νννν===③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞. [活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子. 说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越 大,活化分子数越多,有效碰撞次数越多.分子,增大了活化分子百分数,使有效碰撞次数增多(主要方面);b.升高温度,使分子运动加快,分子间的碰撞次数增多(次要方面)催化剂增大化学反应速率催化剂增大化学反应速率的原因:降低了反应所需的能量(这个能量叫做活化能),使更多的反应物分子成为活化分子,增大了活化分子百分数,从而使有效碰撞次数增多光、反应物颗粒的大小等将反应混合物进行光照、将块状固体粉碎等均能增大化学反应速率AgBr、HClO、浓HNO3等见光分解加快,与盐酸反应时,大理石粉比大理石块的反应更剧烈2.化学平衡[化学平衡](1)化学平衡研究的对象:可逆反应的规律.①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行的反应,叫做可逆反应.可逆反应用可逆符号“”表示.[可逆反应]向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.说明(1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H2 + I22HI,生成的HI在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H2+ O2 2H2O 2H2O 2H2↑+ O2↑这两个反应就不是可逆反应.(2)在化学方程式中,用可逆符号“”表示可逆反应.说明a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看实际上是朝着同方向进行的,例如NaOH + HCl =NaCl + H2O.b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2②可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.(2)化学平衡状态.①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.(3)化学平衡的特征:①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0.②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a.用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b.用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比.③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡). ④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态.⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括: a .当了T 、V 一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.b .当T 、P 一定(即V 可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.如在恒温、恒压时,对于可逆反应:N 2 + 3H3,在下列起始量不同情况下达到的是同一平衡状态.c .对于反应前后气体体积相等的可逆反应,不论是恒温、恒容或是恒温、恒压,在不同的起始状态下,将生成物“归零”后,只要反应物的物质的量之比不变,就会达到同一平衡状态. 如:H 2(g) + I 2(g) 等.混合气体的密度 恒温、恒压或恒温、恒容时,密度一定 不一定达平衡状态[化学平衡常数] 在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K 表示. (1)平衡常数K 的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g)当在一定温度下达到化学平衡时,该反应的平衡常数为:nm qp B c A c D c C c K )]([)]([)]([)]([⋅⋅=注意:a .在平衡常数表达式中,反应物A 、B 和生成物C 、D 的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b .当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下 Fe 3O 4(s) + 4H 23Fe(s) + H 2O(g)的平衡常数表达式为:4242)]([)]([H c O H c K =又如,在密闭容器中进行的可逆反应CaCO 3(s)CaO(s) + CO 2↑的平衡常数表达式为:K =c(CO 2)c .平衡常数K 的表达式与化学方程式的书写方式有关.例如: N 2 + 3H 22NH 3 )]([)]([)]([232231N c H c NH c K ⋅=2NH 3N 2 + 3H 2 233222)]([)]([)]([NH c H c N c K ⋅=21N 2 +23H 2NH 3 2/322/1233)]([)]([)]([N c H c NH c K ⋅=显然,K 1、K 2、K 3具有如下关系:121K K =,2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同. ②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g) pC(g) + qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q 表示.即:Q B c A c D c C c n m qp =⋅⋅)]([)]([)]([)]([当Q =K 时,体系达平衡状态;当Q <K ,为使Q 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态. ②表示可逆反应进行的程度.K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.[反应物平衡转化率的计算公式] 某一反应物的平衡转化率=100-⨯指定反应物的起始量指定反应物的平衡量指定反应物的起始量%=100⨯指定反应物的起始量消耗量指定反应物达平衡时的%说明 计算式中反应物各个量的单位可以是mol ·L -1”、mol ,对于气体来说还可以是L 或mL ,但必须注意保持分子、分母中单位的一致性. 3.影响化学平衡移动的条件[化学平衡的移动] 已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动. 说明 (1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡. (3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同. [影响化学平衡的因素](1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).体的量平衡不发生移动.如反应C(s) + H 2O(g) 2(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.说明 ①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动.②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO 2充分氧化,以生成更多的SO 3.(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H 2(g) + I 2达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减小,使平衡混合气各组分的浓度增大,气体的颜色加深(碘蒸气为紫红色).②对于非气态反应(即无气体参加和生成的反应),改变压强,此时固、液体的浓度未改变,平衡不发生移动。

高二化学选修4《化学反应原理》知识点规律大全

高二化学选修4《化学反应原理》知识点规律大全

高中化学知识点规律大全(一)——化学反应与能量1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。

氧化还原反应的本质是电子转移(电子得失或电子对偏移)。

[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。

[氧化剂与还原剂]概念含义概念含义氧化剂反应后所含元素化合价降低的反应物还原剂反应后所含元素化合价升高的反应物被氧化还原剂在反应时化合价升高的过程被还原氧化剂在反应时化合价降低的过程氧化性氧化剂具有的夺电子的能力还原性还原剂具有的失电子的能力氧化反应元素在反应过程中化合价升高的反应还原反应元素在反应过程中化合价降低的反应氧化产物还原剂在反应时化合价升高后得到的产物还原产物氧化剂在反应时化合价降低后得到的产物氧化剂与还原剂的相互关系.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:2.离子反应[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++ 2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++ SO42—=Ag2SO4↓Ca2++ 2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2 + CO32—=CaCO3↓+ 2OH-b.生成难电离的物质(即弱电解质).如:H++ OH-=H2O H++ CH3COO-=CH3COOHc.生成挥发性物质(即气体).如:CO32-+ 2H+=CO2↑+ H2O NH4++ OH-NH3↑+ H2O②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe + Cu2+=Fe2++ Cu Cl2 + 2Br-=2C1-+ Br2 2MnO4-+ 16H++ 10C1-=2Mn2++ 5C12↑+ 8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时?,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+ 2OH—=CO32—+ H2O(CO2适量)CO2+ OH—=HCO3—(CO2足量)在溶液中离子能否大量共存的判断方法:几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子( 如S2-、I -、SO32-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.*(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.*(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).②在强酸性溶液中,与H+起反应的离子不能大量共存.③在强碱性溶液中,与OH-起反应的离子不能大量共存.[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++ SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++ OH-=H2O(3)生成气体.如:CO32-+ 2H+=CO2↑+ H2O3.化学反应中的能量变化[放热反应] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量+ 热量+ 其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量+ 热量+ 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.*[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和(3)放热反应与吸热反应的比较.反应热放热反应吸热反应含义反应物所具有的总能量大于生成物所具有的总能量,反应物转化为生成物时放出热量反应物所具有的总能量小于生成物所具有的总能量,反应物转化为生成物时吸收热量反应本身的能量变化反应放出热量后使反应本身的能量降低反应吸收热量后使反应本身的能量升高表示符号或ΔH值“-”ΔH<0 “+”ΔH>0说明:放热反应和吸热反应过程中的能量变化示意图如图3—1—2所示.[热化学方程式](1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.(2)书写热化学方程式时应注意的问题:①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:H2(g) + 1/2O2(g)=H2O(g) △H=-241.8kJ·mol—1H2(g) + 1/2O2(g)=H2O(l) △H=-285.8kJ·mol—1比较上述两个反应可知,由H2与O2反应生成1 mol H2O(l)比生成1 mol H2O(g)多放出44 kJ·mol—1的热量.③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.例如:H2(g) + 1/2O2(g)=H2O(g) -241.8kJ·mol—1④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:2H2(g) + O2(g)=2H2O(g) △H l=-483.6 kJ·mol—1H2(g) + 1/2O2(g)=H2O(g) △H2=-241.8kJ·mol—1显然,△H l=2△H2.*[盖斯定律] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.高中化学知识点规律大全(二)——化学反应速率和化学平衡1.化学反应速率[化学反应速率的概念及其计算公式] (1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol ·L -1·min -1或mol ·L -1·s -1 (2)计算公式:某物质X 的化学反应速率:))或时间变化量()的浓度变化量(min )(1s L mol X X -⋅=ν 注意 ①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性. ②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q 或:qD pC nB mA )()()()(νννν===③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞. [活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子. 说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越 大,活化分子数越多,有效碰撞次数越多.分子,增大了活化分子百分数,使有效碰撞次数增多(主要方面);b.升高温度,使分子运动加快,分子间的碰撞次数增多(次要方面)催化剂增大化学反应速率催化剂增大化学反应速率的原因:降低了反应所需的能量(这个能量叫做活化能),使更多的反应物分子成为活化分子,增大了活化分子百分数,从而使有效碰撞次数增多光、反应物颗粒的大小等将反应混合物进行光照、将块状固体粉碎等均能增大化学反应速率AgBr、HClO、浓HNO3等见光分解加快,与盐酸反应时,大理石粉比大理石块的反应更剧烈2.化学平衡[化学平衡](1)化学平衡研究的对象:可逆反应的规律.①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行的反应,叫做可逆反应.可逆反应用可逆符号“”表示.[可逆反应]向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.说明(1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H2 + I22HI,生成的HI在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H2+ O2 2H2O 2H2O 2H2↑+ O2↑这两个反应就不是可逆反应.(2)在化学方程式中,用可逆符号“”表示可逆反应.说明a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看实际上是朝着同方向进行的,例如NaOH + HCl =NaCl + H2O.b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2②可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.(2)化学平衡状态.①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.(3)化学平衡的特征:①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0.②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a.用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b.用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比.③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡). ④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态.⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括: a .当了T 、V 一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.b .当T 、P 一定(即V 可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.如在恒温、恒压时,对于可逆反应:N 2 + 3H3,在下列起始量不同情况下达到的是同一平衡状态.c .对于反应前后气体体积相等的可逆反应,不论是恒温、恒容或是恒温、恒压,在不同的起始状态下,将生成物“归零”后,只要反应物的物质的量之比不变,就会达到同一平衡状态. 如:H 2(g) + I 2(g) 等.混合气体的密度 恒温、恒压或恒温、恒容时,密度一定 不一定达平衡状态[化学平衡常数] 在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K 表示. (1)平衡常数K 的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g)当在一定温度下达到化学平衡时,该反应的平衡常数为:nm qp B c A c D c C c K )]([)]([)]([)]([⋅⋅=注意:a .在平衡常数表达式中,反应物A 、B 和生成物C 、D 的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b .当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下 Fe 3O 4(s) + 4H 23Fe(s) + H 2O(g)的平衡常数表达式为:4242)]([)]([H c O H c K =又如,在密闭容器中进行的可逆反应CaCO 3(s)CaO(s) + CO 2↑的平衡常数表达式为:K =c(CO 2)c .平衡常数K 的表达式与化学方程式的书写方式有关.例如: N 2 + 3H 22NH 3 )]([)]([)]([232231N c H c NH c K ⋅=2NH 3N 2 + 3H 2 233222)]([)]([)]([NH c H c N c K ⋅=21N 2 +23H 2NH 3 2/322/1233)]([)]([)]([N c H c NH c K ⋅=显然,K 1、K 2、K 3具有如下关系:121K K =,2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同. ②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g) pC(g) + qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q 表示.即:Q B c A c D c C c n m qp =⋅⋅)]([)]([)]([)]([当Q =K 时,体系达平衡状态;当Q <K ,为使Q 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态. ②表示可逆反应进行的程度.K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.[反应物平衡转化率的计算公式] 某一反应物的平衡转化率=100-⨯指定反应物的起始量指定反应物的平衡量指定反应物的起始量%=100⨯指定反应物的起始量消耗量指定反应物达平衡时的%说明 计算式中反应物各个量的单位可以是mol ·L -1”、mol ,对于气体来说还可以是L 或mL ,但必须注意保持分子、分母中单位的一致性. 3.影响化学平衡移动的条件[化学平衡的移动] 已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动. 说明 (1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡. (3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同. [影响化学平衡的因素](1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).体的量平衡不发生移动.如反应C(s) + H 2O(g) 2(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.说明 ①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动.②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO 2充分氧化,以生成更多的SO 3.(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H 2(g) + I 2达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减小,使平衡混合气各组分的浓度增大,气体的颜色加深(碘蒸气为紫红色).②对于非气态反应(即无气体参加和生成的反应),改变压强,此时固、液体的浓度未改变,平衡不发生移动。

高二化学反应原理知识点

高二化学反应原理知识点

高二化学反应原理知识点化学反应原理”模块的知识在高中化学教学中一直占据着十分重要的地位,接下来店铺为你整理了高二化学反应原理知识点,一起来看看吧。

高二化学反应原理知识点一、焓变、反应热要点一:反应热(焓变)的概念及表示方法化学反应过程中所释放或吸收的能量,都可以用热量来描述,叫做反应热,又称焓变,符号为ΔH,单位为kJ/mol,规定放热反应的ΔH为“—”,吸热反应的ΔH为“+”。

特别提醒:(1)描述此概念时,无论是用“反应热”、“焓变”或“ ΔH”表示,其后所用的数值必须带“+”或“—”。

(2)单位是kJ/mol,而不是kJ,热量的单位是kJ。

(3)在比较大小时,所带“+”“—”符号均参入比较。

要点二:放热反应和吸热反应1.放热反应的ΔH为“—”或ΔH<0 ;吸热反应的ΔH为“+”或ΔH >0∆H=E(生成物的总能量)-E(反应物的总能量)∆H=E(反应物的键能)- E(生成物的键能)2.常见的放热反应和吸热反应①放热反应:活泼金属与水或酸的反应、酸碱中和反应、燃烧反应、多数化合反应。

②吸热反应:多数的分解反应、氯化铵固体与氢氧化钡晶体的反应、水煤气的生成反应、炭与二氧化碳生成一氧化碳的反应3.需要加热的反应,不一定是吸热反应;不需要加热的反应,不一定是放热反应4.通过反应是放热还是吸热,可用来比较反应物和生成物的相对稳定性。

如C(石墨,s(金刚石,s) △H3= +1.9kJ/mol,该反应为吸热反应,金刚石的能量高,石墨比金属石稳定。

高二化学反应原理知识点二、热化学方程式的书写书写热化学方程式时,除了遵循化学方程式的书写要求外,还要注意以下几点:1.反应物和生成物的聚集状态不同,反应热的数值和符号可能不同,因此必须注明反应物和生成物的聚集状态,用s、l、g分别表示固体、液体和气体,而不标“↓、↑”。

2.△H只能写在热化学方程式的右边,用空格隔开,△H值“—” 表示放热反应,△H值“+”表示吸热反应;单位为“kJ/mol”。

高二化学反应原理知识点

高二化学反应原理知识点

高二化学反应原理知识点进行化学复习时应该注意归纳整理、建立自己的认知结构。

下面是店铺为大家整理的高二化学反应原理知识点,希望对大家有所帮助。

高二化学反应原理知识点(一)反应热计算的依据1.根据热化学方程式计算反应热与反应物各物质的物质的量成正比。

2.根据反应物和生成物的总能量计算ΔH=E生成物-E反应物。

3.根据键能计算ΔH=反应物的键能总和-生成物的键能总和。

4.根据盖斯定律计算化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。

即如果一个反应可以分步进行,则各分步反应的反应热之和与该反应一步完成时的反应热是相同的。

温馨提示:①盖斯定律的主要用途是用已知反应的反应热来推知相关反应的反应热。

②热化学方程式之间的“+”“-”等数学运算,对应ΔH也进行“+”“-”等数学计算。

5.根据物质燃烧放热数值计算:Q(放)=n(可燃物)×|ΔH|。

高二化学反应原理知识点(二)1、吸热反应与放热反应的区别特别注意:反应是吸热还是放热与反应的条件没有必然的联系,而决定于反应物和生成物具有的总能量(或焓)的相对大小。

2、常见的放热反应①一切燃烧反应;②活泼金属与酸或水的反应;③酸碱中和反应;④铝热反应;⑤大多数化合反应(但有些化合反应是吸热反应,如:N2+O2=2NO,CO2+C=2CO等均为吸热反应)。

化学反应原理知识点3、常见的吸热反应①Ba(OH)2·8H2O与NH4Cl反应;②大多数分解反应是吸热反应③等也是吸热反应;④水解反应高二化学反应原理知识点(三)1、化学平衡的移动概念可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动。

2、化学平衡移动与化学反应速率的关系(1)v正>v逆:平衡向正反应方向移动。

(2)v正=v逆:反应达到平衡状态,不发生平衡移动。

(3)v正3、影响化学平衡的因素4、“惰性气体”对化学平衡的影响①恒温、恒容条件原平衡体系体系总压强增大―→体系中各组分的浓度不变―→平衡不移动。

高二化学反应原理知识点归纳

高二化学反应原理知识点归纳

高二化学反应原理知识点归纳高二理科生学习化学的接触到化学反应,不知道怎么去了解化学反应。

以下是WTT整理的化学反应知识点归纳,希望可以帮助大家更好地了解化学反应。

第1章、化学反应与能量转化化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。

一、化学反应的热效应1、化学反应的反应热(1)反应热的概念:当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。

用符号Q表示。

(2)反应热与吸热反应、放热反应的关系。

Q>0时,反应为吸热反应;Q0,反应吸收能量,为吸热反应。

Delta;H0反应不能自发进行。

在温度、压强一定的条件下,自发反应总是向Delta;H-TDelta;S<0的方向进行,直至平衡状态。

二、化学反应的限度1、化学平衡常数(1)对达到平衡的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平衡常数,用符号K表示。

(2)平衡常数K的大小反映了化学反应可能进行的程度(即反应限度),平衡常数越大,说明反应可以进行得越完全。

(3)平衡常数表达式与化学方程式的书写方式有关。

对于给定的可逆反应,正逆反应的平衡常数互为倒数。

(4)借助平衡常数,可以判断反应是否到平衡状态:当反应的浓度商Qc与平衡常数Kc相等时,说明反应达到平衡状态。

2、反应的平衡转化率(1)平衡转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示。

如反应物A的平衡转化率的表达式为:alpha;(A)=(2)平衡正向移动不一定使反应物的平衡转化率提高。

提高一种反应物的浓度,可使另一反应物的平衡转化率提高。

(3)平衡常数与反应物的平衡转化率之间可以相互计算。

3、反应条件对化学平衡的影响(1)温度的影响升高温度使化学平衡向吸热方向移动;降低温度使化学平衡向放热方向移动。

温度对化学平衡的影响是通过改变平衡常数实现的。

高二化学反应原理全册知识点

高二化学反应原理全册知识点

1.1.1化学反响的反响热与焓变一、反响热与键能的关系二、化学反响必然伴随着物质变化和能量变化。

物质变化源于化学反响的定义:有新物质的生成。

能量变化源于物质本身具有的能量,即焓。

H〔产物〕≠H 〔反响物〕,其差值为焓变。

∆H= H〔产物〕-H 〔反响物〕,该差值∆H 等压条件下等于反响热Q 。

【总结】〔1〕焓变计算公式 ∆H= H 〔产物〕-H 〔反响物〕 ∆H= E 吸 - E 放 〔2〕常见放热反响:酸碱中和、燃烧反响、活泼金属与水或酸反响、铝热反响、大多数化合反响 〔3〕常见吸热反响:32Δ224232222Δ22CaCO =CaO+CO Ba(OH)8H O+2NH Cl =BaCl +2NH +10H O C+CO =2COC+H O(=CO+H H +CuO =H O+Cu↑↑高温高温高温水蒸气)三、酸碱中和反响的反响热测定 公式 Q=-C ∙m ∙∆t比热 C 水=4.18kJ ∙K -1∙kg -1能量时间能量时间吸热反响放热反响反响物溶液总质量m=m 酸+m 碱温差∆t=T 2-T 1T 1初始温度 T 2末温〔反响后最高温度〕 仪器---简易量热计补充:中和热:在稀溶液中,酸与碱发生中和反响生成1molH 2O 时放出的热量,单位KJ •mol —1 燃烧热:1mol 某燃料充分燃烧,生成稳定氧化物和液态水时放出的热量,单位KJ •mol —11.1.2 热化学方程式及盖斯定律【教学目标】1. 掌握热化学方程式的书写和意义2. 了解盖斯定律的含义,能运用盖斯定律计算化学反响的反响热 一、热化学方程式定义:把一个化学反响中的物质变化和反响的焓变同时表示出来的化学方程式。

考前须知:1.物质的状态。

固体s ,气体g ,液体l ,溶液中的溶质aq ;2.注明温度。

常温298K 可不注;3. ∆H 单位kJ ∙mol −14.系数加倍,那么∆H 加倍;反响逆向进展,∆H 改变符号,绝对值不变;5.系数表示物质的量,不表示分子的个数,系数可整可分。

化学选修《化学反应原理》知识点总结

化学选修《化学反应原理》知识点总结

化学选修《化学反应原理》知识点总结一、化学反应的基本原理1.化学反应速率:反应速率是指单位时间内反应物消失或产物生成的物质的量。

影响反应速率的因素包括浓度、温度、压力和催化剂的作用等。

2.反应机理:反应机理是指化学反应中的中间体和过渡态的产生、消失和转化的过程。

理解反应机理有助于揭示反应的本质和规律。

3.化学平衡:化学平衡是指反应物和生成物之间的浓度、压力和温度达到一定比例,并且它们的物质量不再发生变化。

平衡常数反映了在平衡条件下反应物和生成物的浓度之间的关系。

二、反应动力学1.反应速率方程:反应速率方程描述了反应速率和反应物浓度之间的关系。

根据实验数据,可以确定反应速率方程的指数、速率常数和速率常数方程等。

2.反应速率常数:反应速率常数是指反应速率与反应物浓度之间的比例系数。

它受到温度、催化剂和反应条件的影响。

3.反应级数:反应级数是指反应速率方程中各个反应物的指数。

通过实验数据可以确定反应级数,从而了解反应的复杂程度。

4.速率常数方程:速率常数方程是描述反应速率常数和温度之间的关系。

它常用于计算反应速率常数在不同温度下的数值。

5.反应活化能:反应活化能是指反应物转化为产物所需的最小能量。

它可以通过速率常数和速率常数方程计算出来。

6.反应速率控制步骤:反应速率控制步骤是指在复杂的反应中,最慢的步骤决定整个反应的速率。

理解反应速率控制步骤有助于解释反应的速率规律和优化反应条件。

三、化学平衡1.化学平衡常数:化学平衡常数是指在特定温度下,反应物和生成物的浓度之间的比例。

它可以通过反应物和生成物的摩尔比来计算。

2.平衡常数和温度的关系:平衡常数与温度之间存在一定的关系,可以用于预测在不同温度下反应物和生成物浓度的变化。

3. 影响化学平衡的因素:温度、压力、浓度和物质的添加等因素都会影响化学平衡。

根据Le Chatelier原理,平衡系统会通过调整反应条件来保持平衡。

4.平衡转移:平衡转移是指通过改变反应条件,使得化学平衡向预期方向转移的过程。

化学选修 化学反应原理各章知识点归纳整理

化学选修 化学反应原理各章知识点归纳整理

高二化学选修4化学反应原理知识点整理第一章化学反应与能量一、焓变反应热1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1)符号:△H (2)单位:kJ/mol3.产生原因:化学键断裂——吸热化学键形成——放热放出热量的化学反应。

(放热>吸热) △H 为“-”或△H <0吸收热量的化学反应。

(吸热>放热)△H 为“+”或△H >0☆常见的放热反应:①所有的燃烧反应②酸碱中和反应③大多数的化合反应④金属与酸的反应⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等二、热化学方程式书写化学方程式注意要点:①热化学方程式必须标出能量变化。

②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示)③热化学反应方程式要指明反应时的温度和压强(25 ℃,101 kPa时可以不注明)。

④热化学方程式中的化学计量数可以是整数,也可以是分数。

只能表示物质的量,不能表示分子个数。

⑤各物质化学计量数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变。

三、燃烧热1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。

燃烧热的单位用kJ/mol表示。

※注意以下几点:①研究条件:101 kPa②反应程度:完全燃烧,产物是稳定的氧化物。

③燃烧物的物质的量:1 mol④研究内容:放出的热量。

(ΔH<0,单位kJ/mol)四、中和热1.概念:在稀溶液中,酸跟碱发生中和反应生成1mol H2O,这时的反应热叫中和热。

2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为:H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。

高二化学反应原理知识总结

高二化学反应原理知识总结

高二化学反应原理知识总结高二化学反应原理知识1反应热焓变1、定义:化学反应过程中放出或吸收的热量叫做化学反应的反应热.在恒温、恒压的条件下,化学反应过程中所吸收或释放的热量称为反应的焓变。

2、符号:△H3、单位:kJ·mol-14、规定:吸热反应:△H > 0 或者值为“+”,放热反应:△H < 0 或者值为“-”常见的放热反应和吸热反应放热反应吸热反应燃料的燃烧 C+CO2 , H2+CuO酸碱中和反应 C+H2O金属与酸 Ba(OH)2.8H2O+NH4Cl大多数化合反应 CaCO3高温分解大多数分解反应小结:1、化学键断裂,吸收能量;化学键生成,放出能量2、反应物总能量大于生成物总能量,放热反应,体系能量降低,△H为“-”或小于0反应物总能量小于生成物总能量,吸热反应,体系能量升高,△H为“+”或大于03、反应热数值上等于生成物分子形成时所释放的总能量与反应物分子断裂时所吸收的总能量之差高二化学反应原理知识2热化学方程式1.概念:表示化学反应中放出或吸收的热量的化学方程式.2.意义:既能表示化学反应中的物质变化,又能表示化学反应中的能量变化.[总结]书写热化学方程式注意事项:(1)反应物和生成物要标明其聚集状态,用g、l、s分别代表气态、液态、固态。

(2)方程式右端用△H 标明恒压条件下反应放出或吸收的热量,放热为负,吸热为正。

(3)热化学方程式中各物质前的化学计量数不表示分子个数,只表示物质的量,因此可以是整数或分数。

(4)对于相同物质的反应,当化学计量数不同时,其△H也不同,即△H 的值与计量数成正比,当化学反应逆向进行时,数值不变,符号相反。

高二化学反应原理知识3盖斯定律:不管化学反应是一步完成或分几步完成,其反应热是相同的。

化学反应的焓变(ΔH)只与反应体系的始态和终态有关,而与反应的途径无关。

总结规律:若多步化学反应相加可得到新的化学反应,则新反应的反应热即为上述多步反应的反应热之和。

高中化学选修4-化学反应原理知识点总结

高中化学选修4-化学反应原理知识点总结

化学选修化学反应原理复习第一章一、焓变反应热1.反应热:肯定条件下,肯定物质的量的反应物之间完全反应所放出或汲取的热量2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1).符号:△H(2).单位:kJ/mol3.产生缘由:化学键断裂——吸热化学键形成——放热放出热量的化学反应。

(放热>吸热) △H 为“-”或△H <0汲取热量的化学反应。

(吸热>放热)△H 为“+”或△H >0☆常见的放热反应:①全部的燃烧反应②酸碱中和反应③大多数的化合反应④金属与酸的反应⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等二、热化学方程式书写化学方程式留意要点:①热化学方程式必需标出能量变更。

②热化学方程式中必需标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示)③热化学反应方程式要指明反应时的温度和压强。

④热化学方程式中的化学计量数可以是整数,也可以是分数⑤各物质系数加倍,△H加倍;反应逆向进行,△H变更符号,数值不变三、燃烧热1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。

燃烧热的单位用kJ/mol表示。

※留意以下几点:①探讨条件:101 kPa②反应程度:完全燃烧,产物是稳定的氧化物。

③燃烧物的物质的量:1 mol④探讨内容:放出的热量。

(ΔH<0,单位kJ/mol)四、中和热1.概念:在稀溶液中,酸跟碱发生中和反应而生成1mol H2O,这时的反应热叫中和热。

2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为:H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol3.弱酸或弱碱电离要汲取热量,所以它们参与中和反应时的中和热小于57.3kJ/mol。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二化学反应原理知识要点归纳
在高中化学中,化学反应是非常重要的一个知识点,但是往往很多学生都掌握不好这个内容,想知道化学反应有哪些知识点吗?下面是为大家的高二化学重要的知识点,希望对大家有用!
化学反应的热效应
1、化学反应的反应热
(1)反应热的概念:
当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。

用符号Q表示。

(2)反应热与吸热反应、放热反应的关系。

Q>0时,反应为吸热反应;Q<0时,反应为放热反应。

(3)反应热的测定
测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下:
Q=-C(T2-T1)
式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。

实验室经常测定中和反应的反应热。

2、化学反应的焓变
(1)反应焓变
物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。

反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。

(2)反应焓变ΔH与反应热Q的关系。

对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。

(3)反应焓变与吸热反应,放热反应的关系:
ΔH>0,反应吸收能量,为吸热反应。

ΔH<0,反应释放能量,为放热反应。

(4)反应焓变与热化学方程式:
把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);Δ
H(298K)=-285.8kJ·mol-1
书写热化学方程式应注意以下几点:
①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。

②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1
或kJ·mol-1,且ΔH后注明反应温度。

③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。

3、反应焓变的计算
(1)盖斯定律
对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。

(2)利用盖斯定律进行反应焓变的计算。

常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。

(3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH。

对任意反应:aA+bB=cC+dD
ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]
电能转化为化学能——电解
1、电解的原理
(1)电解的概念:
在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解。

电能转化为化学能的装置叫做电解池。

(2)电极反应:以电解熔融的NaCl为例:
阳极:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-→Cl2↑+2e-。

阴极:与电源负极相连的电极称为阴极,阴极发生还原反应:Na++e-→Na。

总方程式:2NaCl(熔)2Na+Cl2↑
2、电解原理的应用
(1)电解食盐水制备烧碱、氯气和氢气。

阳极:2Cl-→Cl2+2e-
阴极:2H++e-→H2↑
总反应:2NaCl+2H2O2NaOH+H2↑+Cl2↑
(2)铜的电解精炼。

粗铜(含Zn、Ni、Fe、Ag、Au、Pt)为阳极,精铜为阴极,CuSO4溶液为电解质溶液。

阳极反应:Cu→Cu2++2e-,还发生几个副反应
Zn→Zn2++2e-;Ni→Ni2++2e-
Fe→Fe2++2e-
Au、Ag、Pt等不反应,沉积在电解池底部形成阳极泥。

阴极反应:Cu2++2e-→Cu
(3)电镀:以铁表面镀铜为例
待镀金属Fe为阴极,镀层金属Cu为阳极,CuSO4溶液为电解质溶液。

阳极反应:Cu→Cu2++2e-
阴极反应:Cu2++2e-→Cu
一、有机物的概念
1、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外)
2、特性:①种类多②大多难溶于水,易溶于有机溶剂③易分解,易燃烧④熔点低,难导电、大多是非电解质⑤反应慢,有副反应(故反应方程式中用“→”代替“=”)
二、甲烷CH4
烃—碳氢化合物:仅有碳和氢两种元素组成(甲烷是分子组成最简单的烃)
1、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气
2、分子结构:CH4:以碳原子为中心,四个氢原子为顶点的正四面体(键角:109度28分)
3、化学性质:①氧化反应:(产物气体如何检验?)
甲烷与KMnO4不发生反应,所以不能使紫色KMnO4溶液褪色
②取代反应:(三氯甲烷又叫氯仿,四氯甲烷又叫四氯化碳,二氯甲烷只有一种结构,说明甲烷是正四面体结构)
4、同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质(所有的烷烃都是同系物)
5、同分异构体:化合物具有相同的分子式,但具有不同结构式(结构不同导致性质不同)
烷烃的溶沸点比较:碳原子数不同时,碳原子数越多,溶沸点越高;碳原子数相同时,支链数越多熔沸点越低同分异构体书写:会写丁烷和戊烷的同分异构体
三、乙烯C2H4
1、乙烯的制法:
工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一)
2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水
3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°
4、化学性质:
(1)氧化反应:C2H4+3O2=2CO2+2H2O(火焰明亮并伴有黑烟)可以使酸性KMnO4溶液褪色,说明乙烯能被KMnO4氧化,化学性质比烷烃活泼。

(2)加成反应:乙烯可以使溴水褪色,利用此反应除乙烯
乙烯还可以和氢气、氯化氢、水等发生加成反应。

CH2=CH2+H2→CH3CH3
CH2=CH2+HCl→CH3CH2Cl(一氯乙烷)
CH2=CH2+H2O→CH3CH2OH(乙醇)
1.高中化学必修2重点知识点归纳
2.高中必修二化学重要知识点总结
3.高中化学必修二重点知识点总结
4.上海高一化学知识要点总结
5.高中化学研究性学习总结。

相关文档
最新文档