热能与动力工程专业英语全文翻译 整理版
热能与动力工程专业英语翻译 5.11(1)
5.11 Boiler Design5.11–Pressure boiler ,there is no steam drum ,but rather an arrangement of tubes in which steam is generated and superheated .the boiler is a drun-or once- through type ,whether it is an individual unit or a small part of a large complex ,it is necessary in design to give proper consideration to the为确定锅炉和其它传热设备所吸收的热量,使用最佳效率值,燃料的类型或者设计的设备所需燃料。
确定所需的炉膛的尺寸和形状,考虑炉膛的位置,燃料床的燃烧器的空间要求,并结合完成完全燃烧所需要的充足的炉膛容积。
对流换热表面的大体布置必须是这样计划,就是过热器和再热器,在设置时,必须放置在最佳温度区域内,这个最佳温度区域内的烟气温度是足够高的,可以较好的把烟气温度传然而在饱和位置或锅炉表面有一定的灵活性,在过热器前后必须有足够的对流换热表面用来传热使给水达到饱和温度以及产生炉膛内不能产生的多余的蒸汽。
20%的需要蒸汽。
.锅炉设备或附件必须把炉膛、锅炉、过热器、再热器及空气加热器紧密联系在一起,密封的气体燃料或输送管道必须用来传送烟气到烟囱。
After the steam requirements-steam flow ,steam pressure and temperature-and boiler feedwater temperature are determined ,the required rate of heat absorption ,q, is q=w’(h’2- h’1)+ w”(h”2- h”1) (5.1)q,由方程确定: q=w’(h’2- h’1)+ w”(h”2- h”1)(5.1)其中:q=热吸收率,英热/小时w’=primary steam or feedwater flow ,lb/hw’ =主蒸汽或给水流量,磅/小时w”=reheat steam flow , lb/hrw” =再热蒸汽流量,磅/小时h’1=enthalpy of feedwater entering , Btu/lbh’1=给水入口焓,英热/磅h’2=enthalpy of primary steam leaving superheater , Btu/lbh’2=主蒸汽离开过热器的焓,英热/磅h”1=enthalpy of steam entering reheater , Btu/lbh”1=蒸汽进入再热器的焓,英热/磅h”2=enthalpy of steam leaving reheater , Btu/lb”蒸汽离开再热器的焓,英热/磅100减去热损失的总和的百分比表示。
热能与动力工程专业英语翻译 4.5
26 对刺激的反应依赖于一般的环境和人的期望。 【七】27 A particular example is the range effect . 28 When an observer experiences a range of stimuli and is asked to rate them on a category scale ,he tends to rate them by putting the stimuli from the middle of the range into the central categories of the rating scale . 29 This has been clearly demonstrated in experiments on the acceptability of noise . 30 Subjects acceptable and unacceptable noise at the centre of the range of noise which they have been exposed . 31 Thus people who are exposed to high noise levels will apparently tolerate more noise than people who have only been exposed to low noise levels . 32 The range effects do not apply only to the range of stimur . 33 People carry their own standards with them ,based on their general experience ,with which they compare a new stimulus . 34 Thus ,the meaning of the words comfortable or uncomfortable will not have an absolute value ,but will be relative to his experience and expectation . 35 When Gagged et al.(1967)put young men in an environmental chamber at 48℃,the subjects rated the environment as slights knew they were in a physiological laboratory ,were expecting to sweat ,and did not object strongly to the experience . 【七】27 一个特殊的实例是量级分布效果。 28 当观察者经历一系列的刺激并要求排列出它们的类别规模的等级, 他倾向于通过将刺激的从中间范围到中央类别规模的等级来评估他们
热能与动力工程专业英语翻译5.1
热能与动力工程专业英语翻译5.1
5.1 Boiler and Its Development
5.1
leaving the furnace ,the gases pass through a superheater in which steam receives heat from the gases and has its temperature risen above the saturation
℃.
538℃左右。
20世纪50年代普遍使用煤粉炉,设备尺寸已经有大量增加。
,结果会失去标准的可靠性。
1)由于设计和制造的发展,汽包内部部件将改变,以提高蒸汽/水的分离,并允许汽包组件之间交换的。
2)改变过热器和再热器的管道厚度和材料,增加设计寿命和提高抗腐蚀性。
)炉膛内部的变化,将提供更好的传热特性和简单结构规程。
have been subjected to 100% ultrasonic examination to comply with more stringent specification requirements and case histories have been
4)锅炉管已受到100%超声波检查,以符合更严格的规范要求和实例,已准备所有相关的压力部件。
5)许多发电厂的运作经验表明,,送风机和引风机的发动机速度为2时是最有利的,因为潜在的彻底改变,往往总在高速模式下运行。
热能与动力工程专业英语4.2翻译
4.2 Refriger ant evaporators11Several ty pes of evapor ators c an be used in multistage systems.2A tubular, dir ect expansion evapor ator oil easily and requires the smallest refrigerant charge.3Where dir ect expansion is impr actical, a flooded system or a recirculated system may be used, but these methods c ompound oil r eturn pr oblems.24Some problems that can bec ome mor e acute in low-temper ature systems than in high-temperatur e sy stems include oil transport pr operties, loss off c apacity caused by static head from the depth of the pool of liquid r efrigerant in the evaporator, deterioration of refriger ant boiling heat tr ansfer c oeff icients, and higher specif ic volumes for the vapor.35The effect of pressure losses in the evapor ator and suc tion piping is mor e acute in lowtemperatur e sy stems because of the lar ge change in satur ation temperatures and specif ic volume in relation to pr essur e changes at these c onditions.6Sy stems that oper ate near zero absolute pressure are particularly affected by pressur e loss.7F or example, with R-12 and R-22 at 140 kPa suction and 27℃liquid feed temper ature, a 7 kPa loss incr eases the volume flow r ate by about 5﹪.8A t 35 kPa suction and -7℃ liquid feed temperature, a 7 kPa loss increases the volume flow rate by about 25﹪.49The depth of the pool of boiling r efrigerant in a flooded evaporator causes a liquid head or static pressur e that is exerted on the lower part of the heat transfer surfac e.10Therefore, the saturation temperatur e at this sur face is hi gher than the pr essure in the suction line, which is not affected by the static head.11A lthough tubular dr y expanded evaporators do not have appreciable static liquid head, gas pressur e dr ops from the inlet to the outlet of the evaporator create a velocity head that c auses a similar condition.512The liquid depth penalty for the evaporator can be eliminated if the pool of liquid is below the heat transfer surface and a r efrigerant pump spr ays the liquid over the surface.13Of course, the pump energy is an additional heat load to the system, and more refrigerant must be used to prov ide the Net Positive Suction Head (NPSH) requir ed by the pump.14The pump is also an additional item to be maintained.615Another type of low-temperatur e evaporator is the flash cooler in w hic h liquid refrigerant is cooled by boiling off some vapor.16The r emaining cold liquid c an then be pumped from the flash c ooler to the evaporator.17There it is either top or bottom fed at a r ate greater than the evapor ation rate to ensure wetting of the entire evaporator surface for maximum heat tr ansfer without an appreciable static head penalty.18This liquid over feed system is fr equently used in large refrigerated war ehouses with many evapor ators. 719Another less frequently used system pumps the liquid r efrigerant as a secondar y cooler, or coil, heat transfers to it from the material being cooled.20The liquid temperature rises to develop a temper ature r ange, but bec ause pr essur e is maintained suff iciently above satur ation by the liquid pump, the coolant does not evapor ate until it returns via a restriction to the flash cooler.21Suff icient refriger ant must be circ ulated to acc ommodate the temperatur e range.22The flash c ooler in this sy stem is an acc umulator r eceiver similar to that used in a liquid overfeed system, except that no excess r efrigerant is fed to the remote heat transfer surfac e.823In both types of liquid r ecirculation systems, the cold liquid can be moved by mec hanic al pumps or by pressure from the compr essor dischar ge. 4.2制冷剂的蒸发器11有几种类型的蒸发器,可用于在多级系统。
热能与动力工程专业外文翻译、中英对照、英汉互译
毕业设计外文翻译原文标题:Proposal for a high efficiency LNGpower-generation System utilizing wasteheat from the combined cycle中文标题:一个高效的利用液化天然气联合循环余热的发电系统学院名称:能源与动力工程学院专业名称:热能与动力工程Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycleY. Hisazumi*, Y. Yamasaki, S. SugiyamaEngineering Department, Osaka Gas Co., 1-2 Hiranomachi 4-chome Chuo-ku, Osaka 541, Japan Accepted 9 September 1998AbstractHigh-efficiency power-generation with an LNG vaporizing system isproposed: it utilizesthe LNG's cold energy to the best potential limit. This system can be applied to LNG vaporizers in gas companies or electric power companies and recovers the LNG's cold energy as electric power. The system consists of a Rankine cycle using a Freon mixture, natural-gas. Rankine cycle and a combined cycle with gas and steam turbines. The heat sources for this system are the latent heat from the steam-turbine's condenser and the sensible heat of exhaust gas from the waste-heat recovery boiler. In order to find out the optimal condition of the system, several factors, such as gas turbine combustion pressure, steam pressure, condensing temperature in combined cycle, composition of mixture Freon, and natural gas vaporizing pressure are evaluated by simulation. The results of these studies show that in the total system, about 400 kWh can be generated by vaporizing 1 ton of LNG, including about 60 kWh/LNG ton recovered from the LNG cold energy when supplying NG in 3.6 MPa.. About 8.2MWh can be produced by using 1 ton of LNG as fuel, compared with about 7 MWh by the conventional combined system. A net efficiency of over 53%HHV could be achieved by the proposed system. In the case of the LNG terminal receiving 5 million tons of LNG per year, this system can generate 240 MW and reduce the power of the sea water pump by more than 2MW. 1998 Elsevier Science Ltd. All rights reserved.1. IntroductionIn the fiscal year 1994, the amount of LNG imported to Japan reached about 43 million tons; of this 31 million tons were used as fuel for power generation. As shown in Fig. 1, about 20% of the LNG imported was used for power generation [2]. Fig. 2 shows the major LNG power generation systems now in operation and their outputs. Several commercial LNG power generation plants have been constructed since 1979, and their total output has reached approximately 73 MW. Among the new power-generation plants without CO2 emission, this value of 73 MW is second to the 450 MW input of geo-thermal power generation plants in Japan, with the exception of power generation by refuse incinerators, and is much larger compared with the 35 MW output of solar-power plants and the 14 MW output of wind-power stations.Table 1 shows the LNG power generation plants constructed in Japan. The economics of LNG power generation became worse as the appreciation of the yen madethe cost of energy kept constant but while raising the construction cost; the adoption of the combined cycle utilizing gas-turbine and steam turbine (hereafter called combined cycle) increased the gas send-out pressure and lowered the power output per ton of LNG. Therefore, no LNG powergeneration plants were constructed in the 1990s due to lower cost effectiveness of the systems.As for the thermal power plant using natural gas as fuel, the steam turbine produced only about 6 MWh of power output per ton of LNG. But recently, improvement in blade-cooling technology and materials of the gas turbine enabled a 1400℃class turbine to be designed and increased the combustion pressure up to 3 MPa. Therefore, as shown in Fig. 3, the heat efficiency of the combined cycle has been improved and the electrical output from 1 ton of LNG has reached about 7MWh.In this paper, a proposal is made for the high-efficiency LNG power generation system based on a new concept which fully utilizes the cold energy without discarding it into the sea. The system is composed of the combined cycle and the LNG power-generation plant.2. High-efficiency LNG power-generation system2.1. Basic componentsFig.4 shows the process flow diagram of the high-efficiency LNG power-generation system. This complex system consists of the combined cycle and the LNG power generation cycle. The combined cycle is composed of a gas turbine (GAS-T) and a steam turbine (ST-T) using natural gas (NG) as fuel, while the LNG power generation cycle is composed of a Freon (uorocarbon) mixture turbine (FR-T) and a natural-gas turbine (NG-HT, NG-LT) using the latent heat of condensation from the exhaust steam and the sensible heat of the exhaust gas as heat sources. The plate fin type heat exchanger can be used for the LNG/natural gas (LNG-CON) and LNG/ Freon mixture (FR-CON). The shell-and-tube type can be selected as exchangers for exhaust steam/natural gas (LNG-VAP),exhaust steam/Freon mixture(FR-VAP), and exhaust gas/natural gas (NG-SH) applications according to the operating conditions.Ice thickness on the surface of the heat-exchanger tubes becomes a problem as heat is exchanged between exhaust gas and cold natural gas or Freon mixture. The ice thickness can be estimated by the technology of heat transfer between LNG and sea water, thus enabling one to avoid blockages due to ice inside the tubes.In addition, stable and continuous send-out of gas is made possible by using a bypass system, even if turbines and pumps for the Freon mixture and natural gas circulating systems (FR-RP, LNG-RP) stop.2.2. Features of the systemThe practical use of the following existing technologies in combination shows the high feasibility of the proposed system:. Power generation using Freon or hydrocarbon type Rankine cycle,. Power generation by natural-gas direct expansion],. TRI-EX type vaporizer which vaporizes LNG by using an intermediate medium or vacuum type LNG vaporizer.The Freon mixture is made up of the HFC type, which is a fluorocarbon consisting of H, F, and C and has no adverse influence on the ozone layer; it enables reduction in exergy loss at the heat exchanger and increases itscirculating flow rate to be achieved.The effective recovery of cold exergy and pressure exergy is made possible by the combined system using natural gas and Freon mixture Rankine cycle.Fig. 5 shows the temperature-heat duty relation when vaporizing 1 kg of LNG in the system shown in Fig. 4. Separation of the condensed natural-gas in two sections enables an increase in the heat duty between Freon (FR) and LNG, and a reduction of difference in temperature of LNG and natural gas between the inlet and outlet of the heat exchanger.3. Evaluation of the characteristics of the proposed system3.1. Process simulationThe characteristics of this system were evaluated by using process simulator. The followings are the conditions used for the calculation:Effciencies of rotating machines LNG compositionGas turbine (GAS-T) 88% CH4 89.39%Steam turbine (ST-T) 85% C2H6 8.65%Natural-gas turbine (NG-HT, LT) 88% C3H8 1.55%Freon turbine (FR-T) 88% iC4H10 0.20%Air compressor (AIR-C) 85% nC4H10 0.15%LNG pump (LNG-MP, RP) 70% iC5H12 0.01%Freon pump (FR-RP) 70% N2 0.05%Natural gas gross heat-value: 10,510 kcal/Nm3AIR/NG flow ratio of gas turbine: 323.2. Effects of send-out pressure of the natural gasWhen natural-gas is sent out at 3.5 or 1.8 MPa, evaluations were made of the effects of send-out pressure of the LNG and change in superheating temperature of the natural gas on the total output of the high pressure (NG-HT) and the low pressure (NG-LT) natural-gas expansion-turbines. Fig. 6 shows the results of this calculation, where self consumption of power is calculated from the power, raising the pressure of the LNG up to the inlet pressure of the turbine minus the power required for the original send-out pressure. In both cases, the inlet pressure rise for the turbine causes an increase of self consumption power, but brings about a greater out-put. About 7 MPa of the inlet pressure of the turbine is appropriate considering the pressure tolerance of the heat exchangers.When the superheating temperature of the natural gas at the inlet to the turbine becomes high, the recovery of power increases, but the temperature of the exhaust gas from the outlet of the natural-gas super heater (NG-SH) declines, thus indicating that there is a limitation to superheating gas.3.3. Effects of combustion pressure of the gas turbineThe outputs of the gas turbine and the steam turbine, and the efficiency per gross heating value were evaluated by changing the combustion pressure of the gas turbine operating at 1300℃turbine-inlet temperature - see Fig. 7.If the combustion pressure of the gas turbine becomes high, the output of the gas turbine increases, but the output of the steam turbine decreases because the rise in combustion pressure causes a lowering of the exhaust-gas temperature at the outlet of the gas turbine and consequently a decline in the steam temperature at the inlet of the steam turbine. However, the overall efficiency of the turbines increases upon increasing the combustion pressure because the increment of gas-turbine output exceeds the decrement of steam turbine output. As a result, taking the pressure loss into account, it is appropriate to set the send-out pressure of the natural gas at the LNG terminal at 3.5 MPa.(FR-vap),3.4. Effects of Inlet pressure of the steam turbineFig. 8 shows the relations between the steam-turbines output and exhaust gas temperatures by changing the steam pressure in the range of 3-7 MPa. As the steam pressure increases, the output of the steam turbine rises and the temperature of the exhaust gases also increase. Besides, the power required for the water-supply pump increases with a rise in the steam pressure. Therefore, the current combined cycles operate at steam pressure of 7 MPa or more because the increment of the output of steam turbine exceeds the additional power required for the water-supply pump.3.5. Rankine cycle using a Freon-mixture refrigerant.The Freon refrigerant was selected from the HFC refrigerants on the basis of marketability, boiling point and freezing-point. Table 2 shows the physical properties of HFC Freon.When only HFC-23 is used as the medium, because of its low freezing-point it never freezes even if heat is exchanged between the LNG and HFC-23. But if HFC-23 is heated by the exhaust steam of the steam turbine, the pressure rises approximately up to the critical pressure. Therefore, the use of HFC-23 is not cost effective, because it is then necessary to set a high design pressure. To cope with this problem, we evaluated the compound refrigerant composed of HFC-134a (with high boiling point) and HFC-23.Fig. 9 shows saturated vapor pressure at various temperatures, the boiling point and the dew point at atmospheric pressure for mixtures of HFC-23 andHFC-134a of various compositions. The saturated pressure at each temperature rises with the increasing mole ratio of HFC-23: Hence, 40-45% of the mole ratio of HFC-23 is the optimal value considering the design pressure of the equipment.Fig. 10 shows the plots of the output of the Freon turbine versus the condensing temperature of the steam turbine when changing the composition of the HFC-23. In this figure, the turbine outlet pressure is determined in such a way that thedifference in temperature between the LNG and Freon mixture is not less than 5℃in the Freon condenser (FR-CON). The Freon turbine's inlet-pressure is set to the saturatedtemperature of the Freon mixture, i.e. less than 2℃from the steam-condensing temperature.This figure indicates that the output of the turbine scarcely correlates with the mole ratio of HFC-23. The higher the steam-condensing temperature becomes, the greater the output per ton of LNG the turbine produces, but in such a case, it is necessary to evaluate the system as a whole because more fuel is required, as described below. The result indicates that the optimal mole composition of HFC-23 and HFC-134a is 40%/60% considering both design pressure and the output of the turbine.3.6. Comprehensive evaluation from the viewpoint of the steam-condensing Temperature.As the dew point of the exhaust gas is 42℃, it is wise to set the exit temperature of the exhaust gas from the natural-gas super heater (NG-SH) to 80℃or more in order to prevent white smoke from the smoke stack. Table 3 shows the effect of the steam-condensing temperature on the generated output of the total system. The lower steam-condensing temperature brings about a higher efficiency of the total system, but also causes a lowering in the inlet temperature of natural-gas turbine. Therefore, it is appropriate to set the steam-condensing temperature at approximately 30℃.When the condensing temperature is 30C, the generated outputs per ton of LNG of the combined cycle and LNG power generation plant are 342.83 and67.55 kWh, respectively, resulting in 402.64 kWh of total generated output aftersubtracting the self-use power. As 48.94 kg of fuel is used for operating the system, the generated outputs of the combined cycle and the total system reach about 7 and 8.2 MWh, per ton of fuel respectively.3.7. Evaluation of exergyNatural-gas is liquefied at an LNG liquefaction terminal, with the consumption of about 380 kWh/LNG-ton: 1 ton of LNG having about 250 kWh of physical exergy as cold exergy and 13.5 MWh of chemical exergy. Fig. 11 shows the result of evaluating the exergy of the system shown in Fig. 4 under the optimal condition. The total output of Freon and natural gas turbines is 67.5 kWh, and the effective recovery percentage of cold exergy is 56%. As 90 kWh out of the pressure exergy can be recovered as output, about 157 kWh of net recovery can be obtained, which indicates the recovery percentage reaches about 63% for 250 kWh of LNG cold exergy. This conversion efficiency is higher than that achieved from chemical exergy to electric power.Most of the exergy loss occurs in the heat exchanger and the turbine, and in mixing with re-condensed LNG. As for the turbines, the loss of energy may be improved by using high-efficiency turbines. On the other hand, modification of the heat exchanger to reduce the energy loss may cause increased complexity of the system and is difficult to be done from the economic viewpoint. Though the recovery.percentage of cold energy in this system is low compared with the 80% in air-separation equipment, this system has the advantage of recovering a large amount of the available cold energy.4. ConclusionThe paper has proposed a high-efficiency LNG power generation system in combination with a combined-cycle power generation system fueled by natural-gas. The system utilizes LNG cold energy and it requires no sea water as a heat source.This system can be applied to LNG vaporization and send-out processes of gas companies or electric-power companies. The system recovers LNG coldenergy as an electric-power output without wasting it into sea water. The system consists of Rankine cycle with Freon mixture and a natural-gas Rankine cycle using the latent heat of exhaust steam from the steam turbine and the sensible heat of exhaust gas from the waste-heat recovery boiler. To improve the total efficiency of the system, a simulation was conducted to evaluate several factors, such as the composition of the Freon mixture, natural gas send-out pressure, as well as the combustion pressure steam inlet pressure, and steam-condensing temperature of the combined cycle. As a result, not less than 60 kWh/LNG-ton of output was generated even at a high natural-gas send-out pressure of 3.5 MPa. This value is considerably higher than the output generated at a LNG send-out pressure of 3 or 4 MPa, as given in Table 2.The system can produce about 400 kWh of net output when vaporizing 1 ton of LNG. While the conventional combined-cycle system in operation generates about 7 MWh when 1 ton of LNG is used as fuel, the system using the same amount of fuel generates about 8.2 MWh with a high degree of efficiency: a not-less-than 53% conversion efficiency was achieved per gross heat value.In the case of an LNG terminal receiving 5 million tons of LNG per year, this system can generate a power of about 240 MW when 600 t of LNG is used in an hour. With the elimination of about 24,000 tons per hour of sea water, which has been used for vaporizing 600 t/h of LNG in the conventional system, no less than 2 MW of electric power for operating sea water pumps can be saved.The proposed system emits no CO2, and can generate a large amount of electricity with high cost efficiency when incorporated into a combined cycle, with no use of sea water. Therefore, we consider that installation of this system is the one of the most favorable means of investment to put a new energy source or energy-saving equipment to practical use.To realize the full potential of this system, it is necessary to understand the heat characteristics of the Freon mixture, the icing and heat transfer characteristics of exhaust steam, the controllability of total system and the characteristics against partial load.References[1] The Center for Promotion of Natural gas Foundation. Research and development report of cold energy utilizing system, 1994[2] Japan's Energy and Economy Research Center. Energy and economy statistical data in 1995[3] Abe. Operating results and future prospect of a recent combined-cycle power generation plant. Thermal and Nuclear Power 1995;46(6):33-41[4] Maertens J. Design of Rankine cycles for power generation. Int. Refrig. 1986;9:137-43[5] Terada, Nakamoto. Power generation utilizing LNG cold. Thermal and Nuclear Power Generation 1986;37(10):66-71[6] Ooka, Ueda, Akasaka. Advanced LNG vaporizer and power generation utilizing LNG cold. Chemical Engineering 1981;45(3):187-90[7] Miura. The development of LNG vaporizer using vacuum steam heat (VSV). Journal of Japan Gas Society 1992;45:34-6[8] Nagai. Software-package and the usage. Chemical Equipment1994;August:31-7[9] Daikin Co. Ltd. Freon Data Sheet of HFC23一个高效的利用液化天然气联合循环余热的发电系统日本大阪541燃气有限公司工程部1-2平野町4肖梅中央谷,1998年9月概述本文提出了一个高效液化天然气气化发电系统,它是利用液化天然气冷能的最佳潜能极限。
热能与动力工程专业英语翻译2.6
Every free surface emits energy in the form of electromagnetic waves;the amount of energy is a function of the surface temperature. This emitted energy is known as radiant thermal energy. The nature of this radiant energy is not completely understood, but laws have been formulated that describe its behavior. It is recognized that, as with other forms of radiant energy ,radiant heat energy is transmitted in the form of electromagnetic waves. The complete formulation of the laws governing radiant heat energy must consider that this energy is quantized,that is, the energy is transferred in quanta. In contrast with other modes of heat transfer, no medium is required to transmit radiant energy. In fact some gases, for instance, carbon dioxide and water vapor, absorb some of the radiant energy passing through them.每一个自由表面都会以电磁波的形式发射能量,能量的量是表面温度的函数。
热能与动力工程专业英语翻译 6.1
6.1‟s most efficient speed is usually much higher than that of the machine it is driving ,so a speed reduction gear usually has to be used .600 000马力的汽轮机。
转子——叶轮上装有动叶,转子两端装有轴颈。
轴承箱——安装在气缸上,用来支承转子的轴。
调速器和阀门系统——通过控制蒸汽流量来调节涡轮的速度和出力,同时还有轴承润滑系统以及一套安全装置。
某种类型的联轴器——用来连接从动机械…catch ‟the steam from the nozzle smoothly ,and they are curved so that they change the direction of the jet and in so doing receive an impulse which pushes6.1(见原文)所示为一种简单的冲动式汽轮机。
…reaction ‟ turbine .moving blades are also nozzles ,similar to the stationary nozzles but facing the other way ,and in addition to catching and deflecting the steam issuing from the stationary(见原文中图6.2)它综合了冲力和反作用力的原理。
6.2中的涡轮壳带有一整圈喷嘴,这些喷嘴和反冲式涡轮机里的一样,也是弯曲的,并以最有效的角度引导蒸汽喷向转动的叶片。
,under these conditions the exhaust volume flow becomes large ,and it is necessary to have more than one exhaust stage ;for example ,a large turbine may have three are“axial flow ”turbine .“double flow ”.drops can damage the blades and reduce the turbine efficiency ,and this is one reason why the steam ,after passing through the high-pressure turbine ,idea sometimes。
热能与动力工程专业英语翻译2.5
2.5 Natural Convection自然对流Heat transfer involving motion in a fluid caused by the difference in density and the action of gravity is called natural or free convection. Heat transfer coefficients for natural convection are generally much lower than for forced convection, and it is therefore important not to ignore radiation in calculating the total heat loss or gain. Radiant transfer may be of the same order of magnitude as natural convection, even at room temperatures, since wall temperatures in a room can affect human comfort.传热流体中涉及运动所引起的密度和不同的重力作用称为自然或自由对流。
对自然对流传热系数通常远远低于强迫对流,因此,重要的不是忽略辐射总散热量的计算或利益。
辐射传递可能是同一个数量级的自然对流,即使在室温下,因为壁温度在一个房间里会让人安慰。
Natural convection is important in a variety of heating and refrigeration equipment:(1)gravity coils used in high humidity cold storage rooms and in roof-mounted refrigerant condensers,(2)the evaporator and condenser of household refrigerators, (3) baseboard radiators and convectors for space heating and(4)cooling panels for air conditioning. Natural convection is also involved in heat loss or gain to equipment casings and interconnecting ducts and pipes.自然对流是重要的多种加热和制冷设备:(1)应用于高湿度下重力线圈在车顶安置房、冷藏冷冻冷凝器、(2)家用电冰箱蒸发器和冷凝器,(3)脚板散热器和提出对于空间供热;(4)冷却板,空调。
热能与动力工程专业英语译文-第一章译文
1
TL TH
(1-1)
注意,提高 TH(提高吸热温度)或降低 TL(降低放热温度)均可使循环效率提高。 1.1.7 朗肯循环 我们所关心的第一类动力循环为电力生产工业所采用的,也就是说,动力循环按这样的方式运行: 工质发生相变,由液态变为气态。最简单的蒸汽-动力循环是朗肯循环,如图 1-5(a)所示。朗肯循环的一 个主要特征是泵耗费很少的功就能把高压水送入锅炉。其可能的缺点为工质在汽机内膨胀做功后,通常
3
进入湿蒸汽区,形成可能损害汽轮机叶片的液滴。 朗肯循环是一个理想循环,其忽略了四个过程中的摩擦损失。这些损失通常很小,在初始分析时可 完全忽略。朗肯循环由四个理想过程组成,其 T-s 图如图 1-5(b)所示:1→2 为泵内等熵压缩过程;2→3 为炉内定压吸热过程;3→4 为汽轮机内等熵膨胀做功过程;4→1 为凝汽器内定压放热过程。 泵用于提高饱和液体的压强。事实上,状态 1 和状态 2 几乎完全一样,因为由 2 点开始的较高压强 下的吸热过程线非常接近饱和曲线,图中仅为了解释说明的需要分别标出。锅炉(也称蒸汽发生器)和 凝汽器均为换热器,它们既不需要功也不产生功。 如果忽略动能和势能的变化,输出的净功等于 T-s 图曲线下面的面积,即图 1-5(b)中 1-2-3-4-1 所包 围的面积,由用热力学第一定律可证明 Wnet Qnet 。循环过程中工质的吸热量对应面积 a-2-3-b-a。因此, 朗肯循环的热效率可表示为
2
和比容分别称为临界温度、临界压强和临界比容。一些工质的临界点数据如表 1-1 所示。 1.1.4 热力学第一定律 通常把热力学第一定律称为能量守恒定律。在基础物理课程中,能量守恒定律侧重动能、势能的变 化以及和功之间的相互关系。更为常见的能量守恒形式还包括传热效应和内能的变化。当然,也包括其 它形式的能,如静电能、磁场能、应变能和表面能。 历史上统所做的净功。 1.1.5 热力学第二定律 热力学第二定律有多种表述形式。在此列举两种:克劳修斯表述和凯尔文-普朗克表述。 克劳修斯表述:制造一台唯一功能是把热量从低温物体传给高温物体的循环设备是不可能的。 以冰箱(或热泵)为例,不可能制造一台不用输入功就能把热量从低温物体传给高温物体的冰箱, 如图 1-3(a)所示。 凯尔文-普朗克表述:制造一台从单一热源吸热和做功的循环设备是不可能的。 换句话说,制造这样一台从某一热源吸热并对外做功,而没有与低温热源进行换热的热机是不可能 的。因此,该表述说明了不存在工作效率为 100%的热机,如图 1-3(b)所示。 1.1.6 卡诺循环 卡诺机是低温热源和高温热源间运行效率最高的热机。卡诺机是一个理想热机,利用多个可逆过程 组成一循环过程,该循环称为卡诺循环。卡诺机非常有用,因为它的运行效率为任何实际热机最大可能 的效率。因此,如果一台实际热机的效率要远低于同样条件下的卡诺机效率,则有可能对该热机进行一 些改进以提高其效率。 理想的卡诺循环包括四个可逆过程,如图 1-4 所示:1→2 等温膨胀;2→3 绝热可逆膨胀;3→4 等 温压缩;4→1 可逆绝热压缩。卡诺循环的效率为
热能与动力工程专业英语翻译3
Unit2:An atom’s nucleus can be……原子核可以分裂,当这种分裂发生时,巨大的能量就会释放出来。
这是一股发热发光的能量。
爱因斯坦曾说过微小质量的物体包含巨大的能量。
当这种能量缓慢释放时,就可以利用它产生动力发电。
当这种能量瞬间释放时,就如原子弹一样产生巨大的爆炸。
A nuclear power plant……核电站用铀作为燃料。
铀是一种能从世界上的许多地方挖出的元素。
它被加工成小丸装入伸进核反应堆的长棒中。
The word fission means to……裂变一词意思就是分裂。
在核电站的反应堆内部,铀原子以可拉链式反应进行分裂。
In a chain reaction……在链式反应中,原子分裂释放的粒子离开并且撞击正在分裂的其它铀原子。
在核电站的链式反应中,那些分裂产生的粒子继续分裂其它的原子,控制棒用来使这种分裂受控因此这种分裂就不会进行得太快。
Unit3Continued research has made renewable……不断的研究使现在可再生能源的利用比25年前更能支付得起。
但是对于可再生能源的利用仍有一些缺点。
For example, solar thermal energy……例如,通过收集器收集太阳光来得到太阳能需要大量的占地面积来安装收集器。
这会影响生态环境,也就是会影响当地的动植物。
当建筑物、道路、输电线和变压器建造时,环境也会受到影响。
通常太阳能电站所用的流体大多数是有毒的而且泄露可能会发生。
Solar or PV cells……太阳能或光伏电池使用相同的技术生产电脑硅芯片。
生产过程使用了有毒的化学药品。
有毒的化学药品用来制造电池储存太阳电能来渡过黑夜和阴天。
制造这种装置也会有环境影响。
Also,even if we……即使我们想马上转换太阳能,仍然存在很大的问题。
世界上所有的太阳能生产设备使太阳能电池满载也只能产生大约350MW,大约够一个300000人口的城市使用,相对我们的需求而言那是微不足道的。
热能与动力工程专业英语翻译2.6
3.1 Heat of CombustionIn a boiler furnace (where no mechanical work is done) the heat energy evolved from the union of combustible elements with oxygen depends on the ultimate products of combustion and not on any intermediate combinations that may occur in reaching the final result.A simple demonstration of this law is the union of 1 lb of carbon with oxygen to produce a specific amount of heat. The union may be in one step to form the gaseous product of combustion, CO2, or under certain conditions the union may be in two steps, first to form CO, producing a much smaller amount of heat and, second the union of the CO so obtained to form CO2, releasing 9755 Btu . However, the sum of the heats released in the two steps equals the 14100 Btu evolved when carbon is burned in one step to form CO2 as the final product.3.1燃烧热在锅炉炉(没有机械的工作是做的)的热能的演变而来的元素与氧结合易燃取决于最终产品的燃烧而不是任何中间组合可以发生在达到最后的结果。
热能与动力工程专业英语-翻译(李瑞扬)
热能与动力工程专业英语-翻译(李瑞扬)1.3 The Characteristics of Fluids 流体的特征constituent:组成的;tangential:切向的;restrain:限制、约束;equilibrium:平衡,均衡;interface:相互关系、分界面;molecule:微小颗粒、分子;continuum:连续体;vessel:容器;tar:焦油、柏油;pitch:树脂;imperceptibly:察觉不到的,细微的;restore:恢复;subside:下沉、沉淀、减退、衰减;hypothetically:假设地、假想地;sphere:球、球体;microvolume:微元体积;rarest:最稀罕的,虽珍贵的A fluid is a substance which may flow; that is, its constituent particles may continuously change their positions relative to one another. Moreover, it offers no lasting resistance to the displacement, however great, of one layer over another. This means that, if the fluid is at rest, no shear force (that is a force tangential to the surface on which it acts )can exist in it. A solid, on the other hand, can resist a shear force while at rest; the shear force may cause some displacement of one layer over another, but the material does not continue to move indefinitely. In a fluid, however, shear forces are possible only while relative movement between layers is actually taking place. A fluid is further distinguished from a solid in that a given amount of it owes its shape at any particular time to that of a vessel containing it, orto forces which in some way restrain its movement. 流体是可以流动的物质,也就是说,组成流体的质点可以连续的改变它们的相对位置。
热能与动力工程专业英语翻译-5.1
5.1 Boiler and Its Development5.1锅炉及其发展the heat from the products of combustion to water and produces hot water or steam .汽的系统。
Heat is transferred in the furnace mainly by radiation to water-cooled walls,which constitutes the evaporation section of the steam generation system .heat from the gases and has its temperature risen above the saturation temperature .Since the temperature of the gases leaving the superheater section is still high ,modern steam generators often employ additional heat transfer surfaces to utilize the thermal energy of the gases .体的热能,The boilers for electric power generation stations are quite different in terms of steam conditions and generation rates.The steam pressure may be either supercritical or subcritical and the temperature is frequently around 538℃.538℃左右。
【三Boilers may also be classified according to the relative positions of products of combustion .surrounded by water .sometimes ,in heating buildings .water-filled tubes .Both ends of the water tubes are connected to the headers or water . In the drum the steam is separated from the saturated water .Then,the saturated steam usually goes to the superheater in which the steam temperature is increased .drumsticks of a fire-tube boiler .【五】To attain high system efficiency ,the steam generator usually ,consists of the evaporation section , superheaters , reheaters , economizers , and air preheaters .气预热器组成。
热能与动力工程专业英语翻译4.3
4.3Refrigeration 制冷Refrigeration was used by ancient civilizations when it was naturally available. The Roman rulers had slaves transport ice and snow from the high mountains to be used to preserve foods and to provide c ool beverages in hot weather. Such natural sources of refrigeration were, of course, extremely limited in terms of location, temperatures , and scope. Means of producing refrigeration with machinery, called mechanical refrigeration, began to be developed in the 1850s. Today the refrigeration industry is a vast and essential part of any te chnological society, with yearly sales of equipment amounting to bill ions of dollars in the United States alone. 当能自然地制冷时,曾为古代文明所利用。
罗马统治者让奴隶们从高山上搬运冰、雪,用来保存食物,并在暑热时提供冷饮。
当然,这种制冷的自然资源就地点、气温和范围而言是极其有限的。
使用机械产生冷量的方式称作机械制冷,是19世纪20年代开始发展起来的。
当今,制冷工业是任何技术社会的庞大而重要的一部分,仅在美国设备年销售额就达到数十亿美元。
热能与动力工程专业英语翻译 5.3
5.3 Boiler Circulation5.31 b/ft3)与上升管(上流)中的流体密度之差(图 5.3)。
“once-through ”system and a “recirculating ”system.“once-through ”forced-circulation type receives water from the feed supply ,pumping it to the inlet of the heat-absorbing circuits .“once-through ”type evaporates to partial dryness (90% quality )removing the excess water in a separator .90%的干度),再在汽水分离器中除去多余的水。
“recirculating ”forced-circulation-type unit has water supplied to the heat-absorbing circuits through a separate circulating pump .“round trip .”。
1.0的燃料。
33%的电厂所输入燃料的热量来计算,则其净能量的损失约为供给水泵电动机能量的2倍。
,并一直增加到最大的循环流体流量点才停止。
,is produced by two opposing forces .5.4中所示的曲线形状是由两个相对的力形成的。
5.4中曲线的上升部分才是适当的,也即设计在曲线顶点的左侧运行。
design conditions are limited to the rising portion of the circulation curve ,a natural-circulation boiler tends to be self-compensating for the numerous variations in3 208.2 psia)下运行而设计的锅炉可采用机械方式是流体在回路中流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章热科学基础工程热力学基础热力学是一门研究能量储存、转换及传递的科学。
能量以内能(与温度有关)、动能(由物体运动引起)、势能(由高度引起)和化学能(与化学组成相关)的形式储存。
不同形式的能量可以相互转化,而且能量在边界上可以以热和功的形式进行传递。
在热力学中,我们将推导有关能量转化和传递与物性参数,如温度、压强及密度等关系间的方程。
因此,在热力学中,物质及其性质变得非常重要。
许多热力学方程都是建立在实验观察的基础之上,而且这些实验观察的结果已被整理成数学表达式或定律的形式。
其中,热力学第一定律和第二定律应用最为广泛。
热力系统和控制体热力系统是一包围在某一封闭边界内的具有固定质量的物质。
系统边界通常是比较明显的(如气缸内气体的固定边界)。
然而,系统边界也可以是假想的(如一定质量的流体流经泵时不断变形的边界)。
系统之外的所有物质和空间统称外界或环境。
热力学主要研究系统与外界或系统与系统之间的相互作用。
系统通过在边界上进行能量传递,从而与外界进行相互作用,但在边界上没有质量交换。
当系统与外界间没有能量交换时,这样的系统称为孤立系统。
在许多情况下,当我们只关心空间中有物质流进或流出的某个特定体积时,分析可以得到简化。
这样的特定体积称为控制体。
例如泵、透平、充气或放气的气球都是控制体的例子。
包含控制体的表面称为控制表面。
因此,对于具体的问题,我们必须确定是选取系统作为研究对象有利还是选取控制体作为研究对象有利。
如果边界上有质量交换,则选取控制体有利;反之,则应选取系统作为研究对象。
平衡、过程和循环对于某一参考系统,假设系统内各点温度完全相同。
当物质内部各点的特性参数均相同且不随时间变化时,则称系统处于热力学平衡状态。
当系统边界某部分的温度突然上升时,则系统内的温度将自发地重新分布,直至处处相同。
当系统从一个平衡状态转变为另一个平衡状态时,系统所经历的一系列由中间状态组成的变化历程称为过程。
若从一个状态到达另一个状态的过程中,始终无限小地偏离平衡态,则称该过程为准静态过程,可以把其中任一个中间状态看作为平衡状态。
准静态过程可近似视为许多过程的叠加结果,而不会显著减小其精确性,例如气体在内燃机内的压缩和膨胀过程。
如果系统经历一系列不平衡状态(如燃烧),从一个平衡状态转变为另一个平衡状态,则其过程为非平衡过程。
当系统从一给定的初始状态出发,经历一系列中间过程又回到其初始状态,则称系统经历了一个循环。
循环结束时,系统中的各参数又与初始参数相同。
在任一特性参数名称前加上前缀iso-,表示该参数在整个过程保持不变。
等温(isothermal)过程中温度保持不变;等压(isobaric)过程中压强恒定;等容(isometric)过程中体积保持不变。
纯物质的气-液相平衡如图1-1(a)所示,由活塞和气缸组成的装置中装有1kg水。
假定活塞和其上的重物使气缸内压强维持在1,初始温度20℃。
当有热量开始传递给水时,缸内水温迅速上升,而比容略有增加,气缸内压强保持恒定不变。
当水温达到℃时,如若再增加传热量,水将发生相变,如图1-1(b)所示。
也就是说,一部分水开始气化变为蒸汽,在此相变过程中,温度和压强始终保持不变,但比容却有大幅度的增加。
当最后一滴液体被气化时,进一步的加热将使蒸汽温度和比容均有所增加,如同1-1(c)所示。
在给定压强下发生气化的温度称为饱和温度,压强称为给定温度下的饱和压强。
因此,℃水的饱和压强是,水的饱和温度为℃。
如果某一工质为液态并处于其饱和温度和饱和压强下,则称该液体为饱和液体。
如果液体温度低于当前压强下的饱和温度,则称该液体为过冷液体(表明液体的当前温度低于给定压强下的饱和温度)或压缩液体(表明液体的当前压强大于给定温度下的饱和压强)。
若某一工质在饱和温度下以液、气共存的形式存在,则称蒸汽质量与总质量之比为干度。
因此,如图1-1(b)所示,若蒸汽质量为,液体质量为,则其干度为或20%。
干度只有在饱和状态下才有意义。
若某一工质处于饱和温度下并以蒸汽形态存在,则称该蒸汽为饱和蒸汽(有时称为干饱和蒸汽,意在强调其干度为100%)。
当蒸汽温度高于其饱和温度时,则称之为过热蒸汽。
过热蒸汽的压强和温度是彼此独立的,因为温度上升时,压强可能保持不变。
在图1-2所示的温度-比容图上作等压线,表示水由初压、初温20℃被加热的过程。
点A代表初始状态,点B为饱和液态(℃),线AB表示液体由初始温度被加热至饱和温度所经历的过程。
点C表示饱和蒸汽状态,线BC表示等温过程,即液体气化转变为蒸汽的过程。
线CD表示在等压条件下蒸汽被加热至过热的过程,在此过程中,温度和比容均增大。
类似地,线IJKL表示压强为10MPa下的等压线,相应的饱和温度为℃。
但是,在压强为条件下(线MNO),不存在等温蒸发过程。
相反,点N是个转折点,在该点上,切线斜率为零,通常把N点称为临界点。
在临界点处,饱和液体和饱和气体的状态都是相同的。
临界点下的温度、压强和比容分别称为临界温度、临界压强和临界比容。
一些工质的临界点数据如表1-1所示。
热力学第一定律通常把热力学第一定律称为能量守恒定律。
在基础物理课程中,能量守恒定律侧重动能、势能的变化以及和功之间的相互关系。
更为常见的能量守恒形式还包括传热效应和内能的变化。
当然,也包括其它形式的能,如静电能、磁场能、应变能和表面能。
历史上,用热力学第一定律来描述循环过程:净传热量等于循环过程中对系统所做的净功。
热力学第二定律热力学第二定律有多种表述形式。
在此列举两种:克劳修斯表述和凯尔文-普朗克表述。
克劳修斯表述:制造一台唯一功能是把热量从低温物体传给高温物体的循环设备是不可能的。
以冰箱(或热泵)为例,不可能制造一台不用输入功就能把热量从低温物体传给高温物体的冰箱,如图1-3(a)所示。
凯尔文-普朗克表述:制造一台从单一热源吸热和做功的循环设备是不可能的。
2v1.0 可编辑可修改换句话说,制造这样一台从某一热源吸热并对外做功,而没有与低温热源进行换热的热机是不可能的。
因此,该表述说明了不存在工作效率为100%的热机,如图1-3(b)所示。
卡诺循环卡诺机是低温热源和高温热源间运行效率最高的热机。
卡诺机是一个理想热机,利用多个可逆过程组成一循环过程,该循环称为卡诺循环。
卡诺机非常有用,因为它的运行效率为任何实际热机最大可能的效率。
因此,如果一台实际热机的效率要远低于同样条件下的卡诺机效率,则有可能对该热机进行一些改进以提高其效率。
理想的卡诺循环包括四个可逆过程,如图1-4所示:1→2等温膨胀;2→3绝热可逆膨胀;3→4等温压缩;4→1可逆绝热压缩。
卡诺循环的效率为T(1-1)1T注意,提高T(提高吸热温度)或降低T(降低放热温度)均可使循环效率提高。
朗肯循环我们所关心的第一类动力循环为电力生产工业所采用的,也就是说,动力循环按这样的方式运行:工质发生相变,由液态变为气态。
最简单的蒸汽-动力循环是朗肯循环,如图1-5(a)所示。
朗肯循环的一个主要特征是泵耗费很少的功就能把高压水送入锅炉。
其可能的缺点为工质在汽机内膨胀做功后,通常进入湿蒸汽区,形成可能损害汽轮机叶片的液滴。
朗肯循环是一个理想循环,其忽略了四个过程中的摩擦损失。
这些损失通常很小,在初始分析时可完全忽略。
朗肯循环由四个理想过程组成,其T-s图如图1-5(b)所示:1→2为泵内等熵压缩过程;2→3为炉内定压吸热过程;3→4为汽轮机内等熵膨胀做功过程;4→1为凝汽器内定压放热过程。
泵用于提高饱和液体的压强。
事实上,状态1和状态2几乎完全一样,因为由2点开始的较高压强下的吸热过程线非常接近饱和曲线,图中仅为了解释说明的需要分别标出。
锅炉(也称蒸汽发生器)和凝汽器均为换热器,它们既不需要功也不产生功。
如果忽略动能和势能的变化,输出的净功等于T -s图曲线下面的面积,即图1-5(b)中1-2-3-4-1所包围的面积,由用热力学第一定律可证明W Q。
循环过程中工质的吸热量对应面积a-2-3-b-a。
因此,朗肯循环的热效率可表示为面积12341(1-2)面积a23b a即,热效率等于输出能量除以输入能量(所购能量)。
显然,通过增大分子或减小分母均可以提高热效率。
这可以通过增大泵出口压强p,提高锅炉出口温度T,或降低汽机出口压强p来实现。
再热循环对于一个处于高锅炉压强和低凝汽器压强条件下的朗肯循环,显然,很难阻止液滴在汽轮机低压部分的形成。
由于大多数金属不能承受600℃以上的高温,因此,通常采用再热循环来防止液滴的形成。
再热过程如3v1.0 可编辑可修改下:经过汽轮机的部分蒸汽在某中间压强下被再热,从而提高蒸汽温度,直至达到状态5,如图1-6所示。
然后这部分蒸汽进入汽轮机低压缸,而后进入凝汽器(状态6)。
再热循环方式可以控制或者完全消除汽轮机中的湿蒸汽问题,因此,通常汽轮机分成高压缸和低压缸两部分。
虽然再热循环不会显著影响循环热效率,但带来了显著的额外的输出功,如图1-6中的面积4-5-6-4-4所示。
当然,再热循环需要一笔可观的投资来购置额外的设备,这些设备的使用效果必须通过与多增加的输出功进行经济性分析来判定。
如果不采用再热循环来避免液滴的形成,则凝汽器出口压强必须相当地高,因而导致循环热效率较低。
在这种意义上,与无再热循环且高凝汽器出口压强的循环相比,再热可以显著提高循环效率。
流体力学基础流体运动表现出多种不同的运动形式。
有些可以简单描述,而其它的则需要完全理解其内在的物理规律。
在工程应用中,尽量简单地描述流体运动是非常重要的。
简化程度通常取决于对精确度的要求,通常可以接受±10%左右的误差,而有些工程应用则要求较高的精度。
描述运动的一般性方程通常很难求解,因此,工程师有责任了解可以进行哪些简化的假设。
当然,这需要丰富的经验,更重要的是要深刻理解流动所涉及的物理内涵。
一些常见的用来简化流动状态的假设是与流体性质有关系的。
例如,黏性在某些条件下对流体有显著的影响;而在其它条件下,忽略黏性效应的影响可以大大地简化方程,但并不会显著改变计算结果。
众所周知,气体速度很高时必须考虑其压缩性,但在预测风力对建筑物的影响程度,或者预测受风力直接影响的其它物理量时,可以不计空气的压缩性。
学完流体运动学之后,可以更明显地看出采用了哪些恰当的假设。
这里,将介绍一些重要的用来分析流体力学问题的一般性方法,并简要介绍不同类型的流动。
拉格朗日运动描述和欧拉运动描述描述流场时,将着眼点放在流体质点上是非常方便的。
每个质点都包含了微小质量的流体,它由大量分子组成。
质点占据很小的体积,并随流体流动而移动。
对不可压缩流体,其体积大小不变,但可能发生形变。
对可压缩流体,不但体积发生形变,而且大小也将改变。
在上述两种情况下,均将所有质点看作一个整体在流场中运动。