组合变形
材料力学组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形
M y 187 N m
T 1020 N m
合弯矩:
2 M M y M z2 4402 187 2
478N m
第四强度理论:
W
r4
1 W
M 2 0.75T 2
603 109
32
21.2110 6 m3
危险截面: B 截面
T 21.7 N m M 26.7 N m
第三强度理论:
r3
W
1 W
M 2 T 2
T图
21.7 N m
353 109
32
2
4.2110 6 m3
2
r3
8.18MPa
26.7 21.7 4.21106
第四强度理论:
式中: T
r4
危险截面上的扭矩 危险截面上的合弯矩
M
M
实心轴 W
2 2 My Mz
D3
32 D3 空心轴 W 1 4 32
,
例题 8-5 45钢的传动轴AB的直径为35mm,许用应力为 85MPa。电动机功率P = 2.2kW,由带轮C 传入。带轮C转速为 966r/min,带轮的直径为 D = 132mm,带拉力为F+F’ = 600N。齿轮E的 d 节圆直径为: 1 50mm 。
Fz Fz F sin 240 F sin 300 257 N
二、作出轴的弯矩图 和扭矩图
T图
21.7 N m
My 图
7.43N m 20.4 N m 11.4 N m 24.1N m
Mz 图
工程力学第15章组合变形
32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。
组合变形(工程力学课件)
偏心压缩(拉伸)
轴向拉伸(压缩)
偏心压缩
F2 F2e
轴向压缩(拉伸)和 弯曲两种基本变形组合
偏心压缩(拉伸)
单向偏心压缩(拉伸)
双向偏心压缩(拉伸)
单向偏心压缩(拉伸)
外力
内力
平移定理
应力
+
=
弯矩
轴力
max
min
FN A
Mz Wz
【例 1】求横截面上的最大正应力
F 50 kN
e 10 mm
组合变形的概念 及其分析方法
杆件的四种基本变形
轴向拉压 剪切 扭转
F
F
F
F
Me
Me
沿轴线的伸长或缩短 相邻横截面相对错动 横截面绕轴线发生相对转动
Me
弯曲
Me
F
轴线由直线变为曲线 横截面发生相对的转动
两种或两种以上基本变形的组合,称为组合变形
常见的 组合变形
(1)拉(压)弯组合 (2)斜弯曲(弯、弯组合) (3)偏心压缩(拉伸) (4)弯扭组合
24 106 401.88 103
64
4.3 59.7 64 [ ] 满足强度要求
59.7 55.4
斜弯曲
平面弯曲
作用线与截面的 纵向对称轴重合
梁弯曲后挠曲线位于外力F所在的纵向对称平面内
斜弯曲
作用线不与截面 的对称轴重合
梁弯曲后挠曲线不再位于外力F所在的纵向平面内
图示矩形截面梁,应用叠加原理对其进行分析计算:
3、应力分析
( z,y)
横截面上任意一点 ( z, y) 处 的正应力计算公式为
Mz
z
O
x
1.拉伸正应力
N
简述几种工程中常见的组合变形
简述几种工程中常见的组合变形
在工程中,组合变形是指由多个形式不同的变形组合而成的变形形式,常见的组合变形有以下几种:
1. 弯曲和剪切组合变形:当物体同时受到弯曲和剪切的变形时,会出现这种组合变形形式。
在制造和使用过程中,这种变形会导致物体的强度和刚度下降。
2. 拉伸和压缩组合变形:当物体同时受到拉伸和压缩的变形时,会出现这种组合变形形式。
这种变形会影响物体的强度和刚度,严重时会导致物体的破坏。
3. 扭曲和弯曲组合变形:当物体同时受到扭曲和弯曲的变形时,会出现这种组合变形形式。
这种变形会影响物体的形状和尺寸,严重时还会影响物体的使用功能。
4. 压缩和剪切组合变形:当物体同时受到压缩和剪切的变形时,会出现这种组合变形形式。
这种变形会影响物体的强度和刚度,严重时还会导致物体的破坏。
以上是几种工程中常见的组合变形,工程师需要对这些组合变形进行分析和评估,以保证工程设计的可靠性和安全性。
- 1 -。
十三 组合变形
例:直径为20 mm的圆截面水平直角折杆,受垂直力 P=0.2 kN, 已知[σ]=170 MPa,试用第三强度理论确定 a 的许可值。 解:由内力图可知,截面 A 是危险截面。
A
B
轴的抗弯截面系数:
M图
圆轴弯扭组合变形强度条件:
2Pa
(按第三强度理论)
T图
C
Pa Pa
a 的许可值:
中性轴是一条通过截面形心的直线。
中性轴
二、位移计算 斜弯曲的概念 为了计算梁在斜弯曲时的挠度,仍应用叠加法:
中性轴
总挠度 f 与中性轴垂直。源自斜弯曲:梁弯曲后挠曲线所在平面与载荷作用面不重合。 否则称为平面弯曲。
挠曲线平面 载荷平面
特例: 当
时,梁弯曲后挠曲线所在平面与载荷作用面
重合,此时发生平面弯曲。比如:
将P分解:
产生轴向拉伸; 产生弯曲变形。
组合变形横截面上的应力:
轴力引起截面上的正应力:
弯矩引起截面上的正应力:
FN
Mz
总应力:
危险截面的应力:
FN
拉(压)弯组合变形强度条件:
Mz
◆ 偏心压缩(以矩形截面为例):
d c
例:具有切槽的正方形木杆,受力如图。求:
(1)m-m截面上的最大拉应力σt 和最大压应 力σc;
(1)力作用的独立性原理 即在线弹性、小变形的前提下,任一载荷所引起的变
形对其它载荷作用的影响可忽略不计。
第一节 组合变形的概念
二、 组合变形
3、组合变形的基本解法
(2)基本步骤: ① 将作用于构件的载荷分解,得到与原载荷静力等效的几 组载荷,使构件在每一组载荷作用下只产生一种基本变形; ② 分别计算构件在每一组基本变形载荷下的内力、应力、 变形; ③ 将各种基本变形载荷下的应力、变形叠加得总的应力、 变形; ④ 最后作强度或刚度计算。
组合变形
第八章组合变形§8-1 组合变形和叠加原理一、组合变形的概念:构件的基本变形:拉压、剪切挤压、扭转、弯曲。
由两种或两种以上基本变形的组合---称为组合变形。
如:梁的弯曲和拉压变形的组合。
轴的扭转和弯曲变形的组合。
梁的弯曲与剪切变形的组合(横力弯曲)。
李禄昌liluchang二、叠加法---解决组合变形问题的基本方法*:1、叠加原理:复杂外力进行简化、分解为几组静力等效载荷。
→ →每一组载荷对应着一种基本变形。
→ →分别计算一种基本变形的内力、应力、应变、挠度。
→ →将所有结果叠加,便是构件发生组合变形时的内力、应力、应变、挠度。
2、叠加原理的几个原则*:⑴、分量(内力、应力、应变、位移)与外力成线性关系。
⑵、与外力加载的先后顺序无关,⑶、材料服从胡克定律(线弹性变形)。
⑷、应用原始尺寸原理。
注意:各分量叠加时,同方向的相同分量可以用代数和叠加。
如:正应力与正应力、切应力与切应力。
3、叠加原理应用的基本步骤:xxσ(1) 、将载荷进行分解,产生几种基本变形;(2)、分析每种基本变形,确定危险截面;(3)、计算构件在每种基本变形情况下的危险截面内的应力;(4)、将各基本变形情况下的应力叠加,确定最危险点;**(5)、计算主应力,选择适合的强度理论,进行强度校核。
而不同方向的分量,应采用不同的求和方法,如:正应力与切应力之间。
σσσ'''=+τττ'''=+22p στ=+xτ不要用这个公式。
斜弯曲PϕyzxyzlP zP yP 不考虑剪应力Kk σσσ'''=+y z z y M z M y I I -sin cos z yP z P y I I ϕϕ=--cos y yyM z P zI I σϕ''=-=-sin ,z z zM y P y I I σϕ'=-=-如果是圆截面?§8-2 弯曲与拉伸的组合变形一、受力及变形特点:xyzlFF轴向拉伸F偏心拉伸zMyM附加力偶1、轴向力:产生拉压正应力:()()12x x zN x M x yA I σσσ=+=+注意两个应力正负号。
组合变形
MT WT
在杆的根部a处取一单元体分析
y 0, x B , x T
计算主应力
1 B B 2 2 ( ) T 2 3 2
2 0
第三、第四强度理论
r 3 4
2 B 2 T
2 2 r4 B 3 T
即最大安全载荷为 790N。
r3
M 2 T2 W
(0.2Q ) 2 (0.18Q ) 2 6 80 10 0.033 32 Q 790N
例8-5 某齿轮轴,n=265r/min、NK=10kW、D1=396mm, D2=168mm, =20o , d=50mm,[]= 50MPa。校核轴的强度。
C max
N M max c A Wz
例8-1 悬臂吊车,横梁由 25 a 号工字钢制成,l=4m,电葫芦重 Q1=4kN,起重量Q2=20kN, =30º , []=100MPa,试校核强度。
(1)外力计算
取横梁AB为研究对象,受力如 图b所示。
梁 上载荷为 P =Q1+Q2 = 24kN, 斜杆的拉力S 可分解为XB和YB
f
f f
2 y
2 z
如悬臂梁自由端挠度等于P的分量 平面内挠度的几何叠加。
py , pz
在各自弯曲
pl 3 fy cos 3 EI z 3 EI z pz l 3 pl 3 fz sin 3 EI y 3 EI y
pyl 3
故自由端的总挠度:
f
f f
2 y
2 z
总挠度 f 的方向线与y轴之间的夹角 可由下式求得
如图b所示。
(2)作内力图
建筑力学 第十二章 组合变形
图12.1
二、组合变形的分析方法及计算原理 处理组合变形问题的方法: 1.将构件的组合变形分解为基本变形; 2.计算构件在每一种基本变形情况下的应力; 3.将同一点的应力叠加起来,便可得到构 件在组合变形情况下的应力。 叠加原理是解决组合变形计算的基本原理 叠加原理应用条件:即在材料服从胡克定 律,构件产生小变形,所求力学量定荷载 的一次函数的情况下,
对于不同的截面形状, Wz/Wy 的比值 可按下述范围选取: 矩形截面: Wz/Wy = h/b=1.2~2; 工字形截面:Wz/Wy =8~10; 槽形截面: Wz/Wy =6~8。
【例12.1】跨度l=4m的吊车梁,用32a号工字钢制成, 材料为A3钢,许用应力[σ]=160MPa。作用在梁上的 集中力P=30kN,其作用线与横截面铅垂对称轴的夹角 φ=15°,如图12.3所示。试校核吊车梁的强度。 【解】(1) 荷载分解图11.9
(2) 计算横梁的内力 横梁在Ry、P和Ny的作用下产生平面弯曲,横梁中 点截面D的弯矩最大,其值为 Mmax= Pl/4 = 15.5×3.4/4 kN· m=13.18kN· m 横梁在Rx和Nx作用下产生轴向压缩,各截面的轴 力都相等,其值为 N=Rx=17.57kN (3) 选择工字钢型号 由式(12.7),有 σymax=|- N/A - Mmax/Wz|≤[σ]
§12.2 斜弯曲
• 对于横截面具有对称轴的梁,当横 向力作用在梁的纵向对称面内时,梁变 形后的轴线仍位于外力所在的平面内, 这种变形称为平面弯曲。 • 如果外力的作用平面虽然通过梁轴 线,但是不与梁的纵向对称面重合时, 梁变形后的轴线就不再位于外力所在的 平面内,这种弯曲称为斜弯曲。
变形后,杆件的轴线弯成一空间曲线称为斜弯 曲。斜弯曲可分解为两个平面弯曲。
材料力学——8组合变形
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
工程力学组合变形
取=0 ,以y0、z0代
表中性轴上任一点的坐
标,则可得中性轴方程
2024/1/28
1
zF iy2
z0
yF iz2
y0
0
23
可见,在偏心拉伸(压缩)情况下,中性轴是一条不 通过截面形心的直线。
求出中性轴在y、z两轴上的截距
ay
iz2 yF
,
az
iy2 zF
z
对于周边无棱角的截面,可作两条
D1(y1,z1)
2024/1/28
10
0.642 qa 2
0.444qa 2 0.321 qa 2
A
DC
0.617 a
A
DC
My 图 (N m) B
B Mz 图 (N m)
0.456 qa 2 0.383 qa 2
在xoz主轴平面内的 弯矩图(y轴为中性轴)
在xoy主轴平面内的 弯矩图 (z轴为中性轴)
0.266 qa 2
4.强度分析 根据危险点的应力状态和杆件的材料按强度 理论进行强度计算。
2024/1/28
3
§8-2 斜弯曲
一、概念
平面弯曲:外力施加在梁的对称面(或主平面) 内时,梁将产生平面弯曲。
即梁变形后,轴线位于外力所在的平面之内。 对称弯曲:平面弯曲的一种。
斜弯曲梁变形后,轴线位于外力所在的平面之外。
2024/1/28
F A
FzF Wy
FyF Wz
危险点处仍为单轴应力状态,其强度条件为
t,max [ t ] c,max [ c ]
2024/1/28
26
补充例题 图示矩形截面钢杆,用应变片测得杆件上、下
表面的轴向正应变分别为εa=1×10-3、 εb =0.4×10-3, 材料的弹性模量E=210GPa 。(1).试绘出横截面上的正
组合变形
1 b
断裂破坏仅与最大正应力有关。适用于脆性材料的二向或
2最大正应变理论(第二强度理论) :
由于
1 1 [ 1 ( 2 3 )] E
1 b
当最大正应变等于强度极限对应的正应变时,断裂破坏。
b
b
E
1 ( 2 3 ) b
m
x
m m
Pz
z Py y
m
z
P
P
y
Py P sin Pz P cos
矩形截面梁,作用集中力P与Z轴成角,确定m—m截面的应力
m
m
Mz
z
Mz My
m
z
My
m
M
y
y
Py P sin Pz P cos M yz Iy
Mzy Iz
M y Pz x Px cos M cos M z Py x Px sin M sin
z y cos sin 0 Iy Iz
过形心的斜直线
最大、最小正应力,a、b两点。
斜弯曲时中性轴斜率与弯矩作用面的关系
z y cos sin 0 中性轴方程 Iy Iz z Iy tan tan y Iz
z
y
中性轴
当 I y I z 时, 说明载荷作用面与中性层不垂直 当 Iy Iz 时
1 3 2
对应第四强度理论
1 1 2 2 2 3 2 3 1 2 3 2
复杂应力状态危险点单元体的强度条件:
ri [ ]
ri
组合变形
第10章组合变形§10-1 组合变形的概念1.组合变形的概念组合变形:构件往往会发生两种或两种以上的基本变形的这类变形。
在前面各章分别讨论了杆件在拉(压)、剪切、扭转和弯曲基本变形时的应力和强度计算。
工程实际中,杆件在荷载作用下所发生的变形,经常是两种或两种以上基本变形的组合,这种变形称为组合变形。
例如图10.1(a)所示屋架檩条的变形,是由y/z两个方向的平面弯曲变形组成的斜弯曲;如图10.1(b)所示厂房柱,在偏心力F作用下,会发生压缩和弯曲的组合变形;如图10.1(c)所示的卷扬机轴在力F作用下,则发生弯曲和扭转的组合变行。
2.组合变形的分析方法及计算原理处理组合变形问题的方法:1.将构件的组合变形分解为基本变形;2.计算构件在每一种基本变形情况下的应力;3.将同一点的应力叠加起来,便可得到构件在组合变形情况下的应力。
叠加原理是解决组合变形计算的基本原理叠加原理应用条件:即在材料服从胡克定律,构件产生小变形,所求力学量定荷载的一次函数的情况下,计算组合变形时可以将几种变形分别单独计算,然后再叠加,即得组合变形杆件的内力、应力和变形。
计算原理:(1)圣维南原理以静力等效力系代替构件原有的荷载,为此,要求构件为细长杆,且所求应力的截面远离外力作用点;(2)叠加原理 按各基本变形计算后进行叠加,为此,要求构件处于线弹性范围内,且变形很小,可按构件的原始形状的尺寸进行计算。
在小变形和线弹性条件下,杆件上各种力的作用彼此独立,互不影响,即杆上同时有几种力作用时,一种力对杆的作用效果(变形或应力),不影响另一种力对杆的作用效果(或影响很小可以忽略)。
因此组合变形下杆件内的应力,可视为几种基本变形下杆件内应力的叠加。
本章中组合变形下杆件的应力计算,将以各基本变形的应力及叠加法为基础。
叠加法的主要步骤:a 、将组合变形按照各基本变形的条件,分解为几种基本变形,简称分解。
b 、利用基本变形的应力计算公式,分别计算各点处的正应力和切应力。
第11章 组合变形精选全文
F
Fe
FN=aF
aM
b
ca P
b
bM y2 yc
a
F
aM
F A
Feyc Iz
1400103 1.8105 106
1400103 0.7 0.2 8.0109 1012
32.3MPa [t ] 35MPa
b
F
bM
F A
Fey2 Iz
1400103 1.8105 106
1400103 0.7 0.5 8.0109 1012
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所
示择D,工A字B梁为型工号字。A3钢梁,许用X应A Y力A [σ]=10T0MPa,Ty 试选
A
Tx C
B
F
A
30° C B
FN
2m
1m F
_ 52kN
20kN·m
解:(1)选工字梁为研究对
象受力如图所示:
M
-
MA 0 : T 2sin 30 3F 0
cos
Fz—变形量(挠度):
z
Fzl 3 3EI y
Fl 3 3EI y
sin
ωz
αz
则,F引起的总变形量为:
φ
2 y
z2
ω
F
ωyy
且tan z Iz tan tan
中性轴
y Iy
15
tan Iz tan tan
可见:
Iy
(1)对于矩形、工字形一类的截面 ,Iy ≠Iz,则 α = β ≠ φ ,这表示挠
=
+
31
F M
F
M
A
=
A
A
组合变形的概念
组合变形的概念组合变形是指利用给定的元素进行排列组合,形成不同的组合形式。
在数学中,组合变形是对大小为n的集合中取出m(0<=m<=n)个元素的所有可能进行排列组合。
组合变形也广泛应用于计算机科学、统计学、概率论、密码学等领域。
组合变形的概念可以通过以下方式进行解释:假设有一个集合A = {a, b, c},在这个例子中,元素a、b和c是我们需要进行排列组合的元素。
组合变形可以生成不同的组合形式,例如{a, b}、{a, c}、{b, c}、{a}、{b}、{c}以及空集等。
在这个例子中,我们可以发现元素a、b和c的组合有3个,而组合变形的总数则为2^3 = 8个。
这是因为对于每一个元素,存在两种选择的可能性:选择该元素,或者不选择。
组合变形的数学公式可以表示为C(n, m),其中n表示集合的大小,m表示取出的元素个数。
C(n, m)的计算公式为C(n, m) = n! / (m!(n-m)!),其中n!表示n 的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
该公式的计算过程可以通过以下步骤进行解释:首先计算n的阶乘,然后计算m的阶乘,最后计算n-m的阶乘。
将n的阶乘除以m的阶乘和(n-m)的阶乘的乘积,即可得到组合变形的结果。
举例来说,假设有一个集合A = {1, 2, 3, 4, 5},我们需要从中选择3个元素进行组合。
根据公式C(5, 3) = 5! / (3!(5-3)!), 我们可以得到组合变形的结果为C(5, 3) = 10。
这意味着从集合A中选择3个元素进行组合的方式有10种。
组合变形在许多领域都有广泛的应用。
在计算机科学中,组合变形被用于解决排列问题、密码学算法和图像处理等。
在统计学和概率论中,组合变形被用于计算事件的可能性、样本空间的大小以及排列组合的问题。
在密码学中,组合变形被用于生成密钥、创建密码以及解密信息。
在图像处理中,组合变形被用于生成图像的不同变形、纹理的生成以及图像压缩等。
组合变形实例
组合变形实例一、引言组合变形是指通过对事物进行组合、排列、变化等操作,创造出新的形态或结构。
在不同领域中,组合变形都起到了重要的作用。
本文将以几个实例来说明组合变形在生活、艺术和科学等领域的应用。
二、生活领域1. 食物组合变形在烹饪中,组合变形经常被用于创造出新颖的菜肴。
比如,将水果、蔬菜、肉类等不同食材进行组合,通过切割、搭配、调味等操作,可以制作出各种美食。
例如水果沙拉中,将各种水果切块、混合在一起,既丰富了口感,又增加了视觉上的美感。
2. 家居组合变形在家居装饰中,组合变形可以使空间更加灵活多样。
比如,通过移动家具的位置、调整布局,可以改变房间的功能和氛围。
在小空间中,利用折叠桌椅、可伸缩家具等,可以实现空间的最大化利用。
三、艺术领域1. 组合变形的绘画组合变形在绘画中被广泛运用。
艺术家通过对不同元素的排列组合,创造出丰富多样的画面。
例如,立体派艺术家通过将不同几何形状进行组合,创造出抽象的艺术作品,展现出独特的视觉效果。
2. 音乐中的组合变形音乐中的和弦、旋律等元素可以通过组合变形创造出不同的音乐作品。
例如,通过对音符的排列组合,可以创造出悦耳动听的旋律。
同时,在现代音乐中,通过对不同乐器声音的组合,可以创造出丰富多样的音乐效果。
四、科学领域1. 基因组合变形在生物学领域,基因组合变形是指通过改变基因的排列组合,创造出新的生物形态。
例如,通过基因重组技术,可以将不同物种的基因进行组合,创造出转基因生物,具有新的特征和功能。
2. 化学反应中的组合变形在化学领域,组合变形是指不同物质通过化学反应产生新的物质。
例如,氧化还原反应中,通过将不同元素或化合物进行组合,产生新的化合物。
这些化合物具有不同的性质和用途,广泛应用于药物、材料等领域。
五、总结组合变形在生活、艺术和科学等领域中都有广泛应用。
通过对事物的组合、排列、变化等操作,可以创造出新的形态、结构和功能。
在日常生活中,我们可以通过食物组合、家居布置等方式,体验到组合变形的乐趣。
材料力学组合变形
材料力学组合变形材料力学是研究材料在外力作用下的力学性能和变形行为的学科。
组合变形是指将不同的材料组合在一起,并在外力作用下共同发生变形。
本文将探讨材料力学中的组合变形及其应用。
材料的组合变形主要有两种形式,即均匀变形和非均匀变形。
均匀变形是指组合材料中各个组分材料的变形均匀一致,不发生相对滑动或相对滑动微小。
在均匀变形中,组合材料的整体变形主要由各个组分材料的线弹性或体弹性共同引起。
例如,当钢筋混凝土受到拉力作用时,钢筋和混凝土发生均匀的拉伸变形。
非均匀变形是指组合材料中各个组分材料的变形不一致,发生相对滑动或相对滑动巨大。
在非均匀变形中,组合材料的整体变形主要由各个组分材料的弹性、塑性和断裂等共同引起。
例如,当金属板与橡胶层组合时,金属板可以发生弯曲变形,而橡胶层则可以发生弹性变形和形变。
组合变形在实际应用中有着广泛的应用。
首先,组合变形可以通过调节组分材料的比例和形状来实现特定的力学性能。
例如,通过调节纤维增强复合材料中纤维的方向和分布,可以显著改变其强度和刚度。
此外,通过组合不同的材料,还可以实现热膨胀系数匹配、界面应力分散等功能,从而降低材料的应力集中和断裂风险。
其次,组合变形还可以实现材料的远程感应和控制。
例如,利用形状记忆合金和橡胶组合的智能材料,在外力作用下可以实现形状变化和应变分布的调控。
这种材料可以应用于自适应结构、智能传感器等领域。
此外,通过组合不同的材料,还可以实现流变性能的调控,进而应用于动态振动控制等领域。
最后,组合变形还可以实现材料的多功能性和复合性能。
通过组合不同材料的优势,可以实现多功能材料的设计和制备。
例如,通过合理选择纳米材料和纤维增强复合材料等,可以实现具备高强度、低密度、耐热和导电等多种特性的复合材料。
此外,通过组合不同材料的力学性能,还可以实现弹性材料、减振材料和防护材料的设计与制备。
综上所述,材料力学中的组合变形是一种重要的力学现象,具有广泛的应用前景。
第11章 组合变形
c ,max
(2)若 [ t ] [ c ] [ ] ,
则
FN M max [ c ] A Wz
25
max Max { t ,max , c ,max } [ ]
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T Y Ty A 择工字梁型号。 XA D
= +
Fz
z
叠加原理
x
y
Fy
z
在线弹性范围
小变形条件下
x y
8
二、内力分析
m m x L
xy平面弯曲
y z
Mz
z
x x
Fy
m y
z
m Fz m x L
xz平面弯曲
y
z
x
My
x
m y
9
二、内力分析
m A m x L m A L 危险截面:杆件根部A截面
10
z x y
FL
弯矩:Mz Fy x
xy平面弯矩图
M
A
A
A
=
B
压弯组合 B 轴向拉压
+
B 平面弯曲
32
F F1
内力分析
M
F
A
A
M A
A
B 轴向拉压
B FN(轴力)
B 平面弯曲
B
33) M(弯矩
应力分析
FN
z
M
z
y
FN ( y, z) A
y
z
y
+
z
y
M σ(y, z) y Iz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合变形习题
一、选择题
1.偏心拉伸(压缩)实质上是()的组合变形。
A 两个平面弯曲
B 轴向拉伸(压缩)与平面弯曲
C 轴向拉伸(压缩)与剪切
D 平面弯曲与扭转
2.图1 所示平面曲杆,其中AB⊥BC。
则AB 部分的变形为( )。
图 1
A 拉压扭转组合
B 弯曲扭转组合
C 拉压弯曲组合
D 只有弯曲
二、填空题
1.构架受力如图2 所示,试问CD,BC 和AB 段各产生哪些基本变形(1)CD 段()(2)BC 段()(3)AB 段()
2.构架受力如图3 所示,试问CD,BC 和AB 段各产生哪些基本变形(1)CD 段()(2)BC 段()(3)AB 段()
3.图4 所示三构件中AB 杆的变形形式依次为()变形、()变形和()变形。
三、计算题
1.如图所示的悬臂梁,在全梁纵向对称平面内承受均布荷载
q=5kN/m,在自由端的水平对称平面内受集中力P=2kN 的作用。
已知截面为25a 工字钢,材料的弹性模量E=2×105MPa,求:(1)梁的最大拉、压应力
(2)若[σ]=160MPa,校核梁的强度是否安全。
2.矩形截面木檩条,尺寸及受载情况如图所示。
已知q=2.1kN/m,木材许用拉应力[σt]=11MPa,许用挠度[w]= l/200,弹性模量
E=10GPa。
校核其强度和刚度。
3.图示为用灰铸铁HT150 制成的压力机框架,许用拉应力[σt ] =50 MPa,许用压应力[σc ]=80 MPa。
试校核框架立柱的强度。