九年级数学一元二次方程

合集下载

一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)

一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)

一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。

3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。

一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。

解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。

九年级上册数学一元二次方程解实际问题公式

九年级上册数学一元二次方程解实际问题公式

九年级上册数学一元二次方程解实际问题公式九年级上册数学一元二次方程解实际问题公式在九年级上册数学学习中,解决一元二次方程实际问题是重要的一环。

一元二次方程是由一次项、二次项和常数项组成的方程,其一般形式为ax² + bx + c = 0,其中a、b和c分别为实数且a≠0。

在解决实际问题时,可以利用一元二次方程的公式来求解。

一元二次方程的解可以通过公式来求解,即二次方程的求根公式:x = (-b ± √(b² - 4ac)) / 2a这个公式是通过将一元二次方程化简后得到的,其中 b² - 4ac 被称为判别式。

判别式的值会决定方程的解的情况。

根据判别式的不同情况,可以得到方程有两个实根、有一个实根还是无实根。

当判别式的值大于0时,即 b² - 4ac > 0,方程有两个实根。

此时,可以使用上述公式来求解,并计算出两个不同的解。

当判别式的值等于0时,即 b² - 4ac = 0,方程有一个实根。

此时,也可以使用公式来求解,并计算出唯一的解。

当判别式的值小于0时,即 b² - 4ac < 0,方程无实根。

在这种情况下,方程无法用公式求解。

需要注意的是,当方程无实根时,我们可以通过观察方程的系数来判断其解的情况。

例如,当二次项系数a大于0时,方程图像开口向上,无实根;当二次项系数a小于0时,方程图像开口向下,也无实根。

在实际问题中,我们可以将问题抽象为一元二次方程,然后利用上述的公式来求解。

例如,某个问题要求解一个运动员从起点出发,在给定的速度和时间内到达终点的距离问题。

我们可以通过设定一个未知变量来表示距离,然后建立一元二次方程,利用公式来求解出这个未知变量的值。

总之,九年级上册的数学学习中,解决一元二次方程实际问题是一个重要的内容。

掌握一元二次方程的解法,并理解公式的原理和应用场景,能够帮助我们更好地解决实际问题,提高数学解题的能力。

人教版九年级上册数学——一元二次方程知识点总结

人教版九年级上册数学——一元二次方程知识点总结

21章 一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。

注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

二、 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

一元二次方程的解也叫一元二次方程的根。

一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

三种类型:(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

九年级数学一元二次方程公式法

九年级数学一元二次方程公式法

九年级数学一元二次方程公式法数学有时候就像一块难啃的骨头,但相信我,一旦你掌握了它,你会发现解题其实很有趣。

今天,我们来聊聊一个常见的难题——一元二次方程。

别担心,我会用最简单的语言来解释,让你轻松搞懂!1. 什么是一元二次方程?简单来说,一元二次方程就是形如 ( ax^2 + bx + c = 0 ) 的方程。

这其中的 ( x ) 是我们要找的未知数,( a )、( b )、( c ) 是给定的数字。

想象一下,如果我们把 ( x ) 看作一个神秘的箱子,( a )、( b )、( c ) 就是箱子的标签,告诉我们箱子里可能有什么东西。

我们要做的,就是通过这些线索找到箱子里的秘密!2. 一元二次方程的解法解这种方程有几种方法,但今天我们重点讲一个非常好用的——公式法。

记住这个公式,就像记住拿铁的配方一样简单!2.1 二次方程的标准公式公式长啥样呢?看这里:[ x = frac{b pm sqrt{b^2 4ac}}{2a} ]。

是不是有点复杂?别急,我来给你分解一下:(b):这个“负号”很重要,它告诉我们要把 ( b ) 的值取反。

(pm):这个符号告诉我们方程可能有两个解,我们需要考虑两个不同的情况,一个是加,一个是减。

(sqrt{b^2 4ac}):这个部分叫做“判别式”,是用来确定方程解的类型的。

就像看菜谱里的材料清单一样,它告诉我们是否能做这道菜。

(2a):这是公式的分母,像是菜谱里的量杯,让我们知道要分成多少份。

2.2 判别式的作用判别式 ( b^2 4ac ) 其实有个很重要的作用。

它决定了方程的解的情况:如果 ( b^2 4ac > 0 ),说明方程有两个不同的实数解,就像两种不同口味的冰淇淋,吃一个还想吃另一个。

如果 ( b^2 4ac = 0 ),说明方程只有一个解,像是一碗只需要一种口味的牛奶。

如果 ( b^2 4ac < 0 ),那就没有实数解了,方程就像是没法开口的罐头。

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

九年级一元二次方程题

九年级一元二次方程题

九年级一元二次方程题一、一元二次方程的概念1. 定义- 一元二次方程的一般形式是公式,其中公式是二次项,公式是二次项系数;公式是一次项,公式是一次项系数;公式是常数项。

- 例如方程公式,这里公式,公式,公式。

2. 识别一元二次方程- 例题:判断下列方程是否为一元二次方程。

- (1)公式。

- 解析:这个方程不是一元二次方程。

因为方程右边公式是分式,一元二次方程是整式方程,所以它不符合一元二次方程的定义。

- (2)公式。

- 解析:这是一元二次方程。

它符合一元二次方程的一般形式公式,这里公式,公式,公式。

二、一元二次方程的解法1. 直接开平方法- 对于方程公式,其解为公式。

- 例题:解方程公式。

- 解析:根据直接开平方法,公式,所以公式或公式。

2. 配方法- 步骤:- (1)将方程公式移项,使常数项在等号右边,得到公式。

- (2)二次项系数化为1:公式。

- (3)在等式两边加上一次项系数一半的平方,公式。

- (4)将左边化为完全平方式公式,然后利用直接开平方法求解。

- 例题:用配方法解方程公式。

- 解析:- 首先移项得公式。

- 然后在等式两边加上一次项系数一半的平方,即公式,得到公式。

- 左边化为完全平方式公式。

- 利用直接开平方法,公式,解得公式。

3. 公式法- 对于一元二次方程公式,其求根公式为公式。

- 例题:用公式法解方程公式。

- 解析:- 这里公式,公式,公式。

- 先计算判别式公式。

- 然后代入求根公式公式。

- 解得公式,公式。

4. 因式分解法- 步骤:- (1)将方程化为一般形式公式。

- (2)将左边式子进行因式分解,化为公式的形式。

- (3)则公式或公式,解这两个一元一次方程即可得到原一元二次方程的解。

- 例题:解方程公式。

- 解析:- 对左边式子进行因式分解得公式。

- 则公式或公式,解得公式,公式。

三、一元二次方程根的判别式公式1. 判别式与根的关系- 当公式时,方程有两个不相等的实数根;- 当公式时,方程有两个相等的实数根;- 当公式时,方程没有实数根。

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。

温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。

根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

人教版九年级上册数学一元二次方程

人教版九年级上册数学一元二次方程

人教版九年级上册数学一元二次方程一元二次方程啊,那可是九年级上册数学里挺有趣的一部分呢。

啥是一元二次方程呢?简单说,就是一个方程里只有一个未知数(这就是“一元”啦),而且这个未知数的最高次数是2(这就是“二次”的意思)。

它的一般形式是ax² + bx + c = 0(a≠0哦,要是a = 0了,那就不是二次方程,变成一次方程了)。

那这个方程有啥用呢?生活里好多地方都能用到。

比如说,你想算一个长方形的面积,你知道长比宽多多少,又知道面积是多少,就可能列出一元二次方程来求解长和宽。

我们再来说说怎么解这个一元二次方程。

有好几种方法呢。

一种是直接开平方法。

要是方程能化成(x + m)² = n(n≥slant0)这种形式,那就可以直接开平方得到x + m=±√(n),然后就能求出x的值了。

比如说x² = 9,那x=±3,这个就很简单直接。

还有配方法。

这个方法就像是给方程来个“变形手术”。

比如说对于方程x² + 6x - 7 = 0,我们要把方程左边配成完全平方式。

先把常数项移到右边,得到x² + 6x=7,然后在等式两边加上一次项系数一半的平方,也就是((6)/(2))² = 9,就变成x² + 6x + 9 = 7+9,也就是(x + 3)² = 16,然后再用直接开平方法就可以求出x了。

不过配方法有点小麻烦,得一步一步来,不能粗心。

再就是公式法啦。

对于一元二次方程ax²+bx + c = 0(a≠0),它的解x=(-b±√(b² - 4ac))/(2a)。

这个公式可厉害了,不管啥样的一元二次方程,只要你把a、b、c的值找对了,往公式里一代,就能求出解来。

不过计算的时候可千万要小心,尤其是b² - 4ac 这个部分,它叫判别式。

如果b² - 4ac>0,方程就有两个不同的实数解;如果b² - 4ac = 0,方程就有两个相同的实数解(也就是一个解啦);要是b² - 4ac<0呢,方程就没有实数解,但是有两个虚数解,不过虚数的部分在九年级上册可能还没学那么深入。

9年级上册数学一元二次方程

9年级上册数学一元二次方程

九年级上册数学一元二次方程一、一元二次方程的基本概念一元二次方程是一个只含有一个未知数(通常表示为x),且未知数的最高次数为2的方程。

其标准形式为:ax^2 + bx + c = 0,其中a、b、c是常数,且a≠0。

二、一元二次方程的解法配方法:通过配方将方程转化为(x+b)^2=d的形式,然后直接开平方求解。

公式法:根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,方程有2个实根。

根为x=(-b±√Δ)/2a。

因式分解法:将方程左边化为两个因式的乘积,右边化为0,然后分别令每个因式等于0求解。

三、一元二次方程的根的判别式一元二次方程的根的判别式Δ=b^2-4ac。

根据判别式的不同取值,一元二次方程的根的情况分为以下三种:当Δ>0时,方程有两个不相等的实根。

当Δ=0时,方程有两个相等的实根(重根)。

当Δ<0时,方程没有实根(称为虚根),但有共轭复数根。

四、一元二次方程的根与系数的关根的和:x1+x2=-b/a。

根的积:x1*x2=c/a。

根的平方和:x1^2+x2^2=(x1+x2)^2-2x1*x2=(b^2-2ac)/a^2。

的立方:x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1*x2)=-b^3/a^3+c^3/a^3=(c^3-b^3)/a^3。

五、一元二次方程的应用一元二次方程在日常生活和生产实践中有着广泛的应用,如计算几何图形的面积、解决商品利润问题等。

解决这类问题时,需要将实际问题转化为数学模型,即建立一元二次方程,然后求解得到实际问题的答案六、配方法解一元二次方程将一元二次方程化为(x+b)^2=d的形式,然后直接开平方求解。

这种方法适用于所有形式的一元二次方程,但在使用时需要注意运算的准确性。

七、公式法解一元二次方程根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,使用公式法可以直接求解出方程的实根。

此方法简洁明了,但需要注意判别式的计算以及实根的存在性。

九年级一元二次方程知识点

九年级一元二次方程知识点

九年级一元二次方程知识点一元二次方程在九年级的数学学科中是一个重要的知识点,它不仅出现在数学课堂上,也有很多实际应用。

掌握一元二次方程的基本概念、求解方法以及应用技巧对学生来说至关重要。

本文将从不同的角度分析和探讨九年级一元二次方程的知识点。

一、一元二次方程的基本概念一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数且a≠0。

这个方程中的未知数x的最高次数是2,因此被称为二次方程。

在一元二次方程中,系数a、b、c扮演着重要的角色。

系数a的正负决定方程的开口方向,当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

系数b、c则影响方程的解。

二、一元二次方程的解法对于一元二次方程,我们通常使用因式分解法、配方法和求根公式来解方程。

其中,因式分解法适用于方程可以被分解成两个一次因子的情况。

配方法可以将方程转化为完全平方的形式,从而求得方程的解。

而求根公式是根据二次方程的一般形式推导出来的,可以直接求得方程的解。

不同的解法适用于不同的情况,学生们需要根据具体题目的要求和方程形式选择合适的解法。

熟练掌握这些解法,并能够灵活运用在实际问题中,对于学生的数学能力提高大有裨益。

三、一元二次方程的应用一元二次方程在现实生活中有着广泛的应用。

举个例子,我们可以通过一元二次方程来解决一些与运动相关的问题。

如一枚子弹射出后,它的轨迹可以用一元二次方程来表示。

又如,某个物体从一定高度自由落体,我们可以通过一元二次方程来确定它到达地面所需的时间。

除了运动问题,一元二次方程还可以用来解决一些与商业、经济相关的问题。

比如,某公司的产品售价和销量之间存在着一定的关系,我们可以通过一元二次方程来分析这个关系,进而制定合理的销售策略。

又如,某商店购进商品的成本和售价之间存在着一定的关系,我们可以通过一元二次方程来确定最大利润的售价。

四、解一元二次方程的常见错误在解一元二次方程的过程中,学生们可能会犯一些常见的错误。

九年级数学一元二次方程教案5篇

九年级数学一元二次方程教案5篇

九年级数学一元二次方程教案5篇一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。

今天在这里整理了一些,我们一起来看看吧!九年级数学一元二次方程教案1教学目标1。

知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。

2。

过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。

根据数学模型恰如其分地给出一元二次方程的概念。

(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。

(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。

九年级数学一元二次方程教案2【主体知识归纳】1.整式方程方程的两边都是关于未知数的整式,这样的方程叫做整式方程.2.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.一元二次方程的一般形式为ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.4.直接开平方法形如x2=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1= ,x2=-.这种解一元二次方程的方法叫做直接开平方法.5.配方法将一元二次方程ax2+bx+c=0(a≠0)化成(x+ )2=的形式后,当b2-4ac≥0时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.6.公式法用一元二次方程ax2+bx+c=0(a≠0)的求根公式x= (b2-4ac≥0),这种解一元二次方程的方法叫做公式法.【基础知识讲解】1.一元二次方程的概念包涵三个条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2”.一元二次方程的概念中“只含有一个未知数,并且未知数的最高次数是2”是对化成一般形式之后而言的.例如,判断方程2x2+2x-1=2x2是否是一元二次方程?应先整理方程,得2x-1=0,所以此方程不是一元二次方程.2.在求二次项、一次项和常数项时,要先整理方程,把方程化成一般形式,即ax2+bx+c=0,再确定所求.方程ax2+bx+c=0只有当a≠0时,才是一元二次方程,例如a=0,b≠0时,它就是一元一次方程,因此,如果明确指出ax2+bx+c=0是一元二次方程,那么就一定包括a≠0这个条件.3.直接开平方法适用于解化为x2=a形式的方程,当a≥0时,方程有实数解;当a0时,方程没有实数解.4.配方法是先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是负数时,方程无实数解.5.求根公式是针对一元二次方程的一般形式来说的,使用求根公式时,必须先把方程化成一般形式,才能正确地确定各项系数,在应用公式之前,先计算出b2-4ac的值,当b2-4ac≥0时,代入公式求出方程的根;当b2-4ac0时,方程没有实数根,这时就不必再代入公式了.【例题精讲】例1:指出下列方程中哪些是一元二次方程:(1)5x2+6=3x(2x+1);(2)8x2=x;(3)y3-y-1=0;(4)4x2-3y=0;(5)-x2=0;(6)x(5x-1)=x(x+3)+4x2.剖析:判断一个方程是不是一元二次方程,首先要对方程进行整理,化成一般形式,然后再根据条件:①整式方程;②只含有一个未知数;③未知数的最高次数为2.只有当这三个条件缺一不可时,才能判断为一元二次方程.解:(1)去括号,得5x2+6=6x2+3x,移项、合并同类项,得x2+3x-6=0,∴此方程是一元二次方程.(2)移项,得8x2-x=0,∴此方程是一元二次方程.(3)因为未知数的最高次数是3,∴此方程不是一元二次方程.(4)∵方程中含有两个未知数,∴它不是一元二次方程.(5)∵a=-1≠0,∴它是一元二次方程.(6)整理,得4x=0∴它不是一元二次方程.例2:写出下列一元二次方程的二次项系数、一次项系数及常数项:(1)2x2=3x+5;(2)(x+1)(x-1)=1;(3)(x+2)2-4=0.剖析:虽然该题没有要求把方程化成一般形式,但在做题时,也要先把方程化成一般形式.因为方程的.二次项系数、一次项系数及常数项是在方程为一般形式下的,所以必须先整理方程.解:(1)整理,得2x2-3x-5=0.二次项系数是2,一次项系数是-3,常数项是-5.(2)整理,得x2-2=0.二次项系数是1,一次项系数是0,常数项是-2.(3)整理,得x2+4x=0.二次项系数是1,一次项系数是4,常数项是0.例3:关于x的整式方程(m-1)x2+(2m-1)x+4=0是一元二次方程吗?剖析:要判别原方程是否是一元二次方程,易想到用定义,满足条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.原方程显然满足(1)、(2).由于不知m是怎样的实数,所以不一定满足(3).因此,需分类探讨.解:当m-1≠0,即m≠1时,原方程是一元二次方程.当m-1=0,即m=1时,原方程是x+4=0是一元一次方程.说明:在移项、合并同类项时,易出现符号错误,需格外小心,要认真区别题目要求是指出方程的各项还是各项系数.特别要小心当某项的系数为负数时,指出各项时千万不要丢负号.例4:用直接开平方法解下列方程:(1)3x2-27=0;(2)(3x-5)2-7=0.解:(1)3x2-27=0,3x2=27,x2=9,∴x=±,即x=3或x=-3.∴x1=3,x2=-3.(2)(3x-5)2-7=0,(3x-5)2=7,∴3x-5=±,即3x-5= 或3x-5=- .∴x1= ,x2= .例5:用配方法解方程2x2+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)2=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x2+ x-2=0.移项,得x2+ x=2.配方,得x2+ x+( )2=2+( )2= ,即(x+ )2= .解这个方程,得x+ =±,x+ =±.即x1= ,x2=-4.说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x2-4x+3的值恒大于零,可以做如下的变形:2x2-4x+3=2x2-4x+2+1=2(x-1)2+1.例6:用公式法解下列方程:(1)2x2+7x=4;(2)x2-1=2 x.解:(1)方程可变形为2x2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=810,∴x= .∴x1= ,x2=-4.(2)方程可变形为x2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=160.∴x= .∴x1= +2,x2= -2.说明:在用公式法解方程时,一定要先把方程化成一般形式.例7:一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,求m的值及另一根.解:因为方程有一根为零,所以它的常数项m2+3m-4=0,解得m1=1,m2=-4,又因为此方程是一元二次方程,所以m-1≠0,即m≠1,所以m=-4.把m=-4代入方程,得-5x2+48x=0,解得:x1=0,x2=9.6,所以方程的另一根为9.6.说明:方程有一根为零时,常数项必须为零;求解字母系数的一元二次方程的问题中,二次项系数的字母必须保证二次项系数不等于零,这是解此类问题的先决条件.【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是( )A. =0B. =0C.x2+2xy+1=0D.5x=3x-1(2)下列方程不是一元二次方程的是( )A. x2=1B.0.01x2+0.2x-0.1=0C. x2-3x=0D. x2-x= (x2+1)(3)方程3x2-4=-2x的二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x2-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为( )A.-1B.1C.-2D.2(5)若方程(m2-1)x2+x+m=0是关于x的一元二次方程,则m的取值范围是( )A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1(6)方程x(x+1)=0的根为( )A.0B.-1C.0,-1D.0,1(7)方程3x2-75=0的解是( )A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)2=6的两个根是( )A.x1=x2=5+B.x1=x2=-5+C.x1=-5+ ,x2=-5-D.x1=5+ ,x2=5-(9)若代数式x2-6x+5的值等于12,那么x的值为( )A.1或5B.7或-1C.-1或-5D.-7或1(10)关于x的方程3x2-2(3m-1)x+2m=15有一个根为-2,则m的值等于( )A.2B.-C.-2D.2.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x2; (2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3)2; (4) y2- y= y2- y+ .3.当m满足什么条件时,方程(m+1)x2-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x2= ;(2)x2=1.96;(3)3x2-48=0;(4)4x2-1=0;(5)(x-1)2=144;(6)(6x-7)2-9=0.5.用配方法解下列方程:(1)x2+12x=0; (2)x2+12x+15=0 (3)x2-7x+2=0;(4)9x2+6x-1=0; (5)5x2-2=-x; (6)3x2-4x=2.6.用公式法解下列方程:(1)x2-2x+1=0; (2)x(x+8)=16; (3)x2- x=2; (4)0.8x2+x=0.3;(5)4x2-1=0; (6)x2=7x; (7)3x2+1=2 x; (8)12x2+7x+1=0.7.(1)当x为何值时,代数式2x2+7x-1与4x+1的值相等?(2)当x为何值时,代数式2x2+7x-1与x2-19的值互为相反数?8.已知a,b,c均为实数,且+|b+1|+(c+3)2=0,解方程ax2+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax2+bx+c=0的根.10.用配方法证明:(1)3y2-6y+11的值恒大于零;(2)-10x2-7x-4的值恒小于零.11.证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何实数,该方程都是一元二次方程.九年级数学一元二次方程教案3教学目标1. 了解整式方程和一元二次方程的概念;2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

人教版初中数学九年级上册一元二次方程课件PPT

人教版初中数学九年级上册一元二次方程课件PPT
18m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?
8m
18m2
5mቤተ መጻሕፍቲ ባይዱ
解:设所求的宽度为xm,则中间地毯的宽表示为_(_5_-_2_x_)_m___,长表示为__(_8_-_2_x_)m_, 则方程列为_(_8_-_2_x_)_(_5_-_2_x_)=__1_8 ,整理得__4_x_2_-_2_6_x_+_2_2__=__0__.
★ 知识拓展
1)若a b c 0,则一元二次方程ax2 bx c 0必有一解为 1.
2)若a b c 0,则一元二次方程ax2 bx c 0必有一解为-1. 3)若4a 2b c 0,则一元二次方程ax2 bx c 0必有一解为 2.
随堂训练
例5 已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1, 求a+b+c的值.
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
知识讲解
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
新课导入
变式:
桌上有一张矩形纸片,长25cm,宽15cm,在它的四角各剪去一个同样的
正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制
作的无盖方盒的底面积为300cm2,那么纸片各角应剪去的正方形边长为多
少厘米?
设剪去的正方形边长为x cm,则无盖方盒的底面的长为(25-2x) cm , 宽为( 15-2x ) cm ,根据题意,可列方程为

九年级上册数学一元二次方程知识点

九年级上册数学一元二次方程知识点

九年级上册数学一元二次方程知识点一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断一元二次方程的方法。

- 首先看方程是否为整式方程。

- 然后看是否只含有一个未知数。

- 最后看未知数的最高次数是否为2。

例如x^2+2x - 1 = 0是一元二次方程,而x^3+2x^2-x = 0不是(因为最高次数是3),(1)/(x)+x^2=1也不是(因为它不是整式方程)。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于形如(x + m)^2=n(n≥0)的方程,可以使用直接开平方法。

- 例如,对于方程(x - 3)^2=16,则x - 3=±4,解得x_1=7,x_2=- 1。

2. 配方法。

- 步骤:- 把方程化为一般形式ax^2+bx + c = 0(a≠0)。

- 移项,使方程左边为二次项和一次项,右边为常数项,即ax^2+bx=-c。

- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。

- 配方,在方程两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2,得到(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2}。

- 然后用直接开平方法求解。

- 例如,解方程x^2+6x - 7 = 0。

- 移项得x^2+6x = 7。

- 配方:x^2+6x+9 = 7 + 9,即(x + 3)^2=16。

- 解得x_1=1,x_2=-7。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

人教版数学九上解一元二次方程——公式法课件

人教版数学九上解一元二次方程——公式法课件
的情况与一元二次方程中二次项系数、一次项系数及常数
项有关吗?能否根据这个关系不解方程得出方程的解的情
况呢?
探究新知
【思考】不解方程,你能判断下列方程根的情况吗?
⑴ x2+2x-8 = 0
⑵ x2 = 4x-4
⑶ x2-3x = -3
答案:(1)有两个不相等的实数根;
(2)有两个相等的实数根;
(3)没有实数根.
方法点拨
(1)当 △ b 4ac>0时,一元二次方程有两个不
相等的实数根.
2
(2)当 △ b 4ac 0时,一元二次方程有两个相
2
等的实数根.
(3)当 △ b 2 4ac<0 时,一元二次方程没有实
数根.
探究新知
用公式法解一元二次方程的一般步骤
1. 将方程化成一般情势,并写出a,b,c 的值.
46


2a
25
10
46
46
1
1, x2

10
10
5
探究新知
(4)x2+17=8x
解:原方程可化为x 2 8 x 17 0
a 1, b 8, c 17
△ b 2 4ac (8) 2 4 1 17 4<0
方程无实数根.
探究新知
探究新知
(2)2x2-2 2 x+1=0;
【思考】这里的a、b、c的值分别是什么?
解: a 2, b 2 2, c 1
△ b 2 4ac ( 2 2 ) 2 4 2 1 0
则方程有两个相等的实数根:
x1 x2
b
2 2
2

初三数学一元二次方程教案(最新5篇)

初三数学一元二次方程教案(最新5篇)

初三数学一元二次方程教案(最新5篇)元二次方程篇一教学目标1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:的概念和它的一般形式。

难点:对的一般形式的正确理解及其各项系数的确定。

教学建议:1. 教材分析:1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

2)重点、难点分析理解的定义:是的重要组成部分。

方程,只有当时,才叫做。

如果且,它就是了。

解题时遇到字母系数的方程可能出现以下情况:(1)的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合的定义。

(2)条件是用“关于的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是,解题时就会有不同的结果。

教学目的1.了解整式方程和的概念;2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:重点:1.的有关概念2.会把化成一般形式难点:的含义。

教学过程设计一、引入新课引例:剪一块面积是壹五0cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程( x(x十5)=壹五0 )深入引导:方程x(x十5)=壹五0有人会解吗?你能叫出这个方程的名字吗?二、新课1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。

数学九上一元二次方程

数学九上一元二次方程

数学九上一元二次方程一元二次方程是数学九上的重要内容之一,它在数学中具有广泛的应用。

本文将围绕标题展开,详细介绍一元二次方程的定义、性质、解法以及实际应用。

一、一元二次方程的定义一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知常数,且a≠0。

其中,x为未知数,²表示x的平方。

二、一元二次方程的性质1. 一元二次方程的次数为2,即方程中最高次项的指数为2。

2. 一元二次方程的解可以是实数或复数。

3. 一元二次方程的图像是抛物线,开口方向由a的正负决定。

4. 一元二次方程的解的个数与判别式Δ=b²-4ac的正负有关。

三、一元二次方程的解法1. 因式分解法:当一元二次方程可以因式分解时,可以通过因式分解的方法求解。

例如,对于方程x²-5x+6=0,可以因式分解为(x-2)(x-3)=0,从而得到x=2或x=3。

2. 公式法:一元二次方程的解可以通过求根公式得到。

求根公式为x=(-b±√Δ)/(2a),其中Δ=b²-4ac为判别式。

根据判别式的正负,可以得到方程的解的情况。

a) 当Δ>0时,方程有两个不相等的实数解。

b) 当Δ=0时,方程有两个相等的实数解。

c) 当Δ<0时,方程没有实数解,但可以有复数解。

四、一元二次方程的实际应用一元二次方程在实际生活中有广泛的应用,以下列举几个常见的应用场景:1. 物体自由落体运动:当物体自由落体时,其高度与时间之间的关系可以用一元二次方程来表示。

例如,一个物体从高度h0自由落下,经过t秒后的高度h可以用方程h=h0-1/2gt²来表示,其中g为重力加速度。

2. 抛体运动:抛体运动是指物体在一定初速度和抛射角度下的运动轨迹。

抛体运动的轨迹可以用一元二次方程来表示。

例如,一个物体以初速度v0和抛射角度θ抛出,其水平方向的位移x和垂直方向的位移y可以分别用方程x=v0cosθt和y=v0sinθt-1/2gt²来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性中毒时解救措施包括()A.静脉输注葡萄糖B.静脉输注乙酰唑胺C.静脉输注呋塞米加乙酰唑胺D.静脉输注右旋糖酐E.静脉输注碳酸氢钠加呋塞米 [单选]经批准登陆、住宿的船员及其随行家属,必须按照规定的时间返回船舶。登陆后有违法行为,尚未构成犯罪的,应处以。()A.责令立即返回船舶,并不得再次登陆。B.收缴出入境证件C.阻止出入境D.警告 [单选]SDH日常维护项目的周期?()A.每日一次B.每周一次C.每月一次D.每季一次 [单选]有Na2SO3、BaCl2、Na2SO4、NaHCO3等四瓶溶液,只用一种试剂进行鉴别,应选用的试剂是()。A.Na2CO3溶液B.硝酸C.硫酸D.AgNO3溶液 [单选]下列各项不属于仓库的主要作业的是货品的()。A.入库作业B.在库管理C.包装作业D.出库作业 [单选]()沉降量分布图,以累计沉降量为纵坐标,以堤线长度为横坐标。A.堤防纵向B.堤防横向C.堤防高度D.堤防宽度 [单选,A1型题]下列各项,不属附子主治病证的是()A.亡阳欲脱,肢冷脉微B.寒凝血瘀,经闭阴疽C.命门火衰,阳痿早泄D.中寒腹痛,阴寒水肿E.阳虚外感,寒痹刺痛 [单选]液体的饱和蒸汽压与()有关。A、质量B、体积C、温度D、面积 [单选,A2型题,A1/A2型题]白血病患儿化疗缓解后,护理人员给予的指导措施合理的是()A.像正常孩子学习B.坚持间歇化疗C.继续住院治疗D.出院后卧床休息E.门诊定期随访 [单选,B1型题]咳脓血痰的疾病是()A.慢性支气管炎B.支气管哮喘C.支气管扩张D.肺炎球菌肺炎E.支气管肺癌 [单选]()提出了十种不合理信念。A.罗杰斯B.艾利斯C.巴普洛夫D.弗洛伊德 [单选]职业培训课程的评价主要采用()A、背景评价B、输入评价C、过程评价D、成果评价 [多选]下列属于火焰切割的是()。A.液化石油气切割B.氢氧元切割C.氧熔剂切割D.激光切割 [单选]胎儿单侧肾盂积水,超声常同时发现A.先天性巨大膀胱B.多囊肾C.膀胱过度充盈D.输尿管肾盂接合处梗阻E.对侧肾发育不全 [单选]关于四个成串刺激,不正确的是()A.为四次一组的超强刺激,频率为2HzB.能区别神经、肌肉阻滞的性质C.第四次反应消失应有效占据80%~90%的突触后膜受体D.不能用于鉴定去极化阻滞向脱敏阻滞转变E.TOF比恢复至0.9,亦不能认为肌松作用已完全恢复 [填空题]《学校卫生工作条例》所称的学校,是指普通中小学、农业中学、职业中学、中等专业学校、技工学校、()。 [名词解释]车辆线路模型 [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤壁局限性或弥漫性扩张,形态为囊状、梭形或不规则形 [单选]利用浮标导航,下列哪种情况表明船舶被压向前方浮标()。A.浮标舷角不变B.浮标舷角逐渐增加C.船首对着浮标D.A+C [单选]根据《中华人民共和国消防法》的规定,地方各级人民政府应当落实消防工作责任制,对本级人民政府有关部门履行职责的情况进行。()A、消防工作职责,监督检查B、消防工作职责,监督管理C、消防安全职责,监督检查D、消防安全职责,监督管理 [单选]关于选题优化的说法,错误的是()。A.选题需要优化是因为情况发生了变化B.选题优化包括对选题进行修订和调整C.选题优化必须组织社会专家进行论证D.选题优化能增加选题的针对性和可操作性 [单选]往浅绿色的Fe(NO3)2溶液中逐滴加入稀盐酸后,溶液的颜色应该是()。A.颜色变浅B.逐渐加深C.没有改变D.变棕黄色 [单选,A1型题]有严重肝病的糖尿病患者禁用哪种降血糖药()。A.氯磺丙脲B.甲苯磺丁脲C.苯乙双胍D.胰岛素E.二甲双胍 [单选]一个团体旅客,其中有40个成人,10个儿童(均应购买儿童票),按照对团体旅客优惠办法的规定,应购买()。A、36个成人票,10个儿童票B、38个成人票,8个儿童票C、37个成人票,10个儿童票D、40个成人票,6个儿童票 [判断题]放射性脊髓炎和脑病病人,如有残余癌灶或局部复发,应再次使用放射治疗。A.正确B.错误 [单选]惊厥性全身性癫痫持续状态必须从速控制发作,并保持不再复发的时间至少为()。A.6小时B.12小时C.24小时D.48小时E.72小时 [单选,A2型题,A1/A2型题]下面与颅脑MRI技术无关的项是()A.检查病人是否有禁忌物品B.线圈用头部正交线圈C.脑梗死、颅内出血和脑的先天畸形等一般只需做平扫D.相位编码方向:横断位取前后向E.血管性病变常做平扫加血管成像 [单选]当我们每个月给工人发放工资时,货币执行的是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 [单选,共用题干题]患者男,28岁,因“反复腰背痛1年,加重3个月,伴左膝关节肿胀”来诊。实验室检查:红细胞沉降率80mm/1h,C-反应蛋白56mg/L,类风湿因子(-),人类白细胞抗原-B27(-)。可判断患者病情活动的是()。A.X线片:腰椎呈"竹节样"改变B.MRI:双侧骶髂关节骨水肿C.X [单选,A2型题,A1/A2型题]血小板减少性紫癜患儿起病的症状大多是()A.鼻、牙龈出血B.颅内出血C.呕血、便血D.血尿E.皮肤黏膜出血 [单选]《传染病防治法》规定了传染病疫情通报制度,下列不属于通报规定的是()A.国务院卫生行政部门向国务院其他有关部门B.国务院卫生行政部门向国务院C.国务院卫生行政部门向省、自治区、直辖市人民政府卫生行政部门D.解放军卫生主管部门向国务院卫生行政部门E.地方人民政府卫生 [单选]以下无形资产中不属于知识产权类的是()A、专利B、商标C、营销网络D、软件著作权 [单选]化妆品引起的皮肤损害最常见的一类是()。A.光变应性皮炎B.刺激性接触性皮炎C.变应性接触性皮炎D.化妆品痤疮E.色素沉着症 [单选]脑膜炎双球菌是()A.严格需氧的革兰阳性双球菌B.严格需氧的革兰阴性双球菌C.厌氧的革兰阴性双球菌D.厌氧的革兰阳性双球菌E.革兰阴性双球菌,兼性厌氧菌 [单选]鼻窦黏液囊肿()A.是恶性病变B.由黏液腺分泌阻塞引起C.由副鼻窦口阻塞引起D.有骨质破坏,呈气样密度E.CT增强扫描有明显增强 [问答题,案例分析题]背景材料: [单选]应用以后可能出现牙龈反应的药物是()A.卡马西平B.苯妥英钠C.山莨菪碱D.氯硝西泮E.七叶莲 [单选,A1型题]放射性药品使用许可证的有效期为()A.1年B.2年C.3年D.5年E.7年 [多选]累进税率是根据征税对象数额的大小不同,规定不同等级的税率,它可分为()。A.全额累进税率B.超额累进税率C.全率累进税率D.超率累进税率 [单选]下列卵巢皮样囊肿声像图的表现,哪一项是错误的A.脂液分层征B.面团征C.瀑布征D.杂乱结构征E.实性团块征
相关文档
最新文档