有限元的MATLAB解法
matlab有限元刚度矩阵编程
一、概述有限元方法是工程学和科学领域中常用的数值分析工具,用于求解复杂的结构力学问题。
在有限元分析中,刚度矩阵是一个重要的概念,它描述了结构的刚度性质,并可以用于求解结构的位移、应力和应变分布。
MATLAB是一款功能强大的数学软件,它提供了丰富的工具和函数,可以用于编程求解有限元刚度矩阵。
本文将介绍如何使用MATLAB编程求解有限元刚度矩阵,并给出详细的步骤和代码示例。
二、有限元刚度矩阵的理论基础有限元分析的基本思想是将一个复杂的结构分解成许多小的单元,每个单元都可以用简单的数学方程描述。
在有限元分析中,每个单元都有一个刚度矩阵,它描述了单元的刚度性质。
结构的总刚度矩阵可以通过合并所有单元的刚度矩阵得到。
总刚度矩阵可以用于求解结构的位移、应力和应变分布,是有限元分析的核心之一。
三、MATLAB编程求解有限元刚度矩阵的步骤在MATLAB中,可以通过以下步骤编程求解有限元刚度矩阵:1. 定义结构的几何形状和材料性质,确定结构的边界条件和加载条件。
2. 将结构分解成有限元单元,根据单元的几何形状和材料性质建立单元的刚度矩阵。
3. 合并所有单元的刚度矩阵,得到结构的总刚度矩阵。
4. 根据边界条件和加载条件,求解结构的位移。
5. 根据结构的总刚度矩阵和位移,计算结构的应力和应变分布。
四、MATLAB编程求解有限元刚度矩阵的代码示例以下是一个简单的MATLAB代码示例,用于求解一维弹簧元的刚度矩阵:```MATLAB定义弹簧元的长度和弹性模量L = 1;E = 1;计算弹簧元的刚度矩阵k = E * A / L;K = [k, -k; -k, k];```以上代码示例中,我们首先定义了弹簧元的长度L和弹性模量E,然后通过公式计算了弹簧元的刚度矩阵K。
这是一个简单的一维情况,实际工程中可能涉及到更复杂的二维、三维情况,但基本的求解步骤是相似的。
五、总结MATLAB是一个强大的数学软件,可以用于编程求解有限元刚度矩阵。
电磁场有限元Matlab解法
nel=n1;
%总网格数
%******************定义各个单元的常量和矩阵************************ K=zeros(ndm,ndm); %定义 K 矩阵 Ke=zeros(3,3); %单元 Ke 矩阵 s=0.5/(Jmax*Jmax); %单元面积 b=zeros(ndm,1); %b 矩阵 be=1:3; %单元 be 矩阵 eps=1:nel; rho=1:nel; %定义 ε 和 ρ 数组 for n=1:2*Jmax*Imax %定义上下两部分的 ε 和 ρ 值,,两部分的 ε 分别 为 9 和 1,ρ 都为 0 eps(n)=eps1; rho(n)=rho1; end for n=2*Jmax*Imax+1:nel eps(n)=eps2; rho(n)=rho2; end %****************计算系统的[K][b]矩阵************************* for n=1:nel for i=1:3 n1=NE(1,n); n2=NE(2,n); n3=NE(3,n); %给每个单元的点进行编号 bn(1)=Y(n2) - Y(n3); bn(2)=Y(n3) - Y(n1); bn(3)=Y(n1) - Y(n2); cn(1)=X(n3) - X(n2); cn(2)=X(n1) - X(n3); cn(3)=X(n2) - X(n1); for j=1:3 Ke(i,j)=eps(n)*(bn(i)*bn(j)+cn(i)*cn(j))/(4*s); be(i)=s*rho(n)/3; %计算每个单元的 Ke 和 be 矩阵 end end for i=1:3 for j=1:3 K(NE(i,n),NE(j,n))=K(NE(i,n),NE(j,n))+Ke(i,j); b(NE(i,n))=b(NE(i,n))+be(i); %把 Ke 和 be 分别相加求总矩阵 end end end
有限元MATLAB
MATLAB报告Matlab程序求解简要过程如下:(1)求取单元节点位移提取矩阵T单元节点位移提取矩阵T本质上是置换矩阵群中的一个,结果可将任意杂乱的节点顺序置换成统一的顺序。
另一方面其作用是对单元刚度矩阵进行“升维操作”,将单元刚度矩阵统筹到整体刚度矩阵上来,便于对总体节点位移矩阵和支座反力进行求取。
本程序分析过程中对单元1的节点提取是按顺序编号1-2-3,对单元2的节点提取是按顺序编号2-3-4。
单元1的节点位移提取矩阵如下:单元2的节点位移提取矩阵如下:(2)求取单元几何矩阵B单元1的节点按编号顺序1-2-3分别进行对几何函数矩阵或算子矩阵的bi逆时针操作,对ci顺时针操作;单元2的节点按编号顺序2-3-4分别进行对几何函数矩阵的bi顺时针操作,对ci逆时针操作.在MATLAB程序中通过mod()取模函数来达到对节点的顺时针或逆时针循环操作。
单元1的几何矩阵如下:单元2的几何矩阵如下:(3)求取应力矩阵S单元应力矩阵满足S=D*B,其中D为弹性矩阵,B为单元几何矩阵各单元的弹性矩阵如下:单元1的应力矩阵如下:单元2的应力矩阵如下:(4)求取单元刚度矩阵K单元刚度矩阵K满足公式K=B’*D*B*t*A,其中t为平面板的厚度,A为单元面积,且单元刚度矩阵为对称矩阵。
单元1的刚度矩阵如下:单元2的刚度矩阵如下:(5)求取总体刚度矩阵sumKK由上述步骤求得的单元刚度矩阵K利用单元虚功原理和刚度方程可导出K’*δ=f,其中δ为单元节点位移列阵,f为单元等效节点载荷列阵,为了能将各个单元刚度方程统一到一个整体,便需要步骤(1)的单元节点提取矩阵对单元刚度方程进行变换,将两个变换结果联立便得到总体刚度方程,其中也可得到总体刚度矩阵sumKK,且总体刚度矩阵可由sumKK=Σ T’*K*T 求得。
总体刚度矩阵如下:(6)求取总体节点位移矩阵和支座反力利用上述步骤提到的总体刚度方程sumKK*delta=F,其中delta为总体节点位移矩阵,F为总体等效节点载荷列阵。
matlab有限元法
matlab有限元法
有限元法是一种常用的工程数值计算方法,广泛应用于结构力学、流体力学、热传导等领域。
它通过将复杂的连续体分割成有限个简单的单元,利用单元之间的相互关系来近似描述整个问题的解。
在工程实践中,有限元法已经成为一种不可或缺的分析工具。
有限元法的基本步骤包括建立数学模型、离散化、确定边界条件、求解方程、后处理等。
首先,需要将实际工程问题转化为数学模型,确定问题的几何形状、材料特性和载荷条件。
然后,将问题离散化,即将结构分割成有限个简单的单元,并确定单元之间的连接关系。
接下来,需要确定边界条件,即给定结构的边界约束和外部载荷。
然后,通过求解离散化后的方程组,得到问题的数值解。
最后,进行后处理,分析和展示结果。
有限元法的优点在于能够处理复杂的几何形状和边界条件,可以模拟各种不同的物理现象,并且具有较高的精度和可靠性。
它能够帮助工程师更好地理解和设计结构,提高工程的可靠性和安全性。
然而,有限元法也存在一些局限性。
首先,离散化过程会引入一定的误差,尤其是在模型中存在较大的变形或应力集中的情况下。
其次,求解大规模的方程组需要较高的计算资源和时间。
此外,有限元法对材料的本构关系和边界条件的设定要求较高,需要进行合理的模型假设和参数选择。
总的来说,有限元法是一种强大而灵活的工程分析方法,能够帮助工程师解决各种复杂的工程问题。
通过合理的模型建立和边界条件设定,以及精确的计算和后处理,可以得到准确可靠的结果,为工程设计和优化提供有力支持。
有限元数值解法在MATLAB中的实现及可视化
有限元数值解法在MATLAB中的实现及可视化摘要:偏微分方程的数值解法在数值分析中占有很重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题。
在学习初等函数时,总是先画出它们的图形,因为图形能帮助我们了解函数的性质。
而对于偏微分方程,画出它们的图形并不容易,尤其是没有解析解的偏微分方程,画图就显得更加不容易了。
为了从偏微分方程的数学表达式中看出其所表达的图形、函数值与自变量之间的关系,通过MATLAB编程,用有限元数值解法求解了偏微分方程,并将其结果可视化。
关键词:偏微分方程;MATLAB;有限元法;可视化1 引言(Introduction)偏微分方程的数值解法在数值分析中占有很重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题。
近三十多年来,它的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。
例如,核武器的研制要有理论设计和核试验。
但核反应和核爆炸的过程是在高温高压的条件下进行的,而且巨大的能量在极短的时间内释放出来,核装置内部的细致反应过程及各个物理量的变化是根本不能用仪器测量出来的,核试验只是提供综合的数据。
而描述核反应和爆炸物理过程的数学模型是一个很复杂的非线性偏微分方程组,也根本没有办法得到这个方程组理论上的精确解。
所以发展核武器的国家都在计算机上对核反应过程进行数值模拟,这也称为“数值核实验”,它可以大大减少核试验的次数,节约大量的经费,缩短研制的周期[1]。
在学习初等函数时,总是先画出它们的图形,因为图形能帮助我们了解函数的性质。
而对于偏微分方程,画出它们的图形并不容易,尤其是没有解析解的偏微分方程,画图就显得更加不容易了。
所以本文主要研究如何用MATLAB数值求解偏微分方程,并将其数值解绘制成三维图形的形式,从而可以从复杂的数学表达式中看出其所表达的图像、函数值与自变量之间的关系[2]。
2 有限元法(Finite element method)2.1 有限元法概述有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
matlab桁架结构有限元计算
matlab桁架结构有限元计算摘要本文介绍了使用M ATL A B进行桁架结构有限元计算的方法。
首先,我们将讨论桁架结构的基本概念和有限元分析的原理。
然后,我们将详细介绍如何使用MA TL AB建立桁架结构的有限元模型,并进行力学分析。
最后,我们将通过一个案例演示如何使用MA TL AB进行桁架结构的有限元计算,以及如何分析结果。
1.引言桁架结构是一种由杆件和节点组成的空间结构。
它具有轻巧、刚性和稳定等特点,在工程领域中得到了广泛应用。
有限元方法是一种常用的工程分析方法,可以用于求解桁架结构的应力、变形等问题。
MA T LA B是一个功能强大的计算软件,具有丰富的工具箱和便于使用的界面,可以用于桁架结构的有限元分析。
2.桁架结构的基本概念桁架结构由若干杆件和节点组成,杆件可以看作是刚性杆,节点是杆件的连接点。
桁架结构常用于承受桥梁、建筑物等结构的荷载。
桁架结构的节点可以是固定支撑、铰支撑或滑动支撑等。
杆件可以是直杆、曲杆或弯曲杆等。
桁架结构的力学行为可以通过有限元方法进行分析。
3.有限元分析的原理有限元分析是一种将复杂结构离散化为单元,通过对单元的力学计算得到整体结构的力学行为的方法。
有限元分析的基本步骤包括离散化、建立单元模型、求解节点位移和计算单元力等。
在桁架结构的有限元分析中,常用的单元类型有一维梁单元和杆单元。
4.使用MAT LAB进行桁架结构有限元分析使用MA TL AB进行桁架结构有限元分析的步骤如下:4.1建立有限元模型首先,需要根据实际情况确定桁架结构的几何尺寸和材料属性,然后使用MA TL AB的有限元建模工具箱创建桁架结构的有限元模型。
模型的建立包括定义节点、杆件和单元,设置边界条件和加载。
4.2求解节点位移和单元力通过求解有限元方程,可以得到桁架结构的节点位移和单元力。
M A TL AB提供了一系列用于求解线性方程组的函数,可以快速得到结果。
4.3分析结果得到节点位移和单元力后,可以进行进一步的分析。
matlab桁架结构有限元计算
matlab桁架结构有限元计算
在MATLAB中,进行桁架结构的有限元计算可以按照以下步
骤进行:
1. 定义节点和单元:根据实际问题的几何形状和拓扑关系,定义桁架结构的节点和单元。
节点是桁架结构的连接点,单元是连接节点的构件。
2. 定义材料属性和截面属性:根据实际问题的材料和截面要求,定义桁架结构的材料属性和截面属性。
材料属性包括弹性模量和泊松比等,截面属性包括截面面积和惯性矩等。
3. 组装刚度矩阵:根据节点和单元的几何形状和材料属性,计算每个单元的局部刚度矩阵,然后根据单元和节点的连接关系,将局部刚度矩阵组装成整体刚度矩阵。
4. 施加边界条件:根据实际问题的边界条件,将边界节点的位移固定为零,或施加位移或力的约束条件。
5. 求解位移和反力:使用求解线性方程组的方法,求解位移和反力。
可以使用MATLAB中的线性方程组求解函数(如'\''运
算符)来计算。
6. 计算应力和应变:根据位移和节点的几何形状,计算节点上的应变,然后根据材料属性,计算节点上的应力。
以上步骤涵盖了桁架结构的有限元计算的基本流程,具体实现时需要根据实际问题进行适当的调整和扩展。
MATLAB有限元分析与应用可编辑全文
%
modulus of elasticity E, cross-sectional
%
area A, and length L. The size of the
%
element stiffness matrix is 2 x 2.
y = [E*A/L -E*A/L ; -E*A/L E*A/L];
2019/11/28
y = k * u/A;
2019/11/28
18
§3-2 线性杆元
3、实例计算分析应用
如图所示二线性杆元结构,假定E=210MPa,A=0.003m^2,P=10kN, 节点3的右位移为0.002m。
求:系统的整体刚度矩阵; 节点2的位移; 节点1、3的支反力; 每个杆件的应力
解:
步骤1:离散化域
%LinearBarElementStresses This function returns the element nodal
%
stress vector given the element stiffness
%
matrix k, the element nodal displacement
%
vector u, and the cross-sectional area A.
? ?
?
? ?
?
10??
630000 ????0.002?? ?? F3 ??
线性杆元也是总体和局部坐标一致的一维有限单元,用线性函数描述
每个线性杆元有两个节点(node)
? EA
单刚矩阵为:k
?
? ?
L
???
EA L
?
EA L
? ? ?
有限元的MATLAB解法
有限元的MATLAB解法1.打开MATLAB。
2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。
3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。
4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。
5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。
6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。
7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。
8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。
9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
matlab有限元计算
matlab有限元计算有限元计算是一种常用的数值计算方法,广泛应用于工程领域。
而Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,使得有限元计算变得更加简单和高效。
有限元计算是一种将连续问题离散化为有限个简单子问题的方法。
它将复杂的连续问题转化为离散的有限元网格,然后通过求解每个单元上的方程,最终得到整个问题的解。
有限元计算可以用于求解结构力学、流体力学、热传导等各种物理问题。
在Matlab中进行有限元计算,首先需要构建有限元模型。
有限元模型由节点和单元组成,节点是问题的离散点,单元是连接节点的基本单元。
在Matlab中,可以使用函数如meshgrid、linspace等来生成节点坐标,使用函数如delaunay、trimesh等来生成单元。
然后,需要定义问题的边界条件和加载条件。
边界条件是指在问题的边界上给定的约束条件,加载条件是指在问题中施加的外部力或位移。
在Matlab中,可以使用函数如boundary、findEdges等来定义边界条件,使用函数如force、displacement等来定义加载条件。
接下来,需要定义问题的材料性质和单元特性。
材料性质是指问题中所使用的材料的力学性质,单元特性是指单元的几何形状和材料性质。
在Matlab中,可以使用函数如materialProperties、elementProperties等来定义材料性质和单元特性。
然后,需要建立有限元方程。
有限元方程是通过对每个单元上的方程进行组装得到的整体方程。
在Matlab中,可以使用函数如stiffnessMatrix、loadVector等来建立有限元方程。
最后,需要求解有限元方程。
在Matlab中,可以使用函数如solve、eigs等来求解有限元方程。
求解得到的结果可以用于分析问题的应力、位移、变形等。
除了上述基本步骤,Matlab还提供了丰富的后处理工具和函数,用于可视化和分析有限元计算的结果。
MatlabPDE工具箱有限元法求解偏微分方程
在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。
在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。
偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。
随着计算机技术的发展,采用数值计算方法,可以得到其数值解。
偏微分方程基本形式而以上的偏微分方程都能利用PDE工具箱求解。
PDE工具箱PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤:1) 建立几何模型2) 定义边界条件3) 定义PDE类型和PDE系数4) 三角形网格划分5) 有限元求解6) 解的图形表达以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下具体实现如下。
打开工具箱输入pdetool可以打开偏微分方程求解工具箱,如下首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适当的模式进行建模和分析。
在Options菜单的Application菜单项下可以做选择,如下或者直接在工具栏上选择,如下列表框中各应用模式的意义为:① Generic Scalar:一般标量模式(为默认选项)。
② Generic System:一般系统模式。
③ Structural Mech.,Plane Stress:结构力学平面应力。
④ Structural Mech.,Plane Strain:结构力学平面应变。
⑤ Electrostatics:静电学。
⑥ Magnetostatics:电磁学。
⑦ Ac Power Electromagnetics:交流电电磁学。
⑧ Conductive Media DC:直流导电介质。
⑨ Heat Tranfer:热传导。
⑩ Diffusion:扩散。
可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。
此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。
matlab 有限元法
matlab 有限元法
Matlab中的有限元法(Finite Element Method,FEM)是一种常用的数值分析方法,用于模拟和解决包括结构力学、热传导、流体力学等问题。
它将连续介质划分为离散的有限单元,通过建立数学模型和使用近似解法来求解。
下面是一般步骤来使用Matlab进行有限元分析:
1. 剖分网格:将要模拟的连续介质划分为离散的有限单元(如三角形或四边形元素)。
2. 建立数学模型:根据具体问题的物理方程或导引方程,建立线性或非线性的方程模型。
3. 施加边界条件:确定并施加边界条件,如位移、载荷或约束等。
4. 组装刚度矩阵和载荷向量(Assembly):通过元素刚度矩阵的组装,得到总系统的刚度矩阵和载荷向量。
5. 求解方程:通过求解总系统的线性方程组,得到未知位移或其他需要的结果。
6. 后处理结果:对求解结果进行可视化或分析,如绘制应力分布、位移云图、应变曲线等。
Matlab提供了丰富的工具箱和函数,用于各种结构和物理问题的有限元分析,例如Partial Differential Equation Toolbox(部分微分方程工具箱)和Structural Analysis T oolbox(结构分析工具箱),其中包含了常用的有限元分析函数和设置界面。
另外,Matlab还支持用户自定义编程,允许使用脚本或函
数来实现特定的有限元算法。
总之,通过Matlab的有限元分析工具和编程能力,可以方便地进行各种结构和物理问题的数值分析和模拟。
matlaB程序的有限元法解泊松方程
基于matlaB 编程的有限元法一、待求问题:泛定方程:2=x ϕ-∇边界条件:以(0,-1),(0,1),(1,0)为顶点的三角形区域边界上=0ϕ二、编程思路及方法1、给节点和三角形单元编号,并设定节点坐标画出以(0,-1),(0,1),(1,0)为顶点的三角形区域figure1由于积分区域规则,故采用特殊剖分单元,将区域沿水平竖直方向分等份,此时所有单元都是等腰直角三角形,剖分单元个数由自己输入,但竖直方向份数(用Jmax 表示)必须是水平方向份数(Imax )的两倍,所以用户只需输入水平方向的份数Imax 。
采用上述剖分方法,节点位置也比较规则。
然后利用循环从区域内部(非边界)的节点开始编号,格式为NN(i,j)=n1,i ,j 分别表示节点所在列数与行数,并将节点坐标存入相应矩阵X(n1),Y(n1)。
由于区域上下两部分形状不同因此,分两个循环分别编号赋值,然后再对边界节点编号赋值。
然后再每个单元的节点进行局部编号,由于求解区域和剖分单元的特殊性,分别对内部节点对应左上角正方形的两个三角形单元,上左,左上,下斜边界节点要对应三个单元,上左,左上,左下,右顶点的左下、左上,右上边界的左上,分别编号以保证覆盖整个区域。
2、求解泊松方程首先一次获得每个单元节点的整体编号,然后根据其坐标求出每个三角形单元的面积。
利用有限元方法的原理,分别求出系数矩阵和右端项,并且由于边界,因此做积分时只需对场域单元积分而不必对边界单元积条件特殊,边界上=0分。
求的两个矩阵后很容易得到节点电位向量,即泊松方程的解。
3、画解函数的平面图和曲面图由节点单位向量得到,j行i列节点的电位,然后调用绘图函数imagesc(NNV)与surf(X1,Y1,NNV')分别得到解函数的平面图figure2和曲面图figure3。
4、将结果输出为文本文件输出节点编号,坐标,电位值三、计算结果1、积分区域:2、f=1,x 方向75份,y 方向150份时,解函数平面图和曲面图20406080100120140102030405060700.0050.010.0150.020.0250.0320.0050.010.0150.020.0250.03对比:当f=1时,界函数平面图20406080100120140102030405060700.010.020.030.040.050.060.073、输出文本文件由于节点多较大,列在本文最末四、结果简析由于三角形区域分布的是正电荷,因此必定电位最高点在区域中部,且沿x 轴对称,三角形边界电位最低等于零。
matlab 程序 2d有限元方法
matlab 程序2d有限元方法二维有限元方法在工程与科学计算中有着广泛的应用。
MATLAB作为一种功能强大的数学软件,为二维有限元分析提供了便捷的实现途径。
本文将详细介绍如何使用MATLAB编写二维有限元方法的程序。
一、有限元方法概述有限元方法(Finite Element Method,简称FEM)是一种用于求解偏微分方程的数值方法。
它通过将复杂的连续体划分成简单的单元,并在这些单元上求解方程,从而将连续问题转化为离散问题。
在二维问题中,通常将连续区域划分为三角形或四边形单元,然后在每个单元上求解偏微分方程,最后通过整体刚度矩阵的组装和求解得到整个区域的解。
二、MATLAB编程实现二维有限元方法以下是使用MATLAB实现二维有限元方法的基本步骤:1.创建网格在MATLAB中,可以使用`triangle`函数或`patch`函数创建二维网格。
以下是一个简单的例子:```matlab% 定义节点坐标odes = [0 0; 1 0; 1 1; 0 1; 0.5 0.5];% 定义单元连接关系elements = [1 2 5; 2 3 5; 3 4 5; 4 1 5];% 绘制网格triplot(nodes, elements);```2.确定单元属性在二维有限元方法中,需要为每个单元定义形状函数、雅可比矩阵等属性。
以下是一个示例:```matlabfunction [N, dNdx, dNdy, J] = shape_functions(nodes, element) % 获取单元节点坐标x = nodes(element, 1);y = nodes(element, 2);% 计算形状函数N = [1 - (x - x(1)) / (x(2) - x(1)) - (y - y(1)) / (y(2) - y(1));(x - x(1)) / (x(2) - x(1));(y - y(1)) / (y(2) - y(1));(x - x(1)) / (x(2) - x(1)) * (y - y(1)) / (y(2) - y(1))];% 计算形状函数对x、y的导数dNdx = [-1 / (x(2) - x(1)), 1 / (x(2) - x(1)), 0, (y(2) - y(1)) / ((x(2) - x(1)) * (y(2) - y(1)))];dNdy = [0, 0, 1 / (y(2) - y(1)), (x(2) - x(1)) / ((x(2) - x(1)) * (y(2) - y(1)))];% 计算雅可比矩阵J = [sum(dNdx), sum(dNdy); ...sum(dNdx .* x), sum(dNdy .* x); ...sum(dNdx .* y), sum(dNdy .* y)];end```3.组装刚度矩阵和质量矩阵在得到单元属性后,可以组装整体刚度矩阵和质量矩阵。
matlab用有限元法求解偏微分方程组
matlab用有限元法求解偏微分方程组使用有限元法求解偏微分方程组是一种常见的数值计算方法,它在工程领域和科学研究中广泛应用。
本文将介绍如何利用MATLAB软件进行有限元法求解偏微分方程组的基本步骤和注意事项。
我们需要了解有限元法的基本原理。
有限元法是一种将连续问题离散化为有限个小区域,通过在每个小区域内建立适当的数学模型,然后将这些小区域连接起来形成整个问题的数学模型的方法。
在有限元法中,我们通常将问题的域分割成许多小的有限元,每个有限元都具有简单的几何形状,如线段、三角形或四边形。
然后,在每个有限元上建立适当的近似函数,通过对这些函数的系数进行求解,我们可以得到问题的近似解。
在MATLAB中,有限元法的求解过程可以分为以下几个步骤:1. 离散化域:根据问题的几何形状,将问题的域进行离散化处理。
离散化可以采用三角剖分法或四边形剖分法,将域分割成许多小的有限元。
2. 建立数学模型:在每个有限元上建立适当的数学模型。
这通常涉及选择适当的近似函数,并在每个有限元上求解这些函数的系数。
3. 组装方程:将每个有限元上的数学模型组装成整个问题的数学模型。
这涉及到将有限元之间的边界条件进行匹配,并建立整个问题的刚度矩阵和载荷向量。
4. 求解方程:利用线性代数求解方法,求解得到问题的近似解。
MATLAB提供了各种求解线性方程组的函数,如“\”运算符、LU 分解和共轭梯度法等。
5. 后处理:对求解结果进行后处理,包括绘制解的图形、计算问题的误差等。
在进行有限元法求解偏微分方程组时,需要注意以下几点:1. 网格剖分的合理性:网格剖分的精细程度对结果的精确性有很大影响。
网格过于粗糙可能导致结果的不准确,而网格过于细小则会增加计算的复杂性。
因此,需要根据问题的特点和计算资源的限制选择合适的网格剖分。
2. 近似函数的选择:近似函数的选择直接影响到结果的准确性和计算的效率。
一般情况下,近似函数的阶数越高,结果的准确性越高,但计算的复杂性也越大。
有限元的matlab编程
本程序的网架位移求解函数附在主程序后面,主程序运行时调用该函数。
完整ppt
14
几何建模 定义荷载
用自定义输入
加下划线的为单元编号
完整ppt
5
形成等效荷载列阵
f=[0;0;0;a;0;0;0;a;0;0;0;a;0;0;0;a;0;0;0;a];%每个节点两个自由度,a 为之前输入的节点力
集成总刚:
获取单元两端节点坐标
xi = Node( Element( ie, 1 ), 1 ) ;%ie为单元号,以下相同 yi = Node( Element( ie, 1 ), 2 ) ; xj = Node( Element( ie, 2 ), 1 ) ; yj = Node( Element( ie, 2 ), 2 ) ;
节点号:',num2str(Element(ie,2)),' 轴力:',num2str(nodef(1))] ) ;
完整ppt
12
end
例二:网架
完整ppt
13
思路分析
几点说明
网架是由多根杆件按照一定的网格形式通过节点连结而成的空间结构。构成 网架的基本单元有三角锥,三棱体,正方体,截头四角锥等。鉴于网架的形 式较多,本程序提供一种通用的网架输入方法,但录入较为繁琐,同时提供 一种正放四角锥网架的简易输入方法作为典型。
有限元编程示例
完整ppt
1
例一:桁架
题目描述:
如下图所示的平面桁架,杆件长度、弹性模量、截 面积以及所受节点力P的大小可以自行定义。求节 点位移及杆件轴力。
matlab有限元求解微分方程的本征值
一、概述Matlab是一种常用的数学软件,它提供了丰富的工具和函数,可用于解决各种数学问题。
其中,有限元法是一种常用的数值求解方法,它可用于求解微分方程的本征值问题。
本文将探讨如何使用Matlab进行有限元求解微分方程的本征值问题。
二、有限元法简介有限元法是一种数值分析方法,它通过将连续的物理问题离散化为有限数量的单元或网格,然后利用线性代数方法求解离散问题,从而得到原始的连续问题的近似解。
在微分方程的求解中,有限元法可用于求解微分方程的本征值问题,即确定微分方程的本征值和本征函数。
三、使用Matlab进行有限元求解微分方程的本征值问题1. 离散化微分方程需要将微分方程离散化为有限元形式。
这通常涉及将微分方程转化为一个矩阵形式的代数方程组。
对于一维问题,可以将区域离散化为一系列节点,并将微分方程表示为每个节点上的代数方程。
对于二维或三维问题,可以将区域离散化为网格或单元,并在每个单元中求解微分方程。
2. 构建刚度矩阵和质量矩阵一旦微分方程被离散化,就可以构建刚度矩阵和质量矩阵。
刚度矩阵描述了系统的刚度和连接性,质量矩阵描述了系统的质量和惯性。
这两个矩阵可以通过有限元方法和数值积分计算得到。
3. 求解本征值问题一旦刚度矩阵和质量矩阵被构建,就可以通过求解本征值问题来得到微分方程的本征值和本征函数。
这通常涉及求解特征值问题,即寻找一个非零向量,使得矩阵乘以该向量等于特征值乘以该向量。
4. 使用Matlab进行求解Matlab提供了丰富的工具和函数,可用于构建刚度矩阵和质量矩阵,并求解本征值问题。
使用Matlab的有限元工具箱或相关函数,可以方便地进行有限元求解微分方程的本征值问题。
四、案例分析下面通过一个简单的例子来说明如何使用Matlab进行有限元求解微分方程的本征值问题。
考虑一维弦的振动问题,其微分方程为:$$\frac{d^2u}{dx^2} +\omega^2u = 0$$其中$u$为弦的位移,$x$为弦的位置,$\omega$为本征频率。
有限元的MATLAB解法
有限元的MATLAB解法1.打开MATLAB。
2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。
3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。
4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。
5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。
6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。
7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。
8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。
9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元的MATLAB解法1.打开MATLAB。
2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。
3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。
4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。
5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。
6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。
7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。
8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。
9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
选中Color,Height(3-D plot)和Show mesh三项,然后单击“Plot”按钮,显示三维图形解。
10.如果要画等值线图和矢量场图,单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
选中Contour和Arrows两项,然后单击Plot按钮,可显示解的等值线图和矢量场图。
11.将计算结果条件和边界导入MATLAB中:点击“Export Solution”,再点击“Mesh”中“Export Mesh”。
12.在MATLAB中将编好的计算程序导入,按F5运行。
备注:Property(属性)用于画图时选用相应的绘图类型u 方程的解abs(grad(u)) 每个三角形的中心的▽u的绝对值abs(c*grad(u)) 每个三角形的中心的c·▽u的绝对值- grad(u) u的负梯度-▽u我们也可以用MATLAB程序求解PDE问题,同时显示解的图形;一个长直接接地金属矩形槽,其侧壁与底面电位均为0,顶盖电位为100V,求槽内的电位分布:100V0V0V0V(1)画出剖分图(尺寸与书上一样);(2)标出各剖分点坐标值;(3)求出各点电位值(用有限差分);(4)画出等电位图。
解:(1)编写以下程序得:x=0:5y=0:5[X,Y]=meshgrid(x,y)plot(X,Y)hold onplot(Y,X)for i=0:5s=i:5t=0:(5-i)plot(s,t)plot(t,s)end得到剖分图如下:(2)用有限元法编写程序如下:Nx=6;Ny=6;Xm=5;Ym=15;Np=5;Nq=5;for i=1:Nxfor j=1:NyN(i,j)=(i-1)*Ny+j; /i列j行的节点编号/ X(N(i,j))=(i-1)*Xm/Np;/节点横坐标/Y(N(i,j))=(j-1)*Ym/Nq;/节点纵坐标/endendfor i=1:2*Xmfor j=1:Ymif rem(i,2)==1L(i,j)=(i-1)*Nq+j;p(i,j)=2*(i-1)*Ny/2+Ny+j+1;q(i,j)=p(i,j)-Ny;r(i,j)=q(i,j)-1;else rem(i,2)==0L(i,j)=(i-1)*Ny+j;p(i,j)=(2i-2)*Ny/2+j;q(i,j)=p(i,j)+Ny;r(i,j)=q(i,j)+1;endendendfor i=1:2*Xmfor j=1:Ymb(p(i,j))=Y(q(i,j))-Y(r(i,j));b(q(i,j))=Y(r(i,j) )-Y(p(i,j));b(r(i,j))=Y(p(i,j))-Y(q(i,j));c(p(i,j))=X(r(i,j) )-X(q(i,j));c(q(i,j))=X(p(i,j))-X(r(i,j));c(r(i,j))=X(q(i,j) )-X(p(i,j));area(i,j)=(b(p(i,j))*c(q(i,j))-b(q(i,j))*c(p(i,j)))/2;K=zeros(Nx*Ny);Kpp(i,j)=(b(p(i,j))^2+c(p(i,j))^2)/(2*area(i,j));Kpq(i,j)=(b(p(i,j))*b(q(i,j))+c(p(i,j))*c(q(i,j)))/(2*area(i,j));Kpr(i,j)=(b(p(i,j))*b(r(i,j))+c(p(i,j))*c(r(i,j)))/(2* area(i,j));Kqp(i,j)=Kpq(i,j);Kqq(i,j)=(b(q(i,j))^2+c(q(i,j))^2)/(2*area(i,j));Kqr(i,j)=(b(q(i,j))*b(r(i,j))+c(q(i,j))*c(r(i,j)))/ (2*area(i,j));Krp(i,j)=Kpr(i,j);Krq(i,j)=Kqr(i,j);Krr(i,j)=(b(r(i,j))^2+c(r(i,j))^2)/(2*area(i,j)); endendfor i=1:2*Xmfor j=1:YmK(p(i,j),p(i,j))=Kpp(i,j)+K(p(i,j),p(i,j));K(p(i,j),q(i,j))=Kpq(i,j)+K(p(i,j),q(i,j));K(p(i,j),r(i,j))=Kpr(i,j)+K(p(i,j),r(i,j));K(q(i,j),p(i,j))=Kqp(i,j)+K(q(i,j),p(i,j));K(q(i,j),q(i,j))=Kqq(i,j)+K(q(i,j),q(i,j));K(q(i,j),r(i,j))=Kqr(i,j)+K(q(i,j),r(i,j));K(r(i,j),p(i,j))=Krp(i,j)+K(r(i,j),p(i,j));K(r(i,j),q(i,j))=Krq(i,j)+K(r(i,j),q(i,j));K(r(i,j),r(i,j))=Krr(i,j)+K(r(i,j),r(i,j)); endendfor i=1:11K(i,:)=0;K(i,i)=1;endfor i=1:11:111K(i,:)=0;K(i,i)=1;endfor i=111:121K(i,:)=0;K(i,i)=1;endfor i=11:11:121K(i,:)=0;K(i,i)=1;endB=zeros(121,1);for i=11:11:121B(i,1)=100;endU=K\B;b=1;XX=zeros(11,11)for j=1:11for i=1:11XX(i,j)=U(b,1);b=b+1;endendsubplot(1,2,1),mesh(XX)axis([0,11,0,11,0,100])subplot(1,2,2),contour(XX,15)hold on(3)由上面的程序得到节点电位:V1=0 0 0 0 00 7.1429 9.8214 7.1429 00 18.7500 25.0000 18.7500 00 42.8571 52.6786 42.8571 00 100.0000 100.0000 100.0000 0(4)由程序得到的电场分布图及等位线图如下:4.用有限元法求矩形波导(b/a=0.45)的:(1)电场分布图;(2)求TE模式下的主模、第一、二高次模的截止波长(5次),画出截至波长图;(3)求TM模式下的主模、第一、二高次模的截止波长(5次),画出截至波长图。
解:利用MATLAB中的PDE工具箱:取矩形波导的宽边尺寸为a,窄边尺寸为0.45a。
(1)主模的电场分布图如下:在Neumann边界条件下:在Dirichlet边界条件下:(2)在TE模式下设置边界条件为Neumann条件,使用编制好的程序计算出主模的截止波长为 1.9988a,第一高次模为0.9977a,第二高次模为0.8972a,截止波长图如下:单模TE10区λ时截止模区λ(3)在TM模式下设置边界条件为Dirichlet条件,使用编制好的程序计算出主模的截止波长为0.8179a,第一高次模为0.6655a ,第二高次模为0.5315a ,截止波长图如下:高次模区单模TM 11区截止模区λ5.用时域有限差分求解上述4题中的前两问。
解:(1)根据时域有限差分编写的程序可画出主模的电场分布图如下:在Neumann 边界条件下:在Dirichlet 边界条件下:(2)根据时域有限差分编写的程序可画出频谱图和场结构图,从左图中可以读出主模截止频率c f 值,主模81.499610c f Z=碒,根据1/(c f l =,其中1208.8510e -=?,-60 1.256630610,m =?从而计算出主模截至波长 2.0273c a l =。
.。