化工热力学

合集下载

化工热力学

化工热力学

化工热力学化工热力学的第一个问题就是热能的转换。

它包括各种形式的热量之间的转换,如物质之间、设备之间、管线之间、以及反应容器内的气体之间的热量转换,因此这一章讨论各种传热问题。

化工热力学的第二个问题是研究反应中能量的传递问题,包括原料与产品的化学反应,产品与副产品的物理加工过程。

化工热力学的第三个问题是研究物质在溶液、悬浮液和气体中的分散与凝聚,其中包括固体物质的溶解、离析、沉降、升华、凝结、胶体化以及气体中的扩散等问题。

化工热力学的第四个问题是研究燃烧问题,包括燃烧方法的选择、燃烧室的设计和热量的测量等问题。

高温时空气中水蒸气液化变成饱和液态水。

温度降低到100 ℃以下时,液态水全部结冰。

水的结晶温度随压力升高而降低,纯净的水在一定的压力下有固定的熔点,温度在一定范围内变动,由于结构不同,在不同的条件下会发生物理性质上的变化,可制成很多晶体。

如常见的冰、干冰、雪、盐等,熔点不同。

水蒸气在一定条件下可以直接变成水。

水蒸气凝结时要吸收热量。

用途很广,人类生活和生产中大量需要各种各样的水。

水有许多不同的状态,有冰、水汽、水滴、雾、露、湿空气、液态水、盐水、海洋水、地下水、泉水、河流、湖泊、溪水、海水等。

水与水之间有密切的联系,如果我们能够科学地使用水资源,就会避免许多水灾害。

水有自己的运动规律,按照这些规律来观察和认识水,将会给人们带来很大的好处。

在过去的十几年里,世界上许多国家面临着水资源不足的危机。

为了减少用水,保护水资源,世界各国都非常重视节约用水。

全世界每年缺水约500亿立方米。

在干旱的北非、中亚和南美一些地区,每天至少损失100万人口的饮用水。

我国也面临着严峻的缺水问题。

我国人均水资源占有量仅为世界人均量的四分之一。

3。

化学分析是对实验中所得到的数据进行分析和处理,从而得出结论或者通过一定的推理,证明某种结果是否符合事实。

4。

溶液在一定条件下能够导电,且当两种液体互相接触时会发生放热现象,把这两种液体分开的方法叫做分液。

化工热力学知识要点

化工热力学知识要点

化工热力学知识要点1、化工热力学的研究方法:宏观研究方法 微观研究方法。

2、热力学体系:孤立体系(无物质无能量) 封闭体系(无物质 有能量) 敞开体系(有物质 有能量)。

3、体系 环境:在热力学分析中,将研究中涉及的一部分物质(或空间)从其余物质(或空间)中划分出来。

其划分出来部分称为体系,其余部分称为环境。

4、状态函数:描述体系所处状态的宏观物理量成为热力学变量(状态函数)。

常用的状态函数有压力、温度、比容、内能、焓、熵、自由焓等。

5、循环:体系经过一系列的状态变化过程后,最后由回到最初状态,则整个的变化称为循环。

分为正向循环和逆向循环。

6、临界点:气化线的另一个端点是临界点C,它表示气液两相能共存的最高压力和温度,即临界压力cp 和临界温度cT 。

7、临界点的数学表达式:临界等温线在临界点上的斜率和曲率都等于零。

数学上表示为0=⎪⎭⎫⎝⎛∂∂=cTT V p 022=⎪⎪⎭⎫ ⎝⎛∂∂=cTT V p8、直线直径定律:当以饱和液体和饱和蒸气密度的算术平均值对温度作图时,得一近似的直线。

9、纯物质的p-V-T 图:P 510、理想气体状态方程:RT pV =式中,p 为气体压力;V 为气体摩尔体积;T 为绝对温度;R 为通用气体常数 8.314J/(mol ·K)11、范德华方程(van der Waals 方程):2V ab V RT p --= 其中cc pT R a 642722=;cp RTb 8=。

12、R-K 方程: )(5.0b V V T ab V RT p +--= 其中ccp T R a /42748.05.22=;cc p RT b /08664.0=。

13、维里方程(Virial 方程):++++==321V DV C V B RT pV Z (2-26) 或者 ++++==32'''1p D p C p B RTpVZ式中, 、、、)'()'()'(D D C C B B 分别称为第二、第三、第四、 Virial 系数。

化工热力学精ppt课件

化工热力学精ppt课件
基于临界性质的估算方法
利用纯物质在临界点附近的特殊性质,通过一 些经验公式或图表,估算其在其他条件下的热 物理性质。
混合物热物理性质预测方法
基于组分的加权方法
根据混合物中各组分的摩尔分数或质量分数,采用加权平均的方法 预测混合物的热物理性质。
基于活度的预测方法
引入活度系数来描述混合物中组分间的相互作用,通过活度系数与 纯物质性质的关联,预测混合物的热物理性质。
01
夹点技术
通过优化换热网络,降低能源消耗。
热泵技术
利用外部能源,提高低温热源的品 位,实现能量的升级利用。
03
02
热集成
将多个操作单元集成在一起,提 高能源利用效率。
04
节能技术与措施
改进工艺和设备
采用先进的生产工艺和设备,降低能源消耗。
设计优化方法
通过选择合适的萃取剂、优化萃取塔结构、改进操作条件 等方式,提高萃取过程的分离效率,降低能耗和投资成本。
案例分析
结合具体萃取案例,分析热力学原理在萃取过程设计中的 应用,以及优化方法对提高萃取效率的作用。
其他分离过程热力学原理简介
01
02
结晶过程热力学原理
利用物质在溶液中的溶解度随温度、压 力等条件的变化而变化的性质,实现物 质的分离和提纯。结晶过程涉及相平衡、 传热等热力学基本原理。
封闭系统
与外界有能量交换但没有物质交换的系统。
开放系统
与外界既有能量交换又有物质交换的系统。
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

化工热力学公式

化工热力学公式

化工热力学公式 The document was finally revised on 2021热力学是以热力学第一、第二定律及其他一些基本概念理论为基础,研究能量、能量转换以及与转换有关的物质性质相互之间关系的科学。

有工程热力学、化学热力学、化工热力学等重要分支。

化工热力学是将热力学原理应用于化学工程技术领域。

化工热力学主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。

热力学的研究方法,原则上可采用宏观研究方法和微观研究方法。

以宏观方法研究平衡态体系的热力学称为经典热力学。

体系与环境:隔离体系,封闭体系,敞开体系流体的P-V-T关系在临界点C :临界点是汽液两相共存的最高温度和最高压力,即临界温度Tc,临界压力Pc。

纯流体的状态方程(EOS) 是描述流体P-V-T性质的关系式。

由相律可知,对纯流体有:f( P, T, V ) = 0混合物的状态方程中还包括混合物的组成(通常是摩尔分数)。

状态方程的应用(1)用一个状态方程即可精确地代表相当广泛范围内的 P、V、T实验数据,借此可精确地计算所需的P、V、T数据。

(2)用状态方程可计算不能直接从实验测定的其它热力学性质。

(3)用状态方程可进行相平衡和化学反应平衡计算。

压缩因子(Z)即:在一定P,T下真实气体的比容与相同P,T下理想气体的比容的比值. 理想气体方程的应用(1 )在较低压力和较高温度下可用理想气体方程进行计算。

(2 )为真实气体状态方程计算提供初始值。

(3 )判断真实气体状态方程的极限情况的正确程度,当或者时,任何的状态方程都还原为理想气体方程。

维里方程式Virial系数的获取( 1 ) 由统计力学进行理论计算目前应用很少( 2 ) 由实验测定或者由文献查得精度较高( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的数据两项维里方程维里方程式Z=PV/RT=1+ B/P(1)用于气相PVT性质计算,对液相不能使用;(2)T<Tc, P<, , 用两项维里方程计算,满足工程需要;温度更高时,压力的范围可以更大些。

化工热力学公式范文

化工热力学公式范文

化工热力学公式范文化工热力学是研究化学反应与热力学的相互关系的一门学科。

热力学是一个描述物质能量转化和传递的科学,它包括理论基础、实验方法和应用。

在化工过程中,热力学公式被广泛应用于计算与预测反应的热力学性质,以及热力学参数对反应均衡和传递的影响。

下面是一些常用的化工热力学公式。

1.焓变公式(ΔH):ΔH = ΣH(products) - ΣH(reactants)ΔH表示反应的焓变,H代表反应体系的焓(能量),反应前后体系的焓变化量即为反应热,可以判断反应是吸热反应还是放热反应。

2. 阿伦尼乌斯公式(Arrhenius equation):k = A × exp(-Ea/RT)k表示反应速率常数,A为频率因子,Ea为活化能,R为理想气体常数,T为反应温度。

该公式描述了化学反应速率与温度的关系,温度越高,反应速率越快。

3. 盖因斯-亨德森公式(Gibbs-Helmholtz equation):ΔG=ΔH-TΔSΔG为自由能变化,ΔH为焓变,T为绝对温度,ΔS为熵变。

该公式描述了自由能与焓、熵之间的关系,通过计算ΔG值可以判断反应是否可逆、自发发生。

4. 凯库勒公式(Clausius-Clapeyron equation):ln(P2/P1) = ΔHvap/R × (1/T1 - 1/T2)P1、P2为两个不同温度下的饱和蒸汽压,ΔHvap为蒸发热,R为理想气体常数,T1、T2为对应温度。

该公式描述了物质的蒸汽压与温度之间的关系,可以用于计算物质的汽化热。

5.放热反应的焓变公式:q=m×C×ΔTq为反应所释放的热量(焓变),m为物质的质量,C为物质的比热容,ΔT为温度变化。

该公式用于计算放热反应的热量释放。

6.反应平衡常数的计算:Kc=[C]^c×[D]^d/[A]^a×[B]^bKc表示反应平衡常数,[C]^c、[D]^d分别代表反应产物C、D的浓度或压力的指数,[A]^a、[B]^b分别代表反应物A、B的浓度或压力的指数。

化工热力学

化工热力学
(3)Soave-Redilich-Kwong(SRK)方程 1972年,Soave修正了RK方程中常数a,使a不仅与临界参
数有关,还与物质的蒸气压及外界条件温度相关联,建立 了SRK方程。 ▪ 形式
p RT a V b V (V b)
式中的方程常数b与RK方程的相同,常数a的表达式为
关。虽然有的状态方程可以用于气、液两相,但
较多用于气相,而且准确也高,而活度系数模型 主要用于液体溶液。
(2)意义: 化工热力学解决的三大问题中,以平衡状态下 热力学性质的计算最为重要,它是解决其它问题的基础, 所以在本书中受到特别的重视,所占的篇幅较多,其理由 如下:
▪ 物性及热力学性质是化工工艺设计中不可缺少的基础数据。 化工生产要涉及大量的物质,在过程开发和化工生产中, 若对处理物料的性质不了解,则无法分析流体间物质和能 量的传递,也无法设计分离过程,更无法认识其反应过程。
▪ 超临界流体区:高于临界温度和压力的区域叫超临界流体 区。从液体到流体或从气体到流体都不存在相变化。超临 界流体既不同于液体,也不同于气体,它的密度可以接近 液体,但具有类似气体的体积可变性和传递性质,可以作 为特殊的萃取溶剂和反应介质,与此相应的开发技术有超 临界萃取和超临界反应等。
▪ P-V图上的等温线: 主要有三种, 一是高于临界温度的等 温线T1,曲线平滑,近于双曲线,即PV = 常数,符合理 想气体的状态方程;二是小于临界温度的等温线T3,被 AC和BC线截断为三部分,其中水平段表示气液两相平衡
▪ 模型:经典热力学原理必须与反映系统特征的模 型相结合,才能解决实际问题。因为它只表示了
上述两类热力学性质之间的普遍依赖关系,并不
因具体系统而异。具体系统的这种关系还要由此

化工热力学

化工热力学

化工热力学讲稿0.绪论0.1 热力学发展简史1593年伽利略制造出第一支温度计1784年有了比热容的概念18世纪中期,热质说18世纪末到19世纪中叶,热动说蒸汽机发明,1824年,卡诺提出理想热机,热力学的萌芽1738年,伯努利方程诞生,为其验证能量守恒,即热力学第一定律1824年出项第一个热功当量,焦耳进行试验测定1850年克劳修斯证明了热机效率,1854年正式命名了热力学第二定律1913年能斯特提出热力学第三定律1931年Fowler提出热力学第零定律0.2化工热力学的主要内容热力学第一定律和热力学第二定律。

与物化不同之处在于要讨论系统与环境既有物质交换又有能量的情况,偏重的是在实际工程上的应用。

0.3 化工热力学的研究方法及其发展微观与宏观相结合微观:分子热力学宏观:经典热力学量子力学的发展液位化工热力学的研究提供了新的途径,0.4 化工热力学在化工中的重要性定性定量0.5 热能转换的基本概念一、热力系、状态及状态参数(一)热力系与工质1、工质:在物化学习当中我门知道热机就是将热能转变为机械能的设备,如气轮机、内燃机等都是热机。

在热机中要使热能不断的转变为机械能,需要借助于媒介物质。

实现能量转换的媒介物质就是工质。

例如在卡诺热机当中的工质就是理想气体。

不同性质的工质对能量转换的效果有直接影响,工质性质的研究是本学科的重要内容之一。

原则上,气、液、固三态物质都可以作为工质,但热力学中,热能与机械能的转换是通过物质体积变化来实现的,为使能量转换快速而有效,常选气态物质为工质。

在火电厂中,由于工质连续不断的通过热力设备膨胀做功,因此,要求工质应有良好的膨胀性和流动性,此外,还要求工质热力性质稳定,无毒,无腐蚀,价廉、易得等。

因此,目前火电厂中采用水蒸气作为工质。

水在锅炉中吸热生成蒸气,然后在气轮机中膨胀推动叶轮向外做功,做功后的乏汽在宁汽器中向冷却水放热又凝结为水。

在这一系列中,炉膛中的高温烟气是向工质提供热量的高温热源,气轮机是实现能量转换的热机,凝汽器中的冷却水是吸收工质所释放的废热的低温热源,通过工质的状态变化及它和高温热源、低温热源之间的相互作用实现了热能向机械能的连续转换。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结1.热平衡公式:对于封闭系统,内能变化等于热变化和功变化之和。

即:ΔU=Q-W其中,ΔU表示内能变化,Q表示系统吸收或放出的热量,W表示系统对外做功。

2.热容公式:热容是单位质量物质温度变化1°C所吸收或放出的热量。

Q=mCΔT其中,Q表示吸收或放出的热量,m表示物质的质量,C表示热容,ΔT表示温度变化。

3.平衡常数(K)公式:对于化学反应:aA+bB↔cC+dD反应的平衡常数(K)定义为反应物浓度的乘积与生成物浓度的乘积之比:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]表示反应物和生成物的摩尔浓度。

4.反应焓变(ΔH)公式:反应焓变是化学反应进行过程中吸热或放热的量。

根据焓守恒定律,反应焓变可以通过反应物和生成物焓变的差值表示:ΔH=ΣnΔHf(生成物)-ΣmΔHf(反应物)其中,n和m为反应物和生成物的系数,ΔHf表示物质的标准生成焓。

5.反应熵变(ΔS)公式:反应熵变是化学反应进行过程中熵的变化。

根据熵守恒定律,反应熵变可以通过反应物和生成物熵变的差值表示:ΔS=ΣnS(生成物)-ΣmS(反应物)其中,n和m为反应物和生成物的系数,S表示物质的熵。

6.反应自由能变(ΔG)公式:反应自由能变是化学反应进行过程中自由能的变化,可以通过反应物和生成物的自由能差值表示:ΔG=ΣnG(生成物)-ΣmG(反应物)其中,n和m为反应物和生成物的系数,G表示物质的自由能。

7.热力学平衡公式:对于可逆反应,根据吉布斯自由能变可以推导出热力学平衡公式:ΔG=ΔH-TΔS其中,ΔG为反应的吉布斯自由能变,ΔH为反应的焓变,ΔS为反应的熵变,T为温度。

以上是化工热力学中常用的公式总结,这些公式在研究和设计化工过程中起到了重要的作用。

通过应用这些公式,可以计算和预测系统的热力学性质和能量转化,从而优化化工过程的设计和操作。

同时,这些公式也为研究反应机理和确定过程条件提供了理论基础。

化工热力学的名词解释

化工热力学的名词解释

化工热力学的名词解释引言:化工热力学是化学工程中非常重要的一门学科,它研究的是化学反应过程中的能量转化、传递和平衡等热力学原理与方法。

以下将对化工热力学中的一些关键名词进行解释,帮助读者更好地理解和应用这些概念。

一、焓(Enthalpy):焓是化工热力学中一个非常重要的量,它表示系统的内能和对外界做的功之间的总和。

焓的变化是化学反应或物质相变等过程中的重要参量。

在常温常压下,焓通常使用标准焓表示,记为ΔH°。

通过计算物质的吸热或放热量,可以用来确定反应的热效应。

二、熵(Entropy):熵是表示系统无序程度或混乱程度的物理量。

化工热力学中的熵是指系统能量的一种度量,常用符号为S。

熵的变化是系统在吸热或放热过程中的重要参量。

熵增定律是指孤立系统熵总是增加的规律,可用来描述自然界中的很多过程。

三、自由能(Free Energy):自由能是一个系统在恒定温度下能做的最大可逆功的最大减值。

它是描述系统在恒定温度和压力下它达到一个平衡状态的程度的一个非常重要的物理量。

自由能的变化可用来预测反应是否会自发进行以及反应的方向。

四、热力学平衡(Thermodynamic Equilibrium):热力学平衡是指系统的各种宏观性质在连续不断的时间变化之后趋于稳定的状态。

对于化学反应的热力学平衡,反应物和生成物的浓度或物相的比例保持不变,且反应速率达到一种动态平衡,正反应速率相等。

热力学平衡状态是实现可持续化学反应的重要条件。

五、化学势(Chemical Potential):化学势是描述物质在一定温度、压力和组分条件下的自由能变化的关键物理量。

化学势的变化可以预测化学反应的趋势以及化学平衡的位置。

通过研究化学势的变化可以探索最佳反应条件和反应过程的优化。

六、热容(Heat Capacity):热容是指系统在吸收或释放一定量热量时温度变化的情况。

它是描述物质对热能的存储和释放能力的物理量。

热容可以分为等压热容和等容热容,分别对应恒定压力和恒定体积条件下的热容。

《化工热力学》课件

《化工热力学》课件

Van der Waals方程
探讨Van der Waals方程对非理想气体的描述和应 用。
二元混合物
混合物的组成
解释二元混合物的组成及其对热力学性质的 影响。
离子交换
研究离子交换对二元混合物中的离子平衡的 影响。
相平衡曲线
介绍二元混合物相平衡曲线在化工热力学中 的重要性。
活度系数
讲解混合物中的活度系数及其在化工热力学 计算中的应用。
相边界
1
液-气相边界
探索液-气相边界及其在化工过程中
固-气相边界
2
的应用。
了解固-气相边界对于固体反应和蒸
馏过程的重要性。
3
液-固相边界
研究液-固相边界对于溶解过程和晶 体生长的影响。
气体相似性定律
波伊尔斯定律
讨论波伊尔斯定律及其在气 体流动和压缩过程中的应用。
查理定律
探索查理定律对气体热膨胀 和压力变化的影响。
熵和焓
1 熵的概念
2 焓的定义
解释熵作为热力学状态函数的概念和性质。
介绍焓的定义及其在化工热力学中的应用。
3 能量转换
4 热力过程。
说明热力学第一法则与焓的关系和在化工 过程中的应用。
状态方程及其应用
状态方程的定义
理想气体状态方程
介绍状态方程在化工热力学中的基本定义和应用。 研究理想气体状态方程及其在化工过程中的应用。
《化工热力学》PPT课件
通过本课件,您将深入了解化工热力学的基本概念和应用。从熵和焓到热力 学计算和催化反应,准备好探索化学工程的热能世界吧!
化工热力学概述
1 基本原理
2 重要性
3 实际应用
介绍化工热力学的基本 原理和主要研究领域。

化工热力学

化工热力学

流动系统的热力学原理及应用
总目录
本章目录
一个过程发生之后,所产生的熵包括体系所产生的熵和与 体系相互作用的环境所产生的熵之和。 注意:用熵变来判断过程是否可逆时,是把体系和环境 作为一个整体—孤立体系来考虑的。它实际上要求不仅体 系内部所进行的过程是可逆的,体系外部所进行的过程也 是可逆的,即要求过程是完全可逆。 熵增的意义:代表体系做功能力的减少或能量的降级。 熵增越大,体系所进行过程的不可逆程度越大,损失功越 多。
第6章 流动系统的热力学原理及应用
6.1 引言 6.2 热力学第一定律 6.3 热力学第二定律和熵平衡 6.4 有效能与过程的热力学分析 6.5 气体的压缩与膨胀 6.6 动力循环 6.7 制冷循环 6.8 热泵
流动系统的热力学原理及应用
总目录
本章目录
6.1 引言 本章重点:
稳定流动过程及其热力学原理 热力学第一定律和第二定律对化工 过程的能量转化、传递、使用和损 失情况进行分析 能量消耗、大小、原因和部位
流动系统的热力学原理及应用
总目录
本章目录
6.2 热力学第一定律 6.2.1 封闭系统热力学第一定律
数学表达式为:
U Q W
dU Q W
流动系统的热力学原理及应用
总目录
本章目录
6.2.2 稳定流动系统的热力学第一定律 稳定流动状态: 是指流体流动途径中所有各点的状态(如物流的内 能、焓、熵)都不随时间而变化,即所有质量和能量的 流率均为常量,系统中没有物料和能量的积累。 Q
m
j
j
S j miSi S
i
f
Sg
上述式子实际说明体系本身熵变与熵流和熵产的关系。 即:稳流体系熵变等于体系与环境之间交换的热量所携带 的熵流与体系内由于不可逆因素引起的熵产生之和。 上式左端实际上是所研究的体系(具体物质)的性质, 右端是体系与环境之间熵的相互作用。 实际上说明体系的熵与环境相互作用时熵的相互关系。

化工热力学考点

化工热力学考点

第一章绪论考核知识点1.1 化工热力学的地位和作用1.2 化工热力学的主要内容、方法与局限性1.2.1化工热力学研究的主要内容1.2.2化工热力学研究的主要方法1.2.3化工热力学的局限性1.3化工热力学在化工研究与开发中的重要应用1.4 如何学好化工热力学1.5 热力学基本概念回顾考核要求领会:(1)热力学是研究能量、能量转化以及与能量转化有关的热力学性质间相互关系的科学;(2)化工热力学是研究热力学原理在化工过程中的应用了解:热力学的状态函数法、热力学演绎方法与理想化方法等基本研究方法以及以Gibbs函数作为学习化工热力学课程的学习方法第二章流体的p-V-T关系考核知识点2.1纯物质的p-V-T性质2.2 流体的状态方程2.2.1 立方型状态方程2.2.2 多参数状态方程2.3 对应态原理及其应用2.3.1对应态原理2.3.2 三参数对应态原理2.3.3 普遍化状态方程2.4流体的蒸气压、蒸发焓和蒸发熵2.4.1 蒸气压2.4.2蒸发焓和蒸发熵2.5 混合规则与混合物的p-V-T关系2.5.1混合规则2.5.2混合物的状态方程2.6液体的pVT关系2.6.1液体状态方程2.6.2普遍化关联式考核重点:Virial 方程;立方型状态方程要求了解与掌握:(1)纯流体p、V、T行为:纯物质p-V图、p-T图及图中点、线和区域意义;临界点意义、超临界区(流相区)特性(2)状态方程分类和价值:①理想气体状态方程、气体通用常数R的意义和单位;②Virial方程:压力多项式、体积多项式、截项Virial方程Virial系数BC意义;③立方型状态方程:立方型状态方程中参数ab意义;立方型状态方程迭代计算法;立方型状态方程三个根的意义(3)对比态原理和普遍化关系①对比态原理②偏心因子ω定义、物理意义和计算;③以偏心因子ω为第三参数计算压缩因子的方法:普遍化第二Virial系数法和普遍化压缩因子法(4)真实气体混合物与液体的p-V-T关系①真实气体混合物p-V-T关系简便计算方法:虚拟临界参数法;②常用混合规则意义混合物的第二Virial系数与混合物立方型方程;③液体的p-V-T关系第三章纯物质(流体)的热力学性质与计算考核知识点3.1 热力学性质间的关系3.1.1 热力学基本方程3.1.2 点函数间的数学关系3.1.3 Maxwell关系式3.1.4 Maxwell关系式的应用3.2 单相系统的热力学性质3.3 用剩余性质计算系统的热力学性质3.4 用状态方程计算热力学性质3.5 气体热力学性质的普遍化关系3.5.1 普遍化Virial系数法3.5.2 普遍化压缩因子法3.6 纯组分的逸度与逸度系数3.6.1 逸度和逸度系数的定义3.6.2 纯气体逸度(系数)的计算3.6.3 温度和压力对逸度的影响3.6.4 纯液体的逸度3.7 纯物质的饱和热力学性质计算3.7.1 纯组分的气液平衡原理3.7.2 饱和热力学性质计算3.8 纯组分两相系统的热力学性质及热力学图表3.8.1 纯组分两相系统热力学性质3.8.2 热力学性质图表3.8.3 热力学性质图表制作原理考核重点:①热力学性质计算、剩余性质及其应用;②T-S图及水蒸气特性表意义和应用考核要求(1)热力学性质间关系①单相封闭系统的热力学基本方程;②状态函数间的数学关系式;③Maxwell关系式要求了解与掌握:(1)dS方程、dH方程和dU方程(2)热力学性质计算①剩余性质MR定义:HR、SR和GR基本计算式;②由HR和SR计算焓H和熵S的方法;③由普遍化第二Virial系数法和普遍化压缩因子法计算HR和SR以及H和S的方法(3)纯物质逸度和逸度系数①纯物质逸度、逸度系数完整定义和物理意义;②纯气体逸度计算方法;③纯液体逸度计算方法(4)两相系统热力学性质及热力学图表①单组分系统气液平衡两相混合物热力学性质计算方法;②干度x的意义;③T-S图意义及应用;常见化工过程物质状态变化在T-S图上的表示方法;用T-S图数据计算过程热和功以及热力学性质的变化值;④水蒸汽表中各栏目意义及关系水蒸汽表使用方法第四章溶液热力学基础考核知识点4.1 可变组成系统的热力学关系4.2 偏摩尔性质4.3 Gibbs.Duhem方程4.4 混合物组分的逸度和逸度系数4.4.1 混合物逸度与逸度系数的计算方法4.4.2 混合物逸度与组分逸度之间的关系4.4.3 组分逸度与温度、压力间的关系4.5 理想溶液4.5.1 理想溶液与标准态4.5.2理想溶液的特征4.5.3理想溶液标准态之间的关系4.6 混合过程性质变化、体积效应与热效应4.6.1 混合体积效应与混合热效应4.6.2 混合热效应4.7过量性质与活度系数4.8液体混合物中组分活度系数的测定方法4.8.1 汽液平衡法4.8.2 Gibbs-Duhem方程法4.8.3 溶剂与溶质的活度系数4.8.4 溶剂与溶质的活度系数测定法4.9 活度系数模型4.9.1 正规溶液与Scatchard-Hildebrand活度系数方程4.9.2 无热溶液与Flory-Huggins方程4.9.3 Wohl方程4.9.4 基于局部组成概念的活度系数方程考核重点: 偏摩尔性质;逸度和逸度系数;活度、活度系数和超额自由焓;理想溶液与非理想溶液考核要求(1)敞开系统的热力学基本方程①单相敞开系统的热力学基本方程:d(nU)d(nH)d(nG)d(nA)表达式及应用范围;②化学位μi定义式的各种形式(2)偏摩尔性质①偏摩尔性质定义和物理意义与计算法;②与M的关系;③与μi关系;④Gibbs - Duhem方程的常用形式及用途(3)混合物逸度和逸度系数①混合物的组分逸度和逸度系数定义;②混合物的组分逸度和逸度系数基本计算式;③混合物(整体)的逸度与组分逸度的关系温度和压力对逸度的影响(4)理想溶液①研究理想溶液的目的与理想溶液模型;②理想溶液中组分i的逸度与i组分在标准态下的逸度的关系;③两种理想溶液模型与相应的两种标准态、的表示方法;④理想溶液的特征(5)活度和活度系数活度和活度系数定义、物理意义和应用(6)混合性质变化ΔM①混合性质变化ΔM和混合偏摩尔性质变化定义、物理意义和两者关系;②ΔM和与标准关系;③ΔG与活度关系;④理想溶液混合性质变化ΔGid、ΔUid、ΔHid和ΔSid(7)过量性质ME①过量性质ME和偏摩尔过量性质定义和物理意义;②ME与混合过程过量性质变化ΔME以及混合性质变化ΔM的关系;③GE物理意义GE与活度系数γi关系式及应用(8)活度系数与组成关联式由实验数据确定活度系数①非理想溶液的GE模型:正规溶液模型和无热溶液模型;②常用活度系数与组成关联式:Redlich-Kister关系式;Wohl型方程及其常用形式;Margules方程、Van Laar 方程局部组成概念与Wilson方程、NRTL方程;③确定活度系数与组成关联式中参数的简便方法:由一组精确的气液平衡实验数据由恒沸点下气液平衡数据以及由无限稀释活度系数;以及由少量实验数据确定全浓度范围的活度系数了解与掌握(1)Wilson 方程优点和局限性;(2)UNIQUAC方程与UNIFAC方程第五章相平衡热力学考核知识点5.1 平衡性质与判据5.2 相律与Gibbs.Duhem方程5.3 二元气液平衡相图5.4 气液相平衡类型及计算类型5.4.1 气液相平衡类型5.4.2 气液相平衡计算的准则与方法5.4.3气液平衡过程5.5 由实验数据计算活度系数模型参数5.6 Gibbs-Duhem方程与实验数据的热力学一致性检验5.6.1等温二元汽液平衡数据热力学一致性校验5.6.2 等压二元汽液平衡数据热力学一致性校验5.7 共存方程与稳定性5.7.1 溶液相分裂的热力学条件5.7.2 液液平衡相图及类型5.8 液.液相平衡关系与计算类型5.8.1 液液相平衡准则5.8.2二元系液-液平衡的计算5.8.3 三元系液-液平衡的计算5.9 固.液相平衡关系及计算类型5.10 含超临界组分的气液相平衡考核重点:汽液平衡基本问题及中低压下汽液平衡计算考核要求(1)平衡判据与相律①多相多元系统的相平衡判据及其最常用形式:②相律及其应用(2)汽液平衡基本问题①相变化过程需解决的两类问题:由平衡的温度压力计算平衡各相组成及由平衡各相组成确定平衡的温度压力;②完全互溶二元体系汽液平衡相图;③汽液平衡两种常用的热力学处理方法:活度系数法和状态方程法(3)汽液平衡的计算①工程上常见汽液平衡问题的五种类型:泡点温度、泡点压力、露点温度、露点压力、闪蒸计算②常压或低压下汽液平衡计算方法:完全理想系(气相为理想气体、液相为理想溶液)和部分理想系(气相为理想气体、液相为非理想溶液)汽液平衡计算法(4)汽液平衡数据的热力学一致性检验①热力学一致性检验的基本方程Gibbs - Duhem方程及其扩展形式;②面积法检验恒温VLE数据和恒压VLE数据第六章热力学第一定律及其工程应用考核知识点6.1敞开系统热力学第一定律6.1.1 封闭系统的能量平衡6.1.2 敞开系统的能量平衡6.2 稳定流动与可逆过程6.2.1 稳定流动过程6.2.2 可逆过程6.3 轴功的计算6.3.1 可逆轴功6.3.2 气体压缩及膨胀过程热力学分析6.3.3节流膨胀6.3.4等熵膨胀6.3.5膨胀过程中的温度效应6.4 喷管的热力学基础6.4.1 等熵流动的基本特征6.4.2 气体的流速与临界速度考核重点:能量平衡方程在稳流过程中的应用考核要求:热力学第一定律和能量平衡方程①能量守恒和转化原理;②敞开体系能量平衡方程;③能量平衡方程的不同形式稳流体系能量平衡方程的应用;④轴功的计算;⑤喷管的热力学基础第七章热力学第二定律及其工程应用考核知识点7.1热力学第二定律的表述方法7.1.1过程的不可逆性7.1.2熵7.1.3热源熵变与功源熵变7.2熵平衡方程7.2.1 封闭系统的熵平衡方程式7.2.2 敞开系统熵平衡方程式7.3 热机效率7.4 理想功、损失功与热力学效率7.4.1 理想功7.4.2 稳定流动过程理想功7.4.3 损耗功7.4.4 热力学效率7.5 熵分析法在化工过程中的应用7.5.1 传热过程7.5.2混合与分离过程7.6 有效能及其计算方法7.6.1 有效能的概念7.6.2 有效能组成7.6.3 有效能的计算7.6.4 无效能7.7 有效能衡算方程与有效能损失7.7.1有效能平衡方程7.7.2有效能损失7.8 化工过程能量分析及合理用能7.8.1能量平衡法7.8.2 有效能分析法7.8.3 合理用能准则5.2 考核重点5.2.1能量平衡方程在稳流过程中的应用5.2.2 热功的不等价、熵增原理5.2.3 理想功和损失功考核目标(1)热力学第二定律热功转换的不等价性和熵①热力学第二定律原理热功转化的不等价性:功全部能变化成热热只能够部分变为功热变功的最大效率;②热力学第二定律的三种不同说法;③了解系统的熵变、熵流和熵产等基本概念与描述(2)理想功和损失功①理想功定义和物理意义"完全可逆"的含义;②损耗功定义和物理意义损耗功与过程不可逆性关系;③热力学效率定义和用途④稳流过程的理想功和损耗功的计算(4)有效能①能量存在品质(级别)差异;②有效能的物理意义基态;③有效能和理想功的关系;④稳流物系物理有效能、热量有效能、化学有效能及动能有效能、位能有效能的计算方法;以及有效能效率;(5)熵衡算方程、有效能衡算方程及其应用;(6) 化工过程能量分析及合理用能准则第八章蒸汽动力循环与制冷循环考核知识点8.1 蒸汽动力循环-Rankine 循环过程分析8.1.1 Rankine循环8.1.2 Rankine循环的改进8.2 内燃机热力过程分析8.2.1 定容加热循环8.2.2 定压加热循环8.4 燃气轮机过程分析8.5 制冷循环原理与蒸汽压缩制冷过程分析8.4.1 逆向Carnot循环8.4.2 蒸汽压缩制冷循环8.6 其它制冷循环8.6.1 蒸汽喷射制冷8.6.2 吸收制冷8.7 热泵及其应用8.8 深冷循环与气体液化8.7.1 Linde-Hampson系统工作原理8.7.2 系统的液化率及压缩功耗考核要求(1)蒸汽动力循环①理想Rankine循环装置、工作原理和循环工质状态变化;②循环过程热和功、热变功的效率、等熵效率及汽耗率的意义和计算;③提高Rankine循环效率和降低汽耗率的途径:使用回热循环和热电循环④用T-S图表示循环工质各状态点用蒸汽表数据进行有关计算(2)气体绝热膨胀的制冷原理①节流膨胀降温(制冷)原理、Joule-Tompson系数和温度降;②对外做功绝热膨胀降温(制冷)原理、等熵系数和温度降;③两种降温(制冷)方法比较(深度冷冻循环不作要求)(2)制冷循环①蒸汽压缩制冷循环装置、工作原理和工作参数(蒸发温度、冷凝温度和过冷温度)的确定制冷系数的意义;②制冷剂选择要求(多级制冷和复迭式制冷不要求);③由制冷循环工作参数及制冷量确定制冷剂循环量、制冷系数和功耗在T-S图上表示循环工质各状态点④吸收制冷循环装置和工作原理和热能利用系数计算第九章化学反应平衡考核知识点9.1 反应进度与化学反应计量学9.2 化学反应平衡常数及其计算9.2.1化学反应平衡的判据9.2.2标准自由能变化与反应平衡常数9.2.3平衡常数的估算9.3 温度对平衡常数的影响9.4 平衡常数与组成的关系9.4.1 气相反应9.4.2 液相反应9.4.3非均相化学反应9.5 单一反应平衡转化率的计算9.6反应系统的相律和Duhem理论9.7复杂化学反应平衡的计算9.7.1 以反应进度为变量的计算方法9.7.2 Gibbs自由能最小原理计算方法考核要求(1)化学反应计量系数与反应进度①反应进度定义;②封闭系统物质摩尔数微分变化与反应进度微分变化的关系(2)化学反应平衡常数及有关计算①化学反应平衡判据:标准自由焓变化ΔGΘ与平衡常数K的关系用活度或逸度表示平衡常数K;ΔGΘ与ΔG意义和作用差异;②平衡常数估算方法(3)平衡常数与平衡组成关系①气相反应中K、Kf 、Kp、Ky的意义及相互关系;②由K计算平衡组成的方法(气相反应);液相反应中由K计算平衡组成的方法(4)温度对平衡常数的影响温度与平衡常数关系基本方程-Van't Hoff等压方程式微分形式和积分形式(5)工艺参数与平衡组成关系温度、压力及惰气量对平衡组成影响表达式及应用。

化工热力学专业知识点总结

化工热力学专业知识点总结

化工热力学专业知识点总结一、物质的热力学性质1.热力学状态方程:描述热力学系统状态的方程,可以通过实验数据拟合得到,常见的有理想气体状态方程、范德华方程等。

2.热力学过程:系统经历的状态变化过程,包括等温过程、等容过程、绝热过程等,这些过程可以通过热力学定律进行定量描述和分析。

3.热力学势函数:用来描述系统稳定状态的函数,常见的有焓、内能、吉布斯函数等。

4.相变热力学性质:液相、气相、固相之间的相互转化过程,包括液气平衡、固液平衡等。

5.热力学平衡条件:系统达到热力学平衡的条件,包括热平衡、力学平衡、相平衡等。

二、热力学定律1.热力学第一定律:能量守恒定律,即能量既不会凭空消失,也不会凭空产生,只会在不同形式之间进行转化。

2.热力学第二定律:热不能自发地从低温物体传递到高温物体,这是宇宙中熵增加的基本规律。

3.热力学第三定律:当温度趋近于绝对零度时,系统的熵趋于常数,这是绝对零度不可能实现的热力学定律。

化工热力学不仅包含了上述物质的热力学性质和热力学定律,还涉及到一些实际的应用技术和工程问题。

例如,化工过程中的热力学分析、热力学循环、热能利用、燃烧热力学等内容。

下面我们来重点介绍一些与化工工程实际相关的热力学知识点。

三、热力学循环1.卡诺循环:理想可逆循环过程,由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成,是热机效率的理论极限。

2.汽轮机循环:以水蒸气为工质的循环,包括理想朗肯循环、实际朗肯循环、再热朗肯循环等。

3.制冷循环:以制冷剂为工质的循环,包括制冷机、空调机、冷冻机等。

四、燃烧热力学1.燃烧过程:燃烧是一种复杂的热力学过程,包括燃烧反应机理、燃料燃烧热值、燃烧平衡等内容。

2.燃烧产物:燃料燃烧的产物包括二氧化碳、水蒸汽、一氧化碳、氨气、硫化物等,这些产物的生成与燃烧条件密切相关。

3.燃烧效率:燃料的利用效率,可以通过燃烧反应焓变来计算。

五、化工热力学应用1.热力学分析:化工反应器设计、炼油装置设计、化工装备热力计算等都需要进行热力学分析。

化工热力学,应用

化工热力学,应用

化工热力学,应用
化工热力学是一门应用型的科学,主要研究化学反应过程中的热力学性质。

它主要用于解决化工生产中的问题,如:
1.反应的可行性分析:通过计算反应的热力学量,如反应
的放热、吸热量等,可以判断反应是否可行,以及反应的效
率。

2.工艺的优化设计:通过对反应的热力学量进行计算,可
以优化工艺流程,降低能量消耗,提高生产效率。

3.工艺的计算:通过计算反应的热力学量,可以精确计算
工艺的能量消耗,为节能减排提供理论依据。

4.环境保护:通过对反应的热力学量进行计算,可以分析
反应过程中的废气、废水、废渣的生成情况,为环境保护提
供理论依据
化工热力学还有以下应用:
1.能源储存与转化:通过研究化学反应的热力学性质,可
以设计化学储能装置,用于储存和转化能量。

2.化工装置的热设计:化工装置中的反应器、蒸发器、冷
凝器等设备的热设计都要基于化工反应的热力学性质。

3.化工催化剂的选择与设计:化工催化剂能够使反应速率
增加,提高生产效率。

催化剂的选择和设计要基于反应的热
力学性质。

4.化工产品的质量控制:化工产品的质量很大程度上取决
于反应的热力学条件,因此化工热力学在产品的质量控制中
也有重要作用。

化工热力学

化工热力学

四、如何学好化工热力学
五、本课程的内容
2012-12-19
绪论: 1、化工热力学的定义
化工热力学的定义和用途
A、热力学(Thermo-dynamics )—— 讨论热与功转化规律 的科学。 远古“钻木取火”——机械能转换为内能。 12世纪“火药燃烧加速箭支的飞行” 19世纪“蒸汽机”——热转换为功。 B、工程热力学(Engineering Thermodynamics)——将热 力学的基本理论应用于工程技术领域,则为工程热力学。主 要研究热能与机械能之间转换规律以及在工程中的应用。 特点: 制冷、发电 介质简单:水蒸气、氨、氟里昂
2012-12-19
绪论:
化工热力学的定义和用途
D、化工热力学( Chemical Engineering Thermodynamics) — 集化学热力学和工程热力学之大成的学 科。 任务是从热力学第一、第二定律出发,研究化工过程中 各种能量的相互转化和有效利用,研究变化过程达到平衡的理 论极限、条件或状态。 化工热力学是化学工程学的一个重要组成部分,是化工 过程开发、设计和生产的重要理论依据。 无论是工程热力学还是化学热力学还是化工热力学,它们均 遵循经典热力学的三大定律,不同之处是由于热力学应用的 具体对象不同,决定了各种热力学解决问题的方法有各自的 特点。 2012-12-19
变化过程达到平衡的理论极限、条件或状态,从而获得巩固的
专业理论基础知识,培养和提高学生从事化工生产、设计和科 学研究工作的理论分析能力。
2012-12-19
总学时72
第一章 绪 论
2012-12-19
绪论:
本章内容
本章内容
一、化工热力学的定义和用途
二、化工热力学研究内容和特点

化工热力学

化工热力学

化工热力学化工热力学是研究化学过程中能量转化、能量平衡和热力学性质的学科领域。

它涉及到物质的热力学性质、热力学过程和热力学定律的应用。

本文将简要介绍化工热力学的基本概念和原理,并探讨其在化学工程中的应用。

化工热力学是热力学在化学工程中的应用。

热力学是研究物质能量转化和物质变化规律的学科,它以能量和热力学性质为基本研究对象。

化工热力学主要研究化学反应、相平衡、相变、能量平衡等热力学过程。

热力学第一定律是热力学的基本定律之一。

它表明能量是守恒的,能量不会自发地产生或消失。

根据热力学第一定律,化学反应过程中的能量转化可以分为放热反应和吸热反应。

放热反应是指在反应过程中释放出能量,使系统的内能减小。

吸热反应则相反,其反应过程吸收了外界的能量,使系统的内能增大。

热力学第一定律为我们理解化学反应过程中能量转化提供了基本原理。

热力学第二定律是热力学的另一个重要定律。

它阐述了一个系统的熵在不可逆过程中增加的原则。

熵是衡量系统无序程度的物理量,根据热力学第二定律,自然界中任何一个孤立系统的熵都不会减小,而是增加或保持不变。

这意味着化学反应过程必须满足熵的增加原理,即反应进行时系统的总熵必须增加,否则反应不会自发发生。

热力学第二定律为我们理解自然界中的现象和反应提供了基本原则。

在化学工程中,热力学的应用非常广泛。

它可以用来设计和优化化学工艺流程,在工程实践中起着重要的作用。

例如,在化学工艺的热能平衡计算中,需要考虑各种热力学参数,如反应热、燃烧热、蒸发热等。

这些参数是确定反应过程中能量转化情况的重要依据,能够帮助工程师准确地估算能量的供应和消耗,从而合理设计设备和控制过程。

此外,热力学还可以用于预测和评估化学反应的可行性和方向性。

利用热力学的知识,我们可以计算反应的平衡常数和Gibbs自由能变化,从而判断反应是否会发生以及从哪个方向进行。

这对于开发新的化学反应和优化现有反应具有重要意义。

另外,化工热力学还可以应用于化学工程设备的热力学性能分析和优化。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结化工热力学是研究化学反应中热效应与热力学性质的科学,其研究内容涉及了固液相变、气液相变、燃烧行为等多个方面。

在热力学的研究中,有一些常用的公式和方程式被广泛应用于工程技术和科学研究中。

本文将从热力学的基本概念和公式、热力学循环、热传导和传质过程等方面,总结常用的化工热力学公式。

一、热力学基本概念和公式1.热力学第一定律:ΔU=Q-W其中ΔU表示系统内能的变化,Q表示系统从外界得到的热量,W表示系统对外界做的功。

2.热力学第二定律:dS≥dQ/T其中dS表示系统熵的增加,dQ表示系统获得的热量,T表示系统的温度。

3. 热力学的物质平衡公式:ΣniΔHi = 0其中ni表示反应物或生成物的物质摩尔数,ΔHi表示反应物或生成物的标准焓变。

4. 化学势:μi = μ0i + RT ln(pi / p0)其中μi表示一些组分的化学势,μ0i表示该组分在标准状态下的化学势,pi表示该组分在实际条件下的分压,p0表示该组分在标准状态下的分压。

二、热力学循环1.热力学效率:η=(W/Q)×100%其中η表示热力学效率,W表示系统对外界做的功,Q表示系统从外界获取的热量。

2.卡诺循环效率:ηC=1-(Tc/Th)其中ηC表示卡诺循环效率,Tc表示循环中冷源的温度,Th表示循环中热源的温度。

3.制冷剂(热泵)性能系数:COP=Q1/W其中COP表示制冷剂(热泵)的性能系数,Q1表示制冷剂(热泵)从低温源吸收的热量,W表示系统对外界做的功。

三、热传导和传质过程1. 热传导方程:q = - kA (dT / dx)其中q表示单位时间内通过物体的热量,k表示物体的热导率,A表示物体的横截面积,dT / dx表示物体温度的变化率。

2. 导湿传质方程:n = - D (dC / dz)其中n表示单位时间内通过物体的水分流量,D表示物体的水分扩散系数,C表示物体的水分浓度,dz表示物体的厚度。

3.理想气体状态方程:PV=nRT其中P表示气体的压力,V表示气体的体积,n表示气体的物质摩尔数,R表示理想气体常数,T表示气体的温度。

化工热力学

化工热力学

化工热力学化工热力学是研究化学反应与热力学性质之间关系的一门学科。

反应热力学是研究化学反应中能量变化与反应速率之间的关系的学科,它是理解和优化化学反应过程的重要工具。

本文将从化工热力学的基础概念、热力学常数、热力学平衡以及应用等方面进行探讨。

一、化工热力学的基础概念1. 热力学热力学是研究物质内部热平衡和物质间热平衡以及它们与热的能量转换的学科。

化工热力学则是将热力学理论与化学反应过程相结合,用于分析和预测化学反应的热力学性质。

2. 热力学系统热力学系统指被研究的物体或物质,可以是一个化学反应体系,也可以是一台热力学设备。

在研究中,通常将系统划分为开放系统、封闭系统和孤立系统。

3. 热力学过程热力学过程是指物体或物质由一个热力学状态变为另一个热力学状态的过程。

常见的热力学过程有等温过程、等压过程、等容过程和绝热过程等。

二、热力学常数热力学常数是描述物质热力学性质的数值常数,常见的热力学常数有气体常数R、普朗克常数h、玻尔兹曼常数k等。

这些常数在化工热力学的计算和分析中起到关键作用。

1. 气体常数R气体常数R是描述理想气体性质的常数,其值为8.314 J/(mol·K)。

在化工热力学中,通过R的应用可以计算出化学反应的焓变、熵变等重要热力学参数。

2. 普朗克常数h普朗克常数h是描述微观粒子行为的量子力学常数,其值为6.62607015 × 10^-34 J·s。

在热力学计算中,普朗克常数用于计算能量的量子化,特别是对于高能量的粒子和较小的粒子。

3. 玻尔兹曼常数k玻尔兹曼常数k是描述分子热运动与热力学性质之间关系的常数,其值为1.380649 × 10^-23 J/K。

在化工热力学中,玻尔兹曼常数用于计算熵变、内能等重要热力学参数。

三、热力学平衡热力学平衡是指热力学系统中各种热力学性质处于稳定状态的状态。

在化工反应中,热力学平衡是指反应物与产物的浓度、压力和温度等热力学性质不再发生可观察的变化。

高等化工热力学

高等化工热力学

高等化工热力学1. 热力学的基本概念和原理热力学是研究物质能量转化与传递规律的科学,它对于化工领域的工艺设计和能源利用具有重要意义。

高等化工热力学是在基础热力学的基础上,进一步深入研究了化工过程中更复杂的热力学现象。

1.1 系统和界面在高等化工热力学中,首先需要明确研究对象是一个系统。

系统是指一定数量的物质和能量所组成的部分,在进行热力学分析时,我们通常将其划分为开放系统、封闭系统和孤立系统。

•开放系统:与外界可以交换物质和能量;•封闭系统:与外界只能交换能量;•孤立系统:与外界既不能交换物质也不能交换能量。

不同类型的系统在分析过程中需要采用不同的方法,并考虑到相应的边界条件。

1.2 状态函数和过程函数在高等化工热力学中,我们经常使用状态函数来描述系统的状态。

状态函数只与系统所处的状态有关,而与达到该状态所经历的过程无关。

常见的状态函数有温度、压力、体积和摩尔数等。

与状态函数相对应的是过程函数,它们与系统所经历的过程有关,包括热量、功和物质的传递等。

在化工领域中,我们经常关注各种热力学过程,如等温过程、绝热过程和等焓过程等。

1.3 热力学第一定律热力学第一定律是能量守恒定律在热力学中的表述。

根据热力学第一定律,系统的内能变化等于系统所吸收或放出的热量与对外界做功之和。

数学表达式为:ΔU=Q−W其中,ΔU表示系统内能变化,Q表示系统吸收或放出的热量,W表示对外界做的功。

1.4 熵和熵增原理熵是描述系统无序程度的物理量,在高等化工热力学中起着重要作用。

根据熵增原理,孤立系统总是趋向于增加其总熵。

这意味着在自发过程中,系统总是朝着更高的无序状态发展。

通过计算系统和周围环境的熵变,可以判断一个过程是否自发进行。

当系统的总熵增大时,过程是自发进行的;当系统的总熵减小时,过程是不可逆进行的。

2. 热力学分析方法在高等化工热力学中,有多种方法可以用来分析和计算化工过程中涉及的能量转化和传递。

以下介绍几种常用的分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工数据
包括热力学基本数据和传递性 质数据,离开化工数据就无法 进行化工热力学计算
热力学的研究方法
经典热力学 不研究物质结构,不考虑过程机理,只从宏观角度研究大 量分子组成的系统,系统达到平衡时所表现出的宏观性质。 分子热力学 从微观角度应用统计的方法,研究大量粒子群的特性,将 宏观性质看作是相应微观量的统计平均值。 应用统计力学的方法通过理论模型预测宏观性质。在化工 热力学的发展过程中,起着越来越重要的作用
设备计算:
反应器体积计算利用流体的pVT关系 热负荷是计算换热器尺寸决定因素之一 各种分离操作的设备计算离不开相平衡计算
化工热力学局限性
• 平衡热力学只涉及过程进行的极限,不涉 及速度,因此一定要有其他学科配合来最 后解决许多化工问题。
学习化工热力学的目的
了解化工热力学的基本内容 提高利用化工热力学的观点、方法来分析、解 决化工生产、工程设计、科学研究中有关实际问 题的能力。
利用抽象的、概括的、理想的方法来处理问题, 当用于实际时,加以修正。
如:理想气体 剩余性质 超额性质 pV=RT 实际气体 pV=ZRT
MR=M-M*=实际的-理想气体 ME=M-Mid=实际的-理想混合物
修正项:Z,MR,ME
化工热力学发展
一是发展新的计算方法,解决摩尔质量较大结合 物的热力学计算,也就是从主要解决“石油化工” 产品的热力学转变为到能广泛计算精细化学品的 热力学,从而大大扩充热力学在化工中的使用范 围,此项工作刚开始; 二是把热力学扩充到化学工业之外,最典型的是 发展环境热力学,以解决环境中的化学品污染问 题,也为发展化学工业时打破环境限制做出贡献。
一般热力学与机械工程结合
工程热力学
• 讨论能量转换规律,并结合锅炉、蒸汽机、汽轮机、喷管、 压缩机、冷冻机等得出一系列的定量关系 。
热力学与化学的结合 化学热力学
• 在热力学内容中补充化合物众多及化学变化的特点,又增 加了气液溶液及化学反应的内容。
热力学与化学工程相结合 化工热力学
• 主要侧重于工程计算。它既能解决能量的利用问题又强调 了组成变化的规律,要确定反应物与产物的化学平衡组成 规律,更要解决各种相平衡问题,即各相组成分布的规律。
由于分子结构十分复杂,分子内作用力和分子间作用力都 要考虑,目前统计力学只能处理比较简单的情况,所得的结 论基本上是近似的。
经典热力学研究方法
以实验数据作为基础,利用热力学函数和 物质状态之间的关系进行宏观性质的关联, 从某些宏观性质推算另一些性质。
焓、熵的变化计算 pVT的实验数据或关联式 相平衡浓度计算
化工热力学主要内容
热力学基本原理和理论
热 力 学 基 本 定 律 热 力 学 基 本 概 念 热 力 学 函 数 及 关 系
热力学应用
热力学模型
流 体 p V T 关 系 活 度 系 数 方 程 能 量 应 用 流 动 体 系 能 量 计 算 压 缩 冷 冻 过 程 能 量 分 析 组 成 关 系 应 用 化 学 反 应 平 衡 相 平 衡
1875 年,美国耶鲁大学数 学物理学教授 Josiah Willard Gibbs 发表了 “论多相物质之 平衡” 的论文。他在熵函数的 基础上,引出了平衡的判据; 提出热力学势的重要概念,用 以处理多组分的多相平衡问题; 导出相律,得到一般条件下多 Gibbs 相平衡的规律。吉布斯的工作, (1839 - 1903) 把热力学和化学在理论上紧密 结合起来,奠定了化学热力学 的重要基础。
Joule(焦耳)反复测定了热功当量。
多位科学家独立地提出了热力学第一定律,该定律也彻底 否定了热质说。
根据热力学第一定律热功可 以按当量转化,而根据卡诺原理 热却不能全部变为功,当时不少 人认为二者之间存在着根本性的 矛 盾 。 1850 年 , 德 国 物 理 学 家 Rudolf J. Clausius 进一步研究 热力学第一定律和卡诺原理,发 现二者并不矛盾。他指出,热不 可能独自地、不付任何代价地从 冷物体转向热物体,并将这个结 论称为热力学第二定律。 Clausius 在 1854 年给出了热力学 第二定律的数学表达式, 1865年 提出“熵”的概念。
化工热力学在化工中的重要性
化工热力学是一门定性的科学,更是一门定量的科学。 在定性方面,它可指导改进工艺参数,指引温度、压力宜 高还是低,物料配比宜多还是少,反应或分离是否可能。 在化工计算或设计中,主要可分为物料衡算、热量衡算和 设备计算,在这些计算中,化工热力学方法都是为定量计 算所不可或缺的。 化工热力学是化学工程和化学工艺的基石之一,离开化工 热力学就没有定量的化学工程和现代的化学工艺。
“热力学”(Thermodynamic)
既由热产生动力,反映了热力学起源于对热机的 研究。本身就是把热与力结合起来的,这也说明 时代需要研究机械运动、热、电等各种现象的普 遍联系及其定量规律 。
从热力学发展的初期,所讨论的只是热、机械能 和功之间的互换规律,对热机效率的提高有很好 的指导作用,也促进了工业革命的发展。
热动说:热不是一种物质,而是一种运动形态,即热是由物 体内部运动激发起来的一种能量。
18世纪末至19世纪中叶多人分别用实验证明热动说。
热力学基本定律
热力学第一定律 热力学第二定律 热力学第三定律
1913年Nernst补充了关于绝对零度的定律,称为热力学第三定律
热力学第零定律
1931年Fouler补充了关于温度定义的定律
Clausius (1822 - 1888)
1851年,英国物理学家 Lord Kelvin (1824l907)指出,不可能从单一热源取热使之完全变为 有用功而不产生其他影响。 这是热力学第二定律 的另一种说法。
1853年,他把能量转化与物系的内能联系起 来,给出了热力学第二定律的数学表达式。
“热力学”课程的发展
本章总结
• 学习本课程后,应再返回绪论,重新认识 化工热力学,也可自己对化工热力学作出 总结。
化工热力学
教材:马沛生,李永红,国家“十一五”教 材 天津大学化工学院 课上学时:48学时
ቤተ መጻሕፍቲ ባይዱ
第一章


本章主要内容
简要发展史
化工热力学的主要内容 化工热力学研究方法及其发展 化工热力学的重要性
热力学发展史
热力学的研究是从人类对热的认识开始的。 1593年,伽利略制出了第一支温度计,使热学研究开始定量。 带动了与物质热性质有关的研究,如相变温度(熔点、沸点 等)、相变热、热膨胀等。 直到1784年,有了比热的概念,才从概念上把“温度”与 “热”区分开。 热的学说 热质说:认为热是一种无重量的物质。
Carnot (1796 - 1832)
1847年, 德国物理学家和生 物学家 Hermann Ludwig von Helmholtz 发表了 “ 论力的守衡” 一文, 全面论证了能量守恒和转化 定律。 Helmholtz (1821 - 1894)
1843-1848年, 英国 酿酒商 James Prescott Joule (1818 - 1889) 以确 凿无疑的定量实验结果为 基础,论述了能量守恒和 转化定律。焦耳的热功当 量实验是热力学第一定律 的实验基础。
学习化工热力学的要求
正确理解化工热力学的有关基本概念和理论; 理解各个概念之间的联系和应用; 掌握化工热力学的基本计算方法;
能理论联系实际,灵活分析和解决实际化工生
产和设计中的有关涉及平衡和能量的问题。
能利用热力学原理,掌握环境热力学基本方法。
措施
通过一些应用实例,理解基本概念和 基本化工热力学原理。 作业要独立完成。
参考文献
陈钟秀,顾飞燕,胡望明等编,《化工热力学》,化学工业出版社, 2001 陈新志,蔡振云,胡望明编,《化工热力学》,科学出版社,2001 冯新等编,《化工热力学》,化工出版社,2009年 Smith, J.M.,Van Ness H.C.,Abbott M.M. <Introduction to Chemical Engineering Thermodynamics>,6th ed, 化学工业出版社引进,2002 Prausnitz, J M,Rudiger N L, de Azevedo E D, <Molecular thermodynamics of fluid-phase equilibria>, N.J. Prentice, Hall PTR, c1999. Sandler,S I,<Chemical and Engineering Thermodynamics>, 3rd ed, New York, Wiley, 1999 马沛生,《化工数据》,北京,中国石化出版社
Joule (1818 - 1889)
热力学第一定律
从十八世纪末到十九世纪初开始,蒸汽机的发明及使用范 围扩大,从工业应用上提出了热与功转换问题。如何充分利 用热能来推动机器作功成为重要的研究课题。 1738年Bernolli(伯努利)的机械能守恒定律提出了第一个 能量守恒的实例。阐述了能量相互转化及守恒的思想。 1824年出现了第一个热功当量(卡诺) 1847年, Helmholtz 全面论证了能量守衡和转化定律。
1824 年,法国陆军工程师
Nicholas Léonard Sadi Carnot 发表了 “ 关于火的动力研究” 的 论文。 他通过对自己构想的理想热机 的分析得出结论:热机必须在两个 热源之间工作,理想热机的效率只 取决与两个热源的温度,工作在两 个一定热源之间的所有热机,其效 率都超不过可逆热机,热机在理想 状态下也不可能达到百分之百。这 就是卡诺定理。(热功当量)
化学工业要发展,要克服化学品对环境的制约,在解决此 难题是,化工热力学也将起重大作用。
物料衡算:确定物料量及组成
化学平衡:反应中的反应物、产物物料计算 相平衡:分离操作,必需由相平衡计算确定量和组成的
相关文档
最新文档