第09章 习题解答_部分

合集下载

自编练习册答案(第九章)

自编练习册答案(第九章)

南华大学《大学物理》同步练习册(二)任课教师专业班级姓名学号南华大学物理教研室前言本练习册是与程守洙、江之永主编的普通高等教育“十一五”国家级规划教材《普通物理学》(第六版)相配套的教学辅导练习册。

其目的是帮助我校学生对《大学物理》的基本概念、基本规律和基本方法的理解和消化,掌握《大学物理》的基本内容,在加强基本解题方法训练的基础上,增强对物理思想与应用物理理论分析、解决实际问题的能力的培养,提高科学素养和社会适应能力。

本书在编写的过程中,充分考虑了我校学生的高等数学和物理学基础,根据我校《大学物理》的课时安排情况,特意调整了各章节的顺序,以便于同学们练习使用。

本练习册分为两分册。

练习册(一)内容包括:力和运动、刚体和流体的运动、恒定电流的磁场、气体动理论、机械振动与电磁振荡、光学等章节的主要练习题和《大学物理1》模拟测试题;练习册(二)内容包括:运动的守恒量和守恒定律、静止电荷的电场、电磁感应和电磁场理论、热力学基础、机械波和电磁波、早期量子论和量子力学基础等章节的主要练习题和《大学物理2》模拟测试题。

本练习册着眼于大学物理的基本概念和基本规律的理解,习题结构合理,避免一些怪题、难题,适用面广,有利于培养学生根据基本物理概念和物理规律分析解决问题的能力。

南华大学《大学物理》同步练习册是作为我校大学物理课程学习的辅导用书,也可作为其它大学物理学习者的练习和自测用书。

本练习册由南华大学物理教研室统一规划、组织编写。

限于时间仺促及编者水平,书中难免有一些不妥之处,欢迎广大师生批评、指正。

特别申明:本练习册只限于南华大学内部使用。

编者2012.12.20目录第二章练习一 (1)第二章练习二 (4)第二章练习三 (6)第二章练习四 (8)第七章练习一 (10)第七章练习二 (12)第七章练习三 (15)第七章练习四 (18)第九章练习一 (20)第九章练习二 (22)第九章练习三 (24)第九章练习四 (26)第六章练习一 (28)第六章练习二 (30)第六章练习三 (32)第十一章练习一 (34)第十一章练习二 (36)第十一章练习三 (38)第十三章练习一 (40)第十三章练习二 (42)第十三章练习三 (44)《大学物理2》模拟测试题 (46)第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 如图1所示,子弹射入放在水平光滑地面上静止的木块而不穿出,以地面为参照系,指出下列说法中正确的说法是( )(A ) 子弹的动能转变为木块的动能; (B ) 子弹一木块系统的机械能守恒; (C ) 子弹动能的减少等于子弹克服木块阻力所做的功; (D ) 子弹克服木块阻力所做的功等于这一过程中产生的热。

喀蔚波09章习题解答

喀蔚波09章习题解答

3第九章几何光学习题解答9-1 一只坛子装了 100.0cm 深的甘油,观察者观察坛底好像提高了 32.5cm , 求甘油的折射率.解:由题意知n 2=1, u=100cm , v=-67.5cm , r = x,代入单球面成像公式得n ! 1 1 - m100 -67.5 一 ::n i =1.489-2如图9-2所示,光导纤维是由圆柱形的玻璃芯和玻璃包层组成,其折射率分别为m 和n 2 ((n 1>口).设在垂直端面外介质的折射率为 n 。

.证明光线能在 纤维内芯和包层间发生全反射的入射光线最大孔径角 二m 满足:n ° sin 如=• n ; _ n ;证明如下:n 0 sinv m 十 sin :(1) n 〔 cos 二 n 2(2)将(1)和(2)平方后相加的9-3 折射率为1.5的月牙形透镜,凸面的曲率半径为15cm,凹面的曲率半径 为30cm,如果用平行光束沿光轴对着凹面入射(1)求空气中的折射光线的相交 点;(2)如果将此透镜放在水中,问折射的交点又在何处?解:(1)因为n=1.5, n 0=1, r 1=-30cm , r 2=-15cm 代入薄透镜焦距公式得(2) n=1.5, n °= 4/3, r 1= -30cm, r 2= -15cm 代入薄透镜焦距公式得- 1—%=60cm=240cm2 . 2 - 2 2 n ° sin 為二 n 1 「门2 2-n 29-4 眼睛的光学结构可简化为一折射单球面 ,共轴球面的曲率半径为5.55mm,内部平均折射率为4/3,计算两个焦距•若月球在眼睛节点所张的角度为 1° ,问视网膜上月球的像有多大?眼节点到视网膜的距离取 15mm.解:根据题意n 1=1,n 2=4/3,r=5.55mm 代入单球面焦距公式得1f 1 5.55 =16.65 mm 4 -1 3 视网膜上月球的像的大小为 15ta n1° =0.26mm9-5将折射率为1.50,直径为10cm 的玻璃棒的两端磨成凸的半球面,左端 的半径为5cm 而右端的半径为10cm.两顶点间的棒长为60cm,在左端顶点左方 20cm 处有一物(在光轴上).(1)作为右端面的物是什么? ( 2)右端面的物距为 多少? ( 3)此物是实的还是虚的?( 4)最后所成的像在何处?解:(1)根据题意可知左端面的像作为右端面的物(2) 已知n 1=1, n 2=1.5, u=20cm, n=5cm, d=60cm 代入单球面成像公式得1 1.5 1.5-1 --- + ------ = --------- 20 v 5v = 30cm所以右端面的物距为60cm-30cm=30cm(3) 此物是实物(4) 将u=30cm , n 1=1.5, n 2=1, r= -10cm 代入单球面成像公式得1.5 1 1-1.5---- 十—= ------------30 v -10v =::9-6将折射率为1.5,直径为8.0cm,端面为凸半球形的玻璃棒,置于液体中, 在棒5.55 =22.2mm3 3轴上离端面60cm处有一物体,成像在棒内l.0m处,求液体的折射率.解:已知u=60cm,n2=1.5,r= 4cm,v=100cm代入单球面成像公式得n i 1.5 1.5 - n i60 而一4~m =1.359-7直径为8cm的玻璃球,中心处镶有一小红物,求观察者看到小红物的位解:已知u=4cm,n i=1.5,n2=1,r=-4cm,代入单球面成像公式得1.5 1 1-1.5+ =4 v -4v - -4cm所以观察者看到小红物位于球心处9-8 一极地探险者在用完了火柴后,用冰做了个透镜聚焦阳光来点火,若他做的是曲率半径为25cm的平凸透镜,此透镜应离火绒多远?(设冰的折射率为1.31)解:已知n =1.31, n°=1, r1=25cm, r2=x代入薄透镜焦距公式得- 1 1「f 二(”1)伝-二)=81cm9-9 一透镜将一物成像在离透镜12cm的屏幕上,当把此透镜背离物体移远2cm时,屏幕必须向物移近2cm,以便重新对它聚焦,此透镜的焦距是多少?解:设物与透镜的距离为x,透镜的焦距f,则根据题意可知1 1 1(1)——I ----- = -------x 12 f解得f=4cm9-10 一弯月形薄透镜两表面的曲率半径分别为5cm和10cm,其折射率为1.5,若将透镜的凹面朝上且盛满水,求水与透镜组合后的等效焦距.解:组合薄透镜可看成是由水组成的薄透镜和弯月形薄透镜密切接触组合而成.假定光从水一侧射入,设由水组成的薄透镜的焦距为f1,弯月形薄透镜的焦距为f2,根据题意可列出下列方程1-4 1 i irf^ ( 1)( ) =30cm1[3 ::-10仇= |(1.5-1)( 1- J =20cm-10 - 51 1 1 1 1 1f =71 12=30 20=12f =12cm9-11有焦距为10cm的凸透镜焦矩为40cm的凹透镜放在同一光轴上,两者相距10cm,在凸透镜前20cm处放一物体(在光轴上),求最后像的位置,并作图.解:对于凸透镜U1=20cm, f1=10cm, d=10cm代入薄透镜成像公式得1 .丄_丄20 V1 一10v1= 20cm对于凹透镜U2=10cm-20cm=-10cm,f2=-40cm,代入薄透镜成像公式得1 1 1-------------------- T -------------------- = ---------------------------------10 v 2 - 40V2 - 13.3cm9-12把一物放在会聚透镜前方适当距离处时,像落在离透镜20cm处的屏幕上.现将一发散透镜放在会聚透镜与屏幕中间,我们发现,为了得到清晰的像必须把屏幕向离开透镜的方向移远20cm.这发散透镜的焦距是多少?解:一物经会聚透镜所成的像作为发散透镜的物,此物距U2= -10cm,V2=30cm代入薄透镜成像公式得1 1 1-10 30 一ff = -15cm9-13眼睛不调节时能看清的物点到眼睛之间的距离称为远点.视力正常者的远点在无穷远处,即平行光进入眼睛后刚好会聚于视网膜上.眼睛最大调节时能看清的物点到眼睛之间的距离称为近点,视力正常者的近点约为10~12cm.与正常眼相比较,近视眼的近点近,远视眼的近点远,这就是近视眼和远视眼名称的来历.某人眼睛的远点为2m,他应配戴怎样的眼镜?解:配戴的眼镜必须使无穷远的物体在眼前2m处成一虚像,即u=x, v = -2 m 代入薄透镜成像公式得1 1 1—+ ——=—-2 f0.5D = -50,度f9-14 一远视眼的近点为1.0m,要看清眼前25cm处的物体,问需要配戴怎样的眼镜?解:所配戴的眼镜应使眼前25cm处的物体在眼前1m处成一虚像,即u=25cm, v = -1m代入薄透镜成像公式得1 1 1----- r -------- =——---- +----- =0.25 -1f13D f= 300度9-15 一显微镜物镜焦距为10.0mm,目镜焦距为25.0mm,两镜间距为180mm.若物体最后成一虚像于明视距离处,求物距及显微镜的放大率.解:已知f1=1cm,f2=2.5cm, d=18cm, V2=-25cm代入薄透镜成像公式得物镜成像1 1 1----- r -------- = ---------u1v1f1(1)目镜成像1 1 .1(2)d -v1v2f2代入数据得1 1 1=U1 v1 1(3)1 11(4)+18 7 -25 2.5解得V1=15.7cm U1=1.07cmV1 2515.725M-------- X147U1 f2 1.07 2.5。

数学分析第09章答案

数学分析第09章答案

第九章 再论实数系§1 实数连续性的等价描述1.求数列}{n x 的上、下确界(若}{n x 无上(下)确界,则称)(-∞∞+是}{n x 的上(下)确界):(1)nx n 11-=; (2)])2(2[n n n x -+=;(3))3,2,1(11,122 =+==+k k x k x k k ; (4)nn x n n 1])1(1[+-+=;(5)nn n nx )1(21-+=;(6)32cos 11πn n n x n +-=. 解(1)0}inf{,1}sup{==n n x x ; (2)-∞=+∞=}inf{,}sup{n n x x ; (3)1}inf{,}sup{=+∞=n n x x ; (4)0}inf{,3}sup{==n n x x ; (5)1}inf{,5}sup{==n n x x ; (6)21}inf {,1}sup{-==n n x x . 2.设)(x f 在D 上定义,求证: (1) )}({inf )}({sup x f x f Dx Dx ∈∈-=-;(2) )}({sup )}({inf x f x f Dx Dx ∈∈-=-.证明 (1)设a x f =)}(inf{,则D x ∈∀,都有a x f ≥)(,因而a x f -≤-)(,又由于0>∀ε,都D x ∈∃ε,使得εε+<a x f )(,因而εε-->-a x f )(,因此)}({inf )}({sup x f x f Dx Dx ∈∈-=-.(2) 设b x f Dx =∈)}({sup ,则D x ∈∀有b x f ≤)(,从而b x f -≥-)(,又由于,0>∀ε都D x ∈∃ε,使得εε->b x f )(,从而εε+-<-b x f )(,因此)}({sup )}({inf x f x f Dx Dx ∈∈-=-.3.设E sup =β,且E ∉β,试证自E 中可选取数列}{n x 且n x 互不相同,使β=∞→n n x lim ;又若E ∈β,则情形如何?证明 由已知条件知E sup =β且E ∉β,因而(1) E x ∈∀,有β<x ;(2) 0>∀ε,都存在E x ∈ε,使得εβε->x . 由(1)、(2)知:对1=ε,存在E x ∈1,使得ββ<<-11x ;对},21min{1x -=βε,E x ∈∃2,使得ββ<<-221x 并且112)(x x x =-->ββ;对},31min{2x -=βε,E x ∈∃3,使得ββ<<-231x 并且223)(x x x =-->ββ;…如此继续下去,得数列}{n x 且n x 互不相同,并且β=∞→n n x lim .若E ∈β,则结论不真,如⎭⎬⎫⎩⎨⎧=n E 1,则1s u p =E ,但没有n x 互不相同的数列}{n x ,使1lim =∞→n n x .4. 试证收敛数列必有上确界和下确界,趋于∞+的数列必有下确界,趋于∞-的数列必有上确界.证明 (1) 由于收敛数列是非空有界数列,且既有上界又有下界,因而有确界定理知其必有上确界和下确界;(2) 设+∞=∞→n n x lim ,则N ∃,当N n >时0>n x ,因而}0,,,,min{21N x x x 是数列}{n x 的下界,由确界原理知数列}{n x 存在下确界;(3) 设-∞=∞→n n x lim ,则N ∃,当N n >时0<n x ,因而}0,,,,max{21N x x x 是数列}{n x 的上界,由确界定理知数列}{n x 存在上确界.5.试分别举出满足下列条件的数列:(1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.解(1)有上确界无下确界的数列,如}{}{n x n -=有上确界1}sup{-=n x ,但无下确界;(2)含有上确界但不含有下确界的数列,如取⎭⎬⎫⎩⎨⎧=n x n 1}{,则该数列含有它的上确界1}sup{=n x ,但下确界0}inf{=n x ,该数列不含有0;(3)既含有上确界又含有下确界的数列,如⎭⎬⎫⎩⎨⎧-+=n x n n )1(1}{,既含有上确界1,又含有下确界0;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限,如⎪⎪⎩⎪⎪⎨⎧∈=-∈+==++.,213;,121Z k k n nZ k k n n x n则数列}{n x 有上确界3和下确界0,该数列}{n x 上含其上、下确界3和0.§2 实数闭区间的紧致性1.利用有限覆盖定理9.2证明紧致性定理9.4.证明 设数列}{n x 有界,即存在R b a ∈,,使得对N n ∈∀,都有b x a n ≤≤.下证}{n x 有收敛子列.(1)若}{n x 存在子列}{k n x 是常数列,则}{k n x 是}{n x 的收敛子列.(2)若}{n x 不存在是常数列的子列,下证}{n x 有收敛子列,为此设}|{N n x X n ∈=,则X 是无限点集.反设}{n x 没有收敛的子数列,则],[b a x ∈∀都不是}{n x 的任一子数列的极限,因此对],[b a x ∈∀,都存在开区间),(x x x v u I =,使得x I x ∈且X I x 是有限集(否则对包含x的任一开区间),(x x v u 都有X 的无穷项,则x 是}{n x 的某一子列的极限),因此所有开区间x I 构成闭区间],[b a 的一个开覆盖Ω,由有限覆盖定理知存在有限数m ,使i x mi I b a 1],[=⊂ ,因而有)()()()()(],[3211X I X I X I X I X I X b a m i x x x x x mi =⊂=,注意到上式右端每一项都是有限集,故X b a ],[为有限集,矛盾!综合(1)(2)知}{n x 必有一收敛的子数列. 2.利用紧致性定理证明单调有界数列必有极限.证明 设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地 ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明 不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <. 取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=. 二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令 .,223223b b b a a =+=依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n . (*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤. 而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎥⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间. (3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数). 证明 由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <. 从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠. 证明 由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列. 证明 必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明 对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明 反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在. 证明 由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在. 在区间),(b a 中任取一点0x ,并令 00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=,即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则 )()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→, 即)(lim x f bx -→存在. 再证明)(lim x f ax +→存在. 由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(, 即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则 )()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→, 即)(lim x f ax +→也存在. 11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明 反证法,使用区间套定理. 根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一 ,2,1],,[=∈n b a r n n由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(2εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明 由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <. 令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎥⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤. 依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3 实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明 )⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f a x +→存在.同理可知)(lim x f b x -→也存在.)⇐充分性证法1 0>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f b x -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2 由已知)(lim x f ax +→与)(lim x f bx -→ 都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x Ax F则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明 利用Cauchy 收敛原理的否定形式证明. 取0,0210>∀>=N ε,任取N n >,则N n >2,从而 nn n x x n n 2121112+++++=-021212121212111ε==+++>+++++>n n n n n n , 由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性. (1))||,1||(2210M a q q a q a q a a x k n n n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ; (3)nx n n 1)1(312111+-+-+-= . 解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q,从而N ∃,N n >∀时,有εMq qn ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有m n n m n n m n x x x x x x x x +++≤+++=-++++ 2121++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1 利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n1,对上述N m n N >∀,,时(不妨n m >),有 mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=- mn n n m 1)1(21111---+++-+=. 由于01)1(21111>-+++-+--mn n n m ,故 mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n . 若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n . 因而由Cauchy 收敛原理知数列}{n x 收敛.证法2 先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n nn x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> ,故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n , 因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim . 又由于121212++=+n x x n n 且0121lim =+∞→n n ,从而 a n x x n n n n n =++=∞→∞→+∞→121lim lim lim 212. 于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立. )⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续.6.证明下列极限不存在: (1)32cos11πn n n x n +-=; (2)nn n nx )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =; (5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在. (2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1lim 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在.(3)由于()21lim2=-+∞→n n nn ,故取41=ε,则存在00,N n N >∀时 41212=<--+εn n n , 从而 4121412<--+<-n n n , 即 43412+<+<+n n n n ,从而 ()πππππ43412+<+<+n n n n .当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π. 因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy 收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ,在⎪⎭⎫⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得 ⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n ,对于n 和2+n ,有1sin )1sin(222sin 22sin2cos )2cos(+=-+++=-+n nn n n n n 01sin 21sin 222ε==⋅≥, 由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点.若在⎪⎭⎫⎝⎛++2,6ππππk k 中只有一个正整数点n ,则 ⎪⎭⎫⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ; 若在⎪⎭⎫⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n . 由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证:0)(lim ='+∞→x f x x .证明 由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x>2时,也有X x >,从而22)(ε<⎪⎭⎫ ⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫⎝⎛-,从而)(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-,又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x ,因此0)(lim ='+∞→x f x x .8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1) n n x +∞→lim 存在;(2) 上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln1--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x nn n -≤-+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--010111)(x x kk x x kk nn n--=-++<+ .由于k x x k N n ln )1(ln1--=>ε,而1<k ,从而01)1(lnln x x k k n --<ε,故ε<--=-011x x kk x x nn m ,因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性.反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ; (2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在;(2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值. 证明(1)0>∀ε,取k x x k N ln ||)1(ln01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--ε<--=-++<+010111)(x x kk x x kk nn n.因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4 再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→.证明 不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0.取02)(0>-Mx f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时,2)()()(00Mx f x f x f n -<-,即 M Mx f M x f x f x f n >+=-->2)(2)()()(000,而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→.2.设)(x f 在],[b a 上连续,可微;又设 (1) )(max )(min x f p x f bx a bx a ≤≤≤≤<<;(2) 如果p x f =)(,则有0)(≠'x f , 求证:p x f =)(的根只有有限多个.证明 利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(l i m ≠--→rx r f x f rx ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明 令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ,又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1) m f M f ==)(,)(βα或M f m f ==)(,)(βα; (2) M x f m <<)(,当),(βα∈x .证明 由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明 考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明 反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明 由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f . 取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀, 有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x , 故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界. 另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀.取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8. 若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明 ,0>∀ε 取,21εδK=则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续.9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明 对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f . 因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在. 证明:)(x f 在),(+∞-∞上一致连续.证明 对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明 对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明 由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令 ⎩⎨⎧=>=.00,0ln )(x x xx x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x 要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明 取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f . 根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明 由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5 可积性1. 判断下列函数在区间]1,0[上的可积性: (1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ; (2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π (3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f(4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n M n ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M . 由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎬⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=n i i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M, 这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而210εω<∆∑+=n i i iix .因此0lim 1=∆∑=→ni iix ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积. (4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有。

人教版高中物理选修课后作业第九章第2节液体解析版

人教版高中物理选修课后作业第九章第2节液体解析版

人教版选修3-3课后作业第九章液体一、选择题1.液体表面张力产生的原因是( )A.液体表面层分子较紧密,分子间斥力大于引力B.液体表面层分子较紧密,分子间引力大于斥力C.液体表面层分子较稀疏,分子间引力大于斥力D.液体表面层分子较稀疏,分子间斥力大于引力2.(多选)关于液体表面张力,下列说法中正确的有( )A.甲图中露珠呈球形,这是地球引力作用的结果B.乙图中液体表面层分子间的距离大于液体内部分子间的距离,产生表面张力C.丙图中水黾可以停在水面上,是由于水的表面张力作用D.丁图中液体表面张力方向与液面平行3.(多选)如图所示的现象中,下列说法正确的是( )A.图甲为浸润现象,图乙为不浸润现象B.图甲中附着层的液体分子比液体内部的分子稀疏C.图乙中附着层的液体分子比液体内部的分子稀疏D.图甲和图乙中表面层的液体分子都比液体内部的分子稀疏E.图甲中表面层分子比液体内部稀疏,而图乙中表面层分子比液体内部密集4.(多选)关于浸润现象,下列说法正确的是( )A.水是浸润液体,水银是不浸润液体B.水是不浸润液体,水银是浸润液体C.浸润现象中,附着层里的分子比液体内部密集D.不浸润现象中,附着层里的分子比液体内部稀疏E.浸润现象中,附着层里的分子具有扩展的趋势5.下列说法不正确的是( )A.浸润液体在细管里能上升B.不浸润液体在细管里能下降C.在建筑房屋时,在砌砖的地基上要铺一层油毡或涂过沥青的厚纸,这是为了增加毛细现象,使地下水容易上升D.农田里如果要保存地下的水分,就要把地面的土壤锄松,以减少毛细现象的发生6.下列属于液晶分子示意图的是( )7.(多选)关于液晶的分子排列,下列说法正确的是( )A.液晶分子在特定方向排列整齐B.液晶分子的排列不稳定,外界条件的微小变化都会引起液晶分子排列的变化C.液晶分子的排列整齐且稳定D.液晶的物理性质稳定8.(多选)关于液晶的以下说法不正确的是( )A.液晶态只是物质在一定温度范围内才具有的状态B.液晶像液体一样具有流动性,而其光学性质与某些晶体相似C.液晶表现各向同性的性质D.液晶的微观结构介于晶体和液体之间,其光学性质会随电压的变化而变化9.(多选)关于固体、液体的性质,下列说法正确的是( )A.非晶体不可能转化为晶体B.单晶体有确定的熔点,多晶体没有确定的熔点C.彩色液晶显示器利用了液晶的光学各向异性的特点D.玻璃管的裂口放在火焰上烧熔,其尖端变钝,这是由于液体表面张力的作用E.唐诗《观荷叶露珠》中有“霏微晓露成珠颗”句,荷叶和露水表现为不浸润10.(多选)关于晶体、非晶体、液晶,下列说法正确的是( )A.所有的晶体都表现为各向异性B.晶体一定有规则的几何形状,形状不规则的常见金属一定是非晶体C.所有的晶体都有确定的熔点,而非晶体没有确定的熔点D.液晶的微观结构介于晶体和液体之间,其光学性质会随电压的变化而变化11.关于液体的下述说法中正确的是( )A.表面张力会使液面收缩,分子间表现为斥力B.附着层分子的作用力表现为斥力时,液体对该固体是不浸润的C.液体对某固体是不浸润的,当液体装在由这种固体物质做成的细管中时管中的液面是凸起的D.毛细现象中,细管的内径越小,管内的液面越高12.下面说法正确的是( )A.鸭子从池塘中出来,羽毛并不湿——毛细现象B.细玻璃棒尖端放在火焰上烧熔后尖端变成球形——表面张力C.粉笔能吸干纸上的墨水——浸润现象D.布做的雨伞,虽然纱线间有空隙,却不漏雨水——毛细现象13. (多选)把极细的玻璃管分别插入水中与水银中,如图所示,能正确表示毛细现象的是( )14.(多选)下列说法正确的是( )A.PM2.5在空气中的运动属于分子热运动B.荷叶上的露珠呈球形是表面张力的结果C.浸润和不浸润现象都是分子力作用的表现D.晶体具有各向异性,具有各向同性的都是非晶体15.(多选)下列说法正确的是( )A.在毛细现象中,毛细管中的液面升高或降低,这与液体的种类和毛细管的材料有关B.不浸润现象说明固体分子对液体分子的吸引力大于液体分子之间的吸引力C.液晶具有流动性,其光学性质与某些晶体相似为各向同性D.在太空里的空间站中,自由飘浮的水滴呈球形,这是表面张力作用的结果16.用金属丝制成一个U形架,一段细长棉线两端紧扣在U形架两臂上A、B两点,细线中点O处有一扣。

《电机学》习题解答(吕宗枢)09章.docx

《电机学》习题解答(吕宗枢)09章.docx

第 9 章思考题与习题参考答案9.1试比较异步电动机中主磁通和漏磁通的区别。

答: 主磁通是由基波旋转磁动势产生的基波旋转磁通,它经主磁路(定子铁心—气隙—转子铁心—气隙—定子铁心)而闭合。

其穿过气隙而同时交链定子、转子绕组,并分别在定子、转子绕组中产生感应电动势。

转子感应电动势产生的转子电流与定子磁场相互作用产生电磁转矩,驱动转子旋转,异步电动机从而实现将定子侧的电能传递给转子并转换成机械能输出。

因此,主磁通起能量传递和转换的媒介作用。

漏磁通不穿过气隙,它只与自身绕组相交链。

漏磁通包括槽部漏磁通和端部漏磁通。

另外由高次谐波磁动势所产生的高次谐波磁通虽然穿过气隙,但是对转子并不产生有效转矩,与槽部漏磁通和端部漏磁通具有同样的性质,所以也将其作漏磁通处理,称为谐波漏磁通。

由于漏磁通路径磁阻很大,因此它比主磁通小很多。

漏磁通仅在绕组上产生漏电动势,起电抗压降作用,不参与能量传递和转换。

9.2和同容量的变压器相比,为什么三相异步电动机的空载电流较大?答:变压器的主磁路由铁心构成,其磁阻很小,建立一定的主磁通所需要的磁动势很小,即励磁电流很小,通常为额定电流的2%~ 10%。

异步电动机的主磁路除了定、转子部分为铁心外,还有两段空气隙,这使得主磁路的磁阻很大,建立一定的主磁通所需要的磁动势就很大,即励磁电流很很大,通常为额定电流的20%~ 50%。

所以和同容量的变压器相比,三相异步电动机的空载电流较大。

9.3增大异步电动机的气隙,对空载电流、漏抗有何影响?答:增大异步电动机的气隙,主磁路磁阻增大,励磁电抗减小,空载电流增大。

气隙增大后,漏磁面积增加,单位电流产生的漏磁通增加,漏抗增大。

9.4异步电动机空载和负载时的气隙主磁通是否变化,为什么?答:主磁通几乎不变化。

虽然异步电动机空载运行时,气隙主磁通仅由定子励磁磁动势F0产生,而负载运行时,气隙主磁通由定子磁动势F1和转子磁动势 F2共同产生,但是因为外施电压U 1不变,根据U1 E1 4.44 fNk w1可知,空载和负载时的主磁通基本是同一数值。

工程流体力学答案第九章共7页文档

工程流体力学答案第九章共7页文档

[陈书9-11] 具有s Pa 1003.43⋅⨯=-μ,3m kg 740=ρ的油液流过直径为2.54cm 的圆管,平均流速为0.3m/s 。

试计算30m 长度管子上的压强降,并计算管内距内壁0.6cm 处的流速。

[解]管内流动的雷诺数:μρdu =Re 将s Pa 1003.43⋅⨯=-μ、3m kg 740=ρ、s m 3.0=u 和d=2.54cm 代入,得: 因为20002.1399Re <=,所以流动为层流,沿程阻力损失系数:沿程阻力损失:gu d l h 22λλ=表示成压强降的形式:2Re 64222u d l u d l gh p ρρλρλ===∆代入数据,得:()Pa 1799974054.2152.139964209.07401054.2302.1399642=⨯⨯⨯=⨯⨯⨯⨯=∆-p因为是层流运动,流速满足抛物面分布,且其分布为: 将()cm 67.06.0254.2=-=r 、s Pa 1003.43⋅⨯=-μ、d=2.54cm 和l=30m 代入,得: [陈书9-12]某种具有3m kg 780=ρ,s Pa 105.75⋅⨯=-μ的油,流过长为12.2m ,直径为1.26cm 的水平管子。

试计算保持管内为层流的最大平均流速,并计算维持这一流动所需要的压强降。

若油从这一管子流入直径为0.63cm ,长也为12.2m 的管子,问流过后一根管子时的压强降为多少?[解]管内流动的雷诺数:μρdu =Re 管内保持层流时,雷诺数低于下临界雷诺数,即:2320Re ==cre R所以:dR u cre ρμ=将s Pa 105.75⋅⨯=-μ、3m kg 780=ρ、2320=cr e R 和d=1.26cm 代入,得:压强降:()Pa 264.3177.0786.121222323220177.07801026.12.122320642Re 64222222=⨯⨯⨯=⨯⨯⨯⨯===∆-u d l u d l p ρρλ流入后一根管子时,流量不变,直径减小,用上标“~”表示后一种情况,则有: 所以:4640232063.026.1Re ~e R ~=⨯==d d 此时流动进入湍流光滑区,且5104640e R ~<=,可用布拉修斯公式求解沿程阻力损失系数,即:压强降:23164.02225.02u d l R u d l p e ρρλ==∆ 此时,平均流速:()m 63.026.10177.02⎪⎭⎫⎝⎛⨯=u所以:()Pa 13.1456312677.178636146403164.063.026.10177.027801063.02.1246403164.04225.042225.0=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=∆-p[陈书9-13] C 30o的水流经过直径d=7.62cm 的钢管(mm 08.0=∆),每分钟流量为3m 340.0。

化工原理习题解答(第二版)(祁存谦)习题解

化工原理习题解答(第二版)(祁存谦)习题解

祁存谦丁楠吕树申《化工原理》习题解答第1章流体流动第2章流体输送第3章沉降过滤第4章传热第5章蒸发第6章蒸馏第7章吸收第9章干燥第8章萃取第10章流态化广州中山大学化工学院(510275)2008/09/28第1章 流体流动1-1.容器A 中气体的表压力为60kPa ,容器B 中的气体的真空度为Pa 102.14⨯。

试分别求出A 、B 二容器中气体的绝对压力为若干Pa 。

该处环境大气压等于标准大气压。

(答:A,160kPa ;B,88kPa )解:取标准大气压为kPa 100,所以得到:kPa 16010060=+=A P ;kPa 8812100=-=B P 。

1-2.某设备进、出口的表压分别为 12kPa -和157kPa ,当地大气压为101.3kPa ,试求此设备进、出口的压力差为多少Pa 。

(答:169kPa -) 解:kPa 16915712-=--=-=∆出进P P P 。

1-3.为了排除煤气管中的少量积水,用如图示水封设备,水由煤气管道上的垂直支管排出,已知煤气压力为10kPa (表压)。

问水封管插入液面下的深度h 最小应为若干? (答:m 02.1)解:m 02.18.910101033=⨯⨯=∆=g P H ρ习题1-3 附图1-4.某一套管换热器,其内管为mm,25.3mm 5.33⨯φ外管为mm 5.3mm 60⨯φ。

内管流过密度为3m 1150kg -⋅,流量为1h 5000kg -⋅的冷冻盐水。

管隙间流着压力(绝压)为MPa 5.0,平均温度为C 00,流量为1h 160kg -⋅的气体。

标准状态下气体密度为3m 1.2kg -⋅,试求气体和液体的流速分别为若干1s m -⋅?( 答:1L s m11.2U -⋅=;1g s 5.69m U -⋅= )习题1-4 附图解:mm 27225.35.33=⨯-=内d ,m m 5325.360=⨯-=外d ;对液体:122s m 11.2027.011503600/500044/-⋅=⨯⨯⨯===ππρ内d m A V u l l l l l ; 对气体:0101P P =ρρ⇒3560101m kg 92.51001325.1105.02.1-⋅=⨯⨯⨯==P P ρρ,()224内外内外D d A A A g -=-=π()2322m 1032.10335.0053.04⨯=-=π,13s m 69.592.51032.13600/160/--⋅=⨯⨯===ggg gg g A m A V u ρ。

09静电场习题解答

09静电场习题解答

第九章 静电场一 选择题1. 在坐标原点放一正+Q ,它在P 点(x =+1,y =0)产生的电场为E 。

现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度为零?( )A. x 轴上x >1。

B. x 轴上x <0。

C. x 轴上0<x <1。

D. y 轴上y >0。

E. y 轴上y <0。

解:根据电场叠加原理,应选(B)。

2. 下列说法中哪一个是正确的?A.电场中某点场强的方向,就是将点电荷放在该点所受的电场力的方向。

B.在以点电荷为中心的球面上,该电荷产生的场强处处相同。

C.场强方向可由定出,其中q 为试验电荷的电量,q 可正可负,FqFE =为试验电荷所受的电场力。

D.以上说法都不正确。

( )解:根据电场强度的定义应选(C)。

3. 如图,电量为Q 的点电荷被曲面S 所包围,从无穷远处引另一电量为q 的点电荷至曲面外一点,则: ( )A.曲面S 的E 通量不变,曲面上各点场强不变B.曲面S 的E 通量变化,曲面上各点场强不变C.曲面S 的E 通量变化,曲面上各点场强变化D.曲面S 的E 通量不变,曲面上各点场强变化解:根据高斯定理,应选(D)。

4. 两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ),所带电量分别为Q a 和Q b ,设某点与球心相距r ,当R a <r< R b 时,该点的电场强度的大小为:( )202202020π41D.π41C.π41B.π41A.r Q .) R Q r Q (r Q Q .r Q Q .abb a b a b a εεεε+-+解:外球面上的电荷在其内部产生的场强为零,两球面间的场强仅由内球面电荷产生,故选(D )。

5. 图示为一具有球对称性分布的静电场的E -r 关系曲线,请指出该静电场是由下列哪种带电体产生的。

( )S .Q.q 选择题3图A .半径为R 的均匀带电球面 B. 半径为R 的均匀带电球体C. 半径为R 、电荷体密度ρ =Ar (A 为常数)的非均匀带电球体D.半径为R 、电荷体密度ρ =A/r (A 为常数)的非均匀带电球体解:根据计算可知,该电场为半径为R 、电荷体密度ρ =A/r (A 为常数)的非均匀带电球体所产生,故选(D )。

医用物理学第09章_课后习题解答

医用物理学第09章_课后习题解答

a(
Z 2 Z 1 2 1.48 10 6 415 2 ) ( ) ≈0.999=99.9% Z 2 Z1 1.48 10 6 415
-2
9-7 某声音的声强级比声强为 10-6 W·m
的声音的声强级大 10dB 时,问此声音的声强是
多少? 解: 由声强级公式可知,声强为 10-6 W·m -2 的声音的声强级为
a1 (
Z 2 Z1 2 1524 10 3 0.41 10 3 2 ) ( ) ≈0.999=99.9% Z 2 Z1 1524 10 3 0.41 10 3 Z3 Z2 2 5571 10 3 1524 10 3 2 ) ( ) ≈0.325=32.5% Z3 Z2 5571 10 3 1524 10 3
fd
v v 10 f0 f0 500 Hz≈15Hz cv c 344
若火车驶向地面接收者,听到的频率 f 1 为 f 1 =f 0 +f d =(500+15)Hz=515Hz 若火车驶离地面接收者,听到的频率 f 2 为 f 2 =f 0 -f d =(500-15)Hz=485Hz 9-12 蝙蝠在洞中飞来飞去,它发出频率为 38000Hz 的超声,在一次朝着表面垂直的墙壁飞 行期间,它的运动速度为空气中声速的
f
3 10 8 c 6 1014 Hz≈5.5×1014 Hz f0 cv 3 10 8 3 10 7
9-11 火车以 10m·s -1 的速度行驶,机车鸣笛,其振动频率为 500Hz,求车厢中的旅客和站 在铁轨附近的人所听到汽笛声的频率各是多少? 解: 对于车厢中的旅客来说,他们相对火车是静止的,所以他们听到汽笛声的频率不会发生 变化,就是 500Hz。 对于地面上的人来说, 当火车向他迎面驶来时, 声源的运动速度为 v=10m· s -1 , f 0 =500Hz, -1 c=344m·s ,这时产生的多普勒频移 f d 为

新人教版初二下学期第9章参考答案

新人教版初二下学期第9章参考答案

第九章第一节参考答案跟踪练习:1、D2、C3、A4、C5、B当堂达标:1、磁铁的两端磁性强,所以吸引的大头针多;大头针被磁化,所以吸住一串大头针。

2、用一块磁铁靠近这三根棒:(1)不被吸引的是铜棒(2)只被吸引的是铁棒(3)被吸引,调换方向后又排斥的是磁铁棒3、ABC4、摩擦起电吸引灰尘,棋子和棋盘都是磁体。

5、喇叭里有磁铁,靠近后会减弱磁带的磁性。

6、同名磁极互相排斥,力可以改物体的运动状态。

第九章第二节参考答案跟踪练习一:1、D2、C3、略跟踪练习二:1、A2、(1)第四种说法(2)当信鸽飞行途中遇到雷雨和飞经电视发射塔附近时,由于这些区域的地磁场会受到干扰,扰乱了信鸽对地磁场的正确感知,使信鸽迷失方向。

(3)对比的方法当堂达标:1、BD2、地磁场,N3、B4、B5、排斥6、大磁体,不是7、磁感线,N极,S极8、办法:将铁屑撒在种子里并搅拌均匀,使铁屑吸附在杂草种子上,然后用磁铁将铁屑和杂草种子一起从混合种子中吸出来。

道理:磁铁具有吸引铁的性质。

9、(1)应多做几次实验,观察小磁针静止时,是否总是指向某一方向(2)小磁针静止时,N极所指的方向应是“月磁”的南极。

第九章第三节参考答案跟踪练习一:1、C跟踪练习二:1、B2、3、4 略当堂达标:1、A2、A3、C4、B5、D6、N,负,N7、通电导体周围有磁场,正第九章第四节参考答案跟踪练习一:1、D2、D3、C跟踪练习二:1、B2、D3、A4、铁芯;有电流通过时有磁性,没有电流时就失去磁性;磁化;磁性;铁芯;螺线管5、漆包线绕过软铁棒形成一个螺线管,连到电池组的两极上形成一个电磁铁,将地上的铁钉吸引出来。

当堂达标:1、b,变亮,上2、将插有细铁芯的电磁铁靠近铁钉,记下吸引铁钉的个数,再将插有粗铁芯的电磁铁靠近铁钉,记下吸引铁钉的个数。

比较两次吸引铁钉的多少,吸引的铁钉越多,磁性越强。

3、N,重力,二力平衡,磨擦4、(2)N,(3)左,大,大(4)强,多,强,第九章第五节参考答案第九章第六节参考答案学点一: 1、力 2、电流的方向磁感线的方向跟踪练习1: 1、ABD 2、下下上学点二:两部分转子定子向上向下向上向下电流的方向向上向下通电线圈在磁场中受力转动的原理跟踪练习2: 1、金属半环闭合电路自动2、D3、C学点三:直流电动机交流电动机电能机械能1、C2、热能机械能达标检测: 1、电流方向磁感线的方向 b和c2、C3、C4、ABC第九章第七节参考答案学点一:奥斯特法拉第火力发电、水力发电、风力发电产生感应电流的条件:闭合电路的一部分导体在磁场中做切割磁感线时,导体中就产生电流.导体运动的方向磁感线的方向电磁感应现象感应电流跟踪练习一1、机械能电能机械能电能2、C3、A4、A5、B学点二1、线圈磁体电刷等或转子定子电刷换向器等2、线圈转动越快,指针摆动频率越快,偏转幅度越大3、转速越大,灯泡越亮4、电流方向周期变化的电流5、在交变电流中,电流在每秒内周期性变化的次数叫做频率单位赫兹符号Hz 50 Hz6、A 、 B 、没有、 B 、A 、没有跟踪练习二1、D2、C E达标检测1、C2、B3、a、导体沿磁感线方向运动时,不能产生感应电流b、磁感线方向相同时,导体切割磁力线的运动方向影响感应电流的方向c、导体静止时不会产生感应电流d、导体运动方向相同时,磁感线的方向影响电流的方向。

八年级物理 第九章 浮力强化练习及答案解析

八年级物理 第九章 浮力强化练习及答案解析

一、单选1.如图所示,用细绳将一物体系在容器底部,若物体所受浮力为10N,上表面受到水向下的压力为4N,则物体下表面受到水向上的压力为()A. 4NB. 6NC. 14ND. 7N2.一艘轮船从海里驶入到河里,则()A. 它受到的重力变小,浮力不变B. 它受到的重力变大,浮力不变C. 它受到的重力不变,浮力变小D. 它受到的重力不变,浮力不变3.如图所示,体积相等铜、铁、铝三个实心球,用细线拴住,全部浸没在水中时它们所受到的浮力相比( )A. 一样大B. 铝球所受浮力大C. 铁球所受浮力大D. 铜球所受浮力大4.如图所示,一铅块用细线挂在一个充气的小气球的下面,把它放入水中某处恰好处于静止状态,如果从底部缓慢放出一些水,则铅块及气球()A. 仍能静止B. 向下运动C. 向上运动D. 静止、向上或向下运动都有可能5.一艘轮船从重庆驶入上海,在上海码头卸下货物后停泊。

下列说法正确的是()A. 轮船所受浮力减小,将上浮一些,轮船的“排水量”减小B. 轮船所受浮力减小,将上浮一些,轮船的“排水量”不变C. 轮船所受浮力不变,将下沉一些,轮船的“排水量”减小D. 轮船所受浮力减小,将下沉一些,轮船的“排水量”不变6.如图所示是同一个小球分别放在甲、乙两杯液体中静止时的情况,则小球所受的浮力F甲、F乙和两种液体的密度ρ甲、ρ乙关系正确的是()A.F甲=F乙ρ甲<ρ乙B. F甲=F乙ρ甲>ρ乙C. F甲<F乙ρ甲=ρ乙D. F甲>F乙ρ甲>ρ乙7.把体积为200cm3、重为1.2N的物体放入水中,物体静止时所处的状态及受到的浮力分别是()A. 漂浮,F浮>1.2NB. 漂浮,F浮=1.2NC. 沉底,F浮<1.2ND. 沉底,F浮=1.2N8.如图所示,a、b是两种物质质量与体积的关系图象,分别用a、b两种物质制成体积相等的甲、乙两实心物体,浸没在水中.松手稳定后()A.乙漂浮,乙受到的浮力小B. 甲漂浮,甲受到的浮力大C. 乙下沉,甲受到的浮力大D. 甲下沉,乙受到的浮力大9.关于物体沉浮条件及应用实例,下列分析合理的是()A. 同一密度计在不同液体中漂浮时,所受浮力大小相同B. 轮船从长江驶入东海,吃水深度变大C. 橡皮泥捏成小船后可以漂浮在水面,是通过改变自身重力实现的D. 潜水艇靠改变排开水的体积来改变浮力,从而实现上浮和下沉10.如图,取一个瓶口内径略小于乒乓球直径的雪碧瓶,去掉其底部,把一只乒乓球放到瓶口处,然后向瓶里注水,会发现水从瓶口流出,乒乓球不上浮。

大学物理学上册(孙厚谦著)清华大学出版社第9章习题课后答案

大学物理学上册(孙厚谦著)清华大学出版社第9章习题课后答案

9-1 试证理想 体 密度公 为- 3第 9 章ρ =pMmol 。

在RT1.013⨯105Pa 和 20℃时,空 摩尔质量4m ⨯ 4m ⨯ 3m 房间内M mol= 28.9 10 kg / mol ,试求空密度,并问在此情况下, 间空 总质量。

9-2 体积为钢 内装有供 焊用 氢 ,假定 焊时,氢温度保持 300K 变。

当压力表中指针指 出 内氢 压强由用去了多少氢 ?4.9⨯106Pa 降为9.8⨯105Pa9-3 设想是由氢原 组成 理想 体,其密度可以当作是均匀,若此理想体 压强为-1.35 10 Pa 14, 试 估 算温 度 。

( 已 知 氢 原 质 量27半 径m H=308R S= 6 . 9 6 1 0 m, 质量 m S=1.99 10 kg)9-4体积为 11.2 10 m -33、温度为 293K真空系 已被抽到1.38 10 Pa -3 真空。

为了 高其真空度,将它放在 573K 烘箱内烘烤,使 壁释放出所吸附1.38Pa ,问 壁原来吸附体分 有多少个?9-5 求二 化碳( CO 2)分 在温度T = 300K 时 平均平动动能。

查看答案 9-59-6 当温度为 0°C 时,求(1)N 2分 查看答案 9-629-7 容 内储有 1mol 某种理想 体,现从外界传入2.09 10 J 求该 体分 由度。

查看答案 9-719-8 容 中有 N 个 体分 ,其速率分 如图,且当υ > 2υ0时,分 数为零。

(1) 由 N 和υ0求a ,并写出速率分函数表达;(2) 求速率在率。

1.5υ →02.0υ0之间 分数; (3) 求分平均速Nf ( )af ( )υ02υ0υ习题 9-8 图9-9 求氢 在 300K 时分 速率在υp -10m/s 与 υp+10m/s 之间分数占总分 数 比率。

9-10 已知在 273K 、1.00×103 Pa 条件下 体密度为 1.24×10-2kg/m 3,求(1) 体分 方均根速率υ2;(2)体 摩尔质量 M mol 。

医用物理学第09章_课后习题解答

医用物理学第09章_课后习题解答

fd
v v 10 f0 f0 500 Hz≈15Hz cv c 344
若火车驶向地面接收者,听到的频率 f 1 为 f 1 =f 0 +f d =(500+15)Hz=515Hz 若火车驶离地面接收者,听到的频率 f 2 为 f 2 =f 0 -f d =(500-15)Hz=485Hz 9-12 蝙蝠在洞中飞来飞去,它发出频率为 38000Hz 的超声,在一次朝着表面垂直的墙壁飞 行期间,它的运动速度为空气中声速的
2 1 Pm 可得声压 2 Z
I=1W·m -2 。查表得空气的声阻抗 Z 为 400kg·m -2·s -1 (20℃) ,由 I 幅值为
Pm 2 IZ 2 1 400 P N·m -2 ≈28.3Pa
②已知面积 S=0.55×10-4 m 2 ,由 F=P·S 的关系,可得耳鼓膜口最大作用力为 F m =P m ·S=28.3×0.55×10-4 N=1.6×10 -3 N 9-6 20℃时空气和水的声阻抗分别为 415 和 1.48×106 kg·m -2 ·s -1 ,计算声波由空气垂直 入射到水面上时的声强反射系数。 解: 已知 Z 1 =415kg·m -2·s -1 ,Z 2 =1.48×106 kg·m -2·s-1 ,将它们代入声强反射系 数公式得
由 fd
2v cos f 0 可得 c
v fd c 2 cos f 0 500 1500 2 3 2.8 10 6 2
m·s -1
≈-0.155m·s -1 =-15.5cm·s -1 式中负号表示血流背离探头方向运动。 9-15 什么叫听阈和痛阈?人耳对声音的反应主要决定于哪两个因素?听觉区域是由哪四条线 围成的?并指出听阈最敏感的频率范围? 答: ①能引起听觉的最低声强叫听阈,人耳能够忍受的最高声强叫痛阈,每一个给定的可听 频率都有相应的听阈和痛阈。 ②人耳对声音的反应主要决定于两个因素:一是声波的强度,二是声波的频率。③人耳的听 觉区域是由听阈线、痛阈线、20Hz 线、20000Hz 线所围成的。④人耳最敏感的听阈频率为 1000~5000Hz。 9-16 超声波是机械波还是电磁波?它有哪些特性?与物体有哪三种主要作用? 答: 超声波是一种机械波。它的特性主要有:①方向性好;②能量大;③贯穿液体或固体的 能力较强;④在不同介质的分界面有显著的反射。它与物质的作用主要有以下三种:①机械作 用;②空化作用;③热作用。 9-17 设某超声波的频率为 5MHz,进入人体的软组织,求:①它的波长;②在 20cm 的软组织 中往返一次所需要的时间。 解: ①已知 f=5MHz=5×10 6 Hz,查表可知波速 c=1540m·s -1 ,由 c=λf 可得该超声波的波 长为

【精品】第09章 习题解

【精品】第09章 习题解

第9章真空中的静电场9。

1两个电量都是q +的点电荷分别固定在真空中两点A B 、,相距2a .在它们连线的中垂线上放一个电量为q '的点电荷,q '到A B 、连线中点的距离为r 。

求q '所受的静电力,并讨论q '在A B 、连线的中垂线上哪一点受力最大?若q '在A B 、的中垂线上某一位置由静止释放,它将如何运动?分别就q '与q 同号和异号两种情况进行讨论.解:()1222014qq F F a r πε'==+()1322022cos 2qq rF F arθπε'==+方向沿两点电荷连线垂直线远离它们方向。

令0dFdr= ()()()1222223220202a r a r dF qq dr a r πε⎡⎤+-'⎢⎥==⎢⎥+⎢⎥⎣⎦()2220a r -=2r a =±在q '为正电荷时,在中垂线某位置由静止释放时,q '将沿中垂线远离,作变加速速直线运动;若q '为负电荷,q '以AB 连线的中点为平衡位置作振动;若释放点为AB 连线中点,静止释放时,无论q '为正、负电荷均因受力为0而不运动。

9。

2在正方形的顶点上各放一个点电荷q。

(1)证明放在正方形中心的任意点电荷受力为零.(2)若在正方形中心放一个点电荷q,使得顶点上每个点电荷受到的合力恰好为零,求q'与q的关系。

解:⑴设正方形边长为a,正方形上各点电荷对中心放置的点电荷的作用力大小均为:220011422qq qqFaaπεπε''==⎛⎫⎪⎝⎭q'所受到的四个力大小相等且对称,两相对顶点上的点电荷为一对平衡力,即q'受力为0.⑵设正方形四个顶点上放置的点电荷q为正电荷,由于对称性,则可选一个顶点处理,其它点电荷对其的作用力大小为:1214qqFaπε=22142qqFaπε=3220011244qq qqFaπεπε''==⎫⎪⎝⎭各力的方向如图所示,要满足题意,中心点电荷q'应为负电荷。

2019版高考数学大一轮复习人教B版全国通用文档:第九

2019版高考数学大一轮复习人教B版全国通用文档:第九

§9.2 两条直线的位置关系1.两条直线的位置关系 已知两条直线的方程为: l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0,则 (1)l 1与l 2相交的条件是:A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0).(2)l 1与l 2平行的条件是:A 1B 2-A 2B 1=0,而B 1C 2-C 1B 2≠0或A 2C 1-A 1C 2≠0; 或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0). (3)l 1与l 2重合的条件是:A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0); 或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0). (4)l 1与l 2垂直的条件是A 1A 2+B 1B 2=0.(5)两条斜率存在且分别为k 1,k 2的直线l 1和l 2垂直的条件是k 1k 2=-1. 2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 知识拓展 1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ). 2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0.3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 4.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 5.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定为-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( × )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.( √ ) 题组二 教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1 D.2+1 答案 C解析 由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 1解析 由题意知m -4-2-m =1,所以m -4=-2-m ,所以m =1. 题组三 易错自纠4.(2017·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( ) A .2 B .-3 C .2或-3 D .-2或-3答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C.5.直线2x +2y +1=0,x +y +2=0之间的距离是______. 答案324解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =⎪⎪⎪⎪2-122=324.6.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________. 答案 0或1解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一 两条直线的位置关系典例 (2018·青岛模拟)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**) 由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在, k 1=k 2,即ab=1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,②联立①②,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 跟踪训练 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 方法二 由A 1B 2-A 2B 1=0, 得a (a -1)-1×2=0, 由A 1C 2-A 2C 1≠0, 得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2, 故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. 方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0, 可得a =23.题型二 两条直线的交点与距离问题1.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是_____. 答案 ⎝⎛⎭⎫-16,12 解析 方法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.方法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12.∴-16<k <12.2.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________________________. 答案 x +3y -5=0或x =-1解析 方法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 方法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 的中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 思维升华 (1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三 对称问题命题点1 点关于点中心对称典例 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称典例 如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .3 3B .6C .210D .2 5答案 C解析 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3 直线关于直线的对称问题典例 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则 ⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧a =613,b =3013,∴M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3). 又∵直线m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 思维升华 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 跟踪训练 已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 (1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎨⎧x ′=-4x +3y -95,③y ′=3x +4y +35. ④把x =4,y =5代入③④得x ′=-2,y ′=7, ∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). (2)用③④分别代换x -y -2=0中的x ,y , 得关于l 对称的直线方程为 -4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3), 关于(1,2)的对称点M ′(x ′,y ′), ∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1). l 关于(1,2)的对称直线平行于l ,∴k =3, ∴对称直线方程为y -1=3×(x -2), 即3x -y -5=0.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.思想方法指导 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0(c ≠1). 规范解答解 由题意,设所求直线方程为3x +4y +c =0(c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0. 二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0.因此,当两直线垂直时,它们的一次项系数有必然的联系.可以考虑用直线系方程求解. 典例2 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程. 思想方法指导 依据两直线垂直的特征设出方程,再由待定系数法求解. 规范解答解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点A (2,1),所以有2-2×1+C 1=0,解得C 1=0, 即所求直线方程为x -2y =0. 三、过直线交点的直线系典例3 (2017·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为____________.思想方法指导 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以根据垂直关系设出所求方程,再把交点坐标代入求解;又可以利用过交点的直线系方程设直线方程,再用待定系数法求解. 答案 4x -3y +9=0解析 方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,解得⎩⎨⎧x =-53,y =79,即交点为⎝⎛⎭⎫-53,79, ∵所求直线与直线3x +4y -7=0垂直, ∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝⎛⎭⎫x +53, 即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,可解得交点为⎝⎛⎭⎫-53,79, 代入4x -3y +m =0,得m =9, 故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为 (2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又∵所求直线与直线3x +4y -7=0垂直, ∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .不能确定答案 C解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1. 故选C.2.(2018·邢台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 由题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1, 解得a =-1,故选C.3.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0答案 A解析 由直线与向量a =(8,4)平行知,过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.4.(2017·兰州一模)一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( ) A. 2 B .2 C .3 D .4 答案 B解析 点O (0,0)关于直线x -y +1=0的对称点为O ′(-1,1),则虫子爬行的最短路程为|O ′A |=(1+1)2+(1-1)2=2.故选B.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423B .4 2 C.823 D .2 2答案 C解析 ∵l 1∥l 2,∴a ≠2且a ≠0, ∴1a -2=a 3≠62a,解得a =-1, ∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.6.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点 ( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2)答案 B解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________. 答案345解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线, 于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12, 解得⎩⎨⎧m =35,n =315,故m +n =345.9.(2017·浙江嘉兴一中月考)已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________. 答案 1 (3,3)解析 ∵直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,且l 1⊥l 2,∴a ×1+1×(a -2)=0,即a =1,联立方程⎩⎪⎨⎪⎧x +y -6=0,x -y =0,易得x =3,y =3,∴P (3,3).10.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l 1的倾斜角为π4,则-a =k =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1-(-3)|1+1=2 2.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.(1)解 显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎪⎨⎪⎧ 2x -y -6=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =2,y =-2,故直线经过的定点为M (2,-2). (2)证明 过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0. 但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,请说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0). 若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.13.(2017·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( ) A .(-2,4) B .(-2,-4) C .(2,4) D .(2,-4)答案 C解析 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3), ∴AC 所在直线方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C.14.(2017·岳阳二模)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为________.答案 94解析 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3, 所以(4-1)2+(-m )2=3,解得m =0. 所以a +c =2,则12a +2c =12(a +c )·⎝⎛⎭⎫12a +2c =12⎝⎛⎭⎫52+c 2a +2a c ≥12⎝⎛⎭⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号.15.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设 B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a .Rt △ABC 的面积S =12a 2+4·b 2+9=12a 2+4·36a 2+9=1272+9a 2+144a2≥1272+72=6(当且仅当a 2=4时取等号). 16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是______________. 答案 6x -8y +1=0解析 由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点P ⎝⎛⎭⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝⎛⎭⎫4-m ,6-b -3m 4,∴6-b -3m 4=34(4-m )+b +114,解得b =18. ∴直线l 的方程是y =34x +18,即6x -8y +1=0.。

《计算机接口技术》(函授)部分习题参考解答

《计算机接口技术》(函授)部分习题参考解答

《计算机接口技术》部分习题参考解答第4章 PC机的总线结构和时序4-1 答:总线周期是指CPU从存储器端口或I/O端口存取一个字节所需的时间。

8088/8086基本总线周期由4个时钟周期组成。

IBM PC/XT/A T中,CPU时钟频率是4.77MHz,时钟周期是210ns。

XT机的一个基本总线周期是4个时钟周期,一个输入或输出周期是5个时钟周期。

4-2 答:在T1状态下,8088/8086CPU数据/地址线上是地址信息。

用ALE信号可将地址信息锁存起来。

数据信息在T2开始以后送出。

XT机的AD7~AD0在ALE下降沿控制锁存后送系统地址总线A7~A0。

A19/S6~A16/S3经ALE下降沿控制锁存后送系统地址总线A15~A8;CPU的AD7~AD0在8288发出的DT/!R(数据收发控制信号)和DEN(数据允许)信号控制下,经双向总线驱动器连接到系统数据总线D7~D0,这样,实现了地址和数据及状态信号的分离,使地址信号和数据信号同时分别出现在系统地址总线和数据总线上。

(注意:这里用符号“!”表示逻辑非,对于信号则表示低电平有效,下同。

)4-3 答:PC/XT机中8088的MN/!MX引脚接地,因此工作在最大模式。

8088最大模式系统由8088CPU、8284时钟信号发生器和8288总线控制器组成。

总线控制器发出一些存储器和输出控制信号,接入系统总线后的名称为!IOW、!IOR、!MEMW、!MEMR、ALE信号,此外它还发出中断响应信号!INTA、DT/!R和DEN 等信号。

这些信号是由CPU连接8288的S2、S1、S0三线的电平决定的。

4-4 答:8284时钟发生器的作用是将晶振信号分频,向8088及计算机系统提供符号定时要求的各种时钟信号,并产生准备好和系统复位信号。

CLK信号:4.77MHz,提供XT机时钟频率。

PCLK信号:2.38MHz,分频后供8253使用。

OSC信号:14.31818MHz,供显示器使用。

2019版高考数学大一轮复习人教B版全国通用文档:第九

2019版高考数学大一轮复习人教B版全国通用文档:第九

§9.6双曲线1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,集合P为双曲线;(2)当2a=|F1F2|时,集合P为两条射线;(3)当2a>|F1F2|时,集合P为空集.2.双曲线的标准方程和几何性质知识拓展 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay =0,∴2a =bc a 2+b2=b .又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.3.经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案 x 28-y 28=1解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (3,-1)代入,得a 2=8(舍负), 故所求方程为x 28-y 28=1.题组三 易错自纠4.(2016·全国Ⅰ)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.5.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B.54 C.43 D.53答案 D解析 由条件知y =-b a x 过点(3,-4),∴3ba =4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.6.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________.答案 x 24-y 2=1解析 由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.题型一 双曲线的定义及标准方程命题点1 利用定义求轨迹方程典例 (2018·大连月考)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 典例 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54,∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点, 故焦点在y 轴上,且a =12.又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题典例 已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有 |PF 1|-|PF 2|=|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.引申探究1.本例中,若将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2 3.2.本例中,若将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴S △F 1PF 2=12|PF 1|·|PF 2|=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(3)利用待定系数法求双曲线方程要先定形,再定量,如果已知双曲线的渐近线方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.跟踪训练 (1)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________________. 答案 x 216-y 29=1解析 由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知,a =4,b =3.故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1.(2)(2016·天津)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案 D解析 由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b 2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b 4+b 2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b 4+b 2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b 2,2b 4+b 2.由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b4+b 2,故8×4b 4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.题型二 双曲线的几何性质典例 (1)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.(2)(2016·山东)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是______. 答案 2解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a=3×2c .又∵b 2=c 2-a 2,整理得2c 2-3ac -2a 2=0,两边同除以a 2,得2⎝⎛⎭⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba满足关系式e 2=1+k 2.跟踪训练 (2016·全国Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32 C.3 D .2答案 A解析 离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A.题型三 直线与双曲线的综合问题典例 (2018·福州模拟)已知直线y =kx -1和双曲线x 2-y 2=1的右支交于不同两点,则k 的取值范围是______. 答案 (1,2)解析 由直线y =kx -1和双曲线x 2-y 2=1联立方程组,消y 得(1-k 2)x 2+2kx -2=0, 因为该方程有两个不等且都大于1的根,所以⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0,-k1-k 2>1,(1-k 2+2k -2)(1-k 2)>0,解得1<k < 2.思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.跟踪训练 (2017·贵州贵阳第一中学月考)已知双曲线x 22-y 23=1上存在两点P ,Q 关于直线y=x +b 对称,且PQ 的中点M 在抛物线y 2=9x 上,则实数b 的值为( ) A .0或-10 B .0或-2 C .-2 D .-10答案 A解析 因为点P ,Q 关于直线y =x +b 对称,所以PQ 的垂直平分线为y =x +b ,所以直线PQ 的斜率为-1.设直线PQ 的方程为y =-x +m , 由⎩⎪⎨⎪⎧y =-x +m ,x 22-y 23=1,得x 2+4mx -2m 2-6=0, 所以x P +x Q =-4m ,所以x M =-2m , 所以M (-2m,3m ).因为PQ 的中点M 在抛物线y 2=9x 上, 所以9m 2=9(-2m ),解得m =0或m =-2, 又PQ 的中点M 也在直线y =x +b 上, 得b =5m ,∴b =0或-10,故选A.直线与圆锥曲线的交点典例 若直线y =kx +2与曲线x =y 2+6交于不同的两点,那么k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 错解展示:由直线y =kx +2与曲线x 2-y 2=6相切,得x 2-(kx +2)2=6,Δ=16k 2-4(1-k 2)(-10)=0,解得k =±153,所以k 的取值范围是⎝⎛⎭⎫-153,153. 错误答案 A 现场纠错解析 曲线x =y 2+6表示焦点在x 轴上的双曲线的右支,由直线y =kx +2与双曲线方程联立得⎩⎨⎧y =kx +2,x =y 2+6,消去y ,得(1-k 2)x 2-4kx -10=0. 由直线与双曲线右支交于不同两点,得⎩⎪⎨⎪⎧1-k 2≠0,4k1-k2>0,-101-k 2>0,Δ=16k 2+40(1-k 2)>0,解得k ∈⎝⎛⎭⎫-153,-1.故选D. 答案 D纠错心得 (1)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法. (2)直线与圆锥曲线的交点问题往往需考虑圆锥曲线的几何性质,数形结合求解.1.(2018·新余摸底)双曲线x 2a 2-y 24a 2=1(a ≠0)的渐近线方程为( )A .y =±2xB .y =±12xC .y =±4xD .y =±2x答案 A解析 根据双曲线的渐近线方程知, y =±2aax =±2x ,故选A.2.(2017·山西四校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),右焦点F 到渐近线的距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A.53B.355C.63D.62答案 B解析 ∵右焦点F 到渐近线的距离为2,∴F (c,0)到y =b a x 的距离为2,即|bc |a 2+b 2=2,又b >0,c >0,a 2+b 2=c 2,∴bc c=b =2.∵点F 到原点的距离为3,∴c =3, ∴a =c 2-b 2=5,∴离心率e =c a =35=355. 3.(2017·新乡二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 答案 D解析 不妨设B (0,b ),由BA →=2AF →,F (c,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109, ∴b 2a 2=32.① 又|BF →|=b 2+c 2=4,c 2=a 2+b 2,∴a 2+2b 2=16,②由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D. 4.(2017·龙岩二模)已知离心率为52的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( )A .32B .16C .84D .4 答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =b a x 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.5.(2018·开封模拟)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为( ) A.233B. 2 C .2 D.263答案 C解析 由题意知F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0).由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0, 得x 0=±2,故P 到x 轴的距离为2|x 0|=2,故选C.6.(2018·武汉调研)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与对称轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc 3,则双曲线的离心率为( ) A.52 B.53 C.132 D.133 答案 D解析 由题意可求得|AB |=2bc a ,所以S △OAB =12×2bc a ×c =13bc 3,整理得c a =133,即e =133,故选D.7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、4为半径的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 由⎩⎪⎨⎪⎧ x =a ,y =-b a x ,得⎩⎪⎨⎪⎧x =a ,y =-b ,∴A (a ,-b ). 由题意知右焦点到原点的距离为c =4,∴(a -4)2+(-b )2=4,即(a -4)2+b 2=16.而a 2+b 2=16,∴a =2,b =2 3.∴双曲线C 的方程为x 24-y 212=1. 8.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤1,52B.⎝⎛⎦⎤1,72 C.⎣⎡⎭⎫52,+∞ D.⎣⎡⎭⎫72,+∞ 答案 C解析 由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52. 9.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.10.设动圆C 与两圆C 1:(x +5)2+y 2=4,C 2:(x -5)2+y 2=4中的一个内切,另一个外切,则动圆圆心C 的轨迹方程为____________.答案 x 24-y 2=1 解析 设圆C 的圆心C 的坐标为(x ,y ),半径为r ,由题设知r >2,于是有⎩⎪⎨⎪⎧ |CC 1|=r +2,|CC 2|=r -2或⎩⎪⎨⎪⎧|CC 1|=r -2,|CC 2|=r +2, ∴||CC 1|-|CC 2||=4<25=|C 1C 2|,即圆心C 的轨迹L 是以C 1,C 2为焦点,4为实轴长的双曲线,∴L 的方程为x 2⎝⎛⎭⎫422-y 2(5)2-⎝⎛⎭⎫422=1, 即x 24-y 2=1. 11.(2018·南昌调研)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 答案 52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax . 由⎩⎪⎨⎪⎧ y =b a x ,x -3y +m =0,得A ⎝⎛⎭⎫am 3b -a ,bm 3b -a , 由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b , 所以AB 的中点C 的坐标为⎝⎛⎭⎫a 2m 9b 2-a 2,3b 2m 9b 2-a 2. 设直线l :x -3y +m =0(m ≠0),因为|P A |=|PB |,所以PC ⊥l ,所以k PC =-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=54a 2, 所以e =c a =52. 12.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2,由于△PF 1F 2为锐角三角形,结合实际意义可知m 需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2, 解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8.13.(2017·黄冈二模)已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( ) A .3B .2C .-3D .-2答案 B解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2, ∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2.又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14, ∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B. 14.(2017·安庆二模)已知F 1,F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A ,B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为( ) A. 2 B. 3 C .2 2D .2 3答案 B解析 不妨设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知,取A 点坐标为⎝⎛⎭⎫c ,b 2a ,取B 点坐标为⎝⎛⎭⎫c ,-b 2a ,则C 点坐标为⎝⎛⎭⎫0,-b 22a 且F 1(-c,0).由AC ⊥BF 1知AC →·BF 1→=0,又AC →=⎝⎛⎭⎫-c ,-3b 22a ,BF 1→=⎝⎛⎭⎫-2c ,b 2a ,可得2c 2-3b 42a 2=0,又b 2=c 2-a 2,可得3c 4-10c 2a 2+3a 4=0,则有3e 4-10e 2+3=0,可得e 2=3或13,又e >1, 所以e = 3.故选B.15.(2017·福州质检)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=6,P 是E 右支上的一点,PF 1与y 轴交于点A ,△P AF 2的内切圆与边AF 2的切点为Q .若|AQ |=3,则E 的离心率是( )A .2 3 B. 5 C. 3 D. 2答案 C解析 如图所示,设PF 1,PF 2分别与△P AF 2的内切圆切于M ,N ,依题意,有|MA |=|AQ |,|NP |=|MP |,|NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =33=3,故选C. 16.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值.解 由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a . 当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=649a 2+49a 2-4c 22·83a ·23a =178-98e 2, 即e 2=179-89cos ∠F 1PF 2. ∵cos ∠F 1PF 2∈(-1,1),∴e ∈⎝⎛⎭⎫1,53. 当P ,F 1,F 2三点共线时,∵|PF 1|=4|PF 2|,∴e =c a =53, 综上,e 的最大值为53.。

第09章 数据访问习题解答

第09章 数据访问习题解答

第9章数据访问第9章习题解答1.简述LINQ语法和SQL语法相比的相同点和不同点。

【解答】相同点:1)LINQ和SQL的目的都是为了操作数据源;2)LINQ语法和SQl语法中查询表达式的关键字都包括from子句、let子句、orderby子句、where子句、group子句以及select子句;不同点:1)LINQ语法要求查询表达式必须包含from子句且必须以from子句开头,而SQL语法的查询表达式以select开头;2)LINQ语法操作的对象可以是SQL数据库、数据集、XML文档、数据流和集合,而SQL语法操作的对象只能是SQL数据库。

2.什么是数据源控件?共包含哪几种数据源控件?【解答】数据源控件负责管理连接到数据源以及读取和写入数据等任务,但不负责呈现用户界面,而只是作为特定数据源(如数据库、业务对象或XML文件)与网页上的其他控件之间的中间方。

数据源控件为数据绑定控件构造了一个公共接口,其内部自动实现丰富的数据检索和修改功能,包括查询、排序、分页、筛选、更新、删除以及插入等,而不需要开发人员去编写针对这些功能的代码。

共提供7种数据源控件,分别是EntityDataSource控件、LinqDataSource控件、ObjectDataSource控件、SqlDataSource控件、AccessDataSource控件、XmlDataSource控件和SiteMapDataSource控件。

3. GridView控件控件的【DataKeyNames】属性有什么作用?是否必须设置该属性?【解答】GridView控件控件的【DataKeyNames】属性用于获取或设置一个数组,该数组包含了显示在GridView控件中的项的主键字段的名称。

为GridView的DataKeyNames属性设置库表字段名的主要目的还是为了在为GridView控件绑定数据时获取当前行指定字段的值,以便作相应处理。

新教材人教版高中物理必修第三册第九章静电场及其应用 课时分层练习及章末测验 含解析

新教材人教版高中物理必修第三册第九章静电场及其应用 课时分层练习及章末测验 含解析

第九章静电场及其应用9.1 电荷 .......................................................................................................................... - 1 -9.2 库仑定律 .................................................................................................................. - 8 -9.3电场电场强度...................................................................................................... - 14 -9.4静电的防止与利用.................................................................................................. - 21 -章末综合测验................................................................................................................ - 25 -9.1 电荷基础练习一、选择题(本题共8小题,每题6分,共48分)1.(2020·山东省潍坊二中高一下学期期中)科学家在研究原子、原子核以及基本粒子时,为了方便,常常把元电荷作为电荷量的单位,关于元电荷,下列论述正确的是(C)A.把质子或电子叫做元电荷B.把1.6×10-19 C的电荷叫元电荷C.电子带有最小的负电荷,其电荷量的绝对值叫元电荷D.元电荷就是体积很小的带电体解析:元电荷表示电荷量,其大小等于一个电子所带电荷量的绝对值,不是指某一带电体,故选项C正确,A、B、D错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题图 9-5 解:(1) 输入数字量 S=(100000)2 时,输出模拟电压
VREF RF 5 V vo = − (d i × 2 i ) = − REF 6 ∑ 3R × 2 i = 0 26 6.3 = − 6 × 2 6 = −3.15V 2
电压
∑ (d
i =0
5
i
× 2i )
(2) 若输入数字量 S 不变,各位模拟开关接通时均产生 0.1V 残余电压,则输出模拟
vo = −
(VREF − 0.1) RF 5 (VREF − 0.1) 5 i d × = − ( 2 ) (d i × 2i ) ∑ ∑ i 6 3R × 2 6 2 i =0 i =0 6.3 − 0.1 5 =− × 2 = −3.1V 26
9-6 在题图 9-6 给出的 4 位倒 T 形电阻网络 DAC 中,设 VREF=5V,RF= R=10kΩ,试求 当输入二进制数码分别为 0101、0110、1101 时,输出电压 vo 的大小。
(2) 若输入数字量为(200)16 时输出电压 vo=5V,则
vo = −
故 VREF=-10V。
VREF 210
∑ (d
i =0
9
i
× 2i ) = −
VREF V × 2 9 = − REF = 5 10 2 2
9-8 题图 9-8 所示的电路是由 10 位 D/A 转换器 AD7520 和同步十六进制计数器 74LS161 组成的波形发生器电路。已知 AD7520 的 VREF= -10V,试画出输出电压 vO 的波形,并标出 波形图上各点电压的幅值。
9-20 题图 9-20 所示的电路为 8 位双积分型 ADC 原理图,若时钟脉冲频率 fc=100kHz, 则最大转换时间为多少?
题图 9-20 解:双积分型 ADC 完成一次转换所需的时间为两次积分时间之和 T1+T2。而
T1 = 2 n TC = 2 8 × T2 =
1 = 2.56 ms 1 × 10 5
输出模拟电压
vo = −iF RF = −i∑ RF =− VREF RF R
∑ (2 × d )
i i =0 i
n −1
可见,输出模拟电压 vo 的值与输入二进制数字量 dn-1∼d0 成正比,比例系数为 (2) 若 n=8,VREF=-10V,RF=R/20,当输入数码为(26)16 时,
VREF RF 。 R
2 n TC 1 v I < 2 n TC = 2 8 × = 2.56 ms VREF 1 × 10 5
所以,最大转换时间为 T1+T2=5.12ms。 9-21 比较并行比较型 ADC、逐次渐近型 ADC 和双积分型 ADC 的优、缺点,指出它们 各适于哪些情况。 解:并行比较型 ADC 的优点是速度快。目前,8 位并行比较型 ADC 转换时间可以达到 50ns 以下。它的缺点是随着分辨率的提高,所用电压比较器和触发器的数目按几何级数增 加。ADC 的输出数字量位数越多,电路越复杂,因此,使用这种方案制作分辨率较高的集 成并行 ADC 比较困难。 双积分型 ADC 的优点就是工作稳定性好、抗干扰能力比较强。主要缺点是工作速度低。它 主要用在对转换速度要求不高的场合,如数字式电压表等。 逐次渐近型 ADC 是目前集成 ADC 产品中用得最多的一种电路。这种 ADC 具有电路简单、 速度快的优点。
T = (2 n − 1) ×
得 f ≥ (2 即时钟信号频率至少为 10.23MHz。
1 1 = (210 − 1) × ≤ 100 µs f f
10
− 1) × 10 4 =10.23MHz
9-19 题图 9-19 所示的电路为 3 位逐次渐近型 ADC 原理图, 如果将 ADC 的输出扩展至 10 位,时钟信号频率为 1MHz,试计算完成一次转换操作所需要的时间。
vo = −
VREF RF R
∑ (2 × d ) = 20 × R × 38 = 19 V
i i =0 i
n −1
10 × R
9-5 某 6 位 T 型电阻网络 DAC 电路题图 9-5 所示,当 RF=3R,VREF=6.3V 时,试求: (1) 输入数字量 S=(100000)2 时的输出模拟电压值; (2) 若输入数字量 S 不变,各位模拟开关接通时均产生 0.1V 残余电压,则输出模拟 电压有何变化?
题图 9-6 解:输出电压
vo = −
VREF RF 24 R
∑ (d
i =0
3
i
× 2i ) = −
5 24
∑ (d
i =0
3
i
× 2i )
输入二进制数码 0101 0110 1101
输出电压 vo 1.5625V 1.875V 4.0625V
9-7 题图 9-7 所示的电路为 10 位倒 T 型电阻网络 DAC,当 R=RF 时,试求: (1) 输出电压 vo 的取值范围? (2) 若输入数字量为(200)16 时输出电压 vo=5V,参考电压 VREF 应如何取值?
题图 9-19
解:n 位输出的逐次渐近型 ADC,完成一次转换所需的时间为 n+2 个时钟周期。所以 如果将题图 9-19 逐次渐近型 ADC 的输出扩展到 10 位,取时钟信号频率为 1MHz,则完成 一次转换操作所需要的时间为
(n + 2) ×
1 1 = 12 × =12µs f 1 × 10 6
题图 9-8 解:输出波形为锯齿波,如下图所示:
9-9 在题图 9-9 所示的电路中, AD7520 为 10 位 D/A 转换器, 74LS160 为同步十进制计 数器。ROM 存储的数据如表 9-9 所示,其中高 6 位地址 A9~A4 始终为 0,在表中没有列出。 ROM 的输出数据只用了低 4 位,做为 AD7520 的输入。试分析电路的功能,并画出输出电 压 vO 的波形图。 表 9-9 ROM 中的数据 A3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 D3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 D2 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 D1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
题图 9-4
解:(1) 推导输出电压 vo 与输入数字量 dn-1…d1d0 的关系。流入集成运放求和点的电流 之和 iΣ等于流入反馈电阻 RF 的电流 iF,即
i∑ = i F = I n−1d n −1 + I n−2 d n−2 + ... + I1d1 + I 0 d 0 VREF n−1 (2 × d n−1 + 2 n−2 × d n−2 + ... + 21 × d1 + 2 0 × d 0 ) R VREF n−1 i = ∑ (2 × d i ) R i =0 =
i =0
3
VREF 24
∑ (d
i =0
3
i
× 2i ) = −
5 × 4 = −1.25 V 16
9-4 某 n 位权电阻网络 DAC 如题图 9-4 所示。 (1) 试推导输出电压 vo 与输入数字量 dn-1…d1d0 的关系。 (2) 若 n=8,VREF=-10V,RF=R/20,当输入数码为(26)16 时,试求输出电压 vo 的值。
题图 9-7
解:(1) 输出电压
vo = −
VREF RF 210 R
∑ (d
i =0
9
i i ×2 ) = −源自VREF 210∑ (d
i =0
9
i
× 2i )
当 10 位二进制代码为全 0 时,对应输出电压为 0V;当 10 位二进制代码为全 1 时,对 应输出电压为 −
210 − 1 VREF ≈ −VREF 。故输出电压的取值范围为-VREF~0V。 210
10 ⋅1 = 0.0049 ,故 n ≥ 11 。 2n −1
9-3 在题图 9-3 所示的权电阻网络 DAC 中,若取 RF=R/2,VREF=5V,试求当输入数字 量为(0100)2 时输出电压的大小。
题图 9-3 解:输出模拟电压
vo = −
VREF RF 23 R
∑ (d i × 2i ) = −
vo =
7 10 ⋅ (d i × 2 i ) ∑ 8 2 − 1 i =0
当输入数字量(10111010)2 时,vo=7.29V;当输入数字(01011001)2 时,vo=3.49V。 9-2 已知某 DAC 电路满刻度输出电压为 10V,要求能分辨的最小模拟电压为 4.9mV, 试问其输入数字量的位数 n 至少是多少? 解:二进制代码最低位为 1 时所对应的输出电压是 DAC 能分辨出的最小输出电压,根 据题意 vo =
题图 9-9 解:电路完成三角波形的产生。输出波形如下图
9-10 题图 9-10 所示电路是用 AD7520 和运算放大器 A 构成的可编程增益放大电路, 它 的电压增益 Av=vo/vI 由输入数字量 d9∼d0 来设定,试推导 Av 的表达式,并说明 Av 的取值范 围。
题图 9-10 9-11 实现模数转换一般要经过哪几个过程?按工作原理的不同来分类,A/D 转换器可 分为哪几类? 模数转换转换一般要经过取样、保持、量化、编码等四个步骤。按工作原理的不同,可 分为直接转换型 ADC 和间接转换型 ADC。 9-12 若 ADC(包括取样—保持电路)输入模拟电压信号的最高变化频率为 10kHz,试说 明取样频率的下限是多少?完成一次 A/D 转换所用时间的上限是多少? 为了能不失真的恢复原来的输入信号, 取样频率 fs 必须不小于输入模拟信号频谱中最高 频率 fimax 的两倍,即当 fs ≥ 2fimax 时,取样信号才能够正确地反映输入信号。 9-13 什么是量化误差?它是怎样产生的? 量化过程中所取的最小数量单位称为量化单位,用Δ表示,它是数字量最低有效位为 1 时所对应的模拟量,即 1Δ=1LSB。由于取样电压不一定能被Δ整除,所以量化前后不可避免 的存在舍入误差,此误差称为量化误差,用ε表示。量化误差属于原理误差,它只能减少, 不能消除。ADC 的位数越多,各离散电平之间的差值越小,量化误差就越小。 9-18 在题图 9-18 所示的计数型 ADC 中,若输出的数字量为 10 位二进制数,时钟信号 频率为 1MHz,完成一次转换的最长时间是多少?如果要求转换时间不大于 100µs,时钟信 号频率应选多少?
相关文档
最新文档