器件实验报告八—555集成定时器及其应用
实验八555时基电路及其应用
实验⼋555时基电路及其应⽤实验⼋555时基电路及其应⽤⼀、实验⽬的1、熟悉555定时电路的结构、⼯作原理及其特点;2、掌握使⽤555定时器组成单稳态电路、多谐振荡电路和施密特电路;⼆、实验原理参考董宏伟编《数字电⼦技术实验指导书》P61。
555电路的功能表如表8—1所⽰。
表8—1 555电路的功能表555定时器主要是与电阻、电容构成充放电电路,并由两个⽐较器来检测电容器上的电压,以确定输出电平的⾼低和放电开关管的通断。
这就可以构成从⼏微秒到数⼗分钟的延时电路,⽅便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产⽣或波形变换电路。
三、实验设备与器件 l 、万⽤表⼀只2、双踪⽰波器⼀台3、555时基IC ⼀⽚,电阻器100k Ω×1(实验箱上已配置)、可变电阻器10k Ω×1(实验箱上已配置),电阻5.1k Ω×2,电容器0.01µF ×2、100µF ×1。
四、555定时器的实验内容1、⽤555集成电路构成单稳态触发器(详细⼯作过程参考相关教材)图8—2是由555定时器和外接定时元件R 、C 构成的单稳态触发器,暂稳态的持续时间t w (即为延时时间,如图8—3所⽰)决定于外接元件R 、C 值的⼤⼩,其理论值由下式决定图8—1 555定时器引脚排列 GND ?R Dv Ov I2t W =1.1RC通过改变R 、C 的⼤⼩,可使延时时间在⼏个微秒到⼏⼗分钟之间变化。
实验步骤如下:(1)按照图8—2在图8—4中模拟连接好电路。
(2)按图8—4接好实物电路图,输⼊端v I (2脚)接实验箱的单次负脉冲发⽣源(接好后先不要按动此按钮),检查电路⽆误后,通电,⽤万⽤表测量v O (3脚)端的电压值,这是稳态时的电压,做好记录,填在表8—2中。
万⽤表继续保留图8—3单稳态电路的延迟时间vv(2/3)V图8—2单稳态触发器单次脉冲源 -5V +5V地 100µ0.01µ图8—4单稳态电路实物连接图在此位置上不要撤出。
555原理及应用
二、实验器材
1.数字电路实验箱
1台
2.示波器
1台
3.万用表
1只
4.集成电路:555定时器
1只
5.元器件:电阻、电容
若干只
三、实验原理和电路
1.器件特性
555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积
很小,使用起来方便。只要在外部配上几个适当的阻容元件,就可以构
成史密特触发器、单稳态触发器及自激多谐振荡器等脉冲信号产生与变
最大输 出电流
VOL VOH IOMAX
V1 V 13.3 mA ≤200
最高振 荡频率
fMAX KHz ≤300
时间误 差
△t
nS ≤5
1 VTH即Vi1 ,VTR即Vi2 。 (b) CMOS型7555的主要性能参数
参数名 称
符号
单位 参数
电源电 压
VCC
V 3~18
电源电 流
ICC
μA 60
阈值电 压
1 Vi < VT— 时,VTH = 0, VTR = 0,555定时器“低触发”,VO为 高电平。
2 VT— < Vi < VT+ 时,VTH=0,VTR=1,555定时器“保持”,VO 保持。
3 Vi > VT+ 时,VTH = 1,VTR = 1,555定时器“高触发”,VO为 低电平。
3.单稳态触发器
5 图8.5为产生窄负脉冲用的“微分电路”,原理后附。
4.自激多谐振荡器
图8.7 自激多谐振荡器电路和波形图
图8.7所示为自激多谐振荡器电路和波形图。自激多谐振荡器用于 产生连续的脉冲信号。电路采用电阻、电容组成RC定时电路,用于设 定脉冲的周期和宽度。调节RW或电容C,可得到不同的时间常数;还可 产生周期和脉宽可变的方波输出。
555集成定时器的应用试验报告
电工电子实验报告555 集成定时器的应用一、实验目的1. 熟悉 555 定时器电路的工作原理。
2. 熟悉 555 时基电路逻辑功能的测试方法。
掌握用 555 定时器电路构成单稳态触发器,多谐振荡器,施密特触发器的方法和原理。
3. 了解定时器 555 的实际应用。
(做一个闪烁指示灯门铃)二、实验仪器与器材1 、数字逻辑实验箱 1 台2 、万用表 1 只3 、双踪示波器 1 台4 、元器件: NE555、放光二极管、电阻、电容、扬声器、导线若干三、预习要求1 .对照功能表熟悉 555 定时器各管脚及其功能。
2 阅读本实验的实验原理以及教材中有关单稳态触发器、多谐振荡器、施密特振荡器的内容。
3 .根据原理图和给出的电路参数,画好单稳态触发器、多谐振荡器、施密特振荡器的电路图,估算实验结果。
4 .了解 555 定时器的一般应用电路。
四、实验原理555 定时器是模拟—数字混合式集成电路,利用它可以方便地构成脉冲产生、整形电路和定时、延时电路。
具有功能强,使用灵活、方便等优点,在数字设备、工业控制、家用电器、电子玩具等许多领域都得到了广泛的应用。
集成定时器的产品主要有双极型和 CMOS 型两类,按集成电路内部定时器的个数又可分为单定时器和双定时器;双极型单定时器电路的型号为 555 ,双定时器电路的型号为 556 ,其电源电压的范围为 5~18V ; CMOS 单定时器电路的型号为 7555 ,双定时器电路的型号为 7556 ,其电源电压的范围为 2~18V 。
CMOS 型定时器的最大负载电流要比双极型的小,它们的功能和外引脚排列完全相同。
(一)、555 定时器的电路结构及其功能图 4- 1为 555 定时器的内部逻辑电路和外引脚图,从结构上看, 555 电路由 2 个比较器、 1 个基本 RS 触发器、 1 个反相缓冲器、 1 个集电极开路的放电晶体管和 3 个5kΩ电阻组成分压器组成。
图1-1 555 逻辑电路图和引脚图图1-2 555的功能表典型应用1. 用 555 定时器构成单稳态触发器图1-2 为由 555 定时器和外接定时元件 R 、C 构成的单稳态触发器。
实验八555集成定时器及其应用
一、实验目的
1.掌握555定时器的式作原理。 2. 掌握用555定时器构成的单稳态触发器、 多谐振荡器及压控振荡器等电路。
二、实验设备
1.示波器
2.数字万用表。 3.数字实验箱 4. 电阻电容若干 三、实验内容及步骤:
1.用555定时器构成单稳态触发器
按图接线。合理 选 择输 入 信号 的 周期 与 脉宽 , 用示 波 器观 察 Vi 、 VC 、 Vo 各 点 波 形 及其 相 位关 系 。比 较 它们 的 时序 关 系 , 并 绘出 波 形 ( 标 明周 期、脉宽, 记录占空比 和幅值)。
四、实验报告
1.整理实验数据及结果,绘出实测波形图。
2.将实测值与理论值比较,分析误差原因。
五、思考题(写在实验报告中) 1. 单稳电路对输入信号的周期与占空比有无要求,如 何选择输入信号的周期与占空比?
2. 如何调节多谐振荡器的振荡频率?
8
7
6
5
2.用555定时器构成多谐振荡器
Vcc Vo' Vi1 Vic
( 1 )按图接线。用示波 器观察 Vo 及 VC 端的波形 , 标出各波形的幅值、周期 以及tPH和tPL相位关系。
其中R1=5.1K, C=0.1uF R2=5.1K,
555
GND Vi2 Vo
1 2 3
Rd
4
2.用555定时器构成多谐振荡器
图中各参数不变。 选作(2)将R1与电源断开,并另接直流电源V,改 变V为(15、12.5、10、7.5、5)V,记录与每个电 压对应的输出信号的频率, 作出V-f曲线(压控振 荡器VCO。并用表格记录幅度和占空比的变化趋 势. 选作(3) 在以上电路图中, 5端分别加直流电压(4.5V, 4V, 3.5V, 3V, 2V) ,记录频率、幅度和占空比的变 化,并用表格详细记录.
555集成定时器的应用试验报告.doc
555集成定时器的应用试验报告.doc555集成定时器广泛应用于电路的计时、频率分频、波形发生、触发延迟、稳幅调制、电压控制振荡器等领域,是电子技术领域中使用最为广泛的集成电路之一。
本文通过实验验证了555定时器在不同工作模式下的应用。
一、实验目的1、了解555定时器的基本结构和工作原理;2、实现555定时器在单稳态触发器、多谐振荡器、方波振荡器、脉冲发生器等不同工作模式下的应用。
二、实验器材1、555集成定时器芯片;2、电阻和电容器;3、数字万用表;4、示波器;5、电源。
三、实验步骤1、单稳态触发器将555芯片的控制端(TRIG)和复位端(RESET)分别通过电阻连接到正电源VCC,将电容器C1放在电阻R1和GND之间,将555的输出端(Q)连接到LED灯和电阻R2上,电源VCC接入电阻R3和LED;利用数字万用表测量电容器充电时间和放电时间,并测量LED闪烁的频率。
2、多谐振荡器将电容器C1、电阻R1、电阻R2和555芯片组成的多谐振荡器电路,电容器C1连接到555芯片的引脚6和2上,电阻R1、电阻R2连接到引脚7和6上,通电后用示波器测量输出波形。
3、方波振荡器4、脉冲发生器四、实验结果本次实验,我们测得电容器充电时间为4.6ms,放电时间为16.0ms。
LED闪烁频率约为31Hz。
本次实验,我们测得输出波形频率为1.26 KHz,波形持续时间为0.7ms。
1、555定时器应用广泛,能够实现不同的工作功能;2、555定时器在多谐振荡器和方波振荡器中能够发挥稳定的输出作用;3、555定时器在脉冲发生器中能够实现精确的脉冲控制。
总之,555定时器的应用十分灵活,能够满足不同电路的需要。
同时,在实践中,我们需要根据具体情况合理地选择电容器、电阻等元器件,以达到更好的实验效果。
电子技术实验报告8—555定时器及其应用
学生实验报告系别电子信息学院课程名称电子技术实验班级10通信A班实验名称实验八 555定时器及其应用姓名葛楚雄实验时间2012年5月30日学号20指导教师文毅报告内容一、实验目的和任务1.熟悉555型集成时基电路的电路结构、工作原理及其特点。
2.掌握555型集成时基电路的基本应用。
二、实验原理介绍555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。
它的内部电压标准使用了三个5K的电阻,故取名555电路。
其电路类型有双极型和CMOS型两大类,两者的工作原理和结构相似。
几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器,556和7556是双定时器。
双极型的电压是+5V~+15V,最大负载电流可达200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。
1、555电路的工作原理555电路的内部电路方框图如图20-1所示。
它含有两个电压比较器,一个基本RS触发器,一个放电开关Td,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使低电平比较器Vr1反相输入端和高电平比较器Vr2的同相输入端的参考电平为2/3VCC和1/3VCC。
Vr1和Vr2的输出端控制RS触发器状态和放电管开关状态。
当输入信号输入并超过2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。
R是异步置零端,当其为0时,555输出低电平。
平时该端开路或接VCC。
Vro是控制电压端(5脚),D平时输出2/3VCC作为比较器Vr1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。
555定时器及其应用实验报告
555定时器及其应用【实验目的】(1) 掌握555的工作原理及其性能特点 (2) 掌握555组成的基本电路及应用。
【实验要求】(1) 用555组成一个时钟脉冲信号发生器,要求输出:标准秒脉冲,20Hz~20kHz 范围内任意频率可调、占空比可调的脉冲信号。
(2) 设计一个触摸开关,要求每触发一次其输出端维持10秒钟的高电平。
(3) 用555设计一个分频器,要求输入时钟脉冲的频率为1KHz ,其输出为100Hz 。
【实验器材】面包板,555芯片一片,函数发生器,直流稳压电源,万用表,示波器,电阻、电容、导线若干。
【实验原理】 (1) 时钟脉冲产生器555组成的多谱振器可以用作各种时钟脉冲发生器,如图1所示,通过D1,D2两个二极管将电路的充电支路与放电支路分开,则由RC 电路的充放电时间公式得,充电时间为:110.7t R C = ,放电时间为230.7t R C =,因此输出脉冲的频率为131.43()f R R C=+ ,占空比为111213t R t t R R =++ 。
通过调节R1和R3的阻值便可实现输出不同频率与占空比的脉冲信号。
图 1 时钟脉冲发生器(2) 触摸开关555组成的单稳态触发器可以用作触摸开关,电路如图2所示,其中M 为触摸金属片(或导线)。
静态时无触发脉冲输入,555的输出为低电平即U O =0,发光二极管不亮,当用手触摸金属片M 时,相当于2端输入一负脉冲,555的内部比较器A2翻转,使输出变为高电平即U O =1,发光二极管亮,直到电容C 上的电压充电23C DD U U = 。
发光二极管亮的时间为 1.1tp RC = 。
图 2 触摸开关电路(3) 分频电路由555组成的单稳态触发器可以构成分频比率很大的分频电路,如图3所示。
设输入信号Ui 为一列脉冲串,第一个负脉冲触发2端后,555的输出Uo 变为高电平,电容C 开始充电,由于Uc 未达到23DD U ,Uo 将一直保持为高电平,在这段时间里,输入负脉冲再出发也不起作用。
实验报告555集成定时器的应用
实验报告555集成定时器的应用
555集成定时器是一种很方便的定时器芯片,它将电子计时和一些基本的功能融合在
一起,拥有实用的应用,可以起到控制时间的作用,具有实用的属性。
555集成定时器可以实现多功能的计时,用较少的零件实现精确的定时,被广泛应用
于时控装置、家用电器、短信提醒、售货机、安全门等场景。
555集成定时器应用于家用电器,实现自动定时关机,比如对于目前电视市场上许多
涉及节目订购的节目,可以通过555集成定时器实现定时功能,当订购的节目时间到达时,自动开机观看节目;同理,可以用来实现电暖自动定时启动和关闭,便于家庭节能。
555集成定时器也能应用于安全门,具有延时关门、多按钮控制开关门等功能,保证
安全性。
此外,将它应用于短信提醒,能实现当实现时间到达条件时,集成定时器自动发
出提醒,发出报警信息,以实现人们的时效跟踪管理。
另外,555集成定时器也可以被应用于售货机,实现定时发放物品和打印发票等功能,保证售货机的安全性。
总之,555集成定时器由于其节省零件、高可靠性和精准控制时间的优点,凝聚着许
多实用的功能,被广泛应用于各种场景。
555定时器的实验报告
555定时器的实验报告555定时器的实验报告引言:555定时器是一种广泛应用于电子电路中的集成电路,它具有稳定可靠、功能强大的特点。
本次实验旨在通过对555定时器的实际操作,进一步了解其原理和应用。
一、实验目的:通过555定时器的实验,掌握其基本工作原理和使用方法,进一步了解其在电子电路中的应用。
二、实验器材:1. 555定时器集成电路芯片2. 电源3. 电阻、电容等元件4. 示波器5. 多用途实验板三、实验步骤:1. 搭建基本的555定时器电路首先,将555定时器芯片插入多用途实验板中,并根据电路图连接所需的电阻、电容等元件。
接下来,将电源连接到实验板上,并确保电路连接正确无误。
2. 测量输出信号频率使用示波器测量555定时器输出信号的频率。
调节电阻和电容的数值,观察输出信号频率的变化。
记录不同参数下的频率值,并进行比较分析。
3. 观察输出信号波形通过示波器观察555定时器输出信号的波形。
调节电阻和电容的数值,观察波形的变化。
分析不同参数对波形的影响,并记录观察结果。
4. 实现定时功能利用555定时器的稳定性和精确性,设计并实现一个简单的定时器电路。
通过调节电阻和电容的数值,设置所需的定时时间。
观察定时器的准确性和稳定性,并记录实验结果。
四、实验结果和分析:通过实验,我们得到了不同参数下555定时器输出信号的频率和波形。
实验结果表明,电阻和电容的数值对555定时器的工作频率和波形有较大的影响。
较大的电阻和电容数值将导致较低的频率和较长的周期,而较小的数值则会得到相反的结果。
此外,我们还实现了一个简单的定时器电路。
通过调节电阻和电容的数值,我们成功设置了所需的定时时间,并观察到定时器的准确性和稳定性。
这进一步证明了555定时器在电子电路中的实用性和可靠性。
五、实验总结:通过本次实验,我们深入了解了555定时器的工作原理和应用。
通过调节电阻和电容的数值,我们可以灵活地控制555定时器的输出频率和波形。
555定时器应用实验报告
555定时器应用实验报告555定时器应用实验报告引言:555定时器是一种经典的集成电路,具有广泛的应用。
本实验旨在通过实际操作,探索555定时器的基本原理和应用。
一、实验目的本实验的目的是通过555定时器的应用实验,了解555定时器的基本工作原理、特性和应用场景。
二、实验器材1. 555定时器芯片2. 电源3. 电阻、电容、电感等元件4. 示波器5. 连线电缆等三、实验步骤1. 搭建基本的555定时器电路,包括电源、555芯片、电阻、电容等元件。
2. 连接示波器,观察输入和输出信号的波形。
3. 调节电阻和电容的数值,观察波形的变化。
4. 尝试不同的输入信号,如方波、正弦波等,观察输出信号的响应。
5. 探索不同的应用场景,如脉冲发生器、频率分频器等,观察555定时器的工作情况。
四、实验结果与分析在实验过程中,我们观察到了以下现象和结果:1. 通过调节电阻和电容的数值,可以改变555定时器的输出频率和占空比。
2. 输入信号的不同波形对输出信号的响应也有影响,方波信号能够得到更稳定的输出。
3. 在不同的应用场景中,555定时器表现出了良好的性能,如在脉冲发生器中能够产生稳定的脉冲信号,在频率分频器中能够实现精确的频率分频。
通过对实验结果的分析,我们可以得出以下结论:1. 555定时器是一种非常实用的集成电路,具有广泛的应用前景。
2. 通过调节电阻和电容的数值,可以实现对555定时器的频率和占空比的精确控制。
3. 在不同的应用场景中,555定时器表现出了良好的稳定性和可靠性。
五、实验总结通过本次实验,我们深入了解了555定时器的基本原理和应用。
通过实际操作,我们掌握了555定时器的调节方法和应用技巧。
同时,我们也发现了555定时器在不同应用场景中的优势和局限性。
通过对实验结果的分析和总结,我们对555定时器有了更深入的理解。
总之,555定时器作为一种经典的集成电路,在电子领域有着广泛的应用。
通过实验,我们对555定时器的工作原理和应用场景有了更深入的了解。
555定时器及其应用实验总结
555定时器及其应用实验总结一、引言本文主要讨论555定时器及其应用实验。
555定时器是一种集成电路,常用于脉冲、计时和振荡等电子电路中。
本文将从原理、使用方法、实验步骤和应用实例等方面进行深入探讨。
二、555定时器原理1.555定时器的基本结构和引脚功能–555定时器包含8个引脚,分别是VCC、GND、TRIG、OUT、RESET、CTRL、THRES和DISCH。
–VCC和GND分别为电源引脚,提供正负电源。
–TRIG为触发引脚,接收触发脉冲信号。
–OUT为输出引脚,输出555定时器的工作状态。
–RESET为复位引脚,用于将555定时器重置到初始状态。
–CTRL为控制引脚,用于控制555定时器的工作模式。
–THRES为阈值引脚,用于设置计时时间。
–DISCH为放电引脚,用于开始放电阶段。
2.555定时器的工作原理–555定时器基于比较器和RS触发器的结构,通过电容充放电实现定时功能。
–当TRIG引脚接收到触发脉冲信号时,555定时器会开始一个计时周期。
–在计时过程中,电容会逐渐充电,直到充电到阈值引脚设定的电压水平。
–一旦充电到达阈值,输出引脚会翻转状态,并且电容会被放电。
–放电过程会持续到电容放电到低电压水平,此时输出引脚再次翻转状态。
–定时周期不断重复,实现定时功能。
三、555定时器的使用方法1.基本工作模式–555定时器有3种基本工作模式,分别是单稳态、连续振荡和脉冲振荡模式。
–单稳态工作模式下,输出引脚会在接收到触发脉冲信号后保持一个稳定的状态。
–连续振荡工作模式下,输出引脚会周期性地翻转状态,产生一串方波信号。
–脉冲振荡工作模式下,输出引脚会周期性地输出脉冲信号。
2.555定时器的参数设置–设置阈值电压水平可以改变定时周期,从而改变输出信号的频率。
–改变电容和电阻的数值可以进一步调节定时周期。
–通过改变电源电压可以调节输出信号的幅度。
3.555定时器的电路接法–不同工作模式的555定时器电路接法有所差异。
555定时器及其应用实验报告
555定时器及其应用实验报告实验报告:555定时器及其应用一、实验目的1.了解555定时器的结构和工作原理;2.学会使用555定时器搭建基本的定时电路;3.掌握555定时器的应用。
二、实验材料1.电源;2.555定时器芯片;3.电阻、电容等元器件;4.示波器、万用表等实验仪器;5.连接线等实验辅助器材。
三、实验原理555定时器是一种广泛应用于定时电路中的集成电路。
它具有三个功能引脚:触发引脚(TRIG)、控制引脚(CON)和复位引脚(RES)。
在定时工作模式下,555定时器可通过选择不同的电阻和电容值,实现不同的定时效果。
四、实验步骤1.搭建555定时器的基本电路。
将555定时器芯片插入实验板上,并根据电路图连接相应的元器件和电源。
2.测量电路的参数。
使用万用表测量电路中各个元器件的电阻、电容值,并记录下来。
3.调试电路并观察现象。
根据实验板上的示波器,调整电路,观察波形的变化,并记录下观察到的现象。
五、实验结果与分析通过调试和观察,实验发现在555定时器基本电路中,当输入信号触发引脚(TRIG)的电压高于比较引脚(THRESH)的电压时,输出引脚会输出高电平信号,反之输出引脚则输出低电平信号。
通过调整电压和触发条件,可以实现不同的定时效果。
六、实验应用1.交通信号灯。
通过555定时器的输出信号控制灯光的切换,实现交通信号灯的闪烁效果,提醒行人和车辆注意交通状况。
2.蜂鸣器报警器。
通过555定时器的输出信号控制蜂鸣器的频率,实现报警器的报警效果,用于安防应用中。
3.继电器控制。
通过555定时器的输出信号控制继电器的通断,实现对电器设备的定时自动控制。
七、实验总结本实验通过对555定时器的学习和实验应用,深入理解了555定时器的结构、工作原理和应用场景。
通过实验,掌握了555定时器的基本使用方法,并在实验中成功搭建了基本的定时电路,同时也了解了其应用于交通信号灯、报警器和继电器控制等方面。
通过本次实验,对电子学的学习和实践经验也得到了提升。
集成定时器及其应用实验报告
集成定时器及其应用实验报告集成定时器是一种电子设备,它可以被用于电路中控制信号的时间。
在电子方面,定时器被广泛用于电子闹钟、计数器、发射器等应用中。
在本实验中,我们将学习如何使用集成定时器IC(集成电路)来生成一个经周期性高低电平变化的方波。
我们还将学习如何使用这个方波来控制其他电路,以实现各种应用。
本实验所需材料:1. 集成定时器IC(比如NE555);2. 电阻、电容等标准电子零件;3. 万用表,示波器等测试工具;4. 面包板,电源等基础电子实验设备。
本实验步骤:1. 连接电阻和电容元件,组成与NE555 IC的基本电路。
使用万用表来测试电路中各个元件之间的电位差和电流;2. 使用示波器测量电路中方波的频率和占空比。
调节电容和电阻的值,以生成不同频率的方波和不同的占空比;3. 将得到的方波信号输出到其他电路中,实现各种应用。
例如,可以将方波信号输出到LED,让它们按照特定的频率高低闪烁,也可以将方波信号输出到电子继电器,驱动机器人运动等。
本实验注意事项:1. 在连接电路元件之前,一定要先检查它们的参数,防止参数不匹配,从而发生电路故障;2. 在连接电路元件时,必须注意电路中各个元件之间的正确位置,特别是极性元件(如电容)的极性方向;3. 在调试方波时,必须小心调节电路元件的值,以防元件过载或电路过热;4. 在接上其他电路时,一定要先检查它们的参数,以防电路故障影响其他元件的正常工作。
结论:通过本实验,我们学习了如何使用集成定时器IC(比如NE555)来生成一个方波信号,并将它们输出到其他电路中,实现了各种有趣的应用。
这项技术在电子工程中具有广泛的应用前景,特别是在计算机编程、通讯和控制工程中。
555集成定时器实验报告
555集成定时器实验报告555集成定时器实验报告引言:555集成定时器是一种非常常见的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555集成定时器的实际应用,深入了解其工作原理和性能特点,以及其在电子领域中的应用。
一、实验目的本实验旨在掌握555集成定时器的基本工作原理,了解其在定时和脉冲生成等方面的应用。
二、实验器材和材料1. 555集成定时器芯片2. 电阻、电容等元器件3. 示波器、数字万用表等实验仪器三、实验步骤1. 搭建基本的555集成定时器电路,包括电源电路、稳压电路等。
2. 将电路接入示波器和数字万用表,观察和测量相关信号。
3. 调节电路参数,观察和记录555集成定时器的工作状态和输出信号。
4. 根据实验结果,分析555集成定时器的工作原理和性能特点。
四、实验结果与分析通过实验观察和测量,我们得到了以下实验结果:1. 555集成定时器可以实现多种定时和脉冲生成功能,包括单稳态、多稳态、方波等。
2. 通过调节电阻和电容的数值,可以控制定时器的输出频率和占空比。
3. 555集成定时器的输出信号具有较高的稳定性和精确度。
4. 555集成定时器的工作电压范围较广,适用于不同的电子设备。
根据实验结果,我们可以得出以下结论:1. 555集成定时器是一种非常实用和可靠的电子元器件,广泛应用于各种电子设备中。
2. 通过调节电阻和电容的数值,可以实现不同的定时和脉冲生成功能,满足不同应用需求。
3. 555集成定时器的工作稳定性和精确度较高,适用于对时间精度要求较高的应用场景。
4. 555集成定时器的工作电压范围广泛,适用于不同的电子设备和电路设计。
五、实验总结通过本次实验,我们深入了解了555集成定时器的工作原理和性能特点,以及其在电子领域中的应用。
通过调节电阻和电容的数值,我们可以实现不同的定时和脉冲生成功能,满足不同的应用需求。
555集成定时器具有较高的工作稳定性和精确度,适用于对时间精度要求较高的场景。
555定时器及其应用实验报告
555定时器及其应用实验报告实验报告:555定时器及其应用摘要:本次实验主要介绍了555定时器的基本原理和应用。
通过实验,深入了解了555定时器的工作原理,并熟悉了其在电子电路中的应用。
1.引言2.原理555定时器的基本原理是通过耦合电容和电阻的组合产生不同的输出脉冲信号,实现定时功能。
其内部结构主要由电源控制电路、比较器、RS 触发器和输出级组成。
它有3个触发方式:1)单稳触发器(Monostable);2)双稳触发器(Bistable);3)多稳触发器(Astable)。
3.单稳触发器实验3.1实验目的通过实验,了解并验证单稳触发器的工作原理,以及555定时器的基本连接方式。
3.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源3.3实验步骤3.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
3.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
4.双稳触发器实验4.1实验目的通过实验,了解并验证双稳触发器的工作原理,以及555定时器的基本连接方式。
4.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源4.3实验步骤4.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
4.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
5.多稳触发器实验5.1实验目的通过实验,了解并验证多稳触发器的工作原理,以及555定时器的基本连接方式。
5.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源5.3实验步骤5.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
5.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
器件实验报告八—555集成定时器及其应用
555集成定时器及其应用实验报告一、实验内容与目的1.单稳态触发器功能的测试,对于不同的外界元件参数,测定输出信号幅度和暂稳时间。
2.多谐振荡器功能的测试与验证,给定一个外界元件,测量输出波形的频率、占空比,并且计算理论值,算出频率的相对误差。
实验仪器:自制硬件基础电路实验箱,双踪示波器,数字万用表,集成定时器NE555 2片;电阻100kΩ、10kΩ各2只;51kΩ、5.1kΩ、4.7kΩ各1只;电容30μF、10μF、0.1μF、2200pF各1只;电位器100kΩ1只;元器件:LM555。
二、实验预习内容:本实验旨在了解555定时器的内部结构和工作原理:单稳态触发器、多谐振荡器的工作原理。
实验资料:(1)构成单稳态触发器电路如下图所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo =0,T导通,C放电,此时电路处于稳定状态。
当2加入VI<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。
电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出Vo=0。
此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出Vo脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。
(2) 多谐振荡器电路如下图所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。
电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:周期T=0.7 C(R1+2R2)频率f=1/T=1.44/(R1+2R2)C,占空比D=( R1+R2 )/( R1+2R2)。
555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于3.3MΩ。
三、实验过程与数据分析1.单稳态触发器逻辑功能的测试。
物理学实验报告 ——555时基电路及其应用
XXXXXX实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:实验八项目名称:555时基电路及其应用一、实验目的1、熟悉555型集成时基电路结构、工作原理及其特点2、掌握555型集成时基电路的基本应用二、实验设备1、数字电路实验箱2、数字示波器3、信号发生器4、 555×2 2CK13×2 电位器、电阻、电容若干三、实验内容及步骤1、多谐振荡器按图8-3接线,用双踪示波器观测vc 与vo的波形,并简要画出vc与vo的波形,测定频率。
(信号周期理论计算公式:T=tw1+tw2, tw1=0.7(R1+R2)C, tw2=0.7R2C)表8-2 多谐振荡器实验数据Vs黄色 Vo蓝色2、施密特触发器按图8-6接线,输入信号由信号发生器提供,预先调好vS的频率为1KHz,接通电源,逐渐加大vS 的幅度,观测输出波形,简要画出vS和v o的波形,依照图8-7,测绘电压传输特性。
四、实验总结分析、总结555集成芯片实验结果:T=tw1+tw2, tw1=0.7(R1+R2)C, tw2=0.7R2C已知555电路要求R1 与R2 均应大于或等于1KΩ,但R1+R2应小于或等于3.3MΩ本实验中,R1及R2均取5.1KΩ,C为0.1u。
由已知数据可以演算出理论值即信号周期为107.1 us,高电平持续时间为71.4 us,低电平持续时间为35.7 us。
通过软件仿真可得相关测量数据。
即即信号周期为106.756 us,高电平持续时间为71.212 us,低电平持续时间为36.102 us。
555定时器主要是与电阻、电容构成充放电电路,并由两个比较器来检测电容器上的电压,以确定输出电平的高低和放电开关管的通断。
这就很方便地构成从微秒到数十分钟的延时电路,可方便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产生或波形变换电路。
555定时器及其应用实验报告
555定时器及其应用实验报告引言:555定时器是一种集成电路,广泛应用于定时、脉冲、频率调制、频率分割和频率测量等领域。
本文将介绍555定时器的基本原理和实验过程,并探讨其在电子领域中的应用。
一、555定时器的基本原理555定时器是一种多功能集成电路,由比较器、RS触发器、RS锁存器和电压比较器等组成。
它的工作基于门电路的触发与复位过程,实现了不同的定时功能。
二、555定时器的工作模式555定时器有三种基本工作模式:单稳态、自由运行和串接。
在单稳态模式下,555定时器输出一个脉冲宽度可调的方波信号;在自由运行模式下,它输出一个连续变化的方波信号;在串接模式下,多个555定时器可以通过级联实现更复杂的定时功能。
三、实验过程为了验证555定时器的工作原理,我们进行了以下实验:1. 准备实验所需材料:555定时器芯片、电容、电阻等。
2. 连接电路:按照电路图将555定时器与其他元件连接起来。
3. 设置参数:根据实验要求调整电容和电阻的数值。
4. 运行实验:给电路通电,观察555定时器输出的信号波形。
5. 记录实验结果:记录实验过程中观察到的波形变化和参数调整情况。
四、实验结果与分析通过实验,我们观察到555定时器的输出信号波形随着电容和电阻数值的变化而改变。
通过调整电容和电阻的数值,我们可以控制输出信号的频率和占空比。
这证明了555定时器的可靠性和灵活性。
五、555定时器的应用555定时器在电子领域中有广泛的应用,以下是一些典型的应用场景:1. 脉冲生成:通过调整电容和电阻的数值,可以产生不同频率的脉冲信号,用于驱动其他电路或触发器件。
2. 方波发生器:通过在555定时器中添加元件,如电容和电阻,可以实现方波信号的产生和调节。
3. 时钟电路:555定时器可以用作时钟电路的基础元件,用于控制其他电子设备的定时功能。
4. 脉宽调制:通过调整电容和电阻的数值,可以实现脉宽调制功能,用于控制电子设备的输出功率。
555定时器的应用实验报告
555定时器的应用实验报告一、实验目的本实验旨在掌握555定时器的基本原理,学习555定时器的应用,掌握555定时器在电路中的工作原理及应用方法。
二、实验仪器和材料1. 555计时器模块2. 电源3. 电阻4. 电容5. 多用万用表三、实验原理555定时器是一种集成电路芯片,由于其具有精度高、可靠性好、应用范围广等特点,被广泛应用于各种电子设备中。
其主要特点是可以通过改变外部元件的参数来改变其输出频率与占空比。
同时,它还具有单稳态触发、多谐振荡等功能。
555定时器主要由比较器、RS触发器和输出级组成。
其中比较器是将输入信号与参考信号进行比较,并输出相应的脉冲信号;RS触发器则是根据输入脉冲信号进行状态转换;输出级则是将RS触发器的输出转换为可供外部使用的高低电平信号。
四、实验步骤1.连接电路:将555计时器模块连接到电源上,并连接所需的外部元件(如电阻、电容等)。
2.调整参数:通过改变外部元件的参数来调整555定时器的输出频率与占空比。
3.测量结果:使用多用万用表测量电路中各元件的电压、电流等参数,并记录下来。
五、实验结果经过实验,我们成功地掌握了555定时器的基本原理和应用方法。
通过改变外部元件的参数,我们成功地调整了555定时器的输出频率与占空比,并得到了相应的测量结果。
六、实验结论本实验证明了555定时器在电子设备中具有广泛的应用价值,可以通过改变外部元件的参数来实现不同的功能。
同时,我们还发现,在进行电路设计时,需要考虑到各个元件之间的相互作用,以确保电路能够正常工作。
七、实验心得通过本次实验,我深刻认识到了学习理论知识和进行实践操作之间的重要性。
只有将理论知识与实践操作相结合,才能真正掌握所学知识。
同时,在进行实验过程中,我还学会了如何正确使用多用万用表进行测量,并且对于电路设计和组装也有了更深入的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
555集成定时器及其应用实验报告
一、实验内容与目的
1.单稳态触发器功能的测试,对于不同的外界元件参数,测定输出信号幅度和暂稳时间。
2.多谐振荡器功能的测试与验证,给定一个外界元件,测量输出波形的频率、占空比,并且计算理论值,算出频率的相对误差。
实验仪器:
自制硬件基础电路实验箱,双踪示波器,数字万用表,集成定时器NE555 2片;电阻100kΩ、10kΩ各2只;51kΩ、5.1kΩ、4.7kΩ各1只;电容30μF、10μF、0.1μF、2200pF各1只;电位器100kΩ1只;
元器件:LM555。
二、实验预习内容:
本实验旨在了解555定时器的内部结构和工作原理:单稳态触发器、多谐振荡器的工作原理。
实验资料:
(1)构成单稳态触发器
电路如下图所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo =0,T导通,C放电,此时电路处于稳定状态。
当2加入VI<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。
电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出Vo=0。
此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出Vo脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。
(2) 多谐振荡器
电路如下图所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。
电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:
周期T=0.7 C(R1+2R2)
频率f=1/T=1.44/(R1+2R2)C,
占空比D=( R1+R2 )/( R1+2R2)。
555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于
3.3MΩ。
三、实验过程与数据分析
1.单稳态触发器逻辑功能的测试。
连接电路如下:
实验步骤:
1、连接电路图:在实验箱找到LM555芯片,按照如上图电路连接。
2、电路完成连接,首先外接元件参数为R=100KΩ,C=47uF,输入端加单次负脉冲信号,测定输出信号幅度(由示波器测量)和暂稳时间。
3、将R改为1KΩ,C改为0.1uF,输出端加10KHz左右的连续脉冲信号,然后用示波器观察Vo,Vi,Vc的波形,并测量出脉冲信号的宽度Tp。
分析:单稳态触发器Vo,Vi,Vc的理论波形如下图:
由波形图可知接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo=0,T导通,C放电,此时电路处于稳定状态。
当2加入Vi<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。
电容C开始充电,按指数规律上升,当电容C充电到2/3Vcc 时,A1翻转,使输出Vo=0。
此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出Vo脉冲的持续时间tw=1.1RC,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。
实验中单稳态触发器的示波器波形如下图所示:
Vc和Vo的波形图:
Vc与Vi的波形图:
由上图可知当Vi变成低电平,Vc开始上升时,Vo发生翻折。
当Vc上升到2/3Vcc 时,比较器A1输出低电平,又将触发器置0,电路自动地由暂态返回原来的稳态,输出端Q恢复为低电平,并且一直保持到再次受到触发为止。
实验数值记录与分析:
2.多谐振荡器逻辑功能的测试。
下图是555多谐振荡器电路的连接线:
实验步骤:
1、在实验箱上LM555芯片,然后按照上图连接电路图。
2、图中外接元件参数为R1=1KΩ,R2=10KΩ,C=0.1uF,用示波器观察Vc,Vo的
波形,并测量输出波形的频率,占空比。
3、计算理论值,与测量值进行比较,算出频率的相对误差。
分析:多谐振荡器的理论波形如下图:
由波形图可以看出,电源接通后,利用外接RC电路的充放电作用,不断改变高电平触发端和低电平触发端的电平,使RS触发器置0,置1,从而在输出端得到一系列矩形脉冲信号。
输出矩形脉冲信号的振荡周期为T1+T2=(R1+2R2)C。
实验所得波形如下图:
实验数值记录与分析:
四、实验心得与感悟
此次实验为555集成定时器及其应用,主要是熟悉555 集成定时器的组成及工作原理;掌握用定时器构成单稳态电路、多谐振荡电路,并且完成其功能测试;学习用示波器对波形进行定量分析,测量波形的周期、脉宽和幅值等。
本次实验是每个人独立完成,所以在开始做实验时还是有点儿困难的,但后来通过一步一步的试探,还是完成了实验。
总之,此次实验是本学期的最后一次器件实验,还是挺有收获的。