人教版数学九年级上册..弧、弦、圆心角PPT课件
合集下载
人教版九年级上册数学课件:24.圆的有关性质——弧、弦、圆心角
O·
又 ∠ACB=60°
B
C
∴△ABC是等边三角形,
AB=BC=CA
∴∠AOB=∠BOC=∠AOC
弧等 弦等 弦等 圆心角等
2、如图,AB是⊙O的直径,B⌒C=C⌒D=D⌒E,
∠COD=35°,求∠AOE的度数。
证明: ∵ BC⌒=C⌒D=⌒DE
∴∠COB=∠COD=∠DOE =35A° ∴∠AOE=180°-3∠COD =75°
7.提升
如图,CD为⊙O的弦,在CD上取 CE=DF,连结OE、OF,并延长交⊙O 于点A、B.
((12))试求判证断:△A⌒CO=EB⌒FD的形状,并说明理由;
O
C EF D
A
B
ED C B
O
弧等
圆心角等
3、如图,AD=BC,请比较AB与CD的大小.
解: ∵ AD=BC
A
C
∴ AD⌒=BC⌒
∴ AD⌒+A⌒C=B⌒C+⌒AC D
O
B
即 CD⌒=A⌒B
∴ CD=AB
弦等
弧等
6.小结
1.请回顾本节课我们学习同圆或 等圆中,圆心角及其所对的弧、弦之 间的关系的学习过程.
2.怎样记忆圆心角定理呢? 要注意什么?
B
圆心角、所对弦、所对弧 2、三个相等关系:
α
Oα
A
(1) 圆心角相等 知
(2) 弧相等
一 得
A1 B1
圆心角等
(3) 弦相等
二 弧等
弦等
5.练习
1、如图3,AB、CD 是⊙O 的两条弦。
(14)如果 AB=CD,那 OE么⊥AB于E,,OF⊥CD于F,。
(2)O如E果与A⌒OBF=相C⌒D等,吗那?么为A什B=么CD?,
人教版数学九年级上册圆周角的概念和圆周角的定理ppt课件
(2)在同圆或等圆中,相等的圆周角所对的弧 相等。
AB
C′
C
E
O
C
F
DF
B' O′
B O
A'
A
【方法一点通】 利用圆周角定理及其推论证明时常用的思路
1.在同圆或等圆中,要证弧相等,考虑证明这两条弧所对的圆周角
(圆心角、弦、弦心距)相等.
2.在同圆或等圆中,要证圆周角相等,考虑证明这两个圆周角所对 的弧(圆心角、弦、弦心距)相等.
圆周角定理推理2
同圆或等圆中,相等的圆周角所对 的弧相等
条件“在 同圆或等 圆中”可以 省略吗?
C′
C
B' O′
B O
A'
A
知识要点 圆周角定理的推理
1、(在同圆或等圆中),同弧或等弧所 对的圆周角相等.
2、 在同圆或等圆中,如果两个圆周角相等,
它们所对的弧一定相等
A
C
B
·
·
D
E
正确理解圆心角,弦、 弦心距、圆周角与弧 的互推关系
知一推四 前提:同圆 或是等圆中
正确理解圆心角,弦、 弦心距、圆周角与弧 的互推关系
课后练习. P88 第3,4题.
谢谢大家!
课后作业
1. 已知:A⌒C = B⌒D, A
B
求证:AB∥CD. C
D
2.AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° ,求∠BOC的度数。
⌒⌒ AB=A′B′
C′
B A′
B′ O′
人教版数学九年级上册圆周角的概念 和圆周 角的定 理p p t 课件
五、定理
圆周角定 理
在同圆或等圆中,一条弧(同弧或等弧)
AB
C′
C
E
O
C
F
DF
B' O′
B O
A'
A
【方法一点通】 利用圆周角定理及其推论证明时常用的思路
1.在同圆或等圆中,要证弧相等,考虑证明这两条弧所对的圆周角
(圆心角、弦、弦心距)相等.
2.在同圆或等圆中,要证圆周角相等,考虑证明这两个圆周角所对 的弧(圆心角、弦、弦心距)相等.
圆周角定理推理2
同圆或等圆中,相等的圆周角所对 的弧相等
条件“在 同圆或等 圆中”可以 省略吗?
C′
C
B' O′
B O
A'
A
知识要点 圆周角定理的推理
1、(在同圆或等圆中),同弧或等弧所 对的圆周角相等.
2、 在同圆或等圆中,如果两个圆周角相等,
它们所对的弧一定相等
A
C
B
·
·
D
E
正确理解圆心角,弦、 弦心距、圆周角与弧 的互推关系
知一推四 前提:同圆 或是等圆中
正确理解圆心角,弦、 弦心距、圆周角与弧 的互推关系
课后练习. P88 第3,4题.
谢谢大家!
课后作业
1. 已知:A⌒C = B⌒D, A
B
求证:AB∥CD. C
D
2.AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° ,求∠BOC的度数。
⌒⌒ AB=A′B′
C′
B A′
B′ O′
人教版数学九年级上册圆周角的概念 和圆周 角的定 理p p t 课件
五、定理
圆周角定 理
在同圆或等圆中,一条弧(同弧或等弧)
人教版九年级数学上册课件:24.1.3弧、弦、圆心角听课
•
10、阅读一切好书如同和过去最杰出 的人谈 话。202 1/8/10 2021/8/ 102021 /8/108 /10/202 1 7:08:43 PM
•
11、一个好的教师,是一个懂得心理 学和教 育学的 人。202 1/8/10 2021/8/ 102021 /8/10A ug-211 0-Aug-2 1
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/ 8/1020 21/8/10 August 10, 2021
•
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。202 1/8/10 2021/8/ 102021 /8/102 021/8/1 0
24.1.3 弧、弦、圆心角
知识点二 圆心角的概念,弧、弦、圆心角的关系
圆心角 的概念
顶点在___圆__心___的角叫做圆心角
弧、弦、圆 在同圆或等圆中,相等的圆心角所对的___弧___
心角之间的 相等,所对的___弦___也相等
关系定理
24.1.3 弧、弦、圆心角
(1)在同圆或等圆中,如果两条弧相等,那么它 弧、弦、圆 们所对的__圆_心__角___相等,所对的____弦____相等; 心角的关系 (2)在同圆或等圆中,如果两条弦相等,那么它
•
24.1.3 弧、弦、圆心角
总结反思
知识点一 圆的旋转不变性
圆的旋转不变性:把圆绕圆心旋转任意一个角度,所得的 图形都与原图形重合.
对称性:圆既是轴对称图形,又是中心对称图形,它的对 称轴是____经_过__圆_心__的__直_线___或__直__径_所__在_的__直__线__,它的对称中心 是___圆__心___.
初中数学《弧,弦,圆心角》课件
C
O A
E
B
练习
1、如图,在⊙O中,A⌒B=A⌒C ,∠C=75°,求∠A的度数。
小结 弧、弦与圆心角的关系定理
1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 也相等.
2、在同圆或等圆中,相等的弧所对的圆心角__相__等_, 所对的
弦___相_等____;
3、在同圆或等圆中,相等的弦所对的圆心角__相__等__,所对 的弧___相__等____.
在同圆或等圆中,两个 圆心角、两条弧、两条 弦中有一组量相等,它 们所对应的其余各组量 也相等.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗? 为什么?
A
E
Bቤተ መጻሕፍቲ ባይዱ
OE﹦OF
O·
D
F C
例题
例1 如图,在⊙O中, A⌒B=A⌒C ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC △ABC为等边三角形
A
O·
B
C
练习
1、如图,AB是⊙O 的直径, BC = CD = DE ∠COD=35°,求∠AOE 的度数.
E
D
C
A
·
B
O
练习
2、如图,AD=BC, 比较A⌒B与C⌒D的长度,并证明你的结 论。
练习
3、如图,已知OA、OB是⊙O的半径, 点C为A⌒B的中点,M、N分别为OA、OB的中点, 求证:MC=NC
O
M
N
A
B
C
练习
4、如图,BC为⊙O的直径,OA是⊙O的半径, 弦BE∥OA,求证:A⌒C=A⌒E
圆心角 相等
弧 相等
弦 相等
练习
如图,AB、CD是⊙O的两条弦.
O A
E
B
练习
1、如图,在⊙O中,A⌒B=A⌒C ,∠C=75°,求∠A的度数。
小结 弧、弦与圆心角的关系定理
1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 也相等.
2、在同圆或等圆中,相等的弧所对的圆心角__相__等_, 所对的
弦___相_等____;
3、在同圆或等圆中,相等的弦所对的圆心角__相__等__,所对 的弧___相__等____.
在同圆或等圆中,两个 圆心角、两条弧、两条 弦中有一组量相等,它 们所对应的其余各组量 也相等.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗? 为什么?
A
E
Bቤተ መጻሕፍቲ ባይዱ
OE﹦OF
O·
D
F C
例题
例1 如图,在⊙O中, A⌒B=A⌒C ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC △ABC为等边三角形
A
O·
B
C
练习
1、如图,AB是⊙O 的直径, BC = CD = DE ∠COD=35°,求∠AOE 的度数.
E
D
C
A
·
B
O
练习
2、如图,AD=BC, 比较A⌒B与C⌒D的长度,并证明你的结 论。
练习
3、如图,已知OA、OB是⊙O的半径, 点C为A⌒B的中点,M、N分别为OA、OB的中点, 求证:MC=NC
O
M
N
A
B
C
练习
4、如图,BC为⊙O的直径,OA是⊙O的半径, 弦BE∥OA,求证:A⌒C=A⌒E
圆心角 相等
弧 相等
弦 相等
练习
如图,AB、CD是⊙O的两条弦.
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件
【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
人教版九年级数学上册课件:第24章圆24.1.4 圆周角和圆心角、弧的关系(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/42021/9/42021/9/42021/9/49/4/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月4日星期六2021/9/42021/9/42021/9/4 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/42021/9/42021/9/49/4/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/42021/9/4September 4, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/42021/9/42021/9/42021/9/4
我们来分析第(1)种情况,如图(1),圆心 O在∠BAC的一条边上.
知2-讲
O A B O O C C A A C C A 1 2 B O C .
对于第(2)(3)种情况,可以通过添加辅助线(图 (2)(3)),将它们转化为第(1)种情况.从而得 到相同的结论(请你自己完成证明).
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
知1-练
1 (中考·柳州)下列四个图中,∠x为圆周角的是( C)
(来自《典中点》)
知1-练
2 如图所示,图中的圆周角共有___4___个,其中A⌒B 所对的圆周角是_∠__C__与_∠__D_____,C⌒D所对的圆周角 是_∠__A_与__∠__B___.
我们来分析第(1)种情况,如图(1),圆心 O在∠BAC的一条边上.
知2-讲
O A B O O C C A A C C A 1 2 B O C .
对于第(2)(3)种情况,可以通过添加辅助线(图 (2)(3)),将它们转化为第(1)种情况.从而得 到相同的结论(请你自己完成证明).
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
知1-练
1 (中考·柳州)下列四个图中,∠x为圆周角的是( C)
(来自《典中点》)
知1-练
2 如图所示,图中的圆周角共有___4___个,其中A⌒B 所对的圆周角是_∠__C__与_∠__D_____,C⌒D所对的圆周角 是_∠__A_与__∠__B___.
人教版数学九年级上册24.弧、弦、圆心角课件(32张)
继续探究:
把圆O的半径ON绕圆心O旋转任意一个角度, N
O
继续探究:
把圆O的半径ON绕圆心O旋转任意一个角度, N'
N
θ
O
继续探究:
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
θ
O
得出结论:
把圆O的半径ON绕圆心O旋转任意一个角度,
点N'仍落在圆上。
N' N
θ
O
把圆绕圆心旋转任意一个角度后,仍与本来的圆重合。
1、圆是 轴对称 图形,
每一条 直径所在的直线 都是它的对称轴。
2、由圆的轴对称性得到:
垂径定理及逆定理
A
C
O
E
B
D
探究新知:
圆绕圆心旋转
A
.旋转
探究新知:
圆绕圆心旋转
探究新知:
圆绕圆心旋转
得出结论: 圆绕圆心旋转180°后, 仍与本来的圆重合。
180°
所以圆是中心对称图形,圆心是它的对称中心。
o
证明:
C
D
探索:在同一个圆中,两个相等的圆心角所对的两条
弧、两条弦之间都有什么关系。 A
条件:
B
AOB= COD
猜想:
⌒ AB=
C⌒D,
AB=CD
o
证明:
C
D
探索:在同一个圆中,两个相等的圆心角所对的两条
弧、两条弦之间都有什么关系。 A
条件:
B
AOB= COD
猜想:
⌒ AB=
C⌒D,
AB=CD
∴AB=CD AB=CD OE=OF
弦AB和弦CD 对应的弦心距 什么关系?
人教版九年级数学上册24.1.3弧、弦、圆心角课件
的顺 的位序位置排置列关顺 关过,系序系点若,排,O列并并A作D,说说=O若明明BEC理理A,D由由=根A..BB据C于题,点意根E补据,全题交图意形补DC,全于探图点究形,AFB探, ,究 AB ,
C(D2的)位当置A关B 、系,CD并位说于明圆理心由O. 的异侧时,
连C交接D 的AOB位A于,置点关OB系G,,,并OC说,明理OD由..
D
F
C
∵ AD=BC ,
12
O
A
E
B
∴ 1 2 .
G
∴ 1 2,
解: AB交交∥∵AACBBDA于于D. =点点BGGC ,,,
证明:∵∵∵ ∴连OAA接E1DD==OBBAACC2B,,,,,OB , OC , OD ,
过点 O∴∴∴ ∵作O11E3OEA224BA,,,B,于点 E ,交交DDCC于于点点FF,, 交 AB 于点 G .
12
3 O4 E
G
B
∴
∴∴ ∴3DDDFFF4OOO,≌≌ CCCFFFOOO
, , 90
,
已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
例3 已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
顺同 顺序侧序排的排两列同 列个,侧,点若的若,两AADD且个==点ABBCC,,,,且B根根,A据据,C题题,B意意,D作作四C图图,点,,在D探探圆四究究上点按在AABB逆圆,,时上CC针按DD逆时针
的顺 的CD位序位的置排置位列关顺 关C置D,系序系D关的若,排,3 系位列并并A,置D,说说4 =并关C若明明B说系C理理A明,,D由由=理根并..B由据说C∴∵题 .明,A意理根1B+补由据为全题 .2+图意O形∴ ∵ ∴补C的O,全直D探图113径+++究形1, 8,224A0++B探.,究CC3OOADDB,41,18800,,
圆心角之圆心角与弧的度数PPT课件
交点为 M , 求 弦 AB 的长.
1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8
㎝,那么⊙o的半径是 5㎝
2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那 么C到AB的距离等于 1㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝,
那么⊙O的半径为
5 Cm
4.如图,在⊙O中弦AB⊥AC,
C
E
·O
A
D
B
SUCCESS
THANK YOU
2019/7/24
已知:如图,点O在∠EPF的平分线上,⊙O和 ∠ EPF的两边分别交于点A,B和C,D。
求证:AB=CD
M
A
O
P
C
N
E
B
D
F
已知:如图,AD=BC. 求证:AB=CD
C
A
E
O
B
D
已知AB和CD为⊙O的两条直径,弦EC//AB,弧EC的 度数为40°,求∠BOD的度数。
②AB=A′B′
④ OD=O′D′
把圆分成360等份,
每一份所对的角叫做一度角。
记作 “1°” 。
∵把圆心角等分成360份,则每一份的圆心 角是1º.同时整个圆也被分成了360份.
则每一份这样的弧叫做1º的弧.
这样,1º的圆心角对着1º的弧, 1º的弧对着1º的圆心角. n º的圆心角对着nº的弧, n º的弧对着nº的圆心角.
110°
E
70°
A
C
70°O40°
D B
已知:如图, PB=PD. 求证: AB=CD 。
C
A
F PE
O
B
九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
人教版九年级数学上册第24章圆课件 (共31张PPT)
∴CF= 12.在Rt△COF中,OF= OC2 CF2 ,
24 12 5 ∴EF=EO+OF= ,∴ CE EF2 CF2 . 5 5
9 5
5
【例4】如图,AB是⊙O的直径,C.D是⊙O上一 点,∠CDB=20°,过点C作⊙O的切线交AB的延 长线于点E,则∠E等于( B ) A.40° B.50° C.60° D.70°
(1)点在圆内 (2)点在圆上 (3)点在圆外 如果规定点与圆心的距离为d,圆的半径 为r,则d与r的大小关系为:
C
.
.
A.
点与圆的位置关 系
d与r的关系
. B
点在圆内 点在圆上 点在圆外
d<r d=r d>r
2.直线和圆的位置关系:
.
O
.
O l
.
O l
l (1) 相离: 一条直线与一个圆没有公共点,叫做 直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫 做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫 做直线与这个圆相交.
定义:顶点在圆周上,两边和圆相交的角, 叫做圆周角.
性质: 同弧或等弧所对的圆周角相等,都等于这条
弧所对的圆心角的一半。
D E
O A
1 ADB=∠ ACB = ∠ AEB= AOB 2 在同圆或等圆中,相等的圆周角 C 所对的弧相等 推论: 半圆(或直径)所对的圆 周角是直角,90°的圆周角所 B 对的弦是直径
【分析】如图所示,连接OC, ∵∠BOC与∠CDB是弧BC 所对的圆心角与圆周角, ∴∠BOC=2∠CDB。 又∵∠CDB=20°,∴∠BOC=40°, 又∵CE为圆O的切线,∴OC⊥CE, 即∠OCE=90°, 则 ∠E=90°﹣40°=50°
弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册
(2)证明:∵OA=OC,∠AOC=30°,∴∠ACE=75°,
∴∠ACE=∠AEC, ∴AC=AE,同理,BF=BD.易知AC=
CD=BD,∴AE=BF=CD.
【题型三】利用弧、弦、圆心角证明
= ,
⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
D.3 个
例4:如题图,已知∠ AOB=90°, C, D 是的三等分点,
连接AB分别交OC, OD 于点 E, F.(1)求∠AEC的度数;
(1)解:连接AC, BD,如答图.∵C,D是的三等分点,
=
= ,∴∠AOC=∠COD=∠BOD.
∴
∵∠ = 90°, ∴ ∠ =
相等,所对的弦相等.
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角
相等,所对的优弧和劣弧分别相等.
教师讲评
注:理解弦、弧、圆心角的关系思维图:
典型精讲
【题型一】弧、弦、圆心角概念的理解与认识
例1: 下列语句中,正确的有( A )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度
证明:如答图,连接OC.
= ,
∴ ∠ = ∠.
∵
∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
又∵OA=OB, ∴OA-OD=OB-OE,∴AD=BE.
例6:如题图,AB为⊙O的直径,AE为⊙O的弦,C为⊙O上一点,
心角相等,所对的优弧和劣弧分别相等)
5.如果没有“在同圆或等圆中”这个条件,还能得出对应的结论吗?
(不能)
∴∠ACE=∠AEC, ∴AC=AE,同理,BF=BD.易知AC=
CD=BD,∴AE=BF=CD.
【题型三】利用弧、弦、圆心角证明
= ,
⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
D.3 个
例4:如题图,已知∠ AOB=90°, C, D 是的三等分点,
连接AB分别交OC, OD 于点 E, F.(1)求∠AEC的度数;
(1)解:连接AC, BD,如答图.∵C,D是的三等分点,
=
= ,∴∠AOC=∠COD=∠BOD.
∴
∵∠ = 90°, ∴ ∠ =
相等,所对的弦相等.
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角
相等,所对的优弧和劣弧分别相等.
教师讲评
注:理解弦、弧、圆心角的关系思维图:
典型精讲
【题型一】弧、弦、圆心角概念的理解与认识
例1: 下列语句中,正确的有( A )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度
证明:如答图,连接OC.
= ,
∴ ∠ = ∠.
∵
∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
又∵OA=OB, ∴OA-OD=OB-OE,∴AD=BE.
例6:如题图,AB为⊙O的直径,AE为⊙O的弦,C为⊙O上一点,
心角相等,所对的优弧和劣弧分别相等)
5.如果没有“在同圆或等圆中”这个条件,还能得出对应的结论吗?
(不能)
人教版数学九年级上册2.3弧、弦、圆心角课件
二、学习新概念
圆心角: 我们把顶点在圆心的角叫做圆心 角.
A
O· B
小试牛刀
下面各图中的角是不是圆心角?
× √√ ×
三、
探究
如图,将圆心角∠AOB绕圆心O旋转到 ∠A’OB’的位置,你能发现哪些等量关系? 为什么?
A′ B
B′
·O
A
A′
B
B′
·
O
A
四、定理
B′
在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等.
什么叫等弧?
在同圆或等圆中,能够互相重 合的弧叫等弧· 垂径定理的内容什么?
• 垂径定理:垂直于弦的直径 平分弦,并且平分弦所对 的两条弧。
一、思考
圆是中心对称图形吗?它的对称中 心在哪里?
圆是中心对称图形,
·它的对称中心ຫໍສະໝຸດ 圆心.实际上把圆绕圆心旋转任意角 度后,所得图形都与原图重合.
这就是圆的旋转不变性
O·
D
OE与OF相等吗?为什么?
F
C
相等. 理由如下:
∵ OE⊥AB,OF ⊥CD
AE 1 AB,CF 1 CD
2
2
∵ AB=CD,
∴ AE=CF,
∵ OA=OC,
∴△ AOE≌△COF(HL)
∴OE=OF
AEO CFO 90
E
B
A
D
O F
C
六、例题 例1 如图在⊙O中,A⌒B = A⌒C ,
《全程突破》P74
谢谢指点!
圆心角定理及推广定理: B′
在同圆或等圆中,两个圆心角、两条弧、 两条弦中如果有一组量相等,那么它们所 对应的其余各组量也相等。
即:在同圆或等圆中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在同圆或等圆中,相等的弦所对的圆心角
相__等____,所对的弧_相__等______.
同圆或等圆中, 两个圆心角、两
条弧、两条弦中
有一组量相等,
它们所对应的其
余各组量也相
等.
× 1. 若两弦相等,则它们所对的弧相等。( ) × 2.若两弧不等,则大弧所对的圆心角较大。( ) × 3. 若两条弧的度数相等,那么这两条弧是等弧。( )
如图 1,已知⊙O 的弦 AB 与半径 OE、OF 分别交于 C、D,且 AC=BD.
求证:(1)OC=OD;
(2)⌒AE =⌒BF .
图1
⌒
AB、CD为圆O两直径,弦CE//AB, 求∠BOD。
课堂小结
1. 圆心角
顶点在圆心的角.
A O·
B
2. 弧、弦、圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相 等,所对的弦相等.
4、在同圆中,下列四个命题:(1)圆心角是顶点在圆
心的角;对的劣弧也相等;(4)等弧
所对的圆心角相等.其中真命题有( A)
A、4个
B、3个
C、2个
D、1个
四、例题
例1 如图, 在⊙O中,A⌒B=A⌒C ,∠ACB=60°,
求证∠AOB=∠BOC=∠AOC.
一、 教学目标: 1. 理解圆的旋转不变性,理解圆心角的概念; 2. 掌握圆心角、弧、弦之间的相等关系定理及推论,
并初步学会运用这些关系解决有关问题; 3. 理解并掌握1°的弧的概念 4. 培养观察、分析、归纳的能力,渗透旋转变换的思想
及由特殊到一般的认识规律.
二. 教学重点、难点: 圆心角、弧、弦之间的相等关系是重点;从圆的旋转
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
八、作业
1、教材94-95页 2,3, 10,12
2、完成引领训练49页一级目标
•
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
•
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
如图,AB是⊙O 的直径,B⌒C=C⌒D D⌒E, ∠COD=35°,求∠AOE 的度数.
E
D
解:
C
A
·
O
B
七、思考
如图,已知AB、CD为 O 的两条弦,.
AADB= CBDC ,求证 AADB= CBDC.
C
B O
D A
4.如图 5,⊙O 中,弦 AB=CD,求证:AD=BC.
图5 证明:∵AB=CD,∴ AB=CD. ∴ AB- BD=CD- BD.∴ AD= BC .∴AD=BC.
不变性出发,推出圆心角、弧、弦、弦心距之间的相等关 系是难点。
弧、弦、圆心角之间的相等关系 在同圆或等圆中,相等的圆心角所对的弧__相__等_,所对的弦 _相__等___. 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心 角__相__等____,所对的弦也___相__等___. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心 角__相__等____,所对的弧也___相__等___.
O
A
·
O
A
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
∠AOB=∠A′O′B′
A′ B
B′
A⌒⌒B=A⌒′⌒B′ AB=A′B′
·
O
A
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦_相__等_____;
一、概念
圆心角:我们把顶点在圆心的角叫做圆心角.
O A DB
A O·
B
1.在图 2 中,下列各角是圆心角的是( C )
A.∠ODC C.∠AOB
B.∠OCD D.∠BDC
图2
二、
探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你 能发现哪些等量关系?为什么?
A′ B
B′
A′
B
B′
·
A
证明:
⌒⌒ ∴ AB=AC. 又∠ACB=60°,
O·
B
C
∴ AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
五、练习
如图,AB、CD是⊙O的两条⌒弦.⌒
(1)如果AB=CD,那么___________,_________________.
((23) )如如果 果∠AABOB=C∠DC,OD那,么那_么__A___B___=_⌒_C___D_____⌒___,_____,________A__B___=___C__D__..
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗? 为什么?
OE OF, 证明: OE AB,OF CD
A
E
B
AE 1 AB,CF 1 CD
2
2
O·
D
又 AB=CD AE=CF
又 OA=OC RtAOE RtCOF
F
OE OF.
C
六、练习
•
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
•
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
•
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
•
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。