重点小学奥数圆的面积附图
小学六年级奥数 第十八章 圆的周长和面积
![小学六年级奥数 第十八章 圆的周长和面积](https://img.taocdn.com/s3/m/e31fd04a69eae009581bec24.png)
第十八章 圆的周长和面积知识要点如右图所示,当一条线段OA 绕着固定端点O 在平面内旋转一周,它的另一端点A 在平面内画出了一条封闭的曲线,这条封闭的曲线叫做圆。
围成圆的曲线叫做圆周,线段OA 叫做圆的半径,通常用r 或R 表示。
O 点是这个圆的圆心。
在同一个圆中,所有的半径都相等。
通过圆心,并且两端都在圆上的线段叫做直径。
在同一个圆内,所有直径都相等,且等于半径的2倍。
圆心决定圆的位置,半径决定圆的大小。
无论什么圆,它的周长除以直径的商是一个固定的数,这个数叫圆周率,用π表示。
如果用C 表示圆周的长度,d 表示这个圆的直径,那么,π=C d 。
π是一个无限不循环小数:π=3.14159265358979323846…圆的周长:C =2πr 或C =πd 圆的面积:S =πr 2=π(2d )2=π(2C π)2=24C π 扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。
如果扇形的圆心角是n ,那么当圆周长C =2πr 时,扇形的弧长计算方法:L =360n ×2πr =180n ×πr 例1 (第五届“希望杯”邀请赛试题)如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 平方厘米。
(π取3.14)点拨 过E 点作AB 的垂线,垂足为O ,因为∠CAB=45°,所以点O 是半圆的圆心,则阴影部分的面积等于梯形OECB 的面积,减去圆O 面积的14。
解 过E 点作AB 的垂线,垂足为0。
∵∠CAB =45°,∴点0是半圆的圆心。
则S 阴影=S 梯形OECB -14S ⊙O=(5+10)×5÷2- ×52=17.875(平方厘米)例2 将半径分别是4厘米和3厘米的两个半圆,如图放置。
求阴影部分的周长。
点拨阴影部分的周长为小半圆的弧长加上大半圆的弧长,再加两条线段的长。
两个半圆的半径分别为4厘米和3厘米;两条线段分别是4厘米和3×2-4=2(厘米)。
小学数学《圆的面积》PPT课件(带内容)
![小学数学《圆的面积》PPT课件(带内容)](https://img.taocdn.com/s3/m/83f300e477232f60dccca155.png)
沿线剪开
这是一个由草绳编织 成的圆形茶杯垫片。
太有意思了!
新知讲解
你发现什么了?
沿线剪开 像三角形。
形状虽然变了,但是它们 的面积一样。
新知讲解
沿线剪开
这时,三角形的面积相当于圆的面积。
观察这个三角形,底相当于圆的( 周长 ),高相当于圆的( 半径 )。
三角形的面积=
底×高 2
,所以圆的面积S=(2πr )×( r 2
) =( πr2
)。
课堂练习
求下面各圆的面积。 d=2米
2÷2=1(m) 3.14×12=3.14(m2)
C=18.84分米
18.84÷3.14÷2=3(dm) 3.14×32=28.26(dm2)
课堂练习
街心花园中圆形花坛的周长是25.12米。花坛的面积是多少平方米? 25.12÷3.14÷2=2(m) 3.14×22=12.56(m2) 答:花坛的面积是12.56平方米。
你们有什么收获?
我会用圆的面积公式解决实际问题了。
我还知道圆可以转化成三角形。
我学பைடு நூலகம்了求圆环的面积,即 S环=π(R2-r2)。
课堂练习
圆的面积(二)——解决问题
已知半径→面积 已知周长→半径→面积
圆
三角形
3.14×32=2826(m2) 125.6÷3.14÷2=20(m) 3.14×202=1256(m2)
3.14×22=12.56(dm2)
3.14×1.12=3.7994(m2)
新知导入
这是自动喷水。
新知导入
喷水半径是3米,喷水头转动一周,能灌溉多大面积的农田? 喷水头转动一周,浇灌 农田的形状是圆形。
要求能灌溉多大面积的农田,实 际是求半径是3米圆的面积。
圆的面积ppt教学课件共31张ppt
![圆的面积ppt教学课件共31张ppt](https://img.taocdn.com/s3/m/aafb33b2760bf78a6529647d27284b73f3423679.png)
重点与难点解析
针对推导过程中的重点和难点进行深 入剖析,帮助学生更好地理解和掌握 。
公式记忆技巧分享
公式记忆方法
介绍一些有效的记忆方法 ,如联想记忆、口诀记忆 等,帮助学生快速记住圆 的面积公式。
公式应用技巧
分享在实际应用中如何灵 活运用圆的面积公式,提 高解题效率和准确性。
公式记忆的意义
强调记住公式并非目的, 而是为了更好地应用公式 解决实际问题。
思考题二
若将一个圆分成n个相等的小扇形 ,然后将这些小扇形重新组合成 一个近似于矩形的图形,试推导 圆的面积公式。
THANKS
感谢观看
使用测量工具测量每个内
02
切圆的半径,并通过公式
计算面积。
分析比较不同形状内切圆
04
面积的关系,并尝试总结
规律。
创意拼图活动:用圆形创造美丽图案
准备多个大小、颜色不同 的圆形纸片。
让学生们自由发挥想象力 ,使用这些圆形纸片拼出 各种美丽的图案。
可以拼出动物、植物、建 筑物等各种形状,也可以 创作出抽象的艺术作品。
特点
圆是到定点的距离等于定长的所有点组成的图形,具有 对称性和均匀性。
圆心、半径、直径关系
01 圆心
圆的中心,通常用字母O表示。
02 半径
从圆心到圆上任一点的线段,通常用字母r表示。
03 直径
通过圆心且两端点在圆上的线段,是圆中最长的 弦,通常用字母d表示,且d=2r。
圆周角与圆心角关系
01 圆周角
03
典型例题分析与解答
已知半径求面积问题
例题1
已知圆的半径为3厘米,求圆的面积。
注意事项
计算过程中要注意pi r^2$,将 半径代入公式进行计算。
2021年奥数专题平面图形之圆的面积
![2021年奥数专题平面图形之圆的面积](https://img.taocdn.com/s3/m/adc968cab7360b4c2f3f6417.png)
平面图形面积————圆的面积欧阳光明(2021.03.07)专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的3.144,而在圆内的最大正方形占所在圆的面积的23.14,这些知识点都应该常记于心,并牢牢掌握!例题1。
求图中阴影部分的面积(单位:厘米)。
【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。
62×3.14×1/4=28.26(平方厘米)练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答例题2。
求图中阴影部分的面积(单位:厘米)。
【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)练习21、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2例题3。
如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【分析】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)练习31、如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
答2、如图所示,AB=BC=8厘米,求阴影部分的面积。
六年级上册奥数题圆的面积
![六年级上册奥数题圆的面积](https://img.taocdn.com/s3/m/57e58a5f58eef8c75fbfc77da26925c52cc5919b.png)
小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。
画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。
通过圆心,并且两端在圆上的线段叫做直径。
在同一个圆中,所有的直径都相等,且等于半径的2倍。
圆心决定圆的位置,半径决定圆的大小。
任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。
如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。
π是一个无限不循环小数,π=3.14159265358979323846…。
圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。
圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。
需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。
(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。
解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。
时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。
例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。
图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。
为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。
学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。
设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。
圆的面积
![圆的面积](https://img.taocdn.com/s3/m/5f502bedd5bbfd0a795673c0.png)
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
圆的面积课件最终版.ppt
![圆的面积课件最终版.ppt](https://img.taocdn.com/s3/m/350253ae8e9951e79a89274c.png)
32
17
31
18
30
19
2928 27 26
25 24
20 23 22 21
.精品课件.
38
3456 2 1
7
8
9 10 11 12 13 14 15 16
32
17
3130 29 28 27 26 25 24 23 22 21 20 1918
.精品课件.
39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
.精品课件.
40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
.精品课件.
41
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.精品课件.
3
学过的平面图形及它们的面积计算
a a
S=a2
a b
S = ab
.精品课件.
4
学过的平面图形及它们的面积计算
h a S = ah
a b
.精品课件.
5
学过的平面图形及它们的面积计算
h
h
a
a
S = ah÷2
.精品课件.
6
学过的平面图形及它们的面积计算
h
h
a
a
S = (a+b)h÷2
.精品课件.
.精品课件.
67
2、一个圆形茶几桌面的直径是1米。它面积是 多少?
圆的面积
![圆的面积](https://img.taocdn.com/s3/m/dc3b1137482fb4daa58d4b70.png)
喷水头转动一周 可以浇灌多大面 积的农田?
半径是5米的圆的面积是多少?
S = πr
2
3.14×52 =3.14×16 =50.24(平方厘米) 答:它的面积是50.24平方厘米。
华能火力发电厂的烟囱底面是圆形的,要想 知道这根烟囱占地多少平方米有哪些办法?
﹋﹋﹋﹋
今天我学习了圆的面积。我知道了 把一个圆平均分成若干等分,然后拼在一 长方形 起,可以拼成一个近似( )。长方形 的宽是圆的( 半径),长是圆的(周长一半 ), 求圆面积用公式表示( S = πr 2 )。
将圆分成若干等分
1
1
2
2 15 15
3
3 14 13 14 13
C 5 4
2
6
6
7
7
8
8
4
5 12 11 12 11
16 16
10 10
9 9
r
分的份数越多,拼成的图形越接近长方形。 C 2
r
C 2
= πr
r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × 2 = πr
r
圆所占平面的大小叫做圆的面积。
喷水头转动一周可以浇 灌多大面积的农田?
半径是5米的圆的面积是多少?
你还记得三角形、梯形 面积的推导过程吗?
你还记得三角形、梯形 面积的推导过程吗?
猜一猜:圆的面积和什么有关?将圆分成若干等分3 4 5 6
2
7 8 9 10
1 16 15 14
13 12
11
d(米) 4
C(米)
S(平方米)
10 18.84
9
这是一个由草绳编织成的圆形茶杯垫片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点小学奥数圆的面积
附图
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
奥数
下图中的圆是以O 为圆心、半径是10厘米的圆,求阴影部分的面积。
(答案100)
2、下图中阴影部分的面积是2.28厘米2,求扇形的半径。
(答案:4)
3、在左下图中,阴影部分的面积是5cm 2,以OA 为直径的半圆的面积是多少?
πR 2—π(R )2=5
4、右上图中有半径分别为5cm ,4cm ,3cm 的三个圆,图中A 部分(即两小圆重叠部分)的面积与阴影部分的面积相比,哪个大?
5、左下图中阴影部分的面积是200cm 2,求两个圆之间的圆环面积。
6、左下图中,圆的半径是4cm ,阴影部分的面积是14πcm 2,求图中三角形的面积。
7、左下图中,扇形ABC 的面积是半圆ADB 面积的1倍,求∠CAB 的度数。
8、已知小圆的面积均为4
π平方厘米,则图中阴影部分的面积是多少平方厘米(
π取3.14)
解:由小圆的面积:
πr 2=4
π得:小圆的半径r=12 正方形的边长:2 阴影面积为:22420.434π
⨯÷(-)=
9、如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。
求图中阴影部分的面积。
10、求下图阴影部分的面积,r=3cm.
解:直解三角形,R2=r2+r2=32+32=18
πr2-r2÷2=π-=(9π-18)/4
πR2-(9π-18)/4=π×18-(9π-18)/4=(9π-9π+18)/4=4.5cm2
11、如图,有两个半圆,已知大半圆的直径是4厘米,小半圆的直径是2厘米。
求红色部分的面积。
分析:从图中我们可以看出两个半圆都包含中间的红色部分,如果我们把两个半圆的面积相加,中间的红色部分就算了两次,减去三角形的面积就是所有红色部分的面积了。
4÷2=2(厘米)2÷2=1(厘米)3.14×2×2÷2=6.28(平方厘米)
3.14×1×1÷2=1.57(平方厘米)6.28+1.57=7.85(平方厘米)4×2÷2=4(平方厘米)7.85-4=3.85(平方厘米)
12、两个半圆放在一起,大半圆直径是4厘米,求阴影部分的面积。
13、如右上图,S△=12cm2,求阴影部分的面积。