电磁场与电磁波部分课后答案_郭辉萍版1-6章
电磁场与电磁波课后答案
第一章矢量分析重点和难点关于矢量的定义、运算规则等内容可让读者自学。
应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。
至于正交曲面坐标系一节可以略去。
考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。
详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。
讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。
至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。
前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。
但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。
由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。
所以,散度和旋度是研究矢量场的首要问题。
此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。
这种既无散又无旋的矢量场只能存在于局部的无源区中。
重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=⋅B A几何定义:θcos ||||B A B A =⋅矢量的矢积:代数定义:zyxz y xz y xB B B A A A e e e B A =⨯几何定义:θsin ||B ||A e B A z =⨯标量场的梯度:zy x z y ∂∂+∂∂+∂∂=∇ΦΦΦΦe e e x矢量场的散度:zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A 高斯定理:⎰⎰⋅=⋅∇SVV d d S A A矢量场的旋度:zy xz y A A A z y x ∂∂∂∂∂∂=⨯∇e e e A x ; 斯托克斯定理:⎰⎰⋅=⋅⨯∇lSd d )(l A S A无散场:0)(=⨯∇⋅∇A ; 无旋场:0)(=∇⨯∇Φ格林定理:第一和第二标量格林定理:⎰⎰⋅∇=∇+∇⋅∇SVV 2d )(d )(S ΦψΦψΦψ()⎰⎰⋅∇-∇=∇-∇SVV 22d d )(S ψΦΦψψΦΦψ第一和第二矢量格林定理:()⎰⎰⋅⨯∇⨯=⨯∇⨯∇⋅-⨯∇⋅⨯∇SVV d d ])()[(S Q P Q P Q P⎰⎰⋅⨯∇⨯-⨯∇⨯=⨯∇⨯∇⋅-⨯∇⨯∇⋅SVV d ][ d ]()([S P Q Q P Q P P Q亥姆霍兹定理: )()()(r A r r F ⨯∇+-∇=Φ,式中⎰'''-'⋅∇'=V V d )(41)(r r r F r πΦ V V ''-'⨯∇'=⎰'d )(41)(r r r F r A π三种坐标系中矢量表示式之间的转换关系:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z r A A A A A A 100cos sin 0sin cos φφφφφ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x r A A A A A A 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z r r A A A A A A φφθθθθθ 010sin 0cos cos 0sin题 解第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
电磁场与电磁波课后习题及答案六章习题解答
第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。
滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。
设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。
设、、,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。
讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。
故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。
一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。
设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。
流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。
电磁场与电磁波课后习题及答案六章习题解答
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁场与电磁波第四版课后答案
答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波课后习题及答案六章习题解答
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
电磁场与电磁波_部分课后习题解答
电磁场与电磁波部分课后习题解答CH11.2给定三个矢量A ,B ,C:A =x a+2y a -3z a B= -4y a +z aC =5x a-2z a求:⑴矢量A的单位矢量A a ;⑵矢量A 和B的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B)·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=(x a +2y a -3z a )⑵cos ABθ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B=-10x a -y a -4z a⑷A ·(B ⨯C )=-42(A ⨯B)·C =-42⑸A ⨯(B ⨯C)=55x a -44y a -11z a(A ⨯B)⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r) =x a(-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +z e z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A沿闭合曲面S 的通量,其中矢量场的表达式为A =x a32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波课后标准答案-郭辉萍版1-6章
第一章习题解答1.2给定三个矢量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2za 求:⑴矢量A 的单位矢量A a ;⑵矢量A 和B 的夹角AB;⑶A ·B 和A B⑷A ·(B C )和(A B )·C ;⑸A (BC )和(AB )C解:⑴A a =A A=149A =(x a +2y a -3z a )/14⑵cosAB=A ·B /A BAB=135.5o⑶A ·B =11, A B =10x a y a 4za ⑷A ·(BC )=42 (A B )·C =42 ⑸A(B C )=55x a 44ya 11za (AB )C =2xa 40y a +5za 1.3有一个二维矢量场F(r)=x a (y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(y)=dy/x,得2x +2y =c 1.6求数量场=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由=xa x+ya y+za z=12x 3yx a +182x 2y y a +ze z a 得=24x a +72y a +za 1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z x)⑵验证散度定理。
解:⑴?s d A =A dS ?曲+A d S ?xoz+A dS ?yoz +A dS ?上+A dS?下A d S ?曲=232(3cos3sin sin )z d d 曲=156.4A dS ?xoz=(3)yz dxdz xoz= 6A dS ?yoz=23x dydz yoz=0A dS ?上+A dS ?下=(6cos )d d 上+cos d d 下=272?s d A =193⑵dV A V?=(66)Vx dV =6(cos1)Vd d dz =193即:ss d A =dVA V?1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A 对此圆周所包围的表面积分,验证斯托克斯定理。
电磁场与电磁波课后答案_郭辉萍版1-6章
A A
=
A
=
1 49
( ax +2 ay -3 az )/
14
错误!未找到引用源。 cos = A · B / A B AB AB =135.5o
错误!未找到引用源。 A · B = 11, A B = 10 ax ay 4 az 错误!未找到引用源。 A ·( B C )= 42
( A B )· C = 42
=
27 2
A • ds =193
错误!未找到引用源。 •AdV = (6 6x)dV =6 ( cos 1)d d dz =193 V
V
V
即:
A • ds =
•AdV
s
V
1.13 求矢量 A = ax x+ ay x y2 沿圆周 x2 + y2 = a2 的线积分,再求 A 对此圆周所包围的表
(z z’)]
R = R3
即: ( 1 ) R
=
R R3
第二章 习题解答
2.5 试求半径为 a,带电量为 Q 的均匀带电球体的电场。 解:以带电球体的球心为球心,以 r 为半径,作一高斯面,
由高斯定理 D • dS =Q,及 D E 得, S
错误!未找到引用源。 r a 时,
由 D • dS = Q 4 r2 ,得
曲
曲
A• d S = (3y z)dxdz = 6
xoz
xoz
A• d S = 3x2dydz =0
yoz
yoz
上
A
•
d
S
+
下
A
•
d
S
=
上
(6
cos
)d
d
电磁场与电磁波第三版 郭辉萍 第二章习题解答
D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a
电磁场与电磁波课后答案
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。
解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场与电磁波课后答案_郭辉萍版1-6章
第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。
矢量A 的单位矢量A a ; 错误!未找到引用源。
矢量A 和B 的夹角AB θ; 错误!未找到引用源。
A ·B 和A ⨯B错误!未找到引用源。
A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。
A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。
A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。
cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。
A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。
A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。
A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。
1 电磁场与电磁波课后习题答案第六章
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+= m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v /(4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πηm A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
电磁场与电磁波(第4版)第6章部分习题参考解答
G ex
Erm
cos(ωt
+
β1
z
)
=
G ex
Eim
cos(2πft
+
β1
z
)
= =
eGxGηη22
−η1 + η1
−ex18.37
100 cos(2π ×109t + 20.93z) cos(2π ×109t + 20.93z) V/m
G H1r
(
z,
t
)
= =
1 ηG 1 ey
G (−ez × E1r ) = 0.049 cos(2π
距离导体平面最近的合成波电场 G
E1
为
0
的位置;(5) 距离导体平面最近的合成波磁场 H1 为 0 的位置。
解:(1) ω = 2πf = 2π ×108 rad/s
β
=
ω c
=
2π ×108 3 ×108
=
2 3
π
rad/m
η1 = η0 =
μ0 = 120π Ω ε0
G
G
则入射波电场 Ei 和磁场 Hi 的复矢量分别为
G Ei (x)
=
G
− j2 πx
ey10e 3
G V/m , Hi (x)
=1 η1
G ex
G × Ei (x)
G = ez
1
− j2 πx
e3
12π
A/m
G
G
(2) 反射波电场 Er 和磁场 Hr 的复矢量分别为
G Er (x) =
G
j2 πx
−ey10e 3
G V/m , Hr (x)
电磁场与电磁波课后答案_郭辉萍版1-6章
第一章 习题解答1.2给定三个矢量A ,B,C :A =x a+2y a -3z a B= -4y a +z aC=5x a -2za求:错误!未找到引用源。
矢量A的单位矢量A a ;错误!未找到引用源。
矢量A 和B的夹角A B θ; 错误!未找到引用源。
A ·B 和A ⨯B错误!未找到引用源。
A ·(B ⨯C )和(A ⨯B)·C ;错误!未找到引用源。
A ⨯(B ⨯C )和(A ⨯B)⨯C解:错误!未找到引用源。
A a =AA=149A ++ =(x a +2y a -3z a)/14错误!未找到引用源。
co s A Bθ =A ·B /A BA B θ=135.5o错误!未找到引用源。
A ·B =-11, A ⨯B=-10x a -y a -4z a错误!未找到引用源。
A ·(B⨯C )=-42(A ⨯B)·C =-42错误!未找到引用源。
A ⨯(B⨯C )=55x a -44y a -11z a(A ⨯B)⨯C =2x a -40y a +5z a1.3有一个二维矢量场F (r )=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a yψ∂∂+z a z ψ∂∂=12x 3y x a +182x 2y y a +z e z a得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。
电磁场与电磁波第6章习题答案
第6章习题答案6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E(3)时间经过μs 1.0之后电场)0,0(E 值在什么地方?(4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω===r cfk )m/s (105.1/8⨯==r p c v ε)m (12==kπλ )Ω(60120πεμπη=rr=(2)∵ 6200210265.02121-⨯===m rm av E E S εεμη∴ (V/m)1000.12-⨯=m E)V/m (1066.83sin)0,0(3-⨯==πm E E(3) 往右移m 15=∆=∆t v z p(4) 在O 点左边m 15处6-8微波炉利用磁控管输出的2.45GHz 频率的微波加热食品,在该频率上,牛排的等效复介电常数)j 3.01(40~-=rε。
求: (1)微波传入牛排的穿透深度δ,在牛排内8mm 处的微波场强是表面处的百分之几?(2)微波炉中盛牛排的盘子是发泡聚苯乙烯制成的,其等效复介电常数=r ε~ )103.0j 1(03.14-⨯-。
说明为何用微波加热时,牛排被烧熟而盘子并没有被毁。
解:(1)20.8mm m 0208.011211212==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+==-ωεσμεωαδ%688.20/8/0===--e e E E z δ(2)发泡聚苯乙烯的穿透深度(m)1028.103.1103.01045.22103212213498⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛===-πμεωεσωμεσαδ可见其穿透深度很大,意味着微波在其中传播的热损耗极小,所以不会被烧毁。
电磁场与电磁波_章六习题答案
电磁场与电磁波_章六习题答案第6章平⾯电磁波点评:1、6-8题坡印廷⽮量单位,2W m ,这⾥原答案有误!2、6-13题第四问应为右旋圆极化波。
3、6-19题第三问和第四问,原答案错误。
这⾥在介质⼀中,z<0。
4、⽮量书写⼀定引起重视,和标量书写要分清,结果若是确切的数值则单位⼀定要标清楚。
5、马上期末考试,那些对参考答案借鉴过多的同学务必抓紧时间把每道题⽬弄懂!本章是考试重点,⼤家务必弄懂每道题。
6-1、已知正弦电磁场的电场瞬时值为()()88,0.03sin 100.04cos 10 3x x z t t kz t kz V m πππ?=-+--E e e试求:⑴电场的复⽮量;⑵磁场的复⽮量和瞬时值。
解:(1)()8,0.03cos 102x z t t kz ππ?=--E e +80.04cos 103x t kz ππ?--e所以电场的复⽮量为32()0.030.04 j j jkz x z e e e V m ππ---??=+E e(2) 由复数形式的麦克斯韦⽅程,得到磁场的复⽮量3200054321()0.030.04 7.610 1.0110j j jkz x y yj j jkz y E j kz e e e j z k e e e A mππππωµωµωµ--------=-??==+??=?+?H E e e e磁场的瞬时值则为()5848(,)7.610sin 101.0110cos 103y z t k t kz t kz πππ--=-+--H e6-2、真空中同时存在两个正弦电磁场,电场强度分别为1110jk z x E e -=E e ,2220jk z y E e -=E e ,试证明总的平均功率流密度等于两个正弦电磁场的平均功率流密度之和。
解:由麦克斯韦⽅程11111001()jk z xyy E jk E e j zωµ-==-=-?E e e H 可得111100jk z yk E e ωµ-=H e故2*11011101Re 22zk E ωµ??=?=S E H e 同理可得22222002()y jk z xx E jk E e j zωµ-=-=--=-?E e e H222200jk z xk E e ωµ-=-H e2*22022201Re 22zk E ωµ??=?=S E H e 另⼀⽅⾯,因为12=+E E E0y x x y E Ej z zωµ=-+=-??E e e H所以212120100jk z jk z xyk k E e E e ωµωµ--=-+H e e22*110220120011Re 22z k E k E ωµωµ=?=+=+ ?S E H e S S6-5、已知在⾃由空间中球⾯波的电场为0sin cos()E t kr r θθω?? =-E e ,求H 和k 。
电磁场与电磁波习题答案
r
r
r
证明: cos2 α
+ cos2 β
+ cos2 γ
=
x2 r2
+
y2 r2
+
z2 r2
=
x2
+ y2 r2
+ z2
=1
1-2
已知
v A
=
evx
−
9evy
−
evz
,
v B
=
2evx
−
4evy
+
3evz
,求:
(1)
v A
+
v B
(2)
v A
−
v B
(3)
v A
⋅
v B
(4)
Av ×
Hale Waihona Puke v B解:(1)= −31evx − 5evy + 14evz
1-3
已知
v A
=
evx
+
bevy
+
cevz
,
v B
=
−evx
+
3evy
+
8evz
,若使
v A
⊥
v B
及
v A
//
v B
,则
b
和
c 各应为多少?
解:要使
v A
⊥
v B
,则
v A
⋅
v B
=
0
即
−1+ 3b + 8c = 0 或 3b + 8c −1 = 0 ,满足
在(0,0,0)处
gradϕ (0,0,0) = 3evx − 2evy − 6evz
电磁场与电磁波课后答案-郭辉萍版1-6章
电磁场与电磁波课后答案-郭辉萍版1-6章第一章 习题解答1.2给定三个矢量A ,B ,C : A =xa +2ya -3zaB = -4ya +zaC=5xa -2za求:⑴矢量A 的单位矢量Aa ; ⑵矢量A 和B 的夹角ABθ;⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ; ⑸A ⨯(B ⨯C )和(A ⨯B )⨯C 解:⑴Aa =A A=(xa +2ya -3za ) ⑵cos ABθ=A ·B /ABABθ=135.5o⑶A ·B =-11,A ⨯B=-10xa-y a -4za⑷A ·(B ⨯C )=-42 (A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55xa -44ya -11za(A ⨯B )⨯C =2xa -40ya +5za1.3有一个二维矢量场F(r)=xa (-y )+ya (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=xaxψ∂∂+yayψ∂∂+zazψ∂∂=12x 3yxa +182x2y ya +zeza 得ψ∇=-24xa +72ya +za1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A=x a 32x +y a (3y+z )+za (3z -x)⑵验证散度定理。
解:⑴⎰•sd A =A d S •⎰曲+A d S •⎰xoz +A d S •⎰yoz +A d S •⎰上+A d S •⎰下A d S •⎰曲=232(3cos 3sin sin )z d d ρθρθθρθ++⎰曲=156.4A d S •⎰xoz=(3)y z dxdz +⎰xoz=-6A d S •⎰yoz=-23x dydz ⎰yoz=0A d S •⎰上+A d S •⎰下=(6cos )d d ρθρθρ-⎰上+cos d d ρθρθ⎰下=272π⎰•sd A=193⑵dVA V⎰•∇=(66)Vx dV +⎰=6(cos 1)Vd d dz ρθρθ+⎰=193即:⎰•ssd A =dVA V⎰•∇1.13 求矢量A =x a x+ya x 2y 沿圆周2x +2y =2a 的线积分,再求A ∇⨯对此圆周所包围的表面积分,验证斯托克斯定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 电磁波垂直入射到理想导体上
(3)空气中合成波的电场
磁场
(4) 空气中离导体表面最近的第一个波腹点的位置为
6.8自由空间中一均匀平面电场波垂直入射到半无限大无耗介质平面上,已知自由空间与介质分界面上的反射系数为0.5,且分界面为电场波腹点,介质内透射波的波长是自由空间波长的 ,求介质的相对磁导率和相对介电常数。
(2)导体外:a <+
=I,所以 , ,
4.5在下面的矢量中,哪些可能是磁通密度B?如果是,与它相应的电流密度J为多少?
(1)
解: = =2 0所以 不是磁通密度
(2) =- y+ x
解: . = + =0所以F是磁通密度
= =| =2 所以 =
(3) = x— y
. =0 是磁通密度
= =| =0所以 =0
3.6
两无限大接地平行板电极,距离为 ,电位分别为0和 ,板间充满电荷密度为 的电荷,如题3.6图所示。求极板间的电位分布和极板上的电荷密度。
3.8
一个沿z方向的长且中空的金属管,其横截面为矩形,金属管的三边保持零电位,而第四边的电位为U,如题3.8图所示。求:
(1)当 时,管内的电位分布;
(2)当 时,管内的电位分布。
解:设自由空间 ,无耗介质
由得:
6.15在无线电装置中常配有电磁屏蔽罩,屏蔽罩由铜制成,要求铜的厚度至少为5个趋肤深度,为防止200kHz~3GHz的无线电干扰,求铜的厚度;若要屏蔽10kHz~3GHz的电磁干扰,铜的厚度又是多少?
解:铜的电导率为
趋肤深度
(1)
(2)
6.17一均匀平面波从空间(媒质1)沿+z方向垂直入射到 、 (媒质2)的理想介质表面上,电磁波的频率为100MHz,入射波电场的振幅为 、极化为+x方向。
⑵ = = (x x’)+ (y y’)+ (z z’)
⑶ = , =3
⑷
=( + + )
=
=
= [ (x x’)+ (y y’)+ (z z’)]
=
即: =
第二章习题解答
2.5试求半径为a,带电量为Q的均匀带电球体的电场。
解:以带电球体的球心为球心,以r为半径,作一高斯面,
由高斯定理 =Q,及 得,
(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;
(4)当x=0.8m时,电场和磁场得表达式;
(5)如果电磁波的频率变为f=50kHz,重复(3)的计算。比较两个结果会得到什么结论?
解:
(1)
(2)
(3)
(4)
当x=0.8m时,
(5)当f=50KHz时,
结论:频率越大,电磁波衰减越快。
6.5判断下面表示的平面波的极化形式:
第六章
6.2自由空间中一均匀平面波的磁场强度为
求:(1)波的传播方向;(2)波长和频率;(3)电场强度;(4)瞬时坡印廷矢量。
解:
(1)波沿+x方向传播
(2)由题意得:k= rad/m,波长 ,频率
(3)
(4)
6.3无耗媒质的相对介电常数 ,相对磁导率 ,一平面电磁波沿+z方向传播,其电场强度的表达式为
①r a时,
由 = ,得
②r>a时,
由 =Q,得
2.6两无限长的同轴圆柱体,半径分别为a和b(a<b),内外导体间为空气。设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为 和 ,求:
⑴空间各处的电场强度;
⑵两导体间的电压;
⑶要使 b区域内的电场强度等于零,则 和 应满足什么关系?
解:⑴以圆柱的轴为轴做一个半径为r的圆柱高斯面,由高斯定理 =q
⑴球内电荷分布;
⑵球的外表面的电荷分布;
⑶球壳的电位;
⑷球心的电位。
解:⑴由 ,得
⑵
⑶由高斯定理 = =q
当r a时,q=2Q,Q=
⑷
=2-2a
2.17一个有两层介质( , )的平行板电容器,两种介质的电导率分别为 和 ,电容器极板的面积为S。当外加压力为U时,求:
⑴电容器的电场强度;
两种介质分界面上表面的自由电荷密度;
(4) = r
. =0所以 是磁通密度
= = +2 = 所以 = +
4.6已知某电流在空间产生的磁矢位是 = y+ x + ( — )求磁感应强度
解: = =| =2y + ( — )
4.13已知钢在某种磁饱和情况下的磁导率为 =2000 ,当钢中的磁通密度为B1=0.5×102T, = 75°时,试求此时的磁力线由钢进入自由空间一侧后,磁通密度 的大小及 与法线的夹角 。
第一章习题解答
1.2解:⑴. = = = ( +2 -3 )/
⑵ = · /
=
⑶ · = 11, = 10 4
⑷ ·( )= 42
( )· = 42
⑸ ( )=55 44 11
( ) =2 40 +5
1.3有一个二维矢量场 = ( y)+ (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/( y)=dy/x,得 + =c
(1)
(2)
(3)
(4)
解:(1)
,
所以,该平面波为右旋椭圆极化波。
(2)
所以,该平面波为左旋椭圆极化波。
(3)
所以,该平面波为线极化波。
(4)
所以,该平面波为线极化波。
6.6均匀平面电磁波频率f=100MHz,从空气垂直入射到x=0的理想导体上,设入射波电场沿+y方向,振幅 。试写出:(1)入射波电场和磁场表达式;(2)入射波电场和磁场表达式;(3)空气中合成波的电场和磁场;(4)空气中离导体表面最近的第一个波腹点的位置。
解:B ,
= (ln —lnR)=
所以互感M= =
第五章
5.3设y=0为两种磁介质的分界面,y<0为媒质1,其磁导率为 ,y>0为媒质2,其磁导率为 ,分界面上有电流密度 分布的面电流,已知媒质1中磁场强度为
求媒质2中磁场强度
解:
5.6已知在空气中,电场强度矢量为 求磁场强度 和相位常数
解:
5.7自由空间中,已知电场强度矢量为 求(1)磁场强度的复数表达式(2)坡印廷矢量的瞬时表达式(3)平均坡印廷矢量
求:(1)电磁波的相速;(2)波阻抗和 ;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:
(1)
(2) ,
(3)
(4)
6.4一均匀平面波从海水表面(x=0)沿+x方向向海水中传播。在x=0处,电场强度为 ,若海水的 , , 。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;
(2)写出海水中的电场强度表达波磁场强度的表达式;
(3)反射系数和透射系数;
(4)媒质1中的电场表达式;
(5)媒质2中的电场表达式。
解:(1)
(2)
(3)
,
(4)
(5)
(1)
3.9
一个沿+y方向无限长的导体槽,其底面保持电位为 ,其余两面的电位为零,如图3.9所示。求槽内的电位函数。
第四章
4.3若半径为a、电流为I的无线长圆柱导体置于空气中,已知导体的磁导率为 ,求导体内、外的磁场强度H和磁通密度B。
解:(1)导体内:0 <a
由安培环路定理, =
= = 所以, , , ,
解: = =
=
= = =
即: = ,得证。
1.15求下列标量场的梯度:
⑴u=xyz+
= + + = (yz+zx)+ xz+ xy
⑵u=4 y+ z 4xz
= + + = (8xy-4z)+ (4 +2yz)+ ( 4x)
⑶ = + + = 3x+ 5z+ 5y
1.16求下列矢量场在给定点的散度
⑴ = + + =3 +3 +3 =6
及 得,
当0<r<b时,由 =q=0,得
=0, =0
当a r b时,由 =q,得
= ,
当b<r时,由 =q,得 +
= , =
⑵
⑶要使 >0的区域外电场强度为0,即:
= =0,得 =
2.9一个半径为a的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q的电荷,已知内部的电场为 ,计算:
解:
(1)
(2)
w/m2
(3)
5.9将下列复数形式的场矢量变换成瞬时表达式,或作用反的变换
(1)
(2)
(3)
(4)
(5)
5.12对于线性,均匀和各向同性导电媒质,设媒质的介电常数为,磁导率为电导率为,试证明无源区域中时谐电磁场所满足的波动方程为 式中
解:
5.15设电场强度和磁场强度分别为 求其平均坡印廷矢量。
解:由折射定律得 所以 = =
即 = = T
4.15通有电流 的平行直导线,两轴线距离为d,两导线间有一载有电流 的矩形线圈,求两平行直导线对线圈的互感。
解:左边长直导线作用:B 所以
右边长直导线作用
合成后
M= =
4.17无限炒年糕直导线附近有一矩形回路,回路与导线不共面。证明:它们之间的互感为
M=
1.6求数量场 =ln( + + )通过点P(1,2,3)的等值面方程。
解:等值面方程为ln( + + )=c