流变学实验-1 转矩流变仪应用试验
流变仪法测定塑料的流变性能实验指导

实验二流变仪法测定塑料熔体的流变性能一、实验目的1.了解转矩流变仪的结构与测定聚合物流变性能的原理。
2.熟悉并掌握在转矩流变仪上测定剪切应力、剪切速率、粘度的方法。
二、实验原理毛细管流变仪是研究聚合物流变性能最常用的仪器之一,具有较宽广的剪切速率范围。
毛细管流变仪还具有多种功能,既可以测定聚合物熔体的剪切应力和剪切速率的关系,又可根据毛细管挤出物的直径和外观及在恒应力下通过改变毛细管的长径比来研究聚合物熔体的弹性和不稳定流动现象。
这些研究为选择聚合物及进行配方设计,预测聚合物加工行为,确定聚合物加工的最佳工艺条件(温度、压力和时间等),设计成型加工设备和模具提供基本数据。
聚合物的流变行为一般属于非牛顿流体,即聚合物熔体的剪切应力与剪切速率之间呈非线性关系。
用毛细管流变仪测试聚合物流变性能的基本原理是:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可压缩的粘性流体的稳定层流流动,毛细管两端分压力差为ΔP,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理进行推导,可得到毛细管管壁处的剪切应力τ和剪切速率γ&与压力、熔体流率的关系。
τ=RΔP/2L γ=4Q/πR3ηa =πR4ΔP/8QL式中R-毛细管半径,cm;L-毛细管长度,cm;ΔP-毛细管两端的压差,Pa;Q-熔体流率,cm3/s;ηa-熔体表观粘度,Pa·s。
在温度和毛细管长径比L/D一定的条件下,测定不同压力ΔP下聚合物熔体通过毛细管的流动速率Q,可计算出相应的τ和γ&,将对应的τ和γ在双对数坐标上绘制τ-γ流动曲线图,即可求得非牛顿指数n和熔体表观粘度ηa。
改变温度和毛细管长径比,可得到代表粘度对温度依赖性的粘流活化能Eη以及离模膨胀比B等表征流变特性的物理参数。
大多数聚合物熔体是属非牛顿流体,在管中流动时具有弹性效应、壁面滑移等特性,且毛细管的长度也是有限的,因此按以上推导测得的结果与毛细管的真实剪切应力和剪切速率有一定的偏差,必要时应进行非牛顿改正和入口改正。
转矩流变仪及其在塑料加工中地应用

返回转矩流变仪及其在塑料加工中的应用洪王暄迎思海亭理工大学1. 转矩流变仪的组成与特点转矩流变仪是在Brabender塑化仪的基础上发展起来的一种综合性聚合物材料流变性能测试实验设备。
其突出特点是可以在接近于真实加工条件下,对材料的流变行为进行研究。
目前已经在塑料加工性能研究、配方设计,材料真实流变参数测量等方面获得了重要应用。
随着转矩流变仪应用的日益广泛,其组成和性能也在不断发展,呈现多功能、高性能、高精度、自动化等趋势。
转矩流变仪主要由测控主机和功能单元两大部分组成。
测控主机提供了转矩流变仪的基本工作环境,完成各种数据采集与记录,以及为各功能单元提供动力和控制。
功能单元是实现各种测量的功能部分,目前已广泛应用的有,双转子混炼器、单螺杆挤出机、平行双螺杆挤出机、锥型双螺杆挤出机、杂质测量仪、口模膨胀测量仪、各种挤出加工模具等。
各功能单元以积木形式与测控主机相连,并在相应软件的支持下,实现具体的实验、测量和分析功能。
下面详细描述各部分的结构和性能。
1.1 测控主机组成与性能测控主机主要由计算机、数据测控系统、动力系统及转矩测量系统构成。
其组成框图如图1.1所示:图1.1 测控主机原理图其中计算机通过运行相应软件,完成各种操作和数据处理。
在计算机上运行的软件有两类,一类是测控软件,它提供了一个人机交互的接口,操作者可以在其提供的虚拟仪器界面上完成绝大多数的仪器操作,另外该软件还完成测量数据的显示和保存任务。
另一类是数据处理软件,它与各功能单元配合完成各种测量和分析。
测控主机和测控软件界面如图1.2和1.3所示。
图1.2 测控主机图1.3 测控软件界面数据测控系统是以单片微型计算机为核心的电子系统,完成温度、压力、转速、转矩等数据的采集以及实现电气、温度及转速控制。
动力系统为功能单元提供工作动力,由电动机和减速机组成。
转矩测量系统可以测量动力系统的输出转矩,并以此数据描述物料与各功能单元作用时的粘度变化,并进一步表征熔体的流变性。
pvc加工流变性——转矩流变仪(特选资料)

转矩流变仪及其在塑料加工中的应用赵洪王暄李迎崔思海陈亭哈尔滨理工大学1. 转矩流变仪的组成与特点转矩流变仪是在Brabender塑化仪的基础上发展起来的一种综合性聚合物材料流变性能测试实验设备。
其突出特点是可以在接近于真实加工条件下,对材料的流变行为进行研究。
目前已经在塑料加工性能研究、配方设计,材料真实流变参数测量等方面获得了重要应用。
随着转矩流变仪应用的日益广泛,其组成和性能也在不断发展,呈现多功能、高性能、高精度、自动化等趋势。
转矩流变仪主要由测控主机和功能单元两大部分组成。
测控主机提供了转矩流变仪的基本工作环境,完成各种数据采集与记录,以及为各功能单元提供动力和控制。
功能单元是实现各种测量的功能部分,目前已广泛应用的有,双转子混炼器、单螺杆挤出机、平行双螺杆挤出机、锥型双螺杆挤出机、杂质测量仪、口模膨胀测量仪、各种挤出加工模具等。
各功能单元以积木形式与测控主机相连,并在相应软件的支持下,实现具体的实验、测量和分析功能。
下面详细描述各部分的结构和性能。
1.1 测控主机组成与性能测控主机主要由计算机、数据测控系统、动力系统及转矩测量系统构成。
其组成框图如图1.1所示:图1.1 测控主机原理图其中计算机通过运行相应软件,完成各种操作和数据处理。
在计算机上运行的软件有两类,一类是测控软件,它提供了一个人机交互的接口,操作者可以在其提供的虚拟仪器界面上完成绝大多数的仪器操作,另外该软件还完成测量数据的显示和保存任务。
另一类是数据处理软件,它与各功能单元配合完成各种测量和分析。
测控主机和测控软件界面如图1.2和1.3所示。
图1.2 测控主机图1.3 测控软件界面数据测控系统是以单片微型计算机为核心的电子系统,完成温度、压力、转速、转矩等数据的采集以及实现电气、温度及转速控制。
动力系统为功能单元提供工作动力,由电动机和减速机组成。
转矩测量系统可以测量动力系统的输出转矩,并以此数据描述物料与各功能单元作用时的粘度变化,并进一步表征熔体的流变性。
流变11转矩流变

“
密闭式混合器相当于一个小型的密炼机,由一个 字型的可拆 卸混合室和一对以不同转速、相向旋转的转子组成,在混合室内, 转子相向旋转,对物料施加剪切,使物料在混合室被强制混合,两 个转子的Hale Waihona Puke 度不同,在其间隙中发生分散性混合。
原理与方法
采用混合器测试时,高聚物以粒子或粉末的形式自加 料口加入到密炼室中,物料受到上顶压料杆的压力,并且 通过转子表面与混合壁之间的剪切、搅拌、挤压,转子之 间的捏合、撕扯,转子轴向翻捣、捏炼等作用,实现物料 的塑化、混炼,直到达到均匀状态。
应用研究 加工过程的模拟与分析
A 典型转矩曲线
B 聚合物交联过程的研究
C PVC凝胶化过程的研究:
对于PVC树脂凝胶过程有不同的理论模型, 其中粉碎机理模量的解释如下:
Oa段:由于摩擦力作用,转矩上升; ab段:当客服静摩擦力之后,粒子之间产生滑移,从而进入动摩擦过程, 粉碎的混合物中空气被逐步挤出,并受到加热,转矩下降至b点; b点:物料成压实状态; bc段:PVC粉体粒子外包膜被融化、撕裂,包膜内的微细粒子挣脱出来而独 立存在,随着微细粒子的增多,转矩上升; c点:PVC粉体粒子已经全部成为微细粒子,并在局部出现尺寸更小的次级 粒子,此时体系的转矩值最大。通常称c点为熔融峰; Oc或ac段时间成为塑化时间,bc段时间成为熔融时间。它们反映了PVC树脂 凝胶化的快慢; cd段:细微粒子逐步向次级粒子与分子粒子层次转变,此时转矩逐步减小。 料温逐步上升,物料的流动由粒子间相对滑动向熔体均匀变形、流动转变; d点:PVC粒子破碎细化基本完成,转矩达到平衡。
转矩流变实验原理及应用
提纲
• • • • 概述 原理与方法 实验步骤 应用研究——加工过程 的模拟与分析
实验指导书(流变学)

《聚合物加工流变学》实验指导书雷彩红广东工业大学材料与能源学院2011年2月实验指导书(普通实验)实验项目名称:交联剂含量对LDPE交联过程的影响实验项目性质:普通所属课程名称:聚合物加工流变学实验计划学时:2学时一、实验目的:1.掌握转矩流变仪结构和原理,学会使用转矩流变仪;2.掌握常用的交联剂种类和结构;3.掌握LDPE交联过程,了解交联LDPE应用。
二、实验内容和要求在转矩流变仪上,观察不同的交联剂含量下LDPE转矩随时间变化曲线,记录曲线,分析不同交联剂含量下交联速度以及交联程度的变化。
三、实验主要仪器设备和材料仪器:天平、转矩流变仪材料:LDPE,过氧化物类引发剂四、实验方法、步骤及结果测试分成5个组,每组9人。
实验步骤:1.开启转矩流变仪,设定一定的温度175℃;2.称取原料LDPE 40g,交联剂占原料含量分别是0.5%、1.0%、1.5%;3.开启转矩流变仪,设定转速70rpm;4.将上述准备好的样品加入样品室,待LDPE熔融塑化平台出现后,加入交联剂,记录转矩随时间变化曲线;5.导出曲线,分析交联程度和交联速度;6.停止转矩流变仪,清干净样品室;7.关闭转矩流变仪;8.实验完毕后清理现场,清机后关闭电源;9.写实验报告五、实验报告要求1.实验目的2.实验内容3.实验仪器、材料4.实验方案5.实验数据记录与处理6.实验结果测试与分析7.总结六、思考题LDPE过氧化物交联过程温度对交联程度和交联速度有什么影响?实验指导书(普通实验)实验项目名称:不同加工温度和挤出速度对PP挤出胀大行为的影响实验项目性质:普通所属课程名称:聚合物加工流变学实验计划学时:2学时一、实验目的:1、掌握转矩流变仪结构和原理,学会使用转矩流变仪;2、掌握挤出胀大原理以及影响因素;二、实验内容和要求在转矩流变仪上,观察不同的温度和挤出速度下PP从单螺杆挤出机口模挤出后外观形状的变化,并用游标卡尺计量料条直径,计算挤出胀大比,分析不同温度和挤出速度下挤出胀大比的变化。
转矩流变仪实验

转矩流变仪实验一、实验目的1 了解转矩流变仪的基本结构及其适应范围;2 熟悉转矩流变仪的工作原理及其使用方法;3. 能够利用聚合物及添加助剂后的流变特性对加工进行有效评价二、实验原理本实验所用设备为:ZJL—200转矩流变仪转矩流变仪是一种综合性聚合物材料流变性能测试实验设备。
其突出特点是可以在接近于真实加工条件下,对材料的流变行为进行研究。
目前已经在塑料加工性能研究、配方设计,材料真实流变参数测量等方面获得了重要应用。
转矩流变仪主要由测控主机和功能单元两大部分组成。
测控主机提供了转矩流变仪的基本工作环境,完成各种数据采集与记录,以及为各功能单元提供动力和控制。
功能单元主要有两类,一类是混炼器,一类是挤出机。
混炼器主要完成物料的混合与塑炼,可以作为配方研究的小型试验机,用来研究材料的热稳定性、剪切稳定性、流动和固化行为。
各种挤出机不但可以模拟挤出加工、造粒等加工过程,从而评价物料的加工性能以及优化加工工艺参数,而且而可以通过圆形(或矩形)毛细管模具,测量不同剪切速率下,物料的真实粘度与剪切速率的关系,全面表征物料的流变性。
本设备功能单元为单螺杆挤出机,在具有一定温度的圆筒内旋转,筒的另端设有送料斗。
当原料被送至筒的2/3处时逐步增塑,进入到筒的剩余部分内被均化,当所有颗粒全部溶化后即可利用毛细管挤出模具成为母料或注入模具成形,同时设备也完成对材料的表现粘度与剪切速度及剪切应力关系的测量。
三. 主要技术指标转速: 15-120rpm 控制精度:0.5% F.S转矩测量范围: 0-300Nm 测量精度:0.5% F.S温度控制范围:室温-300℃四实验步骤1.开机,双击桌面软件快捷图片,进入流变仪操作界面,设置合适的温度预热半小时,如不设置温度,则默认上次温度进行预热;2.保存数据,将本次试验的数据保存于特定文件夹目录下;3.点击“压力清零”设定加热段各区温度:分别单击第1、2、3、4、5区“设定值”按钮,并设置转速,数据可选为15-120rpm。
旋转流变仪实验报告

旋转流变仪实验报告旋转流变仪实验报告引言旋转流变仪是一种用于测量物质流变性质的仪器。
通过旋转流变仪的实验,可以得到物质的粘度、剪切应力等参数,从而了解物质的流变行为和性质。
本实验旨在通过使用旋转流变仪,研究不同物质的流变特性,并分析实验结果。
实验原理旋转流变仪的工作原理是利用转子的旋转产生剪切应力,通过测量转子的扭转角度和扭矩,计算出物质的粘度和流变参数。
旋转流变仪通常由电机、转子、测量装置等组成。
实验步骤1. 准备工作:将旋转流变仪放置在平稳的台面上,并连接电源和计算机。
校准仪器,确保仪器正常工作。
2. 样品准备:选择不同的样品进行实验,例如液体、胶体、高分子材料等。
根据实验要求,准备好样品。
3. 实验设置:根据样品的特性和实验要求,设置旋转流变仪的参数,如转速、温度等。
4. 测量数据:将样品放置在旋转流变仪的测量装置中,启动仪器进行测量。
记录下转子的扭转角度和扭矩的数值,以及其他相关数据。
5. 数据处理:根据测量数据,计算出样品的粘度、剪切应力等参数。
可以使用专门的软件进行数据处理和分析。
6. 结果分析:根据实验结果,分析不同样品的流变特性和性质。
比较不同样品之间的差异,探讨其原因。
实验结果和讨论通过本实验,我们选取了几种不同的样品进行测试,包括水、牛奶和聚合物溶液。
下面是实验结果的简要总结和讨论。
1. 水:水是一种典型的牛顿流体,其粘度与剪切应力成正比。
在实验中,我们发现水的粘度较低,剪切应力较小。
这与水的流动性和流体性质相符合。
2. 牛奶:牛奶是一种复杂的流体,其流变性质受到多种因素的影响,如脂肪含量、温度等。
在实验中,我们发现牛奶的粘度较高,剪切应力较大。
这可能是由于牛奶中的脂肪和蛋白质等成分导致的。
3. 聚合物溶液:聚合物溶液是一种非牛顿流体,其粘度和剪切应力之间的关系较为复杂。
在实验中,我们发现聚合物溶液的粘度和剪切应力呈现非线性关系,即随着剪切应力的增加,粘度也会增加。
这是由于聚合物的分子结构和相互作用导致的。
流变学实验报告(3篇)

第1篇一、实验目的1. 了解流变学的基本概念和原理。
2. 掌握流变仪的使用方法。
3. 通过实验验证牛顿流体和非牛顿流体的特性。
4. 分析不同剪切应力下流体的粘度变化。
二、实验原理流变学是研究物体在外力作用下变形和流动的科学。
本实验主要研究牛顿流体和非牛顿流体的特性。
牛顿流体遵循牛顿粘度定律,即剪切应力与剪切速率成正比;非牛顿流体则不遵循该定律,其粘度随剪切速率的变化而变化。
三、实验仪器与材料1. 实验仪器:流变仪、温度计、计时器、样品容器、玻璃棒等。
2. 实验材料:水、甘油、玉米淀粉等。
四、实验步骤1. 准备实验材料:分别准备一定量的水和甘油作为牛顿流体,以及一定量的水和玉米淀粉作为非牛顿流体。
2. 测量牛顿流体粘度:将水样品倒入样品容器中,调整流变仪的设置,使其处于稳态流动状态。
记录剪切应力、剪切速率和对应的粘度值。
3. 测量非牛顿流体粘度:将水样品与玉米淀粉混合均匀,倒入样品容器中。
调整流变仪的设置,使其处于稳态流动状态。
记录剪切应力、剪切速率和对应的粘度值。
4. 分析数据:对比牛顿流体和非牛顿流体的粘度变化,分析不同剪切应力下流体的粘度变化规律。
五、实验结果与分析1. 牛顿流体粘度:实验结果显示,水作为牛顿流体,其粘度随剪切速率的增加而增加,符合牛顿粘度定律。
2. 非牛顿流体粘度:实验结果显示,水和玉米淀粉混合液作为非牛顿流体,其粘度随剪切速率的增加而降低,不符合牛顿粘度定律。
3. 不同剪切应力下流体的粘度变化:实验结果显示,在低剪切应力下,牛顿流体和非牛顿流体的粘度变化较小;随着剪切应力的增加,牛顿流体粘度逐渐增加,而非牛顿流体粘度逐渐降低。
六、实验结论1. 本实验验证了牛顿流体和非牛顿流体的特性,证明了牛顿流体粘度与剪切速率成正比,而非牛顿流体粘度随剪切速率的变化而变化。
2. 通过实验,了解了流变学的基本概念和原理,掌握了流变仪的使用方法。
3. 本实验为后续流变学研究和应用提供了实验基础。
转矩流变仪的应用

塑料测试技术
主讲教师: 谭寿再 吴丽旋 周延辉 杨崇岭
资源共享课
转矩流变仪的应用
•主讲:吴丽旋
塑料测试技术
资源共享课
根据塑料原料哪些性能指标 来调试成型加工工艺参数
常 用 塑 料 原 料
吹膜
注射成型
挤出成型
3
塑料测试技术
资源共享课
转矩流变仪的使用
板材的热稳定性能怎样? PET瓶原料粘度是多少?
塑料测试技术
资源共享课
转矩-时间变化曲线分析
当此阻力被 克服后,转矩 开始下降 并 在较短时间内 达到稳态。
高聚物被加 入到密炼室中 时,自由旋转 的转子受到来 自固体粒子或 粉末的阻力, 转矩急剧上升。 当粒子表面开始熔融并发 生聚集时,转矩再次升高。 当粒子完全熔 融后,物料成为 易于流动的宏观 连续流体,转矩 再次达到稳态。
塑料测试技术
资源共享课
转矩-时间变化曲线
根据转矩-时间变化曲线,可对物料的流 变行为与加工性能进行评价:
1. 转矩的绝对值直接反映物料的性质及其表观 粘度大小。 2. 转矩随时间的变化反映加工过程中物料均匀 程度的变化及其化学、物理结构的改变。 3. 还可同时得到温度曲线、压力曲线、总扭矩 曲线等信息。 4. 在不同温度和不同转速下测定,可了解加工 性能与温度、剪切速率的关系。
•
塑料测试技术
资源共享课
转矩-时间变化曲线
在设定温
度和转速(平 均剪切速率) 下,从转矩 流变仪得到
的转矩随时
间变化的曲 线。
图 1 典型的转矩随时间的变化曲线图 M1—最小转矩;M2—最大转矩;M3——平衡转矩 t1—物料受热压实时间;t2—塑化时间(熔融软化);
实验九塑化性能转矩流变仪的测定

结果分析
扭矩对塑化性能的影响
在实验过程中,随着扭矩的增加,塑化效 率逐渐提高。这表明,扭矩对塑化性能具 有重要影响。高扭矩能够提供更大的剪切 力,从而促进材料塑化。
VS
温度对塑化性能的影响
实验过程中,随着温度的升高,塑化效率 逐渐提高。这是因为高温能够降低材料的 粘度,提高分子运动速度,从而促进材料 塑化。然而,过高的温度可能导致材料分 解,降低塑化效率。因此,选择合适的温 度对获得最佳塑化性能至关重要。
THANK YOU.
将样品杯放入仪器中,设置加热、 转矩和流变等参数,启动仪器进行 实验。
数据记录与分析
记录实验过程中转矩、温度和时间 等数据,分析塑料材料的塑化性能 。
03
实验设备与材料
实验设备:塑化性能转矩流变仪
结构
该设备通常由加热/冷却系统、转 矩测量系统、温度控制系统和数 据采集分析系统组成。
功能
用于研究塑料粒子的塑化性能, 包括在不同温度、转矩和时间条 件下的变化情况。
局限性
塑化性能转矩流变仪测定只能评估塑料材料的塑化性能,而不能全面地评估材料 的综合性能。因此,需要结合其他实验方法来全面地评估塑料材料的性能。
02
实验原理
塑化性能转矩流变仪的构造与工作原理
构造
塑化性能转矩流变仪主要由加热系统、转矩测量系统、流变 测量系统和控制系统组成。
工作原理
塑化性能转矩流变仪基于物料在热、机械力作用下会表现出 特定的流变特性,通过控制温度、时间和剪切速率等参数, 测量物料在转矩流变仪中表现出的塑性粘度、弹性粘度等流 变性能。
本实验中使用的塑化剂种类和用量相 对较少,未来研究可以尝试使用更多 类型的塑化剂,并研究不同用量对塑 化性能的影响。
实验九塑化性能转矩流变仪的测定

xx年xx月xx日
目录
• 实验目的 • 实验原理 • 实验步骤 • 实验数据记录与分析 • 实验结论 • 参考文献
01
实验目的
了解实验的目的和意义
• 本实验旨在通过转矩流变仪测定塑料材料的塑化性能,深入 了解塑料在加工过程中的流变行为,为优化加工工艺、提高 制品质量提供指导。
实验操作
按照设定好的参数进行实验,观察并记录实验过 程中转矩、温度等变化情况。
注意事项
在实验过程中要密切关注实验变化情况,如出现 异常应立即停止实验并进行相应处理。同时要做 好实验记录和数据处理工作,以便后续分析和评 估。
04
实验数据记录与分析
实验数据的记录表格设计
1 2
表格名称
塑化性能转矩流变仪测定数据记录表
02
实验原理
塑化性能转矩流变仪的工作原理
工作原理
塑化性能转矩流变仪主要利用物料在高温高压下,受到一定剪切力作用时,发生 形变和流动的特性,通过控制系统对物料施加一定的剪切力,测量其相应的扭矩 变化,从而得到物料在一定温度、压力和不同转速下的塑化性能。
仪器结构
塑化性能转矩流变仪主要由加热系统、控制系统、测量系统和冷却系统等部分组 成。
转矩设置
根据样品的性质和实验要求设定转 矩,包括剪切转矩、拉伸转矩等。
变速设置
根据实验要求设定变速方式,包括 定速、变速等。
其他参数
根据实验要求设置其他相关参数, 如压力、气氛等。
实验操作流程及注意事项
实验前准备
确认转矩流变仪处于良好工作状态,检查实验样 品是否符合要求。
数据处理与分析
根据实验数据,进行数据处理和分析,得出实验 结果。
转矩流变仪的原理及应用

转矩流变仪的原理及应用1. 转矩流变仪的原理转矩流变仪是一种用于测量材料在转动中所产生的转矩变化的仪器。
其基本原理是利用一对对称固定的力制动装置,将被测物体制动,测量产生的制动力矩,从而推断出物体所受的转矩大小。
转矩流变仪的原理可以分为以下几个步骤:•力制动:转矩流变仪通过施加一对对称的制动力来制止被测物体的转动。
制动力的大小受到调节器的控制,可通过转动调节器来改变制动力大小。
•测量制动力矩:在物体被制动时,由于受到制动力的作用,物体会产生相应的制动力矩。
转矩流变仪会通过传感器来测量产生的制动力矩的大小。
•数据处理和显示:测得的制动力矩数据会被转矩流变仪进行处理,并通过显示屏或输出接口以数字或图形的形式展示出来。
2. 转矩流变仪的应用转矩流变仪的应用非常广泛,以下是一些常见的应用领域:2.1 汽车工业在汽车工业中,转矩流变仪被广泛应用于发动机、传动系统、转向系统等部件的测试与研发过程中。
通过测量转矩的变化,可以评估各部件的性能、效率以及耐久性等指标,从而对汽车的性能进行优化和改进。
2.2 航空航天工业在航空航天工业中,转矩流变仪可用于测试飞机发动机、涡轮机、涡轮增压器、液压泵、涡轮传感器等关键部件的性能和可靠性。
通过测量转矩的变化,可以评估部件的负载情况,预测寿命,并进行故障分析和故障诊断。
2.3 医疗器械领域在医疗器械领域,转矩流变仪被广泛用于测试和评估各种医疗器械的性能和质量。
例如,使用转矩流变仪来测量人工心脏、人工关节等医疗器械的转矩变化,以评估其操作稳定性和耐久性。
2.4 材料科学研究转矩流变仪在材料科学研究中也扮演着重要的角色。
通过测量材料在转动过程中的转矩变化,可以评估材料的流变性质,如粘弹性、塑性等特性。
这对于材料的研究和开发具有重要意义。
2.5 其他应用领域除了上述应用领域外,转矩流变仪还广泛应用于机械工程、电子工程、船舶工程、石油和化工工程等领域。
在这些领域中,转矩流变仪可以用于测试和评估各种设备、部件和产品的性能、质量和可靠性。
转矩流变仪实验

实验一转矩流变仪实验1. 实验重点和难点1.1 了解转矩流变仪的基本结构及其适应范围;1.2 熟悉转矩流变仪的工作原理及其使用方法;1.3 掌握聚氯乙烯(PVC)热稳定性的测试方法。
2. 实验原理物料被加到混炼室中,受到两个转子所施加的作用力,使物料在转子与室壁间进行混炼剪切,物料对转子凸棱施加反作用力,这个力由测力传感器测量,在经过机械分级的杠杆和⋅)读数。
其转矩值的大小反应了物料黏度的大小。
臂转换成转矩值的单位牛顿⋅米(N m通过热电偶对转子温度的控制,可以得到不同温度下物料的黏度。
转矩数据与材料的粘度直接有关,但它不是绝对数据。
绝对粘度只有在稳定的剪切速率下才能测得,在加工状态下材料是非牛顿流体,流动是非常复杂的湍流,有径向的流动也有轴向的流动,因此不可能将扭矩数据与绝对粘度对应起来。
但这种相对数据能提供聚合物材料的有关加工性能的重要信息,这种信息是绝对法的流变仪得不到的。
因此,实际上相对和绝对法的流变仪是互相协同的。
从转矩流变仪可以得到在设定温度和转速(平均剪切速率)下扭矩随时间变化的曲线,这种曲线常称为“扭矩谱”,除此之外,还可同时得到温度曲线、压力曲线等信息。
在不同温度和不同转速下进行测定,可以了解加工性能与温度、剪切速度的关系。
转矩流变仪在共混物性能研究方面应用最为广泛。
转矩流变仪可以用来研究热塑性材料的热稳定性、剪切稳定性、流动和固化行为。
图1为一般物料的转矩流变曲线,但有些样品没有AB段。
各段意义分别如下。
OA:在给定温度和转速下,物料开始粘连,转矩上升到A点。
AB:受转矩旋转作用,物料很快被压实(赶气),转矩下降到B点(有的样品没有AB 段)。
BC:物料在热和剪切力的作用下开始塑化(软化或熔融),物料即由粘连转向塑化,转矩上升C点。
CD:物料在混合器中塑化,逐渐均匀。
达到平衡,转矩下降到D。
DE:维持恒定转矩,物料平衡阶段(至少在90s以上)。
E以后:继续延长塑化时间,导致物料发生分解、交联、固化,使转矩上升或下降。
转矩流变仪实验

转矩流变仪实验转矩流变仪实验 1 实验目的要求了解转矩流变仪的基本结构及其适应范围熟悉转矩流变仪的工作原理及其使用方法掌握聚氯乙烯PVC热稳定性的测试方法2 实验原理物料被加到混炼室中受到两个转子所施加的作用力使物料在转子与室壁间进行混炼剪切物料对转子凸棱施加反作用力这个力由测力传感器测量在经过机械分级的杠杆和臂转换成转矩值的单位牛顿米 Nm 读数其转矩值的大小反应了物料黏度的大小通过热电偶对转子温度的控制可以得到不同温度下物料的黏度 3 实验原材料和仪器设备原材料聚氯乙烯PVC 45份邻苯二甲酸二辛酯DOP 2份三盐基硫酸铅2份硬酯酸钡 BaSt 07份硬酯酸钙 CaSt 05份石蜡02份仪器设备 4 实验步骤聚合物熔体流动速率的测定实验目的和要求了解塑料熔体流动指数与分子量大小及其分布的关系掌握测定塑料熔体流动速率的原理及操作熔体流动速率塑料熔体流动速率 MFR 是指在一定温度和负荷下塑料熔体每10min通过标准口模的质量工业上常称为熔融指数 MI 在塑料成型加工过程中熔体流动速率是用来衡量塑料熔体流动性的一个重要指标其测试仪器通常称为塑料熔体流动速率测试仪或熔体指数仪一定结构的塑料熔体若所测得MFR愈大表示该塑料熔体的平均分子量愈低成型时流动性愈好此种仪器测得的流动性能指标是在低剪切速率下获得的不存在广泛的应力,应变速率关系不能用来研究塑料熔体粘度与温度粘度与剪切速率的依赖关系仅能比较相同结构聚合物分子量或熔体粘度的相对数值主要技术特性常见塑料试验条件实验步骤吸湿性塑料测试前应按产品标准规定进行干燥处理熟悉熔体流动速率仪主体结构和操作规程根据塑料类型选择测试条件安装好口模在料筒内插入活塞接通电源开始升温调节加热控制系统使温度达到要求恒温至少15min 实验步骤预计试料的MFR范围按下表称取试料实验步骤取出活塞将试料加入料筒随即把活塞再插入料筒并压紧试料预热4min使炉温回复至要求温度在活塞顶托盘上加上砝码随即用手轻轻下压促使活塞在1min内降至下环形标记距料筒口510mm处待活塞不用手继续降至下环形标记与料筒口相平行时切除已流-6规定的切样时间间隔开始切样保留连续切取的无气泡样条出的样条并按表2 三个当活塞下降至上环形标记和料筒口相平时停止切样实验步骤停止切样后趁热将余料全部压出立即取出活塞和口模除去表面的余料并用合适的黄铜丝顶出口模内的残料然后取出料筒用绸布蘸少许溶剂伸入筒中边推边转地清洗几次直至料筒内表面清洁光亮为止所取样条冷却后置于天平上分别称其质量准确至0001g若其质量的最大值和最小值之差大于平均值的10则实验重做聚合物冲击性能测试简支梁冲击试验悬臂梁冲击试验实验目的与要求熟悉高分子材料冲击性能测试的简支梁和悬臂梁冲击试验方法操作熟悉冲击试验的实验结果处理方法了解测试条件对测定结果的影响试样制备注塑标准试样试样表面应平整无气泡无裂纹无分层和无明显杂质缺口试样在缺口处应无毛刺板材试样厚度在313mm之间时取原厚度大于13mm时应从两面均匀地进行机械加工到10?05mm4型试样的厚度必须加工到13mm 操作步骤 1 对于无缺口试样分别测定试样中部边缘和试样端部中心位置的宽度和厚度并取其平均值为试样的宽度和厚度准确至002mm缺口试样应测量缺口处的剩余厚度测量时应在缺口两端各测一次取其算术平均值操作步骤 2 根据试样破坏时所需的能量选择摆锤使消耗的能量在摆锤总能量的10 85范围内 3 调节能量刻度盘指针零点使它在摆锤处于起始位置时与主动针接触进行空白实验保证总摩擦损失在规定的范围内操作步骤 4 抬起工锁住摆锤把试样按规定放置在两支撑块上试样支撑面紧贴在支撑块上使冲击刀刃对谁试样中心缺口试样使刀刃对准缺口背向的中心位置 5 平稳释放摆锤从刻度盘上读取试样破坏时所吸收的冲击能量值试样无破坏的吸收的能量应不作取值实验记录为不破坏或NB试样完全破坏或部分破坏的可以取值 6 如果同种材料在实验中观察到一种以上的破坏类型时须在报告中标明每种破坏类型的平均冲击值和试样破坏的百分数不同破坏类型的结果数据处理悬臂梁冲击试验操作步骤 1 测量每个试样中部的不能进行比较厚度和宽度或缺口试样的剩余宽度bN精确到002mm 2 检查实验机是否有规定的冲击速度和正确的能量范围破断试样吸收的能量在摆锤容量的10 80范围内若表11-1中所列的摆锤中有几个都能满足这些要求时应选择其中能量最大的摆锤 3 进行空白实验记录所测得的摩擦损失该能量损失不能超过表11-1所规定的值操作步骤 4 抬起并锁住摆锤正置试样冲击测定缺口试样时缺口应放在摆锤冲击刃的一边释放摆锤记录试样所吸收的冲击能并对其摩擦损失等进行修正 5 试样可能出现四种破坏类型即完全破坏试样断开成两段或多段铰链破坏断裂的试样由没有刚性的很薄表皮连在一起的一种不完全破坏部分破坏除铰链破坏外的不完全破坏和不破坏测得的完全破坏和铰链破坏的值用以计算平均值在部分破坏时如果要求部分破坏值则以字母P表示完全不破坏时用NB表示不报告数值 6 在同一样品中如果有部分破坏和完全破坏或铰链破坏时应报告每种破坏类型的自述平均值两个实验结果都需要邵氏硬度测定材料硬度的测试方法布氏硬度洛氏硬度维氏硬度莫氏硬度邵氏硬度邵氏硬度操作步骤将硬度计垂直安装在硬度计支架上用厚度均匀的玻璃平放在试样台上在相应的重锤作用下使硬度计下压板与玻璃完全接触此时读数盘指针应指示100当指针完全离开玻璃片时指针应指示0允许最大偏差为?1个邵氏硬度值操作步骤将待测试样置于测定架的试样平台上使压针头离试样边缘至少12mm 平稳而无冲击地使硬度计在规定重锤的作用下压在试样上从下压板与试样完全接触15s后立即读数如果规定要瞬时读数则在下压板与试样完全接触后1s内读数操作步骤在试样上相隔6mm以上的不同点处测量硬度至少5次取其平均值注意如果实验结果表明不用硬度计支架和重锤也能得到重复性较好的结果也可以用手压紧硬度计直接在试样上测量硬度数据处理从读数度盘上读取的分度值即为所测定的邵氏硬度值用符号HA或HD来表示邵氏A或邵氏D的硬度如用邵氏A硬度计测得硬度值为50则表示为HA50实验结果以一组试样的算术平均值表示标明测聚乙烯发泡成型 1实验目的和要求掌握生产聚烯烃泡沫试结果的标准偏差塑料的基本原理了解聚烯烃泡沫塑料的主要生产法掌握生产聚乙烯泡沫塑料的基本配方了解配方各种组分的作用掌握实验室制备聚乙烯泡沫塑料的操作过程 2实验原理泡沫塑料是以树脂为基础内部具有无数微孔性气体的塑料制品塑料产生微孔结构的过程称为发泡发泡前原材料密度与发泡后泡沫塑料密度的比值叫做发泡倍数实验时先按配方配齐原料而后在开炼机上进行混炼混炼温度应在树脂熔点之上但须注意保持在交联剂和发泡剂分解温度以下以防止过早交联和发泡致使以后发泡不足或降低制品的质量经过充分混炼的料片裁切后即加入模具并放入压机在加热和加压下交联剂分解使树脂交联随之再进一步提高温度使发泡剂分解而发泡发泡剂分解完毕后卸压使热的熔融物膨胀弹出而完成发泡 3实验原材料和仪器设备原材料配方低密度聚乙类烯LDPE 过氧化二异丙苯DCP工业一级品偶氮二甲酰胺ADCA工业一级品氧化锌ZnO化工一级品硬脂酸锌ZnSt化工一级品仪器设备天平感量01g 1台天平感量1g 1台密炼机1台双辊炼塑机SK-160B 1台平板硫化机XLB-D350mm×350mm 1台发泡模具160×160×3mm 1套整形模具长×宽350×300mm 1套泡沫材料测厚仪或游标尺精度002mm 1件 4实验步骤测定LDPE树脂的密度和熔融流动速率计算出LDPE 质量为45g时加入助剂的质量用天平感量lg 称量LDPE于容器中按发泡促进剂交联剂发泡剂顺序分别用天平感量01g 称量助剂并放入容器中按密炼机的操作规程开启密炼机设定密炼机混料参数温度为120?转子速度为60rpm时间10min 当密炼机的温度到达120?并在此温度下恒定3min校正扭矩开始实验打开上顶栓加料放下上顶栓在实验进行过程中观察密炼室中时间转矩和时间熔体温度曲线从物料的转矩温度时间曲线判断物料熔融并已均匀后或经密炼10min后打开密炼机卸料立即辊启动双辊炼塑机调节辊距为3,4mm在100,120?的温度下将密炼好的炼放片团块状物料辊炼1,2次取下成为发泡使用的片坯片坯未冷却变硬时裁切为略小于160×160mm的正方块按发泡模具型腔容积同学在实验前计算的质量数值用天平感量lg 称量片坯将已恒温160,180?的发泡模具清理干净置于平板硫化机下工作台中心部位放入已称量的片坯合模加压至平板硫化机液压表压强为10MPa 同学实验前换算kgfcm, 开始计算模压发泡成型时间在模具温度160,180?下模压发泡成型10,12min解除压力迅速开模取出泡沫板材置于整形模具的二块模板间定型2,6min 用三角尺自备在泡沫板材面画出100×100mm的正方形剪切成块用泡沫材料测厚仪或游标尺测量各边的厚度用天平感量01g 称量泡沫块的质量在泡沫板材表面及切断面用肉眼或放大镜观查气泡结构及外观质量缺陷如熔接痕翘曲僵块凹陷等状况用切样机切取试样测试拉伸强度及断裂伸长率 5思考题 1同一塑料的模压成型与模压发泡成型有何特点注射成型工艺实验实验方法一准备工作 1 选择实验用原料PP PE PS 2 根据原料特性及试样质量要求拟定工艺条件原料干燥工艺各区段温度螺杆行程与背压注射压力保压压力及保压时间模温与冷却时间制品后处理条件 3 模具安装并作好调整 4 熟悉注射机的操作规程实验方法二实验操作 1 手动操作按下手动按扭依次进行闭模注射座前移注射保压予塑冷却注射座后退开模顶出制品 2 半自动设定好各工艺参数按下半自动按扭确认温度已达设定值然后合上安全门注射机会按动作程序自动工作直至顶出制品打开安全门人工取出制品再合上安全门进入下一个循环实验结果记录实验相关的各类工艺参数作必要的数据分析与计算对制品质量进行观察分析挤出吹膜工艺实验实验准备 1 选择实验用原料PE 2 根据原料特性和薄膜质量要求拟定挤出工艺参数挤出机机头口模温控范围螺杆转速牵引速度空气压力 3 预热挤出机和机头 4 熟悉挤出机操作规程实验操作 1 恒温半小时启动主机观察口模出料状况待挤出的泡管壁厚基本均匀用手戴手套将管状物慢慢引向冷却牵引装置随即通入压缩空气观察泡管质量结合实际情况及时协调工艺设备因素使整个操作控制处于正常状态 2 取样一组并记录此时的工艺条件实验操作改变工艺条件如料温螺杆转速牵引速度风量调整重复上述操作过程分别观察和记录薄膜质量情况实验完毕逐渐降低螺杆转速停机趁热清理对所取试样进行测量并称重作好记录实验结果记录实验相关的各类工艺参数作必要的数据分析与计算从而得出产率吹胀比牵伸比对制品质量进行观察分析一实验目的了解PVC硬板成型的基本原理熟悉掌握PVC硬板压制成型的基本工艺了解PVC板材的基本配方及配方的要求四主要仪器设备 ,型捏合机或高速混合机 SK160B双辊炼塑机压力成型机不锈钢模板型腔尺寸120×120mm浅搪瓷盘水银温度计表面温度计天平制样机测厚仪或游标卡尺小铜刀棕刷手套剪刀等实验用具辊压 1按照双辊炼塑机操作规程利用加热控温装置将辊筒预热至160士 5?恒温一定时间后开动辊筒机调节辊间距为2,3mm 2(在辊隙上部加上初混物料操作开始后从两辊间隙掉下来的物料应立即再加往辊隙上去不要让其在底盘内停留时间过长且注意经常保持一定的辊隙存料待混合料已粘结成包辊的连续状料带后适当松宽辊隙以控制料温和料带的厚度 3(塑炼过程中用切割装置或铜刀不断地将料带从辊筒上拉下来折迭辊压或者把物料翻过来沿辊筒轴向不同的位置重迭交叉再送入辊隙中使各组分充分地分散塑化均匀 4(辊压数分钟后再将辊距调至23mm进行薄通12次若观察物料色泽已均匀截面上不显毛粒表面已光泽且有一定强度时辊压过程可告终结迅速将塑炼好的料带成整片剥下平整放置并剪裁成一定尺寸的片坯五实验结果及记录见课本六思考题P88-12 压制成型 1按照压力成型机操作规程检查压机上各部份的运转加热和冷却情况并调整到工作状况利用压机的加热和控温装置将压机上下模板加热至180?左右 2 升压 3 保温 4 冷却脱模 5 改变配制成型工艺条件重复上述操作过程进行下一轮实验可制得不同性能的PVC板材本实验是天然橡胶的加工选用开放式炼胶机进行机械法塑炼天然生胶盱开炼机下反复被机械作用受力降解与的两个相向转动的辊筒间隙中在常温小于50?此同时降解后的大分子自由基在空气中的氧化作用下发生了一系列力学与化学反应最终可以控制达到一定的可塑度生胶从原先强韧高弹性变为柔软可塑性满足混炼的要求塑炼的程度和塑炼的效率主要与辊筒的间隙和温度有关若问隙愈小温度愈低力化学作用愈大塑炼效率愈高此外塑炼的时间塑炼工艺操作方法及是否加入塑解剂也影响塑炼的效果混炼是在塑炼胶的基础上进行的又一个炼胶工序本实验也是在开炼机上进行的为了取得具有一定的可塑度且性能均匀的混炼胶除了控制辊距的大小适宜的辊温外必须注意按一定的加料混合程序即量小难分散的配合剂首先加到塑炼胶中它有较长的时间分散量大的配合剂则后加硫磺用量虽少但应最后加入因为硫磺一旦加入便可能发生硫化效应过长的混合时间将使胶料的工艺性能变坏于其后的半成品成型及硫化工序都不利不同的制品及不同的成型工艺要求混炼胶的可塑度硬度等都是不同的混炼过程要随时抽样测试并且要严格混炼的工艺条件三原料及设备思考题1 天然生胶塑炼胶混炼胶和硫化胶它们的机械性能和结构实质有何不同2 影响天然胶开炼机塑炼和混炼的主要因素有哪些3 胶料配方中的促进剂为何通常不只用一种呢聚丙烯挤出造粒实验 3实验原材料和仪器设备原材料聚丙烯PP高密度聚乙烯HDPE助剂仪器设备双螺杆挤出机 1台 XRZ-400型熔融流动速度仪 1台剪刀1把手套 1付切粒机 1台冷却水槽1个双螺杆挤出机的主要技术性能为φ34mm螺杆长径比32螺杆转速350?挤出机的主体结构及挤出造粒组合图如图1-1所示 4实验50Hz加热温度步骤正确把握实验的三个环节要求预习实验过程实验报告查看写观察记录思考数据处理现象解释给出实验结果提出问题并讨论实验设备单螺杆挤出机传动系统挤出系统加热和冷却系统控制系统附属装置加料装置料筒螺杆机头口模挤出成型基本过程 1塑化在挤出机内将固体塑料加热并依靠塑料之间的内摩擦热使其成为粘流态物料 2成型在挤出机螺杆的旋转推挤作用下通过具有一定形状的口模使粘流态物料成为连续的型材 3定型用适当的方法使挤出的连续型材冷却定型为制品 PVC硬板压制成型二基本原理 PVC的特性1刚性 2熔体粘度大 3热稳定性差配料热稳定剂防加工过程中的热降解使成型加工和应用成为可能增塑剂具有柔韧性弹性抗氧剂紫外线吸收剂防止老化改性剂物理力学性能着色剂获得特定色彩此外还有填料等加工过程前阶段备料主要包括塑料的配制塑化等后阶段成型主要包括成型冷却卷取切割等板片材模压成型分为冷冲压和热压成型 1(冷冲压在常温下对塑料板片材进行冲压成型的方法称为冷冲压 2(热压成型板片材热压成型又称为片材成型它是一种将塑料板材或片材加热到一定温度后再对其进行模压的成型方法加热温度既可低于塑料熔融温度亦可高于塑料熔融温度前者称固态模压成型后者称粘流态模压成型三原料及设备主要原料选择及依据,见课本略硬质PVC板材配方五实验方法粉料配制 1(以PVC树脂500g为基准按上述配方在天平上称量各添加剂经研磨磁选后依次放置配料瓷盘中与配方核对有无差错 2(熟悉混合机模作操程备好混合机的加热运转测量器件先将 PVC树脂与稳定剂等干粉状组分加入混合机中开动搅拌同时对物料进行加热2-3分钟后在搅动下缓慢加入增塑剂等液体组分注意控制物料混合温度不超过80?使添加剂均匀分散吸附在PVC颗粒表面固体润滑剂最好在临近混合终点前的一小段时间加入 3(加热混合约半小时后可凭实践经验观察混合料颜色的变化或取样热压成试片借助放大镜观看白色稳定剂着色剂斑点的大小和分布以及有无结聚粗粒等状况由此判断各组份大体分散均匀停止加热搅拌出料至配料瓷盘中待用天然橡胶硫化模压成型一实验目的 1(掌握橡胶制品配方设计基本知识熟悉橡胶加工全过程和橡胶制品模塑硫化工艺 2(了解橡胶加工的主要机械设备如开炼机平板硫化机等基本结构掌握这些设备的操作方法二基本原理生胶是橡胶弹性体属线型高分子化合物高弹性是它的最宝贵的性能但是过份的强韧高弹性会给成型加工带来很大的困难而且即使成型的制品也没有实用的价值因此它必须通过一定的加工程序才能成为有使用价值的材料不管天然的还是合成的生胶其加工程序不外乎是干胶工艺和乳胶工艺两条工艺路线其中又以干胶工艺应用得最多最为广泛在配方制订的基础上进行下列工艺程序略其中的半成品成型包括有几种成型工艺方法本实验仅讨论橡胶的干胶工艺塑炼和混炼是橡胶加工的两个重要的工艺过程通称炼胶其目的是要取得具有柔软可塑性并赋予一定使用性能的可用于成型的胶料生胶的分子量通常都是很高的从几十万到百万以上过高的分子量带来的强韧高弹性给加工带来很大的困难必须使之成为柔软可塑性状态才能与其他配合剂均匀混合这就需要进行塑炼塑炼可以通过机械的物理的或化学的方法来完成本实验所列的配方表明是通过实验取得一软质的橡胶片制品橡胶制品即硫化胶的硬度主要取决于其硫化程度按软硬程度通常可分软质胶半硬质和硬质胶?本实验配方中的硫磺含量在5份之内交联度不很大所得制品柔软选用两种促进剂对天然胶的硫化都有促进作用不同的促进剂协同使用是因为它们的活性强弱及活性温度有所不同在硫化时将促进交联作用更加协调充分显示促进效果助促进剂即活性剂在炼胶和硫化时起活化作用化学防老剂多为抗氧剂用来防止橡胶大分子因加工及其后的应用过程的氧化降解作用以达到稳定的目的石蜡与大多数橡胶的相容性不良能集结于制品表面起到滤光阻氧等防老化效果并且对于加工成型有润滑性能碳酸钙作为填充剂有增容降低成本作用其用量多少也影响制品的硬度本实验要求制取一块天然软质硫化胶片其成型方法采用模压法它是一定量的混炼胶置于模具的型腔内通过平板硫化机在一定的温度和压力下成型同时经历一定的时间发生了适当的交联反应最终取得制品的过程天然橡胶是异戊二烯的聚合物大分子的主链上仍有双键硫化反应主要发生在大分子间的双键上其机理简述见课本所得的硫化胶制品实际上是松散的不完全的交联结构成型时施加一定的压力有利于活性点的接近和碰撞促进了交联反应的进行也有利于胶料的流动以便取得具有适宜的密度和与模具型腔相符的制品硫化过程要保持一定的时间主要是由胶料的工艺性能来决定的也是为了使交联反应达到配方设计所要求的程度硫化过后不必冷却即可脱模模具内的胶料已交联定型为橡胶制品仪器设备SK-160B型双辊筒炼胶机电热平板硫化机模板浅搪瓷盘温度计 0,250? 2支天平铜铲手套剪刀等实验用具备齐原料及配方见课本四实验方法 1(配料按上列的配方准备材料准确称量并复核备用 2(生胶塑炼 1 在指导教师和实验室工作人员指导下按机器的操作规程开动开放式炼胶机观察机器是否运转正常 2 破胶调节辊距15mm 3 薄通胶块破碎后将辊距调到约05mm辊温控制在45?左右 4 捣胶将辊距放宽至10mm 5 辊筒的冷却由于辊筒受到摩擦生热辊温要升高应经常以手触摸辊筒。
第一组--流变仪的测试

控制应变的流变仪由于硬件复杂,目前只
2021/4/9有几种功能附件可供选择。
4
2.毛细管流变仪
毛细管流变仪主要用于高聚物
材料熔体流变性能的测试;工作原
理是,物料在电加热的料桶里被加
热熔融,料桶的下部安装有一定规
格的毛细管口模(有不同直径 0.25
~2mm和不同长度的0.25~40mm
),温度稳定后,料桶上部的料杆
的基本流变性能是相似的,因而流变曲线的形状是一样的。不同 的是指纹特征,如曲线的数量水平,曲线的陡直,特征区域或峰 的位置和强弱等。同时,能理解不同的影响因数是如何改变曲线 的形状和指纹特征。
2021/4/9
15
流变曲线提供材料的结构、工艺模拟、加工性能及其产品
性能方面的信息。单一的流变曲线只能提供某些特定的信 息,但多种流变曲线就可能提供较为完整的信息。
流变仪测试
第一组:28—33
2021/4/9
1
流变仪,用于测定聚合物熔体,聚合物 溶液、悬浮液、乳液、涂料、油墨和食 品等流变性质的仪器。可分为旋转流变 仪、毛细管流变仪、转矩流变仪和界面 流变仪。
2021/4/9
2
1.旋转流变仪
A:控制应力型: 使用最多,如德国哈克(Haake) RS系 列、美国TA的AR系列、英国Malven、奥地利Anton-Paar 的MCR系列,都是这一类型的流变仪。前三家的产品马 达采用托杯马达,托杯马达属于异步交流马达,惯量小 ,特别适合于低粘度的样品测试;Anton-Paar的流变仪 采用永磁体直流马达,惯量稍大,但从原理上响应速度 快,也是目前应力型流变仪的一种发展方向。这一类型 的流变仪,采用马达带动夹具给样品施加应力,同时用 光学解码器测量产生的应变或转速。
转矩流变仪的应用(精)

转矩流变仪的应用
研究热塑性材料的热稳定性、剪切稳定性、流动和固化
行为 最大特点是能在类似实际加工过程的条件下连续、准确 可靠地对体系的流变性能进行测定。 典型实验有XLPE材料的交联特性测定 PVC材料融合特性以及热稳定性的测定 材料表观粘度与剪切速率关系的测定
转矩流变仪结构
图1是计算机,测控主机与混炼器的组合
图3是WinRheo的人机界面
完成7路温度测量,其中6路可进行设定
和控制,转速设定、测量和控制,扭矩、 压力测量,配合自动称重系统进行挤出 量测量,配合测径仪进行口模膨胀测量 曲线窗口可以实时显示以上各数据对时 间的曲线。 这些数据可以由专用的WinMixer、 WinVisco进行数据处理,也可以由通用 软件Origin进行数据处理、作图
主要测控功能 – 温度测控,压力测量,转矩测量,转速测控 辅助功能的测量 – 自动实时称重(测剪切速率)、测径(测口 模膨胀)和薄膜质量测量(透明度、杂质颗 粒缺陷) 系统软件 – 测控软件WinRheo – 混炼器试验数据处理软件WinMixer – 表观粘度试验数据处理软件WinVisco – 工具软件WrData组成
挤出机、混炼器 自动称重单元
– 自动完成材料的表观粘度与剪切速率及剪切应力关 系测量
测径单元
– 完成口模膨胀的自动测量。
带状试样压光及牵引单元
– 制成均匀的带状试样,供拉伸及热延伸实验使用。
膜质量测试单元
– 完成透明材料的杂质颗粒缺陷及透明度的测试
软件
– 完成数据采集、控制以及实验数据的处理。
Hale Waihona Puke 1.2.1 系统组成 测控主机、计算机及打印机 – 混炼器单元 – 挤塑机单元、挤橡机单元 – 自动称重单元 – 自动测径单元 – 带状试样压光及牵引单元 – 透明材料的透明度及缺陷测量单元
转矩流变仪

什么是转矩流变仪? 一、什么是转矩流变仪?
矩矩流变仪是研究材料的流动、塑化、 矩矩流变仪是研究材料的流动、塑化、热、剪 切稳定性的理想设备, 切稳定性的理想设备,该流变仪提供了更接近 于实际加工的动态测量方法, 于实际加工的动态测量方法,可以在类似实际 加工的情况下,连续、 加工的情况下,连续、准确可靠地对材料的流 变性能进行测定,如多组份物料的混合、 变性能进行测定,如多组份物料的混合、热固 性树脂的交联固化、弹性体的硫化, 性树脂的交联固化、弹性体的硫化,材料的动 态稳定性以及螺杆转速对体系加工性能的影响 等。
• 负载点(L): 负载点( 表示密炼机填料完毕并且关闭 密炼机填料完毕并且关闭。 表示密炼机填料完毕并且关闭。 此点仅作为计算的时间依据。 此点仅作为计算的时间依据。 扭矩值根据载料类型而定。 扭矩值根据载料类型而定。 载料速度和载料强度可人为调 控。 • 谷点(V): 谷点( 表示PVC 干混料开始熔融。 表示PVC 干混料开始熔融。 此点对混合物配方至关重要。 此点对混合物配方至关重要。 • 熔点(F ): 表示PVC熔融完成。 PVC熔融完成 表示PVC熔融完成。 此点对混合物配方至关重要。 此点对混合物配方至关重要。 超过此点值后,扭矩由于摩擦/ 超过此点值后,扭矩由于摩擦/ 热量开始降低。 热量开始降低。 • 稳定扭矩点(S): 稳定扭矩点( 表示扭矩达到稳定状态 扭矩达到稳定状态。 表示扭矩达到稳定状态。 稳定扭矩根据分解发生点设置
三、转矩流变仪的基本结构
四、电加热转矩流变仪
是一种组合式 转矩测量仪。 转矩测量仪。 除主机外, 除主机外,带 有一种小型密 炼器和小型螺 杆挤出机及各 种口模。 种口模。转矩 流变仪可以用 来研究热塑性 材料的热稳定 性、剪切稳定 性、流动和固 化行为。 化行为。
实验九塑化性能转矩流变仪的测定

完全塑化时间是材料完全被塑化的时间,可以通过对实验数据的分析得出。
材料性能与配方关系分析
配方对性能的影响
分析实验数据,可以研究不同配方对材料性能的影响,如添加不同的助剂、填充剂等对材料性能的影 响。
材料性能与转矩的关系
分析实验数据,可以研究材料性能与转矩的关系,从而进一步了解材料的流变性能。
掌握塑化性能测试方法
• 通过实验,学生将学习到如何使用转矩流变仪进行塑化性能测试。测试方法包括样品的制备、仪器设定、实验操作和数 据收集等步骤。通过实践操作,学生可以深入理解塑化性能测试的原理和方法。
分析材料性能与配方关系
• 转矩流变仪可以用于研究材料性能与配方之间的关系。实 验中,学生可以通过改变实验条件,如温度、压力和时间 等,来观察这些因素对材料塑化性能的影响。此外,他们 还可以研究不同配方材料之间的性能差异,进一步理解材 料性能与配方之间的关系。
实验九塑化性能转矩流变仪 的测定
2023-11-04
contents
目录
• 实验目的 • 实验原理 • 实验步骤 • 实验数据分析 • 实验结论 • 参考文献
01
实验目的
了解转矩流变仪的原理
• 转矩流变仪是一种用于研究材料在加工过程中力学行为和流 动性能的实验设备。它通过测量材料在旋转或剪切应力作用 下的流动行为,提供关于材料塑化、混炼、熔融和固化过程 的重要信息。
转矩流变仪的应用范围
列举了转矩流变仪在塑料加工、橡胶加工、涂料和油墨等领域 的具体应用案例,说明了其在不同领域中的重要性和应用价值 。
感谢您的观看
THANKS
常见的塑化性能测试方法包括:压缩试验、拉伸试验、冲击试验等。
在本实验中,我们将采用转矩流变仪进行塑化性能测试,通过测量材料在不同温 度和剪切应力下的扭矩和转速变化来评估材料的塑化性能。
实验九塑化性能(转矩流变仪)的测定

实验步骤
1、准备工作 了解仪器的操作,安装仪器,并按式(Ⅱ-9-1)计算加料 量,并用天平准确称量。
W1=(V1 − V 0) × ρቤተ መጻሕፍቲ ባይዱ× α 0
式中
(Ⅱ-9-1)
W1 ——加料量,g; cm V1 ——混合器容积, 3 ; V 0 ——转子体积, 3 ; cm ρ ——原材料的固体或熔体密度, 3; g/cm α 0 ——加料系数,按固体或熔体密度计算分 别为O.65、0.80。
2、仪器设备及实验条件 、
实验主要采用HAAKE微处理控制转矩流变仪(系 统40型)测量塑料熔体的塑化曲线。 1、加料量 料量不足,转子难于充分接触物料,达不到混炼 塑化的最佳效果。反之,加入的物料过量,使仪 器安全装置发生作用,停止运转,中断实验。 2、温度与转速 温度过低,安全装置发生作用,使仪器停止运转。 温度过高,影响测试的准确性。 3、时间 混炼时间应根据高分子材料的耐热性、实验观察 现象出现的时间区域等因素确定。
图Ⅱ-9-1为一般物料的转矩流变曲线,但有些样品没有 AB段,各段意义分别如下。
OA:在给定温度和转速下,物 料开始粘连,转矩上升到A 点。 AB:受转矩旋转作用,物料很 快被压实(赶气),转矩下 降到B点(有的样品没有AB 段)。 BC:物料在热和剪切力的作用 下开始塑化(软化或熔融), ( ) 物料即由粘连转向塑化,转 矩上升C点。 CD:物料在混合器中塑化,逐 渐均匀。达到平衡,转矩下 降到D。 DE:维持恒定转矩,物料平衡 阶段(至少在90s以上)。 E以后:继续延长塑化时间, 导致物料发生分解、交联、 固化,使转矩上升或下降。
2、测试操作 ①启动转矩流变仪的微机及动力系统,按照 输入程序,使用S指令把标题、加热温度、 转子转速、运行控制、参数显示、指令代码 等实验条件输入微机处理。 ②当显示的温度偏差为O时,表示混合器加 热已达到规定的温度。接通电机,加入被测 试试样,开启打印机,开始实验。当达到指 令编定的时间时,实验自动停止。 ③将磁盘插入磁盘驱动器,使用W指令,贮 存全部的实验数据。 ④拆卸、清理干净混合器,为再次实验做好 准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转矩流变试验
胡圣飞编
一、试验原理及目的
高分子材料的成型过程,如塑料的压制、压延、挤出、注射等工艺,化纤抽丝,橡胶加工等过程,都是利用高分子材料熔体进行的。
熔体受力作用,不但表现有流动和变形、而且这种流动和变形行为强烈地依赖于材料结构和外界条件,高分子材料的这种性质称为流变行为(即流变性)。
测定高聚物熔体流变性质,根据施力方式不同,有多种类型的仪器,转矩流变仪是其中的一种。
它由微机控制系统、混合装置(挤出机、混炼器)等组成。
测量时,测试物料放入混合装置中,动力系统驱使混合装置的混合元件(螺杆、转子)转动,微处理机按照测试条件给予给定值、保证转矩流变仪在实验控制条件下工作。
物料受混合元件的混炼、剪切作用以及摩擦热、外部加热作用,发生一系列的物理、化学变化。
在不同的变化状态下,测试出物料对转动元件产生的阻力转矩、物料热量、压力等参数。
其后,微处理机再将物料的时间、转矩、熔体温度、熔体压力、转速、流速等测量数据进行处理,得出图、表形式的实验结果。
利用转矩流变仪不同的转子结构、螺杆数、螺杆结构、挤出模具以及辅机,可以测量高分子材料在凝胶、熔融、交联、固化、发泡、分解等作用状态下的转矩—温度时间曲线,表观粘度—剪切应力(或剪切速率)曲线,了解成型加工过程中的流变行为及其规律。
还可以对不同塑料的挤出成型过程进行研究,探索原材料与成型工艺、设备间的影响关系。
总之,对于成型工艺的合理选择,正确操作,优化控制,获得优质、高产、低耗制品以及为制造成型工艺装备提供必要的设计参数等,都有非常重要的意义。
高分子材料的流变性除受高聚物结构及有关复合物组成的影响外,采用混合器测量流变性质时的实验条件也是十分重要的影响因素。
二、试验用原材料
硬质PVC粒状复合物或混配物
PVC 100 60 56.52174
ACR丙烯酸酯共聚物 4 2.4 2.26
CPE氯化聚乙烯 6 3.6 3.39
钙锌复合稳定剂 4.5 2.7 2.54
硬脂酸0.5 0.3 0.28
69 64.99174
三、主要仪器设备
RM-200C转矩流变仪,主要分三部分:主机、电气控制柜、混合或挤出装置。
本实验采用转矩流变仪的混合装置进行。
1. 加料量
实验开始,物料自混合器上部的加料口加入混合室,受到上顶栓对物料施加的压力并且通过转子外表面与混合室壁间的剪切、搅拌、挤压;转子之间的捏合、撕拉;轴向间翻捣、捏炼等作用,以连续变化的速度梯度和转子对物料产生的轴向力的变形实现物料的混炼、塑化。
显然混合室内的物料量不足,转子难于充分接触物料,达不到混炼塑化的最佳效果。
反之加入的物料过量,部分物料集中于加料口不能进入混合室塑化均匀或出现超额的阻力转
矩,使仪器安全装置发生作用,停止运转、中断实验,若实验过程中,去除上顶栓对物料的施压作用,仪器转矩值变化不突出时,说明加料量合适。
加料量应由混合室空胶容积、转子容积、物料(固体或熔体)的密度以及加料系数来计算确定。
此外,为了保证测试准确性和重现性,原料的粒度和材质应均匀。
2. 温度与转速
混合器加热温度应参考物料的熔融温度和成型温度。
如果选择的温度过低出现超额的阻力转矩会造成安全装置发生作用,使仪器停止运转。
而温度过高时,高聚物的链段活动能力增加、体积膨胀、分子间相互作用减小,流动性增大,粘度随温度提高而降低。
物料在混炼塑化过程中的微小变化不易显示出来,由此影响测试的准确性。
对于PS、PVC、PC等高聚物,因为粘流活化能很大,熔体粘度对温度十分敏感,增加温度可大大降低熔体的粘度,应注意温度的控制与调节,使测试结果准确可靠。
一般来说,用近于生产条件的成型温度、螺杆转速作为测试仪器的加热温度、转子转速的条件下,所得到的物料转矩-温度-时间曲线更能预测或说明制品成型过程中发生的问题。
此外,用动态热温定性实验研究材料热稳定效果时用较高的温度和转速,使分解反应在较短时间内发生,则可以缩短实验时间。
对于不同的高分子材料和不同的实验目的必须选择最佳的条件,以求得可靠的实验结果。
四.试验方法
1. 准备工作
(1)了解转矩流变仪的工作原理、技术规格和安装、使用、清理的有关规定。
(2)根据实验需要,将所用的混合器与动力系统组装起来。
(3)接通动力电源和压缩空气,稳定电源在220V+/-10V.
(4)按式(6-1)计算加料量,并用天平准确称量。
W1=(V1-V0)×ρ×α0 (6-1)
W1-加料量(g)
V1-混合器容量(cm3)
V0-转子体积(cm3)
ρ-原材料的固体体积或熔体密度(g/cm3)
α-加工系数,按固体或熔体密度计算为0.655、0.80。
对于硬质PVC来讲,加料量应为65 g左右。
2. 操作: (1)接通主机电源后,调节温度加热。
(2)当温度达到要求后,预热一段时间,然后加料开始记录实验参数。
(3)当实验结束后,加入少量润滑剂,然后拆卸清理混合器。
五.试验结果表述
1、写出转矩流变仪测试高聚物的流变性的原理及测试时的各项实验条件。
2、以实验所得数值、图形为例,讨论在高聚物结构研究、材料配方选择、成型工艺条件控制、成型机械及模具设计等方面的应用。
六.思考题
1. 那些主要因素将影响高聚物的流变性质?
2. 测试物料及实验过程如何保证实验结果的可靠性。
3. 试比较毛细管流变仪和转矩流变仪各自的特点?。