信号与系统(第三章周期信号的傅里叶级数展开)

合集下载

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
6.共轭及共轭对称 将一个周期信号 x(t)叏它的复数共轭,在它的傅里叶级数系数上就会有复数共轭幵迚行 时间反转的结果。即若

(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台

1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限

(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

3-1周期信号的傅里叶级数

3-1周期信号的傅里叶级数

iii) bn
f (t ),sin n1t sin n1t ,sin n1t

t0 T1
t0
f (t ) sin n1tdt T1 2
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems
2.对于周期函数 f (t ) ,由于 a0 , a n , bn积分值与积 分区间起始点无关(只要积分区间大小为T1),故在 t , f (t ) 均可以展成傅立叶级数
E T1
n

01
2
4



0
2
4



2 谱线间隔 1 ( ) T1 2 零值点频率
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems
指数形式:f t
n


Fn e jn1t
n1 jn1t Sa( 2 )e n
常用完备正交函数集: i)三角函数集: 2 sin 0t ,sin 20t ,,1, cos 0t , cos 20t , (t0 , t0 ) 0 ii)复指数函数集:1, e j0t , e j0t , e j 20t , e j 20t ,
f(t)=C1 sin w1t+C3 sin w3 t+C6 sin w6 t
c2k 1 cos[(2k 1)1t 2k 1 ]
vii)偶次谐波分量:2 f1 , 4 f1 , 6 f1 , ... 对应的
c2 k cos(2k1t 2 k )
viii)直流分量:c0
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

信号与系统周期信号的傅立叶级数展开

信号与系统周期信号的傅立叶级数展开

满足一定条件的周期函数 f ( t ) 可用三角函数集表示为
狄里 赫利
f(t)a 0 a nco sn0 tb nsinn0 t
n 1
0
2 T
条件
a0
1 T
t1T t1
f(t)dt
a n , bn
称为傅立叶系

an
t0 T t0
f (t) cos n0tdt
t0 T t0
cos2
n0tdt
信P87号图与4系-2-2统f( t) 4 [ s in0 t 1 3 s in 3 0 t 1 5 s in 5 0 t L 1 n s in n 0 t L ]
f1
(t)
4
sin
0tfLeabharlann 2(t)4
(sin 0t
1 3
sin
30t)
2
0
2 t
2
0
2 t
(a)
f
3
(t)
4
(sin
周期信号
周期信号的特点:
(1)它是一个无穷无尽变化的信号,从理论上也是无始无终的,时间
范围为(, )
(2)如果将周期信号第一个周期内的函数写成 f 0 ( t ),则周期信号 f ( t )
可以写成
f (t) f0(t nT) n
(3)周期信号在任意一个周期内的积分保持不变,即有
aT
bT
T
f(t)dt f(t)dtf(t)dt
f(t)A0Ancon s0tn
n1
两种形式之间系数有如下关系:
A0 a0
An an2 bn2
n 1, 2, L

n
arctg

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

信号与系统第6讲第3章周期信号的傅里叶级数表示

信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号

信号与系统第三章

信号与系统第三章
T1 t0
1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1

信号与系统第三章-周期信号的傅里叶级数表示

信号与系统第三章-周期信号的傅里叶级数表示

一. 连续时间傅里叶级数
成谐波关系的复指数信号集:
k(t) { ejk 0 t}k 0 , 1 , 2 ,
其中1. 每个信号都是以 2 为周期的.
2.公共周期为
2 0
k 0
,且该集合中所有的信号都
是彼此独立的。
若将信号集 k (中t ) 所有的信号线性组合起来
有 x(t) akejk0t, k0,1 , 2
——傅里叶级数的三角函数表示式
若令 ak Bk jCk 则
x (t) a 0 1(B k jC k)e jk 0 t (B k jC k)e jk 0 t
k
k 1
a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1
ak* ak
k1
a k * a k A k e jk A k e j k
即: Ak Ak
k k
结论: 若 x ( t ) 是实信号,则有:
a k 的模关于k 偶对称,幅角关于 k 奇对称。
x(t)a 0[A kejk0 tejkA kejk0 tejk] k 1
a02 Akcos(k0tk) k1
B kjC kB kjC k
因此 Bk Bk
Ck Ck
结论: 若 x ( t ) 是实信号,则有:
a k 的实部关于 k 偶对称,虚部关于 k 奇对称。
将关系 Bk Bk , Ck Ck 代入,可得到
x (t) a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1 a 0 (B kjC k)ejk 0 t (B kjC k)ejk 0 t k 1 a02 B kcosk0tC ksink0t k1

[信号与系统作业解答]第三章

[信号与系统作业解答]第三章

解:
f (t)cos( 0t)
F1( )
1 2
[F(
0) F(
0 )]
f (t)e j 0t F2( ) F(
0)
f (t)cos( 1t)
F3( )
1 2
[F(
1) F(
1)]
3-39 确定下列信号的最低抽样率与奈奎斯特间隔。
(1) Sa(100t )
(3)Sa(100t) Sa(50t)
解:(1)因为Sa(100t) 50G200( ) ,最高频率为 m 100 rad / s ,所以最低抽样
cos( 0t) u(t)
1 2
[(
0) (
0)] *
()
1 j
1 2
(
( 2
0)
1 j(
0)
0) (
0)
(
j
2
2
0
0)
1 j(
0)
3-34 若 f (t) 的频谱 F( ) 如图所示,利用卷积定理粗略画出 f (t)cos( 0t) , f (t)ej 0t ,
f (t)cos( 1t) 的频谱(注明频谱的边界频率)。
f *(t)]
所以
F [fi(t)]
1 2j F
[f (t)
f *(t)]
1 [F( ) F *( 2j
)]
3-22 利用时域与频域的对称性,求下列傅里叶变换的时间函数。
1) F( ) (
0)
2) F( ) u(
0) u(
0)
3) F( )
0 (| | 0) 0 (others)
解:
1)已知变换对: (t) 1 ,根据对称性有1 2 ( ) ,再根据频移性质有,

信号与系统 第三章 周期信号的傅里叶级数展开

信号与系统 第三章 周期信号的傅里叶级数展开
1 T
2 n 2

T1
f (t ) dt

F ( n1 )
左边是周期信号f(t)在一个周期里的平均功率(即单位时间内的能量)
2 2 1 1 2 jnt F ( n ) e dt F ( n ) dt F ( n ) 而同时有 T 1 1 1 T1 1 T1 T1
n 1
——余弦形式
x(t ) d 0 d n sin( n1t n )
n 1
——正弦形式
(1). f (t ) a0 an cosnt bn sin nt
n1

三角函数形式
(2). f (t ) A0 An cos(nt n )
而无物理意义。将来可以看出,指数函数形式比正弦函数形式在数 学上处理起来要方便的多。
§3.2 周期矩形脉冲的谱线特点
x(t )
E

T1

t
2 2
T1
脉冲为 ,脉冲高度为E,周期为T1
1 21 1 E 1 jn1t jn1t 2 X (n1 ) T1 x(t )e dt E e dt e jn1t T1 2 T1 2 T1 jn1 jn jn 1 2E 1 1 2 2 e sin(n1 ) e jn1T1 2 n1T1 sin(n1 ) E E 2 Sa (n1 ) T1 n T1 2 1 2
电子信息与电气工程学院
本章内容
连续时间周期信号的傅立叶级数表示 周期矩形脉冲的谱线特点
§3.1 连续时间周期信号的傅立叶级数表示
{1, cos n1t ,sin n1t} n=1,2, , 是一个完备的正交函数集

信号与系统3.3典型信号的傅里叶级数

信号与系统3.3典型信号的傅里叶级数

1 2
sin2ω1t
1 3
sin3ω1t
1 4
sin4ω1t
E
(1) n1
n 1
1 n
sin(n1t)
周期锯齿脉冲信号的频谱只包含正弦分量,谐波的幅
度以 1 的规律收敛。 n
第3章 傅里叶变换
四、周期三角脉冲信号
周期三角脉冲信号如图3-10所示。
f (t)
E
tT1ຫໍສະໝຸດ T1 20T1 2
第3章 傅里叶变换
三、周期锯齿脉冲信号
周期锯齿脉冲信号如图3-9所示。
f (t)
E
2
T1
2
t
T1
0
2
E
2
图3-9 周期锯齿脉冲信号
显然它是奇函数,因而an=0,由式(3-4)可以求出傅里
叶级数的系数bn。这样,便可得到周期锯齿脉冲信号的傅 里叶级数为
第3章 傅里叶变换
f(t)
E π
sinω1t
1 5
cos51t
2E
cos1t
1 3
cos31t
1 5
cos51t
其频谱函数如图3-8所示 由于对称方波的偶次谐波恰恰落在频谱包络线的零值 点,所以它的频谱只包含基波和奇次谐波。 该信号既是偶函数,又是奇谐函数,因此在它的频谱 中只包含基波和奇次谐波的余弦分量。
第3章 傅里叶变换 图3-8 对称方波频谱
T1
E
为ω1。脉冲间隔
T1
越大,谱线越密。
信号的周期T1增大 时,谱线的间隔变
小。反之变大
2
n
谱线包络 按抽样函 数衰减
4
2
4
第3章 傅里叶变换

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

奥本海姆《信号与系统》配套题库【章节题库】(周期信号的傅里叶级数表示)

奥本海姆《信号与系统》配套题库【章节题库】(周期信号的傅里叶级数表示)

第3章 周期信号的傅里叶级数表示一、计算题1.求如图3-1所示信号的傅里叶级数。

答:(1)求三角傅里叶级数。

傅里叶级数展开表达式图3-10111()[cos()sin()]2n n n a f t a nw t b nw t ∞==++∑利用分部积分三角傅里叶级数为(2)指数形式傅里叶级数展开:11()()jnw t n f t F nw e ∞=-∞=∑,其中011011()t T jnw t n t F f t e dt T +-=⎰求指数傅里叶级数。

指数傅里叶级数为2.将如图3-2所示的三角形信号在时间区间(,)ππ-上展开为有限项的三角傅里叶级数,使其与实际信号间的方均误差小于原信号()f t 总能量的1%。

写出此有限项三角傅里叶级数的表达式。

图3-2解:如图3-2所示三角形信号的数学表达式为由()f t 在(,)ππ-上的偶对称特性知其傅里叶系数0n b =。

又展开的时间区间为(,)ππ-,故2T π=,从而1Ω=。

下面求系数0a 和n a 。

于是在(,)ππ-上,另一方面,信号的总能量若取()f t 傅里叶级数中第一项来近似()f t ,则方均误差为再考虑取()f t 傅里叶级数中前两项来近似()f t ,则方均误差为由于满足要求,所以此有限项三角傅里叶级数的表达式为24()cos 2A Af t t π≈+3.求如图3-3所示信号f (t )的傅里叶级数。

图3-3答:f'(t )、f''(t )的波形如图3-4(a )、(b )所示,于是得f''(t )的傅里叶系数为图3-4故f (t )的傅里叶系数为所以f (t )的傅里叶级数为111(1)()2222n jn t jn tn n n jf t A e e n π∞∞⋅ΩΩ=-∞=-∞-=+=+∑∑ (原书中有错,第二项的2j n 应改为2jπ) 讨论傅里叶级数的时域微分性质:这样,若已知f (k )(t )的傅里叶系数,则f (t )的傅里叶系数这里注意此式不适用于n=0的情况。

信号与系统第3章(1)周期信号的傅里叶级数和频谱(3.1,3.2)

信号与系统第3章(1)周期信号的傅里叶级数和频谱(3.1,3.2)

变换域分析的基本思想为:将信号分解为 基本信号之和或积分的形式,再求系统对基本 信号的响应,从而求出系统对给定信号的响应 (零状态响应)。 在第二章中我们以 t 为基本信号将任意信号
进行分解
f t f t t

f t d
a0 an cos(nt ) bn sin(nt ) 2 n1 n 1 2 其中 an , bn 称为傅里叶系数, 。 T
那么,傅里叶系数如何求得呢?
a0 1 2 T

T 2 T 2
f ( t )dt
T 2 2 an T f ( t ) cos(nt )dt T 2 T b 2 2 f ( t ) sin( t )dt n n T T 2
f (t )
1 Fn T
n
T 2 T 2
F e
n

jnt

f ( t )e
jnt
e e cos x 2
jx
jx
将上式第三项中的 n 用 n 代换,并考虑到 An 是 n的 偶函数,即 An An ; n 是 n 的奇函数, n n 则上式可写为 :
A0 1 1 j n jnt j n jnt f (t ) Ane e An e e 2 2 n 1 2 n 1 A0 1 1 Ane j n e jnt A ne j n e jnt 2 2 n1 2 n 1
2 T2 (1) si nnt dt T
0

T 2 0
si nnt dt
T 2
, 0 2 1 cosn 4 , n n

信号与系统教学课件 第三章 周期信号的傅立叶级数表示

信号与系统教学课件 第三章 周期信号的傅立叶级数表示

a
a 1
0
a1
gggg a

a
3
2
a 2 a 3 gggg
2019/10/22
0 0

这样绘出的图 称为频谱图
15
频谱图其实就是将 随a k 频率的分布表示出来,
即 ak ~的关系。由于信号的频谱完全代表了信号,
研究它的频谱就等于研究信号本身。因此,这种表
示信号的方法称为频域表示法。
三.傅里叶级数的其它形式
若 x 是( t )实信号,则有 x(t)x(t),于是
x ( t) k a k e jk 0 t * k a k e jk 0 t k a k e jk 0 t k a k e jk 0 t
考查LTI系统对复指数信号 e s t 和 z n 的响应
e st
h (t)
y (t) z n
h (n )
y (n )
由时域分析方法有,
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t




y (n ) z(n k )h (k ) zn h (k )z k H (z)zn
2019/10/22
k
k
7
可见LTI系统对复指数信号的响应是很容易求得的。
这说明 和 e 符s t 合对z n单元信号的第一项要求。
特征函数 (Eigenfunction)
9
利用系统的齐次性与叠加性
由于 es1t H(s1)es1t
es2t H(s2)es2t

信号与系统 第3章傅里叶变换

信号与系统 第3章傅里叶变换
3.11 抽样定理
傅里叶生平




1768年生于法国 1807年提出“任何周期信号 都可用正弦函数级数表示” 1829年狄里赫利第一个给出 收敛条件 拉格朗日反对发表 1822年首次发表“热的分析 理论”中
傅里叶的两个最主要的贡献——

―周期信号都可表示为成谐波关系的正弦信号的加权”—— 傅里叶的第一个主要论点 “非周期信号都可用正弦信号的加权积分表示”——傅里叶 的第二个主要论点
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
3.3 典型周期信号的傅里叶级数
本节以周期矩形脉冲信号为例进行分析 主要讨论:频谱的特点,频谱结构, 频带宽度,能量分布。 其他信号: 周期锯齿脉冲信号 周期三角脉冲信号 周期半波余弦信号
周期全波余弦信号请自学。
六.周期信号的功率
周期信号平均功率=直流、基波及各次谐波分量有效值的平 方和;也就是说,时域和频域的能量是守恒的。
证明
对于三角函数形式的傅里叶级数 平均功率
对于指数形式的傅里叶级数
总平均功率=各次谐波的平均功率之和
三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
例1
不满足条件1的例子如右图所示, 这个信号的周期为8,它是这样组 成的:后一个阶梯的高度和宽度是 前一个阶梯的一半。可见在一个周 期内它的面积不会超过8,但不连 续点的数目是无穷多个。
f (t ) 1
1 2
L 8 O 8
L t
例2
不满足条件2的一个函数是
f (t ) 1 L L O 1 t

信号与系统(第3章)_例题

信号与系统(第3章)_例题

1 a0 = T

t0 + T
t0
x (t ) dt
直流分量 余弦分量幅度 正弦分量幅度
2 an = T 2 bn = T
∫ ∫
t0 + T
t0 t0 + T
x ( t ) cos n tdt x ( t ) sin n tdt
t0
(1)x(t) = a0 + ∑( an cos nt + bn sin nt )
周期信号傅立叶级数展开 周期信号傅立叶级数展开
三角形式傅立叶级数: 一. 三角形式傅立叶级数: 周期信号x(t)=X(t+nT) ,满足狄氏条件时,可展成: 满足狄氏条件时,可展成: 周期信号
x(t) = a0 + ∑( an cos nt + bn sin nt )
n=1 ∞
2π ( = ) T
其中: 其中:
| F ( jω ) |~ ω :幅度频谱
1 T2 a0 = ∫T x(t)dt =0 T 2
对称于坐标原点
an = 0
2 T bn = ∫ x(t ) sin ntdt T 0
4 T2 = ∫ x(t ) sin ntdt ≠ 0 T 0
奇函数展开成傅立叶级数后, 奇函数展开成傅立叶级数后,直流分量和余 弦项为零,正弦项不为零. 弦项为零,正弦项不为零.
π ≤ t ≤ π
tdt = 0
-
π π
-
∫π
π
2 an = ∫ t cos ntdt = 0 T π 其中:T = 2π 2 π 2 bn = ∫ t sin n tdt = ( 1) n +1 n = 1, 2,3, L n T π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分量e j0t可表示为
cos 0t
1 2
(e j0t
e
j0t
) 表示为
1
0
1 2
0
1
2
0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为
a k
a1 0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
频谱图其实就是将 a随k 频率的分布表示出来,
统对该信号加权的常数称为系统与特征函数相对应
的特征值。
❖ 复指数函数 est 、z n 是一切LTI系统的特征函
数。H (s)、H (z)分别是LTI系统与复指数信号相对
应的特征值。
H (s) h(t)estdt
H (z) h(n)zn
❖ 只有复指数函数才能成为一切LTI系统的特征 函数。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k
y(n)
ak
H
(
Z
k
)Z
n k
k
*问题:究竟有多大范围的信号可以用复指数信号的
线性组合来表示?
3.3 连续时间周期信号的傅里叶级数表示
一. 连续时间傅里叶级数
成谐波关系的复指数信号集: k (t) {e jk0t} 为周k 期 0的,,1,它2,L们的,公其共中周每期个为信2号 都是,以且该集k2合0
这一节研究用傅氏级数表示周期信号的普遍性问 题,即满足什么条件的周期信号可以表示为傅里叶 级数。
一. 傅里叶级数是对信号的最佳近似
若 x(以t) 为T0周期
x(t) ake jk0t
k
0
2 T0
用有限个谐波分量近似 x(t时) ,有
N
xN (t)
ak e jk0t
k N
误差为 eN (t) x(t) xN (t)
将此关系代入,可得到
x(t) a0 (Bk jCk )e jk0t (Bk jCk )e jk0t k 1 a0 2 Bk cos k0t Ck sin k0t k 1
——傅里叶级数的另一种三角函数形式
四.连续时间傅里叶级数系数的确定
如果周期信号 x(t)可以表示为傅里叶级数
k
ak ak 或 ak* ak
若令ak Ake jk ,则 a0为实数。于是
1
x(t)
A e e jk jk0t k
a0
A e j(k0tk ) k
A e j(k0tk ) k
k
k
k 1
a0
[ A e e jk0t jk k
Ak e jk0te jk ]
k 1
Q ak* ak
信号与系统A (Signals and Systems)
第三章:周期信号的傅里叶级数表示
本章内容:
周期信号的频域分析 LTI系统的频域分析 傅立叶级数的性质
3.0 引言 Introduction
时域分析方法的基础: 1) 信号在时域的分解。 2) LTI系统满足线性、时不变性。
从分解信号的角度出发,基本信号单元必须满足 两个要求: 1.本身简单,且LTI系统对它的响应能简便得到。 2.具有普遍性,能够用以构成相当广泛的信号。
T0
0 2 x(t) cos k0tdt
表明:偶信号的 ak是关于 的k 偶函数、实函数。
当 x(t) 时x(,t)有
ak
1 T0
T0 2
T0 2
x(t)e jk0tdt
j
2 T0
T0
0 2 x(t)sin k0tdt
表明:奇信号的 a是k 关于 的k 奇函数、虚函数。
3.4 连续时间傅里叶级数的收敛
傅里叶生平
1768—1830
1768年生于法国
1807年提出“任何周 期信号都可以用正弦 函数的级数来表示”
拉格朗日反对发表
1822年首次发表“热 的分析理论”
1829年狄里赫利第一 个给出收敛条件
傅里叶的两个最重要的贡献——
“周期信号都可以表示为成谐波关系的正弦信 号的加权和”——傅里叶的第一个主要论点
sinc( 2T1 T0
k)
其中
Sa(x) sin x x
sinc(x) sin x x
1 Sa(x)
x
0
sin c(x)
1
1
根据 a可k 绘出
1 0 21
x的(t频) 谱图。
x
称2为T1 占空比
T0
T0不变 T1时
2T1 1 T0 2
2T1 1 T0 4
2T1 1 T0 8
T1不变 T0 时
在间断点附近不可避免的会出现振荡和超量。超量 的幅度不会随所取项数的增加而减小。只是随着项 数的增多,振荡频率变高,并向间断点处压缩,从
j
T0 0
sin(k
n)0tdt
0, k n T0 , k n
T0 0
x(t )e
jn0t dt
anT0

an
1 T0
T0 x(t)e jn0t dt
0
在确定此积分时,只要积分区间是一个周期即可,
对积分区间的起止并无特别要求,因此可表示为
ak
1 T0
x(t)e jk0tdt
T0
a0
1 T0
以均方误差作为衡量误差的准则,其均方误差为
EN
(t )
1 T0
T0
eN (t)
2
dt
1 T0
T0 x(t) xN (t) 2 dt
于是:
1
T0
T0
x(t)
N k N
ak e
jk0t
x(t)
N k N
ak e
jk0t
*
dt
E(N t)
1 T0
T0
x(t) 2 dt
N
kN
2T1 1 T0 2 2T1 1 T0 4
2T1 1 T0 8
周期性矩形脉冲信号的频谱特征: 1. 离散性 2. 谐波性 3. 收敛性 考查周期 T和0 脉冲宽度 2改T1变时频谱的变化: 1. 当T1不变,改变 T时0 ,随 使T0 占 空比减小,谱线 间隔变小,幅度下降。但频谱包络的形状不变,
0
中所有的信号都是彼此独立的。
如果将该信号集中所有的信号线性组合起来,
有 x(t) ake jk0t , k 0, 1, 2L
显然
k
x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐
即 ak ~的 关系。由于信号的频谱完全代表了信号,
研究它的频谱就等于研究信号本身。因此,这种表
示信号的方法称为频域表示法。 三.傅里叶级数的其它形式
若 x是(t)实信号,则有 x(t) x(t),于是
x(t)
k
ak
e
jk0t
*
a e jk0t k
k
a e jk0t k
k
ak e jk0t
Ak2
2 T0
N kN
Ak Bk
cos(k
k )
其中 ak Ak e jk
T0 x(t)e jk0tdt Bke jk , T0 x(t)e jk0tdt Bke jk
在均方误差最小的准则下,可以证明,此时 ak
应满足:
ak
பைடு நூலகம்
1 T0
x(t )e jk0t dt
T0
这就是傅氏级数的系数
结论:在均方误差最小的准则下,傅里叶级数是对 周期信号的最佳近似。
时对应的谐波分量。 傅里叶级数表明:连续时间周期信号可以按傅立叶
级数分解成无数多个复指数谐波分量的线性组合。
二.频谱(Spectral)的概念 信号集 k (t) 中的每一个信号,除了成谐波关
系外,每个信号随时间 t 的变化规律都是一样的,
差别仅仅是频率不同。
在傅里叶级数中,各个信号分量(谐波分量) 间的区别也仅仅是幅度(可以是复数)和频率不同。 因此,可以用一根线段来表示某个分量的幅度,用 线段的位置表示相应的频率。
对时域的任何一个信号 x(t或) 者 x,(若n)能将其表
示为下列形式: x(t) a1es1t a2es2t a3es3t
利用系统的齐次性与叠加性
由于 es1t H (s1)es1t
es2t H (s2 )es2t
es3t H (s3 )es3t
所以有
x(t) y(t) a1H (s1)es1t a2H (s2 )es2t a3H (s3)es3t
1
x(t) a0 (Bk jCk )e jk0t (Bk jCk )e jk0t
k
k 1
a0 (Bk jCk )e jk0t (Bk jCk )e jk0t k 1
ak* ak Bk jCk Bk jCk
因此 Bk Bk
Ck Ck
即 a的k 实部关于 偶k 对称,虚部关于 奇k对称。
x(t)dt
T0
a0 是信号在一个周期的平均值,通常称直流分量。
五.周期性矩形脉冲信号的频谱
x(t)
1
t
T0
T0
ak
1 T0
T1 e jk0t dt
T1
1
e jk0t
jk0T0
T1 T1
2sin k0T1 k0T0
2T1 T0
相关文档
最新文档