重庆中考数学25题
重庆市中考数学25题
重庆市中考数学专题1、(一中2019级初三下入学考试)《见微知著》读到,从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思维阀门发现新问题、新结论的重要方法。
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思维难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体带入;(4)整体求和等。
例如:11111,1=+++=ba ab 求证:证明:111111=+++=+++=b b b b a ab ab 原式 波利亚在《怎样解题》中指出:“当你找到一个蘑菇或者作出第一个发现后,再四处看看,他们总是成群生长”类似问题:我们有更多的式子满足以上特征。
阅读材料二: 基本不等式()0,02 b a b a ab +≤,当且仅当b a =时等号成立,它是解决最值问题的有力工具;例如:在0 x 的条件下,当x 为何值时,xx 1+有最小值,最小值是多少? 解:∵0 x ,01 x ,∴xx x x 121⋅≥+,即2121=⋅≥+x x x x ,∴21≥+x x 当且仅当x x 1=,即1=x 时,x x 1+有最小值,最小值为2. 请根据阅读材料解答下列问题:(1)已知1=ab ,求下列各式的值: ①=+++221111b a ; ②=+++n n b a 1111 ;(2)若1=abc ,解方程.1151515=++++++++c ca cx b bc bx a ab ax(3)若正数b a 、满足1=ab ,求ba M 21111+++=的最小值。
2、(巴蜀2019级初三下开学考试)材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子。
在解某些特殊方程时,使用换元法常常可以达到转化与划归的目的。
例如在求解一元四次方程,012,0122224=+-==+-t t t x x x 则原方程变为时,令解得,1=t ,从而解得原方程的解为.1±=x材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。
重庆数学中考试题及答案
重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 以下哪个表达式的结果不是整数?A. 3 * 4B. 5 / 2C. 7 - 2D. 8 ÷ 2答案:B4. 下列哪个是二次方程?A. x + 2 = 0B. x^2 + x + 1 = 0C. x^3 - 2x^2 + x = 0D. x^2 - 4 = 0答案:B5. 圆的周长公式是?A. C = πdB. C = 2πrC. A = πr^2D. A = πd^2答案:B6. 一个数的平方根是它自己,这个数是?A. 1B. -1C. 0D. 2答案:C7. 以下哪个是立方体的体积公式?A. V = a^2B. V = a^3C. V = 2aD. V = πa^3答案:B8. 一个数的倒数是1/5,这个数是?A. 5B. 4C. 3D. 2答案:A9. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 双曲线答案:C10. 如果一个角的正弦值是0.5,那么这个角的度数是?A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题2分,共20分)11. 已知一个数的平方是25,这个数是________。
答案:±512. 一个圆的半径是7,那么它的直径是________。
答案:1413. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。
答案:2414. 一个等腰三角形的两个底角相等,如果顶角是60°,那么底角是________。
答案:60°15. 一个数的立方是-27,这个数是________。
答案:-316. 一个直角三角形的两个直角边分别是6和8,那么斜边的长度是________。
2024重庆中考数学试题及答案b
2024重庆中考数学试题及答案b2024年重庆中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/32. 一个三角形的两边长分别为3和5,第三边长x满足的条件是:A. 2 < x < 8B. 1 < x < 8C. 2 < x < 7D. 3 < x < 83. 函数y=2x+3的图象经过点(1,5),则该函数的斜率k为:A. 2B. 3C. 5D. 74. 计算下列表达式的结果:A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^3 = 2D. (-2)^3 = -25. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π6. 已知a=2,b=-3,求代数式3a-2b的值:A. 12B. 6C. 0D. -67. 一个等腰三角形的底角为45°,那么它的顶角为:A. 45°B. 60°C. 90°D. 135°8. 计算下列二次根式的结果:A. √(9) = 3B. √(16) = 4C. √(25) = 5D. √(36) = 69. 一个数列的前三项为1,2,3,从第四项开始,每一项是前三项的和,那么第10项的值是:A. 55B. 89C. 144D. 23310. 一个长方体的长宽高分别为a,b,c,那么它的体积是:A. abcB. ab + bc + acC. a + b + cD. a^2 + b^2 + c^2二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。
12. 一个数的绝对值是8,那么这个数可以是______或______。
13. 一个直角三角形的两直角边长分别为6和8,那么它的斜边长为______。
14. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,-3),那么a的值为______。
重庆中考数学25题二次函数专项训练:平行四边形的存在性
第二讲 平行四边形的存在性例1、(2022•重庆A )如图,在平面直角坐标系中,抛物线c bx x y ++=221与直线AB 交于点A (0,4-),B (4,0).(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC+PD 的最大值及此时点P 的坐标;(3)在(2)中PC+PD 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.练习1、(2022•重庆B )如图,在平面直角坐标系中,抛物线c bx x y ++-=243与x 轴交于点A (4,0),与y 轴交于点B (0,3).(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ⊥x 轴于点Q ,交AB 于点M ,求PM+56AM 的最大值及此时点P 的坐标; (3)在(2)的条件下,点P′与点P 关于抛物线c bx x y ++-=243的对称轴对称.将抛物线c bx x y ++-=243向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P′、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.练习2、如图1,抛物线)0(2≠++=a c bx ax y 与x 轴交于A (4-,0),B (1,0)两点,交y 轴于点C (0,3).(1)求抛物线的解析式;(2)如图2,点P 为直线AC 上方且抛物线对称轴左侧的抛物线上一点,过点P 作x 轴的平行线交抛物线于点D ,过点P 作y 轴的平行线交AC 于点H ,求PD+PH 的最大值及此时点P 的坐标;(3)把抛物线)0(2≠++=a c bx ax y 向右平移23个单位,再向上平移165个单位得新抛物线,在新抛物线对称轴上找一点M ,在新抛物线上找一点N ,直接写出所有使得以点A ,C ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.练习3、(选讲)在平面直角坐标系中,抛物线)0(32≠++=a bx ax y 与x 轴的交点为A(1-,0),B(3,0),与y 轴交于点C .(1)求抛物线的函数解析式;(2)如图1,连接AC ,BC ,P 是第一象限内抛物线上一动点,过点P 作PT ⊥x 轴交BC 于点T ,过点P 作PR//AC 与BC 交于点R .求△PRT 的周长的最大值以及此时点P 的坐标;(3)如图2,将抛物线沿CA 方向平移,使得新抛物线'y 刚好经过点A ,设M 为新抛物线上一点,N 为原抛物线对称轴上一点,当点B ,C ,M ,N 组成的四边形为平行四边形时,直接写出点N 的纵坐标.自我巩固1、(2021•重庆B )如图,在平面直角坐标系中,抛物线)0(42≠-+=a bx ax y 与x 轴交于点A (1-,0),B (4,0),与y 轴交于点C .(1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接PA ,PD ,求⊥PAD 面积的最大值.(3)在(2)的条件下,将抛物线)0(42≠-+=a bx ax y 沿射线AD 平移24个单位,得到新的抛物线1y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,在1y 上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.。
重庆中考数学25题四边形证明
例1. 如图,在平行四边形ABCD 中,AD BD ⊥,点E 、点F 分别在AB 、BD 上,且满足DF AE AD ==,连接DE 、AF 、EF .(1)若20CDB ∠=°,求EAF ∠的度数; (2)若DE EF ⊥,求证:2DE EF =.例2. 如图,在□ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DFA =2∠BAE .(1)若∠D =105°,∠DAF =35°.求∠FAE 的度数; (2)求证:AF=CD+CF .例3. 如图,菱形ABCD 中,E 是BC 延长线上一点,连接AE ,使得∠E =∠B ,过D 作DH ⊥AE 于H . (1)若AB =10,DH =6,求HE 的长; (2)求证:AH=CE+EH .【仿真题型演练】1. 如图,在矩形ABCD 中,E 、F 分别是AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若32=BC ,求AB 的长.2. 如图,在平行四边形ABCD 中,点E 为AB 边上一点,连接DE ,点F 为DE 的中点,且CF ⊥DE , 点M 为线段CF 上一点,使DM=BE ,CM=BC . (1)若AB=13,CF=12,求DE 的长度; (2)求证:13DCM DMF ∠=∠. .第1题图第2题图 ABCD EF例1题图BDE AFC 例2题图例3题图3. 如图,在正方形ABCD 中,E 为AD 边上的中点,过A 作AF ⊥BE ,交CD 边于F ,M 是AD 边上 一点,且有BM =DM +CD . (1)求证:点F 是CD 边的中点; (2)求证:∠MBC =2∠ABE .4. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、DC 上,BE =DF ,∠EAF=60°.(1)若AE =2,求EC 的长;(2)若点G 在DC 上,且∠AGC =120°,求证:AG=EG+FG .5. 如图,在正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE=PC ,过点P 作PF ⊥AE 于F ,直线PF 分别交AB 、CD 于G 、H .(1)求证: DH =AG+BE ; (2)若BE=1,AB=3,求PE 的长.6. 如图,在梯形ABCD 中,CD AB //,BC DC AD ==,060=∠DAB ,E 是对角线AC 延长线上一点,F 是AD 延长线上的一点,且AB EB ⊥,AF EF ⊥.(1)当1=CE 时,求BCE ∆的面积; (2)求证:CE EF BD +=.第3题图HPGFE DCB A第5题图第6题图D G AF EC第4题图B7. 如图,在平行四边形ABCD 中,对角线,AC DC CAB ⊥∠与BCA ∠的角平分线交于点E ,过E 作EF ∥AD 分别交AC 、 DC 于G 、F ,过E 作EH ∥AB 分别交AC 、AD 于K 、H . (1)若60D ∠=︒,CF = 2,求EG 的长; (2)求证:GF GK KH =+.【一线名师预测】1. 如图,在□ABCD 中,BE 平分∠ABC ,交AD 于E ,点G 是CD 的中点,GE 的延长线交BA 的延 长线于点F ,∠EBC+∠DEG=90°. (1)若BF =6,求AE 的长; (2)求证:EF=2EG .2. 如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP PC =,AP PC ⊥.PC 交AD 于点N ,连接DP ,过点P 作PM PD ⊥交AD 于M . (1)若15,3AP AB BC ==,求矩形ABCD 的面积; (2)若CD PM =,求证:AC AP PN =+.四边形证明(二)【经典专题突破】例1. 如图,在正方形ABCD 中,点G 是BC 边上一点,∠BAG=15°,以线段AG 为腰作等腰直角△AGF ,交DC 于点H .延长BC 、AF 交于点E . (1)若AB=3,求线段CE 的长; (2)求证: GE=AB+3BG .第7题图ABGD EFC第1题图第2题图D A B ECFH G例1题图例2. 如图,在正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接EF ,若BE=DF ,点P 是EF 的中点.(1)求证:DP 平分∠ADC ;(2)若∠AEB=75°,AB=2,求△DFP 的面积.例3. 如图,在Rt ABC ∆中,90ABC ∠=°,分别以AB 、AC 为边, 向ABC ∆外作正方形ACDE 和正方形ABGF ,连接EF ,EC ,延长BA 交EF 于H . (1)若2tan ,123ABC ACB S ∆∠==,求BC 的长; (2)求证:2BC AH =.【仿真题型演练】1. 如图,在正方形ABCD 中,点E 是BA 延长线上一点,连接DE ,点F 在DE 上,且DF=DC ,DG ⊥CF 于G .DH 平分∠ADE 交CF 于点H ,连接BH . (1)若DG=2,求DH 的长; (2)求证:BH+DH=2CH .2. 如图(1),P 为正方形ABCD 边BC 上任一点,BG ⊥AP 于点G ,在AP 的延长线上取点E ,使AG=GE ,连接BE ,CE .(1)求证:BE=BC ;(2)如图(2),∠CBE 的平分线交AE 于点N ,连接DN ,求证:BN+DN=2AN .ACD EH GF B第1题图第2题图例2题图例3题图3. 如图,在正方形ABCD 中,点E 为BC 边上的一点,连接DE ,点G 为DE 中点,连接GA 、GB 、GC ,GB 与AC 交于点H ,过点B 作BM 垂直DE 的延长线于点M . (1)求证:GA=GB ; (2)若3AH CH =,求证:AG=2BM .4. 如图,过矩形ABCD 对角线AC 的中点O 作EF ⊥AC ,分别交AB 、CD 于点E 、F ,点G 为AE 的中点, 若∠AOG=30°.求证:DC OG 31=.5. 如图,在平行四边形ABCD 中,BC AE ⊥,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,21∠=∠ . (1)若CF=2,AE=3,求BE 的长; (2)求证:AGE CEG ∠=∠21.6. 如图,在正方形ABCD 中,E 是AD 的中点,F 是AB 边的一点,连接FE 并延长与CD 的延长线相 交于点G ,作EH FG ⊥交BC 的延长线于点H . (1)若BC = 8,BF = 5,求线段FG 的长; (2)求证:EH = 2EG .【一线名师预测】AC DE HGFBM第3题图第4题图第5题图第6题图D CEM BAF H G1. 如图,以△ABC 的AB 和AC 为边,分别向外作正方形ABEF 、ACGH ,BC AD ⊥于D .DA 的延长线交FH 于M . 求证:(1)HM FM =; (2)2()AM BD CD BD -=-.2. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,∠ABD=2∠DBC ,AE ⊥BD 于点E .(1)若∠ADB=25°,求∠BAE 的度数; (2)求证:AB=2OE ..四边形证明(三)【经典专题突破】例1. 如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若1=CF ,2=DF ,则BC 的长为( )A .23B .62C .52D .32例2. 如图,在菱形ABCD 中,BD AB =,点E 、F 分别在AB 、AD 上,且DF AE =.连接BF 、DE 相交于点G ,连接CG 与BD 相交于点H . 下列结论:①△AED ≌△DFB ;②243CG S BCDG =四边形;③若DF AF 2=, 则GF BG 6=,其中正确的结论( )A .只有①②B .只有①③C .只有②③D .①②③ 例3. 如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足DF AE =.连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .【仿真题型演练】1. 如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,CED AED ∠=∠2,点G 是DF 的中点,若1=BE ,4=AG ,则AB 的长为 .2. 如图,在梯形ABCD 中,AB ∥CD ,︒=∠90BAD ,6=AB ,对角线AC 平分BAD ∠,点E 在AB 上,且2=AE (AD AE <),点P 是AC 上的动点,则PB PE +的最小值是 .ABCDEO第2题图第1题图例3题图例2题图第1题图ABDCEP 第2题图第3题图C EDG第6题图3. 如图,正方形ABCD 的边长为22,过点A 作AC AE ⊥,1=AE ,连接BE , 则=E tan .4. 在矩形ABCD 中,4=AB ,3=AD ,P 、Q 是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,则PQ 的长为 .5. 在正方形ABCD 中,AC 、BD 相交于点O ,点E 是射线AB 上一点,点F 是直线AD 上一点,DF BE =,连接EF 交线段BD 于点G ,交AO 于点H .若3=AB ,5=AG ,则线段EH 的长为 .6. 如图,正方形ABCD 的对角线交于点O ,过顶点D 作AC 的平行线,在这条线上取一点E ,连接AE 、CE ,使AE=AC ,AE 交CD 于F .则下列结论:①CE=CF ;②∠ACE =︒75;③△DFE 是等腰三角形;④若AB=1, 则13-=CE ;⑤232-=∆∆CFA DFE S S ,其中正确的结论个数是( ) A .2 B .3 C .4 D .5 7. 如图,在正方形ABCD 中,点E 在边BC 上,且CE=2BE .连结BD 、DE 、AE ,AE 交BD 于F ,OG 为△BDE 的中位线.下列结论:①OG CD ⊥;②5AB OG =;③13ODG ABE S S ∆∆=;④BF OF =;⑤5cos BFE ∠=,其中正确结论的个数是( ) A .2B .3C .4D .5【一线名师预测】1. 芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图(1),他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图(2)的图标.则图标中阴影部分图形AFEGD 的面积为 .第7题图第1题图2. 如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若CG BG 5 ,则ADAB的值是 .。
重庆2012数学中考题的24、25、26题
24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC 交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.24.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.25.解答:解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=1×12000=12000,故y1=(1≤x≤6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7≤x≤12,且x取整数);(2)当1≤x≤6,且x取整数时:W=y1•x1+(12000﹣y1)•x2=•x+(12000﹣)•(x﹣x2),=﹣1000x2+10000x﹣3000,∵a=﹣1000<0,x=﹣=5,1≤x≤6,∴当x=5时,W最大=22000(元),当7≤x≤12时,且x取整数时,W=2×(12000﹣y1)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),=﹣x2+1900,∵a=﹣<0,x=﹣=0,当7≤x≤12时,W随x的增大而减小,∴当x=7时,W最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a﹣30)%]×(1﹣50%)=18000,设t=a%,整理得:10t2+17t﹣13=0,解得:t=,∵≈28.4,∴t1≈0.57,t2≈﹣2.27(舍去),∴a≈57,答:a的值是57.26.解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.。
2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解
2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。
2022中考数学专题25 命题与证明(专项训练)(解析版)
专题25 命题与证明一、单选题1.(2021·河南九年级)能说明命题“关于x 的方程240x x n -+=一定有实根”是假命题的反例为( )A .2n =-B .1n =-C .0n =D . 6.8n =【答案】D【分析】计算一元二次方程根的判别式即可【详解】依题意“关于x 的方程240x x n -+=一定有实根”是假命题则:2(4)40n ∆=--< 解得:4n >故选D.【点睛】本题考查了一元二次方程根的判别式,命题与假命题的概念,熟悉概念是解题的关键.2.(2021·沙坪坝区·重庆八中)下列命题,真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一个角为直角的四边形为矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形【答案】D【分析】由题意根据平行四边形的判定定理、矩形、菱形、正方形的判定定理判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B 、有一个角为直角的平行四边形为矩形,本选项说法是假命题;C 、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;D 、一组邻边相等的矩形是正方形,本选项说法是真命题;故选:D .【点睛】本题考查的是命题的真假判断,注意掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2021·山西九年级)《几何原本》是欧几里得的一部不朽之作,本书以公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法.这种方法所体现的数学思想是()A.数形结合思想B.分类讨论思想C.转化思想D.公理化思想【答案】D【分析】结合题意,根据公理化思想的性质分析,即可得到答案.【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D.【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解.4.(2021·湖南九年级)下列各命题是真命题的是()A.矩形的对称轴是两条对角线所在的直线B.平行四边形一定是中心对称图形C.有一个内角为60 的平行四边形是菱形D.三角形的外角等于它的两个内角之和【答案】B【分析】根据矩形的性质、轴对称图形和中心对称图形的概念、三角形的外角性质判断即可.【详解】解:A、矩形的对称轴是任意一边的垂直平分线,两条对角线所在的直线不一定是矩形的对称轴,本选项是假命题;B、平行四边形一定是中心对称图形,本选项是真命题;C、有一个内角为60°的平行四边形不一定是菱形,本选项是假命题;D、三角形的外角等于与它不相邻的两个内角之和,本选项是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2021·广西九年级)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有( )A .1个B .2个C .3个D .4个【答案】B【详解】①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,筝形的对角线垂直但不相等,不是正方形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④等边三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故该命题错误;故选B .6.(2021·浙江)下列选项中,可以用来证明命题“若a >b ,则1a <1b ”是假命题的反例是( )A .a =2,b =1B .a =2,b =﹣1C .a =﹣2,b =1D .a =﹣2,b =﹣1 【答案】B【分析】把各选项提供的数据代入计算,进行比较即可求解.【详解】解:A.当 a =2,b =1时,111,12a b ==,则11a b <,无法说明原命题为假命题,不合题意; B. 当a =2,b =﹣1时,111,12a b ==-,则11a b>,说明原命题为假命题,符合题意; C.当 a =﹣2,b =1时,a <b ,条件错误,无法说明原命题为假命题,不合题意.D.当 a =﹣2,b =﹣1时,a <b ,条件错误,无法说明原命题为假命题,不合题意. 故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是真命题,一般需要推理、论证,而判断一个命题是假命题,只需要举出一个反例即可.7.(2021·辽宁九年级)下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .同位角相等,两直线平行C .对顶角相等D .若0a >,0b >,则0a b +>【答案】B【分析】 分别写出原命题的逆命题,然后判断真假即可.【详解】解:A 、若a b =,则||||a b =的逆命题是若||||a b =,则a b =,逆命题是假命题,不符合题意;B 、同位角相等,两直线平行的逆命题是两直线平行,同位角相等,逆命题是真命题,符合题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.8.(2021·辽宁九年级)下列说法错误..的是( ) A .“对顶角相等”的逆命题是真命题B .通过平移或旋转得到的图形与原图形全等C .“经过有交通信号灯的路口,遇到红灯”是随机事件D .函数1y x=-的图象经过点()1,1- 【答案】A【分析】根据平移、旋转的性质、对顶角的性质、反比例函数图象上点的坐标特征、随机事件的概念判断即可.【详解】解:“对顶角相等”的逆命题是相等的角是对顶角,是假命题,A 错误,符合题意; 通过平移或旋转得到的图形与原图形全等,B 正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,C 正确,不符合题意;因为1x =时,11y x =-=-,所以函数1y x=-的图象经过点(1,1)-,D 正确,不符合题意; 故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2021·湖南九年级)下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .平分弦的直径垂直于这条弦C .正方形既是轴对称图形又是中心对称图形D .一组对边平行,另一组对边相等的四边形是平行四边形【答案】C【分析】根据全等三角形的判定、垂径定理、正方形的性质、平行四边形的判定定理判断即可.【详解】解:A 、有两条边和其夹角对应相等的两个三角形全等,原命题是假命题;B 、平分弦(非直径)的直径垂直于这条弦,原命题是假命题;C 、正方形既是轴对称图形又是中心对称图形,是真命题;D 、一组对边平行且相等的四边形是平行四边形,原命题是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(2021·重庆九年级)下列命题中,是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .菱形的对角线相等D .有一组邻边相等的平行四边形是菱形【答案】D【分析】由平行四边形的判定得出A 错误;由矩形的判定得出B 不正确;由菱形的定义得出C 正确;由菱形的判定得出D 正确;即可得出答案.【详解】解:A. 对角线互相平分的四边形是平行四边形,∴A 不正确;B. 对角线互相垂直的平行四边形是菱形,∴B 不正确;C. 菱形的对角线互相垂直平分∴C 不正确;D. 有一组邻边相等的平行四边形是菱形∴不正确;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题,正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.二、填空题11.(2021·山西九年级)若举反例说明命题“若a b <,则ac bc <”是假命题时,令a 的值为5,b -的值为2-,则可给c 取一个具体的值为_______.【答案】1c =-(答案不唯一)【分析】“若a b <时,则ac bc <”是假命题,则a b <时,ac ≥bc ,即可.【详解】解:ac -bc ≥0,c (a -b )≥0-3c ≥0c ≤0即可.故答案为:1c =-(答案不唯一).【点睛】本题考查了命题,掌握真假命题是解题的关键.12.(2021·江苏无锡市·)请写出“两直线平行,同位角相等”的逆命题:_____________________________.【答案】如果同位角相等,那么两直线平行【分析】命题是由题设和结论两部分组成的,把原命题的题设作结论,原命题的结论作题设,这样就将原命题变成了它的逆命题.【详解】解:原命题是:两直线平行,同位角相等.改成如果…那么…的形式为:如果两直线平行,那么同位角相等.∴逆命题为:如果同位角相等,那么两直线平行,故答案为:如果同位角相等,那么两直线平行.【点睛】本题是一道命题与定理的概念试题,考查了命题的组成,原命题与逆命题的关系.13.(2021·安徽合肥·)直角三角形斜边上的中线等于斜边的一半逆命题________________【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【详解】解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【点睛】本题考查了互逆命题的知识及命题的真假判定,两个命题中,如果第一个命题的条件是第二个命题结论,而第一个命题的结论是第二个命题条件,那么这两个命题叫做互逆命题,其中一个命题成为另一个命题的逆命题.14.(2021·安徽九年级)命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.(2021·江苏九年级)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题16.(2021·贵州九年级)同学们,你们知道吗?三角形的内角和不一定是180°.德国数学家黎曼创立的黎曼几何中描述:在球面上选三个点连线构成一个三角形,这个三角形的内角和大于180°.黎曼几何开创了几何学的新领域,近代黎曼几何在广义相对论里有着重要的应用.同样,在俄国数学家罗巴切夫斯基发表的新几何(简称罗氏几何)中,描述了在双曲面里画出的三角形,它的内角和永远小于180°.罗氏几何在天体理论中有着广泛的应用.而我们所学习的欧氏几何中描述“在平面内,三角形的内角和等于180°”是源于古希腊数学家欧几里得编写的《原本》.欧几里得创造的公理化体系影响了世界2000多年,是整个人类文明史上的里程碑.请你证明:在平面内,三角形的内角和等于180°.要求画出图形....,写出已知....、求证和证明...... 【答案】见解析【分析】过点A 作//EF BC ,由两直线平行,内错角相等得到1B ∠=∠,2C ∠=∠,再根据平角的定义解题.【详解】已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:过点A 作//EF BC ,∴1B ∠=∠,2C ∠=∠,∵12180BAC ∠+∠+∠=︒,∴180B BAC C ∠+∠+∠=︒.【点睛】本题考查三角形内角和定理的证明,涉及平行线性质、平角定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·潍坊市寒亭区教学研究室九年级)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.【答案】(1)甲:1,2,3,4,5;乙:6,8,10,12;丙:7,9,11;丁:13,15;(2)甲丙丁、甲丁丙、丙甲丁、丁甲丙,共4种情况【分析】(1)由所选的座位号之和最小和购票的先后顺序即可推理.(2)根据题意可确定乙的购票结果.再结合所选的座位号之和最小并利用分类讨论的思想确定甲、丙、丁的购票顺序即可得出结果.【详解】(1)由所选的座位号之和最小可知,甲先选:5,3,1,2,4;则乙选:6,8,10,12;丙选11,9,7;丁选15,13.(2)根据题意可确定乙选的座位号为3,1,2,4.①若甲在乙选完之后选,则甲选的座位号为13,11,9,7,5.Ⅰ若丙在甲选完之后选,则丙选的座位号为6,8,10.此时丁可选的座位号为12,14.即在乙选完之后的顺序为:甲、丙、丁.Ⅱ若丁在甲选完之后选,则丁选的座位号为6,8.此时丙可选的座位号为10,12,14.即在乙选完之后的顺序为:甲、丁、丙.②若丙在乙选完之后选,则丙选的座位号为9,7,5.Ⅰ若甲在丙选完之后选,则甲可选的座位号为6,8,10,12,14.此时丁可选的座位号为13,11.即在乙选完之后的顺序为:丙、甲、丁.Ⅱ若丁在丙选完之后选,则丁选的座位号为6,8.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.③若丁在乙选完之后选,则丁选的座位号为7,5.Ⅰ若甲在丁选完之后选,则甲可选的座位号为6,8,10,12,14.此时丙可选的座位号为13,11,9.即在乙选完之后的顺序为:丁、甲、丙.Ⅱ若丙在丁选完之后选,则丙选的座位号为6,8,12.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.综上可知,甲、丙、丁的购票顺序可以为:甲、丙、丁或甲、丁、丙或丙、甲、丁或丁、甲、丙.【点睛】本题考查推理与论证,理解题意并利用分类讨论的思想是解答本题的关键.18.(2021·河南九年级)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在O 中,弦AB CD ⊥于M ,连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点,EM BD ⊥于,G FM AD ⊥于H ,当M 是AB 中点时,直接写出四边形EMFC 是怎样的特殊四边形:__________.【答案】(1)见解析;(2)菱形【分析】(1)先写出已知、求证,先证明BMF MAF ∠=∠,再证明DE ME =,DE CE =即可证明 (2)先证明CE CF =,再证明AC BC =,由布拉美古塔定理证明ME EC CF FM ===即可证明 【详解】(1)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 证明:,AC BD EF AB ⊥⊥9090BMF AMF MAF AMF ∴∠+∠=︒∠+∠=︒,,BMF MAF ∴∠=∠,EDM MAF EMD BMF ∠=∠∠=∠,, EDM EMD ∴∠=∠, DE ME ∴=,同理可证ME CE =,DE CE ∴=, ∴点E 是DC 的中点故答案为:已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 (2)四边形EMFC 是菱形理由:由布拉美古塔定理可知,,E F 分别是,AC BC 的中点, 11,22CE AC CF CB ∴== AB CD ⊥ 11,22ME AC MF CB ∴== AB CD M ⊥,是AB 中点AC BC ∴=ME EC CF FM ∴===∴四边形EMFC 是菱形 故答案为:四边形EMFC 是菱形 【点睛】本题考查菱形的判定、根据题意写已知求证、灵活进行角的和差关系的转换是解题的关键 19.(2020·江苏鼓楼区·)点E 、F 分别是菱形ABCD 边BC 、CD 上的点. (1)如图,若CE =CF ,求证AE =AF ;(2)判断命题“若AE =AF ,则CE =CF ”的真假.若真,请证明;若假,请在备用图上画出反例.【答案】(1)见解析;(2)假命题,见解析 【分析】(1)连接AC ,利用菱形的性质和全等三角形的判定和性质解答即可; (2)举出反例解答即可. 【详解】解:(1)连接AC ,∵四边形ABCD 是菱形, ∴∠ACE =∠ACF , 在△ACE 与△ACF 中CE CF ACE ACF AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ACF (SAS ), ∴AE =AF ,(2)当AE =AF =AF'时,CE ≠CF',如备用图,∴命题“若AE =AF ,则CE =CF ”是假命题. 【点睛】此题考查命题与定理,关键是根据菱形的性质和全等三角形的判定和性质解答.20.(2020·丰台·北京十八中)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答案可能是CACCC或CBCCC或CABAB或BBBBB等,故答案为:CACCC或BBBBB(答案不唯一).【点睛】本题主要考查是推理与论证问题和分类讨论的思想,确定出甲选错的题号是解本题的关键. 21.(2020·浙江台州·九年级期末)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点. ①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】(1)见解析;(2)①DEtan ∠DBC. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可; ②连接AC ,由自相似菱形的定义即可得出结论; ③由自相似菱形的性质即可得出结论; (2)①由(1)③得△ABE ∽△DEA ,得出AB BE AEDE AE AD==,求出AE =,DE =②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM,求出BN =7,再由三角函数定义即可得出答案. 【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下: 如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点, ∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°, 在△ABE 和△DCE 中 AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠, ∴△ABE ≌△DCE (SAS ), ∴△ABE ∽△DCE , ∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C >90°,且∠ABC +∠C =180°,△ABE 与△EDC 不能相似, 同理△AED 与△EDC 也不能相似, ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠AEB =∠DAE ,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED , 故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点, ∴BE =2,AB =AD =4, 由(1)③得:△ABE ∽△DEA , ∴AB BE AEDE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE DE =AB AE BE ⋅,故答案为:AE DE②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形, ∴DN =EM ,DM =EN ,∠M =∠N =90°, 设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即2﹣(x +4)22﹣x 2, 解得:x =1, ∴AM =1,EN =DM =5,∴DN =EM = 在Rt △BDN 中, ∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.22.(2020·渠县崇德实验学校九年级)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:)则丁同学的得分是;(2)如果有一个同学得了1分,他的答案可能是(写出一种即可)【答案】(1)3;(2)CACCC【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对,针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,。
重庆数学中考试题及答案
重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 一个三角形的两边长分别为3和4,第三边长x满足三角形的三边关系,那么x的取值范围是?A. 1 < x < 7B. 2 < x < 5C. 3 < x < 7D. 1 < x < 5答案:C3. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 6D. 4答案:A4. 一个圆的半径是5,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C5. 函数y = 2x + 3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A7. 一个等腰三角形的底角是45度,那么它的顶角是?A. 90度B. 45度C. 60度D. 30度答案:A8. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是?A. 17B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),那么这个函数的对称轴是?A. x = 2B. x = -2C. x = 1D. x = 3答案:A二、填空题(每题3分,共30分)1. 一个数的立方根是2,那么这个数是______。
答案:82. 一个数的倒数是1/3,那么这个数是______。
答案:33. 一个数的平方是25,那么这个数是______。
答案:±54. 一个数除以3余1,除以5余2,那么这个数最小是______。
答案:115. 一个三角形的内角和是______。
重庆数学中考试题及答案
重庆数学中考试题及答案****一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -0.5**答案:C**2. 以下哪个选项是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 0**答案:A**3. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 2C. y = 3x^3 - 2D. y = 1/x**答案:A**4. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 抛物线D. 双曲线**答案:A**5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 6**答案:B**6. 下列哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为60°, 60°, 60°D. 三角形内角分别为50°, 70°, 60° **答案:D**7. 以下哪个选项是不等式?A. 2x + 3 = 5B. 3x - 2 > 4C. 5y - 7 = 0D. 4z + 6 ≤ 10**答案:B**8. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2**答案:B**9. 以下哪个选项是相似三角形?A. 三角形ABC和三角形DEF,AB/DE = AC/DF = BC/EFB. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF = BC/EFC. 三角形ABC和三角形DEF,AB/DE = AC/DF ≠ BC/EFD. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF ≠ BC/EF **答案:A**10. 以下哪个选项是圆的标准方程?A. (x - 2)^2 + (y - 3)^2 = 1B. x^2 + y^2 = 4C. (x - 1)^2 + (y + 1)^2 = 9D. x^2 + y^2 - 2x + 4y - 4 = 0**答案:B**二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是 _______。
重庆中考数学第25题(阅读理解)专题专训(学生版)
重庆中考数学第25题专题专训2501.材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m 任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F(m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)= ;(2)求证:当n能被3整除时,F(m,n)一定能被6整除;(3)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.2502.任意一个正整数n,都可以表示为:n=a×b×c(a≤b≤c,a,b,c均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a ×b×c是n的“阶梯三分法”,并规定:F(n)=,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)==2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2.(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.2503.对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为D(n),把这个“递增数”的百位数字与个位数字交换位置后,得到321,即E(123)=321,规定F(n)=,如F(123)==1.(1)计算:F(159),F(246);(2)若D(s)是百位数字为1的数,D(t)是个位数字为9的数,且满足F (s)+F(t)=5,记k=,求k的最大值.2504.有一个n位自然数能被x整除,依次轮换个位数字得到的新数能被x+1整除,再依次轮换个位数字得到的新数能被x 0+2整除,按此规律轮换后,能被x+3整除,…,能被x0+n﹣1整除,则称这个n位数是x的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.2505.已知,我们把任意形如:的五位自然数(其中c=a+b,1≤a≤9,1≤b≤9)称之为喜马拉雅数,例如:在32523自然数中,3=2=5,所以32523就是一个喜马拉雅数.并规定:能被自然数整除n的最大的喜马拉雅数记为F(n),能被自然数n整除的最小的喜马拉雅数记为I(n).(1)求证:任意一个喜马拉雅数都能被3整除;(2)求F(3)+I(8)的值.2506.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y ≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.2507.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.2507.当一个多位数的位数为偶数时,在其中间插入一位数k,(0≤k≤9,且k 为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729 中间插入数字6可得435729的一个关联数4356729,其中435729=729+435 ×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)现有一个4位数2316,中间插入数字m(0≤m≤9,且m为3的倍数),得其关联数,求证:所得的2316的关联数与原数10倍的差一定能被3整除;(2)一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数.2509.根据阅读材料,解决问题.数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.(1)计算:G(125),G(746);(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.2510.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.2511.对任意一个正整数m,如果m=n(n+1),其中n是正整数,则称m为“优数”,n为m的最优拆分点,例如:72=8×(8+1),则72是一个“优数”,8为72的最优拆分点.(1)请写出一个“优数”,它的最优拆分点是;(2)求证:若“优数”m是5的倍数,则m一定是10的倍数;(3)把“优数”p的2倍与“优数”q的3倍的差记为D(p,q),例如:20=4×5,6=2×3,则D(20,6)=2×20﹣3×6=22.若“优数”p的最优拆分点为t+4,“优数”q的最优拆分点为t,当D(p,q)=76时,求t的值并判断它是否为“优数”.2512.一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“丰利数”.如2是“丰利数”,因为2=12+12,再如,M=x 2+2xy+2y 2=(x+y )2+y 2 (x+y ,y 是正整数),所以M 也是“丰利数”.(1)请你写一个最小的三位“丰利数”是 ,并判断20 “丰数”.(填是或不是);(2)已知S=x 2+y 2+2x ﹣6y+k (x 、y 是整数,k 是常数),要使S 为“丰利数”,试求出符合条件的一个k 值(10≤k <200),并说明理由.2513.我们知道,任意一个正整数n 都可以进行这样的分解:n=p ×q (p 、q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝 对值最小,我们就称p ×q 是n 的最佳分解.并规定:()qpF n =,例如12 可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4 是12的最佳分解,所以F (12)=.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1; (2)如果一个两位正整数t ,t=10x+y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得 的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”; (3)在(2)所得“吉祥数”中,求F (t )的最大值.2514.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.2515.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.2515.任意一个正整数都可以进行这样的分解:n=p ×q (p 、q 是正整数,且p≤q ),正整数的所有这种分解中,如果p 、q 两因数之差的绝对值最小, 我们就称p ×q 是正整数的最佳分解.并规定:()qpF n =.例如24可以 分解成1×24,2×12,3×8或4×6,因为24﹣1>12﹣2>8﹣3>6﹣4, 所以4×6是24的最佳分解,所以F (24)=. (1)求F (18)的值;(2)如果一个两位正整数,t=10x+y (1≤x ≤y ≤9,x 、y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得 的差记为m ,交换其个位上的数与十位上的数得到的新数加上原来的 两位正整数所得的和记为n ,若mn 为4752,那么我们称这个数为“最 美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求F (t )的最大值.2517.阅读下列材料,解决问题材料一:如果一个正整数的个位数字等于除个位数字之外的其他各位数字之和,则称这个数为“刀塔数”,比如:因1+2=3,所以123是“刀塔数”,同理,55,1315也是“刀塔数”.材料二:形如的三位数叫“王者数”,其中x﹣2,x,x+2分别是这个数的百位数字,十位数字,个位数字.例如:135,468均为“王者数”问题:(1)已知a既是“刀塔数”又是“王者数”,若数b(b>0)使10a+b 为一个“刀塔数”,求b的最小值;(2)已知一个五位“刀塔数”与一个“王者数”的和能被3整除,且c﹣a+d﹣b=4,证明.2518.一个形如的五位自然数,(其中a表示该数的万位上的数字,b表示该数的千位上的数字,c表示该数的百位上的数字,d表示该位数的十位上的数字,e表示该数的个位上的数字,且a≠0,b≠0),若有a=e,b=d 且c=a+b,则把该自然数叫做“对称数”,例如在自然数12321中,3=2+1,则12321是一个“对称数”,同时规定,若该“对称数”的前两位数与后两位数的平方差是693的奇数倍,则称该“对称数”为“智慧对称数”,如在对称数43734中432﹣342=693,则43734是一个“智慧对称数”.(1)将一个“对称数”的个位上与十位上的数字交换位置,同时,将千位上与万位上的数字交换位置称交换前后的这两个“对称数”为一组“相关对称数”.例如:12321与21312为一组“相关对称数”.求证:任意的一组“相关对称数”之和是最小“对称数”的倍数;(2)求出所有的“智慧对称数”中最大的“智慧对称数”.2519.我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2 整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知是“吉祥数”,则x= .(2)若正整数是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.2520.阅读理解:有一个n位自然数(n,n1,n2,n3,…nn是正整数,n≥2,1≤n1,n2,n3,…nn<9),若交换不同数位上的数字得到一新数则叫这个n位自然数的一个“轮换数”,如:,均是的一个“轮换数”;36是63的一个“轮换数”,243是324的一个“轮换数”.(1)写出213的所有轮换数.(2)证明:任何一个3位自然数与它所有轮换数的和是111的倍数.(3)试求:4213与它所有轮换数的和.2521.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求的最大值.2522.人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正约数)之和相等,我们称这两个数为“亲和数”.例如:18的约数有1、2、3、6、9、18,它的真因数之和1+2+3+6+9=21;51的约数有1、3、17、51,它的真因数之和1+3+17=21,所以18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.(1)6的“亲和数”为25 ;将一个四位的“两头蛇数”去掉两头,得到一个两位数,它恰好是这个“两头蛇数”的约数,求满足条件的“两头蛇数”.(2)已知两个“亲和数”的真因数之和都等于15,且这两个“亲和数”中较大的数能将一个正中间数位(百位)上的数为4的五位“两头蛇数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的“两头蛇数”.2523.一个形如的五位自然数(其中c表示该数万位和个位上的数字,b 表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352 是一个“M数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P<>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.2524.阅读下列材料,解决后面两个问题:一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.例如:判断1675282能不能被17整除. 167528﹣2×5=167518,16751﹣8 ×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.2525.若一个正整数,它的各位数字是左右对称的,则称这个数是谋略数,如22,797,12321都是谋略数.最小的谋略数是11,没有最大的谋略数,因为数位是无穷的.有一种产生谋略数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个谋略数.如:16的逆序数为61,16+61=77,77是一个谋略数;37的逆序数为73,37+73=110,110的逆序数为11,110+11=121,121是谋略数.(1)请你根据以上材料,直接写出57 产生的第一个谋略数;(2)若将任意一个四位谋略数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位谋略数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位谋略数共有多少个?2526.如果一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”.例:16=52﹣32,16就是一个“智慧数”,小明和小王对自然数中的”智慧数”进行了如下探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2= (k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是“智慧数”.问题:(1)根据上述方法,自然数中第10个“智慧数”是;(2)他们发现0,4,8是“智慧数”,由此猜测4k(k为正整数)都是“智慧数”,请你参考小王的办法证明4k(k为正整数)都是“智慧数”.2527.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)请判断:2561 (填“是”或“不是”)“和平数”.(2)直接写出:最小的“和平数”是,最大的“和平数”是;(3)如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.2528.阅读下列材料,回答问题.正整数m(m≥2)可分解成两个正整数的和,即m=s+t(s、t是正整数,且s≤t),在m的所有这些加和中,若s、t 两加数之差的绝对值最小,称s+r为m的最美加和,并规定F(m)=7s﹣6t,如7=1+6=2+5=3+4,因为6﹣1>5﹣2>4﹣3,所以3+4为7的最美加和,所以F(7)=7×3﹣6×4=﹣3.(1)F(8)= ,F(9)= :(2)对任意的正整数n(n≥2),用含n的代数式分别表示出n为奇数,偶数时的F(n):(3)若一个三位正整数q是7的倍数,且满足各位数字之和为7,称这个数q为“潜力数“,求所有“潜力数”中F(q)的最大值.2529.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数,它(填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?2530、一个三位正整数N,各个数位上的数字互不相同都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数.所有这些两位数的和等于这个三位数本身.则称这样的三位数N为“友好数”.例如:132.选择百位数字1和十位数字3所组成的两位数为:13和31.选择百位数字1和个位数字2所组成的两位数为:12和21.选择十位数字3和个位数字2所组成的两位数为:32和23.因为13+31+12+21+32+23=132,所以132是“友好数”.一个三位正整数,若它的十位数字等于百位数字与个位数字的和.则称这样的三位数为“和平数“,(1)判断123是不是“友好数“?请说明理由.(2)一个三位数,如果百位上的数字为x,十位上的数字为y,个位上的数字为z,则把这个三位数记作,三位数可用多项式表示为100x+10y+z,比如三位数523可用多项式表示为:5×100+2×10+3.证明:当一个“和平数”是“友好数”时,则z=2x.2531.材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N ﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2 除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N 礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17 “明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.2532.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.2533.对于任意一个自然数N,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把K称为N的“中子数”,并记f(x)=K,例如,163→1+6+3=10→1+0=1,∴f(163)=1(1)计算:f(2018888)= ;(2)易知:任意两个自然数M和N,如果各个数位上的数字之和相等,则f(M)=f(N),此时我们称M、N是“特别有缘数”,例如163和28即为“特别有缘数”,若已知一个三位数和一个两位数是“特别有缘数”,请证明它们的差一定能被9整除;(3)有一个三位自然数L=,已知f(L)=6,而且x、y、z都是偶数,我们规定i=y2+xz,请求出i取最大值时的自然数L.2534.我们知道,任意一个大于1的正整数n都可以进行这样的分解:n=x+y(x、y是正整数,且x≤y),在n的所有这种分解中,如果x、y两数的乘积最大,我们就称x+y是n的最佳分解,并规定在最佳分解时:F(n)=xy.例如6可以分解成1+5,2+4或3+3,因为1×5<2×4<3×3,所以3+3是6的最佳分解,所以F(6)=3×3=9.(1)计算:F(8).(2)设两位正整数t=l0a+b(1≤a≤9,0≤b≤9,a、b为整数),数t′十位上的数等于数t十位上的数与t个位上的数之和,数t′个位上的数等于数t十位上的数与t个位上的数之差,若t′﹣t=9,且F(t)能被2整除,求两位正整数t.2535、定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6整除);又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.2535.在一个m (m ≥3,m 为整数)位的正整数中,若从左到右第n (n ≤m ,n为正整数)位上的数字与从右到左第n 位上的数字之和都等于同一个常数 k (k 为正整数),则称这样的数为“对称等和数”.例如在正整数3186 中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正 整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”, 其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s (1≤s ≤9,s 为整数),百位上的数字 为t (0≤t ≤9,t 为整数),是整数,求这个四位“对称等和数”;(2)已知数A ,数B ,数C 都是三位“对称等和数”.A=(1≤a ≤9,a 为整数),设数B 十位上的数字为x (0≤x ≤9,x 为整数),数C 十位上 的数字为y (0≤y ≤9,y 为整数),若A+B+C=1800,求证:y=﹣x+15.2537.任意一个正整数m 都可以表示为:m=a 2×b(a 、b 均为正整数) ,在m 所有表示的结果中,当b a -最小时,规定Q(m)=ab 2,例如:108=12×108=22×27=32×12=62×3,因为1081->272->123->36-,所以Q(m)= 3=1.2538.一个正偶数去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数为“魅力数”,把这个商叫做的魅力系数,记这个商为.如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记.(1)计算:;(2)若都是“魅力数”,其中,是整数,规定:.当时,求的值2539.一个两位正整数,如果满足各数位上的数字互不相同均不为0,那么称为“启航数”,将的两位数位上的数字对调得到一个新数′,把′放在后面组成第一个四位数,把放在′的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为,例如时,(1)计算若为“启航数”,是一个完全平方数,求的值;(2)为“启航数”,其中,且为整数.并规定:,若能被7整除,且,求的最大值.2540.对任意一个三位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“陌生数”,将一个“陌生数”的三个数位上的数字交换顺序,可以得到个不相同的新的“陌生数”,把这个“陌生数”,的和与111的商记为,例如,可以得到,,,,这个新三位数,这个三位数的和为123+132+213+231+312+321=1332,¸,所以().(1)计算:,;(2)若,都是“陌生数”,其中,(,,,都是正整数),规定:,当除以余时,求的最大值.。
重庆市中考数学标准测试卷含答案解析
重庆市中考数学标准测试卷一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有(填写序号)16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.已知正方形ABCD的边长为a,分别以B,D为圆心,以a为半径画弧,如图所示,则阴影部分的面积为.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.重庆市中考数学标准测试卷参考答案与试题解析一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣a2)3=﹣a6,故选B.【点评】此题考查积的乘方,关键是根据法则进行计算.4.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式即可.【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质;垂线.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.【点评】本题考查了邻补角和平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.7.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】新定义.【分析】根据规定5*(3x﹣1)可化成﹣,再根据解分式方程的步骤即可得出答案.【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【考点】矩形的性质.【分析】通过证得△AMN∽△DCM,对应边成比例即可求得.【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.【点评】本题考查了矩形的性质,三角形相似的判定和性质以及解直角三角形等,证得三角形相似是解题的关键.9.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.【点评】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】探究型.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A .6B .9C .10D .12【考点】反比例函数图象上点的坐标特征.【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A 在双曲线y=上,∴S 矩形AFOD =3,同理S 矩形OEBF =k ,∵AB ∥OD , ∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【考点】相似三角形的判定与性质.【分析】先根据DE∥BC得出△ADE∽△ACB,由相似三角形的性质求出两个相似三角形的面积比,进而求出的值.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定和性质,本题的关键是利用相似三角形的面积比等于相似比的平方求值.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有①③④(填写序号)【考点】正方形的性质;全等三角形的判定与性质;勾股定理;解直角三角形.【分析】根据正方形的性质得出BC=CD,∠ABC=∠BCD=90°,然后根据SAS证得△BMC≌△CND,得出∠MCB=∠NDC.进而即可证得∠DOC=90°,即DN⊥MC;根据勾股定理求得DN,然后根据NC•CD=ND•OC,求得OC=,OM=13﹣=,则OC≠OM,因为∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,得出∠OCD=∠DNC,所以sin∠OCD=sin∠DNC==;由△BMC≌△CND,=S△ODC.得出S△BMC=S△CND,求得S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CND=S△ODC,故④正确.S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON综上,正确的结论是①③④.故答案为①③④.【点评】本题考查了正方形的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形以及三角形面积等,熟练掌握待定系数法是解题的关键.16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是.【考点】列表法与树状图法.【分析】分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A 组“引体向上”的概率=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.已知正方形ABCD 的边长为a ,分别以B ,D 为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为 (π﹣1)a 2 .【考点】列代数式.【专题】计算题.【分析】根据圆的面积公式和利用S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD 进行计算.【解答】解:∵S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD ,∴S 阴影部分=2וπ•a 2﹣a 2=(π﹣1)a 2.故答案为(π﹣1)a2.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的根据是利用面积的和差计算阴影部分的面积.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠ABC=50°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【考点】条形统计图;扇形统计图.【分析】(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以圆周角,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:④的人数除以总人数,可得答案.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W=2610元,最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得到AC⊥BD,由于DH⊥AB于H,于是得到∠DHA=∠DOG=90°,推出△AGH∽△DGO,根据相似三角形的性质得到,于是得到结论;(2)根据已知条件得到∠DAB=60°,AB=AD=6,得到△ABD是等边三角形,根据菱形的性质得到AC⊥DB,OD=OB=BD=3,得到∠ODG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,熟记个性质定理是解题的关键.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将N点坐标代入即可求得;(2)由于A、B关于对称轴对称,所以相当于求AH+CH的最小值,根据两点之间线段最短,当A、H、C三点共线时AH+CH最小,即连接AC与对称轴的交点就是H,求出AC解析式,再与对称轴方程联立即可求得;(3)分两种情况:①作BF∥AC交抛物线于点F,先求出BF解析式,再与抛物线方程联立求出F 点坐标,再用两点间的距离公式表示出BF的长度,接着利用相似比例关系列出方程求解;②在x 轴下方作∠ABF=∠ABC=45°,同样先求出BF解析式,再求出F点坐标,进而表示出BF长度,最后利用相似比例关系列方程求解.算的过程中,可能有一种情况无解,舍去就是了.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.【点评】考查了二次函数综合题,解决二次函数问题应注意对称性的应用,若已知三点坐标,可设一般式;若已知顶点坐标,可设顶点式;若已知抛物线与x轴两交点坐标,可设两点式,从而简化运算,整个问题围绕二次函数展开,并将二次函数、三角形等多个问题紧密地结合在一起,无论是题设的给出还是思维方式的考查都很新颖.一道考题不仅考查了二次函数、三角形相似等初中数学中的重点内容,还考查了待定系数法等数学思想方法,这是中考试卷的创新题型和发展趋势,代数知识与几何知识得到了很好的整合,是一个典型的在知识网络交汇点处设计的热点试题.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.。
2024年重庆市中考数学真题(A卷)及答案
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2-B. 0C. 3D. 12-2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0k y k x =≠的图象上,则k 的值为( )A. 3- B. 3 C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是()A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4πC. 324π-D. 8π9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B.C.D. 10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为______.的17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22. 为促进新质生产力发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .的的(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且的的与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】D【9题答案】【答案】A【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】9【13题答案】【答案】19【14题答案】【答案】10%【15题答案】【答案】3【16题答案】【答案】16【17题答案】【答案】 ①. 8 ②. 【18题答案】【答案】 ①. 82 ②. 4564三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)222x y +;(2)11a a +-.【20题答案】【答案】(1)86,87.5,40;试题11(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【21题答案】【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元【23题答案】【答案】(1)()()124606063y x x y x x =<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【24题答案】【答案】(1)A ,C 两港之间的距离77.2海里;(2)甲货轮先到达C 港.【25题答案】【答案】(1)234y x x =--+;(2)AM MN NF ++2+;(3)符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫- ⎪⎝⎭.【26题答案】【答案】(1)60α︒+(2)CG =(3。
(word完整版)年重庆中考数学总复习25题《二次函数》练习及答案
二次函数的综合运用此题主要针对中考26题压轴题此题分为三问(1)求函数解析式(二次函数解析式、一次函数解析式、反比例函数解析式);(2)求二次函数中的一些线段长度或某个四边形的面积;(3)求二次函数中某些动点坐标或轨迹。
解答题1、 (2013·重庆A卷25题) 如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2、(2013·重庆B卷25题)如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E ,使四边形OECD 的面积S1与四边形OABD 的面积S 满足:S1=S ?若存在,求点E 的坐标;若不存在,请说明理由.3、(2008•重庆)已知:如图,抛物线(a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0). (1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2322y ax ax c =-+4、(2011•丹东)己知:二次函数(a≠0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点A 、点B 的横坐标是一元二次方程x2-4x-12=0的两个根. (1)请直接写出点A 、点B 的坐标.(2)请求出该二次函数表达式及对称轴和顶点坐标.(3)如图1,在二次函数对称轴上是否存在点P ,使△APC 的周长最小,若存在,请求出点P 的坐标;若不存在,请说明理由.(4)如图2,连接AC 、BC ,点Q 是线段0B 上一个动点(点Q 不与点0、B 重合).过点Q 作QD ∥AC 交BC 于点D ,设Q 点坐标(m ,0),当△CDQ 面积S 最大时,求m 的值.26y ax bx =++5、如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,请你求出BN的长度;(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.6、(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.7、(2013•舟山)如图,在平面直角坐标系xOy 中,抛物线的顶点为A ,与y轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD=AC ,连结BD .作AE ∥x 轴,DE ∥y 轴.(1)当m=2时,求点B 的坐标; (2)求DE 的长?(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数关系式?②过点D 作AB 的平行线,与第(3)①题确定的函数图象的另一个交点为P ,当m 为何值时,以,A ,B ,D ,P 为顶点的四边形是平行四边形?()221144y x m m m =--+。
最新2021重庆中考数学第25题几何专题训练2
GF EDCBA M 证明题1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC . 〔1〕求证:BE=CF ;〔2〕在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME ⊥BC ;②DE=DN .2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。
求证:〔1〕AF =CG ;〔2〕CF =2DE3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC 。
〔1〕求证:OE=OF ;〔2〕假设BC=23,求AB 的长。
4.,如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2.〔1〕假设CF=2,AE=3,求BE 的长; 〔2〕求证:∠CEG=∠AGE .5.如图1,在△ABC 中,∠ACB=90°,∠BAC=60°,点E 角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的线段,两垂线交于点D ,连接DB ,点F 是BD 的中点,DH ⊥AC ,垂足为H ,连接EF ,HF 。
〔1〕如图1,假设点H 是AC 的中点,AC=23,求AB ,BD 的长。
〔2〕如图1,求证:HF=EF 。
〔3〕如图2,连接CF ,CE ,猜测:△CEF 是否是等边三角形?假设是,请证明;假设不是,请说明理由。
6.如图1,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连结BE . 〔1〕假设AF 是△ABE 的中线,且AF =5,AE =6,连结DF ,求DF 的长; 〔2〕假设AF 是△ABE 的高,延长AF 交BC 于点G .①如图2,假设点E 是AC 边的中点,连结EG ,求证:AG +EG =BE ;②如图3,假设点E 是AC 边上的动点,连结DF .当点E 在AC 边上(不含端点)运动时,∠DFG 的大小是否改变,如果不变,请求出∠DFG 的度数;如果要变,请说明理由.7.在△ABC 中,AB=AC ,∠A=60°,点D 是线段BC 的中点,∠EDF=120°,DE 与线段AB 相交于点E ,DF 与线段AC 〔或AC 的延长线〕相交于点F.〔1〕如图1,假设DF ⊥AC ,垂足为F ,AB=4,求BE 的长;〔2〕如图2,将〔1〕中的∠EDF 绕点D 顺时针旋转一定的角度,DF 扔与线段AC 相交于点F.求证:1CF 2BE AB +=; 〔3〕如图3,将〔2〕中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN ⊥AC 于点N ,假设DN=FN ,求证:3()BE CF BE CF +=-.ABF DCE 25题图1 BAF DCEG25题图2 ABF DCEG25题图38.在四边形ABCD中,180ABC ADC∠+∠=︒,AB=BC.〔1〕如图1,假设90BAD∠=︒,AD=2,求CD的长度;〔2〕如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:1902PBQ ADC∠=︒-∠;〔3〕如图3,假设点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,那么〔2〕中的结论是否成立?假设成立,请给出证明过程,假设不成立,请写出PBQ∠与ADC∠的数量关系,并给出证明过程.9.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.〔1〕如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;〔2〕如图2,当点E不是线段AC的中点时,求证:BE=EF;〔3〕如图3,当点E是线段AC延长线上的任意一点时,〔2〕中的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.10.如图1,在菱形ABCD中,∠ABC=60°,假设点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.〔1〕过D作DH⊥AB,垂足为H,假设DH=BE=14AB,求DG的长;〔2〕连接CP,求证:CP⊥FP;〔3〕如图2,在菱形ABCD中,∠ABC=60°,假设点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第〔2〕问的结论成立吗?假设成立,求出PFCP的值;假设不成立,请说明理由.图1DABCADBCPQ图2ADBCPQ图3G11.如图1,ABC ∆中,BE AC ⊥于点E ,AD BC ⊥于点D ,连接DE . 〔1〕假设AB BC =,1DE =,3BE =,求ABC ∆的周长;〔2〕如图2,假设AB BC =,AD BD =,ADB ∠的角平分线DF 交BE 于点F ,求证:2BF DE =;〔3〕如图3,假设AB BC ≠,AD BD =,将ADC ∆沿着AC 翻折得到AGC ∆,连接DG 、EG ,请猜测线段AE 、BE 、DG 之间的数量关系,并证明你的结论。
重庆中考数学25题二次函数专项训练之三角形的存在性
第一讲 三角形的存在性问题例1、如图,抛物线822++-=x x y 与x 轴交于A 、B 两点,过点A 的直线2+=x y 与抛物线交于点C ,与y 轴交于点D .(1)求△ABC 的面积;(2)若点P 为直线AC 上方抛物线上的动点,求点P 到直线AC 距离的最大值;(3)将抛物线沿射线AC 的方向平移23个单位长度,平移后的顶点记作M ,原抛物线的顶点关于新抛物线的对称轴的对称点记作N ,E 为直线AC 上的动点,是否存在点E ,使得以M 、N 、E 为顶点的三角形是等腰三角形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.与y 轴交于点C ,对称轴交抛物线于点Q ,交x 轴于点M .其中点A (﹣2,0),点B (4,0).(1)求抛物线的解析式;(2)如图2,连接BC ,在第一象限的抛物线上有一点P ,且点P 位于对称轴右侧,过P 作PD△BC 于点D ,PE△MQ 于点E ,求5PD+PE 的最大值及此时点P 的坐标.(3)将抛物线向右平移2个单位长度后得到新抛物线1y ,新抛物线1y 与原抛物线相交于点N ,在新抛物线1y 的对称轴上有一点H ,点F 为1y 与x 轴正半轴的交点,若△NFH 是以NH 为腰的等腰三角形,请直接写出点H 的坐标,并写出求解其中一个H 点的过程.与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD 的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.练习2、已知抛物线c bx ax y ++=2与x 轴交于A (2-,0)、B (6,0)两点,与y 轴交于点C (0,3-).(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当AMPM 最大时,求点P 的坐标及AM PM 的最大值; (3)在(2)的条件下,过点P 作x 轴的垂线l ,在l 上是否存在点D ,使△BCD 是直角三角形,若存在,请直接写出点D 的坐标;若不存在,请说明理由.自我巩固1、如图,抛物线343832++-=x x y 与x 轴相交于点A ,点B (A 在B 的左侧),与y 轴相交于点C ,连接AC ,BC .(1)求△ABC 的面积;(2)如图,点P 是第一象限内抛物线上的动点,过点P 作PE△y 轴,交直线BC 于点E ,当PE+54CE 有最大值时,求PE+54CE 的最大值与点P 的坐标; (3)将抛物线343832++-=x x y 向右平移2个单位得到新抛物线y ′,点F 为原抛物线y 与新抛物线y ′的交点,点M 是原抛物线y 对称轴上一点,当△AFM 是以FM 为腰的等腰三角形时,直接写出点M 的坐标.。
中考第25题数学相遇问题(一)
中考第25题数学相遇问题(一)中考第25题数学相遇问题及相关问题中考第25题数学相遇问题问题描述:小明和小红同时从不同的地方出发相向而行,小明每小时行驶10千米,小红每小时行驶12千米。
他们要相遇需要多少时间?解释:这道题目是一个典型的相遇问题。
通过解题可以理解相遇问题的基本思路和解法。
相关问题一:不同速度相遇问题问题描述:甲、乙两辆汽车同时从相距300公里的A、B两地同时出发,甲车每小时速度60公里,乙车每小时速度80公里。
问多久后两车相遇?解释:这个问题与中考第25题数学相遇问题相似,但是速度不同。
通过解题可以进一步了解不同速度相遇问题的解题思路和计算方法。
相关问题二:相向而行问题问题描述:甲、乙两人同时从相距50米的地方同时出发,甲每秒钟向右走1米,乙每秒钟向左走2米。
他们要相遇需要多长时间?解释:这个问题和中考第25题数学相遇问题类似,但是采用了不同的单位和推移方式。
通过解题可以掌握相向而行问题的解法和思维方式。
相关问题三:追及问题问题描述:A、B两人同时从地点P出发,A向北以60公里/小时的速度,B向东以80公里/小时的速度,A、B无视地形地势。
已知A、B始终保持相同的速度,经过多长时间A才能追上B?解释:这个问题与中考第25题数学相遇问题的情景类似,但是采用了追及问题的形式。
通过解题可以了解解决追及问题的一般方法和思路。
相关问题四:追及问题的变体问题描述:A、B两人同时从同一地点出发,A向北以60公里/小时的速度,B向东以80公里/小时的速度,A、B始终保持相同的速度。
已知A、B在经过一段时间后相距100公里,那么A、B分别走了多长时间?解释:这是一个追及问题的变体,通过解题可以加深对追及问题的理解,并掌握解决追及问题的技巧。
结论中考第25题数学相遇问题是相遇问题的一个典型例子,通过解题可以学习到解决相遇问题的基本思路和方法。
同时,还可以通过相关问题进一步扩展对相遇问题的理解和应用能力。
重庆中考25题解题技巧
重庆中考25题解题技巧
重庆中考数学25题是压轴题,难度较大,但只要掌握了解题技巧,就能更
好地应对。
首先,要认真审题,理解题意。
压轴题往往涉及多个知识点,综合性较强,需要仔细阅读题目,理解题目的要求和考察的知识点。
其次,要善于挖掘题目中的隐含条件,这些条件往往是解题的关键。
例如,在几何题目中,常常会涉及到角度、长度等未直接给出的量,可以通过已知条件推导出来。
第三,要掌握一些常用的数学方法和技巧,如代数运算、数形结合、分类讨论等。
这些方法和技巧可以帮助你更好地解题,提高解题效率。
第四,要注意解题的规范性。
在解题过程中,要注意步骤的完整性和规范性,避免因为步骤不完整或不规范而被扣分。
最后,要多练习。
只有通过不断的练习,才能更好地掌握解题技巧,提高解题能力。
总之,重庆中考数学25题虽然难度较大,但只要认真审题、挖掘隐含条件、掌握常用数学方法和技巧、注意解题规范性、多练习,就能更好地应对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25题二次函数专题
【求三角形面积最大】
1.(2012•眉山)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A、B、C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.
2.(2012•广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
3.(2012•十堰)抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当
△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,
N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
4.(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,
-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、
n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E
两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.
【构成图形】(线段和最短,面积等,直角三角形,平行四边形,菱形)
1.(2012•梧州)如图,抛物线y=-x2+12x-30的顶点为A,对称轴AB与x轴交于点B.在x
上方的抛物线上有C、D两点,它们关于AB对称,并且C点在对称轴的左侧,CB⊥DB.
(1)求出此抛物线的对称轴和顶点A的坐标;
(2)在抛物线的对称轴上找出点Q,使它到A、C两点的距离相等,并求出点Q的坐标;
(3)延长DB交抛物线于点E,在抛物线上是否存在点P,使得△DEP的面积等于△DEC的面
积?若存在,请你直接写出点P的坐标;若不存在,请说明理由.
2.(2012•宜宾)如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
3.(2012•扬州)已知抛物线y=ax2+bx+c 经过A (-1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的
对称轴. (
1
)
求
抛物
线
的
函
数
关
系
式
;
(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.
4. (2012•株洲)如图,一次函数y=-1
2
x+2分别交y 轴、x 轴于A 、B 两点, 抛物
线
y=-x2+bx+c 过A 、
B
两
点. (
1)
求
这
个
抛
物
线的
解
析
式
;
(2)作垂直x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少? (3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点
D 的坐标.
5.(2012•西宁)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,已知A (0,4)、C (5,0).作∠AOC 的角平分线交AB 于点D ,连接DC ,过D 作DE ⊥DC 交OA 于点E . (1
)
求
点
D 的坐标; (
2)求
证
:
△ADE
≌
△
BCD
;
(3
)抛物线经过A 、C 两点,连接AC .探索:若点P 是x 轴下方抛物线上一动点,求点P
作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 长度有最大值?若存在,求出点P 的坐标;若不存在,请你说明理由.
6.(2012•烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,
4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q
从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点
P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,
E,H为顶点的四边形为菱形?请直接写出t的值.
【全等,相似】
1. (2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.(1)求该抛物线的表达式;(2)求点P的坐标;
(3)试判断CE与EF是否相等,并说明理由;
(4)连接PE,在x轴上点M的右侧是否存在一点N,
使△CMN与△CPE全等?若存在,试求出点N的坐标;
若不存在,请说明理由.
2.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,-3
).
(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.
3.(2012•天水)如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA 面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
4. (2012•苏州)如图,已知抛物线(b是实数且b>2)与x轴的
正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为______ (用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点
P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三
角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说
明理由.
【超级无敌综合题】
1.(2012•恩施州)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛
物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请
说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
2.(2012•阜新)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.。