倒易点阵和晶体的衍射方向共22页文档
第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿
第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿第二部分倒易点阵和晶体衍射-总结与习题指导竭诚为您提供优质文档/双击可除第二部分倒易点阵和晶体衍射-总结与习题指导篇一:第十二章习题答案new1、分析电子衍射与x衍射有何异同?答:相同点:①都是以满足布拉格方程作为产生衍射的必要条件。
②两种衍射技术所得到的衍射花样在几何特征上大致相似。
不同点:①电子波的波长比x射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad。
而x射线产生衍射时,其衍射角最大可接近2。
②在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。
③因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
④原子对电子的散射能力远高于它对x射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。
2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。
关系:①倒易矢量ghkl垂直于正点阵中对应的(hkl)晶面,或平行于它的法向nhkl②倒易点阵中的一个点代表正点阵中的一组晶面③倒易矢量的长度等于点阵中的相应晶面间距的倒数,即ghkl=1/dhkl④对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c。
⑤只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量ghkl是与相应指数的晶向[hkl]平行⑥某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。
3、用爱瓦尔德图解法证明布拉格定律。
第二章 晶体学基本理论
2.7.1 倒易点阵定义
倒易点阵: 是用 a*. b*和c*基矢量描述的三维空间,与a.b.c描
述的正空间互为倒易
倒易点阵满足 a*b=a*c=b*a=b*c=c*.a=c*.b=0---(1) a*a = b*b = c*.c =1--- (2)
第四十二页,共55页
2.7.1 倒易点阵定义
这些空间位向性质完全相同的晶面属于同族等同晶 面,用{hkl}表示
例如:立方晶系中
{ 1 0 0 } ( 1 0 0 ) ( 0 1 0 ) ( 0 0 1 )
{ 1 1 1 } ( 1 1 1 ) ( 1 1 1 ) ( 1 1 1 ) ( 1 1 1 )
第二十八页,共55页
晶向指数的确定
由原点o指向任意一个倒易结点所连接的矢量hakblchkl为整数倒易矢量的方向垂直正点阵的hkl面或平行于晶面的法线hkl晶体点阵经过倒易变换建立相应的倒易点阵晶体中的晶面与其对应倒易点阵结点的关系立方晶系倒易点阵示意图立方晶系倒易点阵100110010001011021020120121101102uvw倒易结点的指数用它所代表的晶面的面指数表示272倒易点阵的性质则正点阵中的晶面在倒易点阵中可以用一个倒易结点表示273倒易点阵的几何意义正点阵中的一组平行晶面hkl相当于倒易点阵中的一个该组晶面间距的倒数
上还有一个阵点,
阵点坐标 000 , 110,101,011
22 2 2 22
第十七页,共55页
强调:晶体结构和空间点阵的区别
空间点阵是晶体中质点排列的几何学抽象,用以 描述和分析晶体结构的周期性和对称性,由于各阵点 的周围环境相同,它只能有14中类型
晶体结构是晶体中实际质点(原子、离子或 分子)的具体排列情况,它们能组成各种类型的 排列,实际存在的晶体结构是无限的
§1.5 倒易点阵
′ ′ ′ ′ ′ ′ = 2 π( l1h1 + l 2 h2 + l 3 h3 )
= 2 πµ
3.
(2π)3 Ω* =
Ω* = b 1 ⋅ b 2 × b 3
3
(
Ω
分别为正、倒格原胞体积) (其中Ω和Ω*分别为正、倒格原胞体积 其中
)
) [( ) ( )]
2π = a2 × a3 ⋅ a3 × a1 × a1 × a2 Ω
′ ′ ′ Rl′ = l1 a1 + l2 a 2 + l3 a 3
′ ′ ′ K h′ = h1 b1 + h2 b2 + h3 b3
上页 下页 返回 结束
第一章 晶体结构
′ ′ ′ ′ ′ ′ Rl′ ⋅ K h′ = (l1 a1 + l2 a 2 + l3 a 3 ) ⋅(h1 b1 + h2 b2 + h3 b3 )
2π a
2π a
上页 下页 返回 结束
第一章 晶体结构 例2:证明体心立方的倒格是面心立方。 证明体心立方的倒格是面心立方。 体心立方的原胞基矢: 解: 体心立方的原胞基矢:
a1 a a
2
3
a = − i + j + k 2 a i − j + k = 2 a i + j − k = 2
( ( (
a a 2 +k 2 a a 2 2
−
a 2 a 2
a2 a2 j+ k = 2 2
上页 下页 返回 结束
第一章 晶体结构
a2 a2 a2 × a3 = j + k 2 2
2π b1 = a2 × a3 = Ω
倒易点阵与晶体衍射
利用透射电镜进行物相形貌观察(如图2-12中的各种结果)仅是一种较为直接的应用,透射电镜还可得到另外一类图像---电子衍射图(图2-15所示)。
图中每一斑点都分别代表一个晶面族,不同的电子衍射谱图又反映出不同的物质结构。
图2-15 金蒸发膜的多晶和钢中Mo23C6单晶的电子衍射花样按照一定规则进行分析,我们可以标定出每一斑点对应的晶面指数,再由标准物质手册,可以查出这两种物质分别是金的多晶体和Mo23C6单晶碳化物。
可见,利用电子衍射图也可以分析未知的物相。
电子衍射原理和X射线衍射原理是完全一样的,但较之其还有以下特点:1.电子衍射可与物像的形貌观察结合起来,使人们能在高倍下选择微区进行晶体结构分析,弄清微区的物象组成;2.电子波长短,使单晶电子衍射斑点大都分布在一二维倒易截面内,这对分析晶体结构和位向关系带来很大方便;3.电子衍射强度大,所需曝光时间短,摄取衍射花样时仅需几秒钟。
下面我们就来讨论为什么透射电镜中的电子束可以产生上述衍射花样----电子衍射原理。
电子衍射原理已知,当波长为l 的单色平面电子波以入射角θ照射到晶面间距为d的平行晶面组时,各个晶面的散射波干涉加强的条件是满足布拉格关系:2dsinθ =nλ(11)式中n=0,1,2,3,4….,称为衍射级数,为简单起见,至考虑n=1的情况,即可将布拉格方程写成2dsinθ =l 或更进一步写成:( )这一关系的几何意义为布拉格角的正玄函数为直角三角形的对边(1/d)与斜边(2/λ)之比,而满足上式关系的点的集合是以1/λ为半径,以2/λ为斜边的球的所有内接三角形的顶点---球面上所有的点均满足布拉格条件。
可以想象,AO'为入射电子束方向,它照射到位于O点处的晶体上,一部分透射出去,一部分使晶面间距为d的晶面发生衍射,在OG方向产生衍射束。
由于该表示方法首先由爱瓦尔德(Ewald)提出,故亦称为爱瓦尔德球。
图 2-16 爱瓦尔德球图解如果我们要想判断一个特定的晶面能否产生衍射,或者衍射的方向如何,可以假想将这个晶面放在球心O处,沿其法线方向从O'点出发,射出一长度为1/d的射线,其与球面相交处若能满足布拉格关系(入射角等于反射角),则说明其衍射成立,反之,说明不满足衍射条件。
第四章--倒易点阵及晶体衍射方向
第四章 倒易点阵及晶体衍射方向1. 布拉格定律一定波长的 X 射线或入射电子与晶体试样相互作用 , 可以用布拉格定律来表征产生衍射的条件。
图 4.1 布拉格定律的几何说明如图 4.1, 设平行电子束σ0入射到晶体中面间距为 d hkl 的晶体面网组 (hkl), 在人射波前 SS' 处 , 两电子波位相相同, 如果左边一支波经历波程 PA+AD = n λ,n 为包括零的整数 , 则两支波离开晶体后达到新波前 TT' 时 , 将具有相同的位相 , 相干结果可以达到衍射极大; 反之, 若 PA+AD ≠ n λ, 则达到TT' 时, 它们位相不同 , 不能相干得到衍射极大。
由图 4.1 可知,PA+AD =2d hkl sin θ=n λ (4.1)此即布拉格方程,n 称为衍射级数。
式(4.1)也可以写成:λθ=⎪⎭⎫⎝⎛sin 2n d hkl (4.1a)因为 d hkl /n=d nh, nk, hl ,故可把n 级 (hkl) 反射看成是与 (hkl) 平行 但面网间距缩小 n 倍的、 (nh, nk, nl) 的一级反射。
这样 , 布拉格方程可以写成一般形式 :λθ=sin 2hkl d (4.1a) 还可以写成下述形式:λθ/2/1sin hkld =(4.1b) 只要满足布拉格方程 , 就获得了产生衍射极大的条件。
式 (4.1a) 中 d hkl 为晶体中晶面组 (hkl) 的晶面间距;λ为入射电子束的波长;θ为人射电子束方向相对于晶面 (hkl) 的掠射角。
2. 倒易点阵2.1 倒易点阵定义 (1)倒易点阵:若已知晶体点阵的单位矢量 a 、b 、c, 可以定义倒易点阵的单位矢量a *、b *、c *,该点阵的方向矢量垂直于同名指数的晶体平面, 它的大小等于同名指数晶面间距的倒数,该点阵称为倒易点阵。
(2)正点阵与倒易点阵和基矢量的相互关系:图4.2 正点阵与倒易点阵和基矢量的相互关系取一晶体单胞 , 如图 4.2, 晶体点阵的单位矢量为 a 、b 和 c , 相应点阵的 6 个参数是a 、 b 、 c 、α、β和 γ。
倒易点阵和晶体的衍射方向共22页文档
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必Βιβλιοθήκη 具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
倒易点阵和晶体的衍射方向
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
22
2.4倒易点阵、晶带
这样的点阵就称为倒易点阵。
❖ 倒易点阵是描述晶体结构的一种数学抽象方法,倒易点阵本 身是一种几何构图,它和空间点阵具有倒易关系。一个实在 的晶体点阵经过一定转化导出一套抽象点阵,这个抽象点阵 的每一个阵点和实在点阵中的一个点阵平面有相对应的倒易 关系。
❖ 倒易点阵的衍射理论是一般的衍射理论,它是了解射线在晶 体中的衍射几何和解释晶体射线衍射图谱的强有力工具,因 此学习倒易点阵可为以后的有关课程作基础准备,而在本章 中倒易点阵使晶面取向、晶带、晶面间距等问题更容易描述。
晶面间距愈大,该晶面上的 原子排列愈密集;晶面间距 最大的面总是阵点(或原子) 最密排的晶面。 晶面间距愈小,该晶面上的原子排列愈稀疏。 正是由于不同晶面和晶向上的原子排列情况不同,使晶体表现 为各向异性。
晶面间距公式的推导:从
Z
C
原点作(h k l)晶面的法线,
γ
N
则法线被最近的(h k l)面所
h : k : l cos : cos : cos
如图:ON为晶面(hkl)的法线,ON与该晶面交于D点;OA、OB、OC
分别为(hkl)在X、Y、Z轴上的截距;ON与X、Y、Z轴之间的夹角分
别为α、β、γ;cosα、cosβ、cosγ就是法线ON的方向余弦。立方点阵中
晶胞的三个基矢相等,设其为a,则根据晶面指数的确定方法可知:
同一晶带轴中的所有晶面的共同特点是:所有晶面 的法线都与晶带轴垂直 。
根据倒易点阵的性质,晶面(h k l)的法线方向
平行于倒易矢量 ha kb lc
ua vb wc• ha kb lc 0
上式展开就是晶体学中十分重要的晶带方程
hu + kv + lw = 0
倒易点阵和晶体的衍射方向PPT文档22页
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布晶体的衍射方向
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
晶体学基础-倒易点阵
倒易点阵晶体学中最关心通常是晶体取向,即晶面的法线方向。
倒易点阵是在晶体点阵的基础上按一定对应关系建立起来的空间几何图形(倒易空间),是晶体点阵的另一种表达形式。
将晶体点阵空间称为正空间。
倒易空间中的结点称为倒易点。
部分。
a a * = b把正点阵基矢与倒易点阵基矢的关系代入,得正点阵与倒易点阵的关系•O 点到(hkl)晶面的垂直距离就是晶面间距d hkl 。
倒数关系(大小)●d hkl =h a H H H1=•确定倒易矢量H ,就确定了正点阵晶面。
S hkl P 及Q ⊥•倒易矢量[hkl]的大小(模)就是其正点阵中相邻平行(hkl)晶面间距的倒数。
(倒—Reciprocal)进行矢量相乘并且展开。
a H hkl •在倒易点阵中,从原点指向阵点[坐标hkl ]的倒易矢量H hkl = ha* +kb* +lc*•H hkl 必和正点阵的(hkl )面垂直,•即倒易点阵的阵点方向[hkl ]*和正点阵的(hkl )面垂直:[hkl ]*⊥(hkl )。
CBAx y z(010)(100)(001)a例:由单斜点阵导出其倒易点阵•单斜点阵:b轴垂直于a和c轴。
左图图面为(010)面。
•从作图可以看出,正点阵和其对应的倒易点阵同属一种晶系。
把上面三个式子写成矩阵形式:•同理,可按下式求出与方向指数为[uvw]的方向相垂直的面的面指数(hkl):•例如,对立方系而言,a*●a* = b* ●b* = c*●c *=1/a2;a*●b* = b* ●c* = c*●a *=0;•u:v:w=h:k:l。
所以(hkl)面的法线指数和面指数同名,即为[hkl]。
晶体简介及倒易点阵
a×b c = V
(仅当正交晶系)
1 1 1 a = ,b = ,c = a b c
倒易点阵的基本性质
根据定义在倒易点阵中,从 倒易原点到任一倒易点P的 矢量称倒易矢量ghkl g*
hkl
= ha + kb + lc
可以证明:
1. g*矢量的长度等于其
对应晶面间距的倒数 g* hkl = n/dhkl
小结:晶系与点阵常数的关系
晶系 立方晶系 三方晶系 四方晶系 六方晶系 正交晶系 单斜晶系 三斜晶系 边长 a=b=c a=b=c a = b≠c a = b≠c a≠b≠c a≠b≠c a≠b≠c 夹角 α=β=γ= 900 α=β=γ≠900 α=β=γ= 900 α=β= 900, γ= 1200 α=β=γ= 900 α=β= 900, γ≠ 900 α≠β≠γ≠ 900 晶体实例 NaCl Al2O3 SnO2 AgI HgCl2 KClO3 CuSO45H2O
000,1/2 1/2 1/2
◆面心点阵 F
除8个顶点外,每 个面心上有一个 阵点,每个阵胞 上有阵点: 4个 其坐标分别为: 000, 1/2 1/2 0, 1/2 0 1/2, 0 1/2 1/2
空间点阵和晶体结构的关系
空间点阵+结构基元=晶体结构
虽然空间点阵只有14种,但晶体结构的 种类是无限的.
倒易点阵(Reciprocal Lattice )
倒易点阵的定义
定义:将晶体学中的空间点阵(正点阵),通 过某种联系,抽象出另一套结点的组合,称倒 易点阵. 在晶体点阵中的一组晶面(hkl),在倒易空 间中将用一个点Phkl表示,该点与晶面有倒易 关系.
如何确定倒易点阵的阵点
晶体的投影和倒易点阵 ppt课件
极射赤平投影:
以赤道平面为投影平面,以南极(或北极)为视点,将球面上的各个 点、线进行投影。
晶体投影的基本要素
10
D’
C’
B’
A’
极射赤平投影
2021/5/14
球面投影与极射赤面投影之间的关系:
球面上过南北轴的大圆,其极射赤面投影为过基圆中 心的直径;
球面上未过南北轴的倾斜大圆,其投影为大圆弧,大 圆弧的弦为基圆直径;
W
E
14
经纬线坐标网
乌式网
四、标准极射赤面投影图(标准极图)
定义:以晶体的某一简单晶面为投影图,将各晶面的球面投影再投影 到此平面上去所形成的投影图。
在测定晶体取向、如织构中非常有用,标明了晶体中所有重要晶面的 相对取向和对称关系和对称关系,可方便地定出投影图中所有极点的 指数。
15
1.4 倒易点阵
第2章 晶体学基础
参考教材: The Science and Engineering of
Materials
1
目录
晶体及其基本性质 晶向、晶面及晶带 晶体的间隙 晶体的缺陷 晶体的投影 倒易点阵
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
18
2021/5/14
2. 倒易点阵坐标系的建立:
从正点阵的原点O出发,作任一晶面(hkl)的法线ON,在该法 线上取一点Phkl ,使OPhkl长度正比例与该晶面间距dhkl的倒数, 则点阵称为该晶面的倒易点,用hkl表示,所有晶面的倒易点便 构成了倒易点阵。
第二章-晶体衍射和倒格子
G n(r)
即可用 G 展成傅氏
级数,用数学式子来表示就是:
n(r)
neiGr
G
G
22
证:
若
n(r)
n(G)eiGr
G
则
n (rR )
n G eiG reiG R
G
G R(hAkBlC )(uavbw c)
∴ 2(h uk vlw )2整数
必有
故
eiGR 1
n (r ) n (r R )
电子衍射 总能在微区细节上显神通,但晶胞参数等定量结果不能作为标准,而 且电子衍射的制样困难,好的制样技术甚至比电镜操作本身更难以掌 握 。物质对电子的散射作用很强[主要来源于原子核对电子的散射作 用,远强于物质对X射线的散射作用],因而电子(束)穿透物质的能力 大大减弱,故电子衍射只适于材料表层或薄膜样品的结构分析
( h、k、l 为整数),具有以上形式的矢量称 为倒易点阵矢量,即倒易点阵平移矢量,同 晶体点阵类似,倒易点阵就是由倒易点阵矢 量所联系的诸点的列阵。
21
期可函以数证n明(r )由n 此(r 定R 义)傅的氏倒级易数点中阵的矢波量矢正,是即前G面 由周
n(r)
neiG r
G
若
R u a v b w c ,则
h 、k 、l ,
只需证明
GCA
GCB
则 G 肯定垂直于( hkl)平面。
32
∵
CA
= OA
-
OC
=
ac hl
而
CB = OB
-OC
= ah
c l
G h A k B lC
∴
GCA
=
(h A k B lC )(a c ) 2 2 0 hl
第八章-倒易点阵简介PPT
倒易点阵几何 衍射条件 爱瓦尔德图解法 粉末衍射法
1
倒易点阵简介
布拉格公式作为结构分析的数学工具,在 大多数场合已经足够,但是,还有一些衍射 效应是布拉格公式无法解释的,例如非布 拉格散射就是如此.
倒易点阵概念的引入,为一般衍射理论奠 定了基础.
2
倒易点阵几何
倒易点阵的概念 倒易点阵的定义 倒易点阵的性质 晶带定理
(2) 倒易点阵是晶体点阵的倒易,不是客观实在,没 有特定的物理意义,纯粹为数学模型和工具。
(3) Ewald球本身无实在物理意义,仅为数学工具。 但由于倒易点阵和反射球的相互关系非常完善地描 述了X射线和电子在晶体中的衍射,故成为研究晶 体衍射有力手段。
25
概念回顾
以A为圆心,1/λ为半径所做的球称为反 射球,这是因为只有在这个球面上的倒 易点所对应的晶面才能产生衍射。有时 也称此球为干涉球, Ewald球。
(S S0)ha*kb*lc*ghkl
满足衍射条件的矢量方程。 X射线衍射理论中的劳埃方程和布拉格方
程均可由该矢量方程导出。
布拉格方程推导 ghkl
1
S2
m
θ
A
θ
θ
(S-S0) (HKL)
n
S0
O
S-S0=Ssinθ+ S0sinθ= 2sinθ
(S-S0)/λ= 2sinθ)/λ=ghkl=1/d
ghkl
m
θ
A
θ
θ
n O
光程 差 O nAm OA SOA S0
OA (SS0)
S2 (S-S0) (HKL)
S0
相应的位向差为 22(SS0)OA
OApaqbrc 其中p、q、r是整数
倒易点阵与衍射
西安交通大学材料物理系宋晓平2008.07倒易点阵是一种数学方法利用这一概念,可使晶体几何的问题大为简化。
对于一般的衍射现象其解释变得更加简单理解亦可更加深入。
对于复杂的衍射效应,它可以提供必要的门径。
晶体由质点按一定的规律排列而成,如果将这种周期排列规律抽象出来,就是空间点阵。
将空间点阵(真实点阵或实点阵)经过倒易变换,就得到倒易点阵。
倒易点阵的外形也很像点阵,但其上的结点并不代表质点,而是对应着真点阵的一组晶面。
真点阵中的一组晶面),在倒易空间中将用一个点P hkl 表示点子与晶面有倒易关系,这种关系表现为:点子取在(hkl )的法线H上,且P hkl 点到倒易点 阵原点的距离与晶面间距成反比。
阵中倒易矢量的关系YZN(hkl )X(hklPhklO图1.晶体点阵中的晶面与倒易点从原点到P hkl 点的Z矢量称为倒易矢量,其大小为:H hkl =k/d hkl式中k 位比例系数,在多H数场合下取作1,但很多时候亦可令之等于X 射线的波长。
阵中倒易矢量的关系(hkl )XNP hklO图1.晶体点阵中的晶面与倒易点设真点阵的基本平移矢量为a b c设倒易点阵的基本平移矢量为a*b*c*a*·b=a*·c=b*·a=b*·c=c*·a=c*·b=0不同文字的倒易矢量与正矢量的数量积为零,其涵义为a*⊥b及c; c* ⊥a及b; b*⊥a及c。
a*·a=c*·c=b*·b=1同文字的倒易矢量与正矢量的数量积为1.a*·a=c*·c=b*·b=1同文字的倒易矢量与正矢量的数量积为1的图形解释见图2.从图2可知,c cos δ是(001)面的面间距d 001,因此:c*·c=c* c cos δ=c*d 001=1可得c*=1/d 001Oa *图2.晶体点阵基矢与倒易点阵基矢的关系b *c *δcbγ(001)a从以上定义可知:(1)如果正点阵晶轴相互垂直,则倒易轴亦相互垂直且平行于晶轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас倒易点阵和晶体的衍射方向
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢