2006年陕西高考理科数学解析版
2006年高考数学试卷(陕西卷.文)含详解
2006高考数学试题陕西卷文科试题(必修+选修Ⅰ)注意事项: 1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0}, 则P ∩Q 等于( ) A . {2} B .{1,2} C .{2,3} D .{1,2,3} 2.函数f (x )=11+x 2(x ∈R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]3. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A .18B .27C .36D .454.设函数f (x )=log a (x +b )(a >0,a ≠1)的图象过点(0, 0),其反函数的图像过点(1,2),则a +b 等于( )A .6B .5C .4D .35.设直线过点(0,a ),其斜率为1, 且与圆x 2+y 2=2相切,则a 的值为( ) A .±2 B .±2 B .±2 2 D .±46. “α、β、γ成等差数列”是“等式sin (α+γ)=sin 2β成立”的( )A . 充分而不必要条件B . 必要而不充分条件C .充分必要条件D .既不充分又不必要条件 7.设x ,y 为正数, 则(x +y )(1x + 4y )的最小值为( )A . 6B .9C .12D .158.已知非零向量AB →与AC →满足(AB ,→|AB ,→| +AC ,→|AC ,→| )·BC →=0且AB ,→|AB ,→| ·AC ,→|AC ,→| =12 , 则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形9. 已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2 , x 1+x 2=0 , 则( )A .f (x 1)<f (x 2)B .f (x 1)=f (x 2)C .f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小不能确定10. 已知双曲线22212x y a -=(a >2)的两条渐近线的夹角为π3 ,则双曲线的离心率为( ) A .2 B . 3 C .263 D .23311.已知平面α外不共线的三点A ,B ,C 到α的距离都相等,则正确的结论是( )A .平面ABC 必平行于αB .平面ABC 必与α相交C .平面ABC 必不垂直于αD .存在△ABC 的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .4,6,1,7B .7,6,1,4C .6,4,1,7D .1,6,4,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。
2006年全国高考理科数学试题及答案-全国卷2(贵州.新疆.青海.黑龙江.吉林)范文
2006高考理科数学试题全国II 卷理科试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷 注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式 如果事件A、B互斥,那么()()()P A B P A P B +=+如果事件A、B相互独立,那么(.)().()P A B P A P B =如果事件A在一次试验中发生的概率是P,那么 n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn nP k C P P -=- 一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(2)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π球的表面积公式24S R π=其中R表示球的半径 球的体积公式343V R π=其中R表示球的半径(3)23(1)i =- (A )32i (B )32i - (C )i (D )i - (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
2006年全国高考数学陕西卷评述数学(理科卷)
5 设 直 线 过 点 ( , ) 其 斜 . 0n , 率 为 1 且 与 圆 . +y 一2相 切 , , a T 。 。 则 n的 值 为 (
A. ± C. 2 ±
) .
B. 2 ± D. 4 ±
二 、 空题 : 填 把答 案填 在 答 题 卡 相 应 题 号 后 的 横 线 上 ( 大 题 共 4小 题 , 本 每小 题 4分 , 1 共 6分 ) .
) .
B . 专
A 平 面 AB . C必 平 行 于 a
B. 面 ABC 必 与 a相 交 平
i c1 .
D . 。
C 平 面 AB . C必 不 垂 直 于 a
4 设 函 数 _( . 厂 )一 l甑 ( + o
D 存 在△ AB 的一 条 中位 线 平行 于 a或 在 a内 . C 1. 确保信 息安 全 , 息 需 加密 传输 , 送 方 由 2为 信 发
.
平
A. 6
C.4
B5 .
D.3
3 ,d 例 如 , d4 , 明文 1 2 3 4对 应 密 文 5 7 1 , 6 当 接 ,, , , ,8 1.
收方收 到密 文 1, ,32 4 9 2 , 8时 , 解 密 得 到 的 明 文 为 则
( ) . A . 6, 7 4, 1, C.6, 1, 4, 7 B.7, 1。 6。 4 D. 6。 7 1。 4,
维普资讯
嗽 - - 壤
一 -- .… .-. ...- ..- . - ..-・ . 一
、
选择 题 : 每 小 题给 出 在
9 .
量 与
+
)・
的 四个 选 项 中 , 有 一 项 是 符 合 只 题 目要 求 的 ( 大 题 共 1 本 2小 题 ,
2006年全国高考理科数学试题及答案-全国卷2(贵州.新疆.青海.黑龙江.吉林)
2006高考理科数学试题全国II 卷理科试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷 注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式 如果事件A、B互斥,那么()()()P A B P A P B +=+如果事件A、B相互独立,那么(.)().()P A B P A P B =如果事件A在一次试验中发生的概率是P,那么 n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn nP k C P P -=- 一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(2)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π球的表面积公式24S R π=其中R表示球的半径 球的体积公式343V R π=其中R表示球的半径(3)23(1)i =- (A )32i (B )32i - (C )i (D )i - (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
2006年陕西高考理科数学卷及解答
2005年普通高等学校招生全国统一考试(贵州)理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:(1)已知α为第三象限角,则2α所在的象限是 (A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限(2)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为(A )0 (B )-8 (C )2 (D )10 (3)在8(1)(1)x x -+的展开式中5x的系数是(A )-14 (B )14 (C )-28 (D )28(4)设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为(A )16V (B )14V (C )13V (D )12V(5)___________)3412331(221=+--+-→x x x x im l x (A) 21- (B) 21 (C) 61- (D) 61(6)若ln 2ln 3ln 5,,235a b c ===,则 (A)a<b<c (B)c<b<a (C)c<a<b (D)b<a<c(7)设02x π≤≤,且1sin 2sin cos x x x -=-,则(A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径(8)22sin 21cos 2cos 2cos αααα⋅=+(A) tan α (B) tan 2α (C) 1 (D)12(9)已知双曲线2212y x-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M到x 轴的距离为(A )43 (B )53 (C )233(D )3 (10)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 (A )22(B )212- (C )22- (D )21-(11)不共面的四个定点到平面α的距离都相等,这样的平面α共有(A )3个 (B )4个 (C )6个 (D )7个(12)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 16进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 10进制 0123456789101112131415例如,用十六进制表示:E+D=1B ,则A ×B=(A )6E (B )72 (C )5F (D )B0第Ⅱ卷二.填空题(16分)(13)已知复数i Z 230+=,复数Z 满足Z=3Z+0Z ,则复数Z=_________________(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=(15)高l 为平面上过(0,1)的直线, l 的斜率等可能地取22,3,25,0,25,3,22---,用ξ表示坐标原点到l 的距离,由随机变量ξ的数学期望E ξ=___________(16)已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 三.解答题:(17) (本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
2006年陕西省专升本(高等数学)真题试卷(题后含答案及解析)
2006年陕西省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.设函数,则x=1是f(x)的( ).A.可去间断点B.跳跃间断点C.无穷间断点D.连续点正确答案:D解析:2.设F(x)是f(x)的一个原函数,则cosf(sinx)dx等于( ).A.F(x)+CB.F(sinx)+CC.一F(x)+CD.一F(sinx)+C正确答案:B解析:由题意可知,∫f(x)dx=F(x)+C(C为任意常数).则∫cosxf(sinx)dx=∫f(sinx)d(sinx)=F(sinx)+C3.设,若幂级数的收敛半径分别为R1、R2和R3,则下列关系式成立的是( ).A.R3>R2>R1B.R3>R2=R1C.R3=R2>R1D.R3=R2=R1正确答案:D解析:所以R1=R2=R3.4.设f’(x0)存在,则极限等于( ).A.f’(x0)B.一f’(x0)C.0D.2f’(x0)正确答案:C解析:5.设有直线和平面Ⅱ:x一2y+x一3=0,则直线L与平面Ⅱ的夹角为( ).A.B.C.D.正确答案:A解析:由题意知,直线l的方向向量为s={一1,一1,2),平面π的法向量n={1,一2,1)则直线l与平面π的夹角为sinθ=填空题6.当x→0时,2x+asinx与x是等价无穷小量,则常数a等于_________.正确答案:一1解析:所以a=一1.7.如果函数f(x)的定义域为[0,2]则函数f(x)+f(lnx)的定义域为________.正确答案:[1,2]解析:8.微分方程的通解为________.正确答案:解析:由题意可知,特征方程为4r2+4r+1=09.设ω=F(x,y,z)为可微函数且F(1,2,3)=0,若dw|(1,2,3)=3dx+2dy+dz,则曲面F(x,y,z)=0在点(1,2,3)的法线方程为_________.正确答案:解析:由题意知,此法线方程的方向向量为n={3,2,1}则此法线方程为:10.设D是由直线y=x一1,x=1,及y=2所围成的闭区域,则二重积分等于______.正确答案:e2+1解析:此区域D可表示为综合题11.求极限正确答案:12.已知函数y=y(x)由方程组正确答案:当t=0时,x=一1,y=0对方程x—exsint+1=0两边关于t求导,得13.求函数的极值.正确答案:解出函数f(x)的驻点为x1=一3,导数不存在的点为x1=一1当x<一3时,f’(x)>0;当一3<x<一1时,f’(x)<0,所以x1=一3为f(x)的极大值点,极大值为又当x>一1时,f’(x)>0,所以x2=一1为f(x)的极小值点,极小值为f(一1)=0.14.设z=yf(x+y,x—y),其中f具有二阶连续偏导数,求正确答案:15.设函数,其中δ(x)具有二阶导数,且δ(0)=1,δ’(0)=0,求f’(t).正确答案:16.求不定积分正确答案:17.设函数f(x)满足求f(x).正确答案:18.计算曲线积∮L(6xy2-y3)dx+(6x2y-3xy2+8x)dy,其中L是曲线和x轴所围成区域的正向边界曲线.正确答案:19.设函数f(x)=xarctanx,(1)将f(x)展开为x的幂级数并确定其收敛域,(2)求级数的和.正确答案:20.设函数f(x)二阶可导,f(0)=4,且满足方程∫0xf(t)dt=x2+f’(x),求f(x).正确答案:将x=0代入方程,得f’(0)=0对方程两端关于x求导,有f(x)=2x+f’’(x),即f’’(x)一f(x)=一2x对应的特征方程为r2一1=0,r1=1,r2=一1.显然,非齐次方程有一特解为f*(x)=2x故通解为f(x)=C1ex+C2e-x+2x.证明题21.求由曲面及平面z=0所围成的立体体积.正确答案:立体在xOy面投影为D={(x,y)|x2+y2≤ax}利用极坐标变换,所求立体体积为22.证明:当0<x<1时,正确答案:。
2006年全国高考数学陕西卷评述数学(理科卷)
2006年全国高考数学陕西卷评述数学(理科卷)
安振平
【期刊名称】《中学理科:高考导航》
【年(卷),期】2006(000)008
【总页数】6页(P11-16)
【作者】安振平
【作者单位】陕西省永寿县中学,713400
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.2006年全国高考数学试题评述(全国理科卷Ⅰ) [J], 王强芳
2.浅析2006年湖南高考数学理科卷 [J], 黄元华
3.浅析2006年湖南高考数学理科卷 [J], 黄元华
4.观滴水可知沧海,察一题可晓趋势——以2019年高考数学全国理科卷Ⅱ第4题为例 [J], 白兴宏
5.核心素养立意突出直观想象——2019年全国高考数学理科卷Ⅱ分析 [J], 李立军
因版权原因,仅展示原文概要,查看原文内容请购买。
高考理科数学普通高等学校招生全国统一考试 附答案2006
高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。
高考数学模拟试卷复习试题三角函数和解三角形三角函数的图象和性质A 基础巩固训练1. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是 ( ) A .s i n (2)3π=-y x B .s i n (2)6π=-y xC .s i n (2)6π=+y xD .s i n ()23π=+x y【答案】B2. 设函数()f x =sin()A x ωϕ+(0,A ≠0,ω>)22ϕππ-<<的图象关于直线23x π=对称,它的最 小正周期为π,则( )A .()f x 的图象过点1(0)2,B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上是减函数 C .()f x 的一个对称中心是5,012π⎛⎫ ⎪⎝⎭D .()f x 的一个对称中心是,06π⎛⎫⎪⎝⎭【答案】C【解析】根据题意可知,2ω=,根据题中所给的ϕ角的范围,结合图像关于直线23x π=对称,可知6πϕ=,故可以得到()sin(2)6f x A x π=+,而A 的值不确定,所以(0)f 的值不确定,所以A 项不正确,当2[,]123x ππ∈时,32[,]632x πππ+∈,函数不是单调的,所以B 项不对,而()06f A π=≠,所以,06π⎛⎫ ⎪⎝⎭不是函数的对称中心,故D 不对,而又5()012f π=,所以5,012π⎛⎫⎪⎝⎭是函数的对称中心,故选C . 3. 已知函数()2sin(2)(||)2f x x πϕϕ=+<的图象过点(0,3),则()f x 的图象的一个对称中心是A .(,0)3π-B .(,0)6π-C .(,0)6πD .(,0)4π【答案】B4. 函数21cos -=x y 的定义域为() A .⎥⎦⎤⎢⎣⎡33-ππ,B .⎥⎦⎤⎢⎣⎡+-3,3ππππk k ,k ∈ZC .⎥⎦⎤⎢⎣⎡+-32,32ππππk k ,k ∈ZD .R【答案】C【解析】定义域是021cos ≥-x ,即21cos ≥x ,根据x y cos =的图像,所以解得⎥⎦⎤⎢⎣⎡+-32,32ππππk k ,k ∈Z 5. 已知函数2()3f x ax bx a b =+++是定义在[1,2]a a -上的偶函数,则2cos[()]3y a b x π=+-的最小正周期是( )A .6πB .5πC .4πD .2π 【答案】AB 能力提升训练 1.函数()2sin 1xf x x =+的图象大致为( )【答案】A【解析】根据题意,函数为奇函数,所以图像关于原点对称,故排除,C D 两项,在(0,)π上,函数值是正值,所以B 不对,故只能选A . 2. 若函数()2sin()3f x x πω=+,且()2,()0f f αβ=-=,αβ-的最小值是2π,则()f x 的单调递增区间是( )A .5[,]()1212k k k Z ππππ-+∈B .[,]()36k k k Z ππππ-+∈ C .2[2,2]()33k k k Z ππππ-+∈D .5[2,2]()66k k k Z ππππ-+∈【答案】D3. 已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为() A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈ 【答案】B4. 函数)62sin(π-=x y 的图像与函数)3cos(π-=x y 的图像( )A .有相同的对称轴但无相同的对称中心B .有相同的对称中心但无相同的对称轴C .既有相同的对称轴但也有相同的对称中心D .既无相同的对称中心也无相同的对称轴 【答案】A5.已知函数()sin cos 1f x x x =+,将()f x 的图像向左平移6π个单位得到函数()g x 的图像,则函数()g x 的单调减区间为( )A.7[2,2],1212k k k Z ππππ++∈ B.7[,],1212k k k Z ππππ++∈C.2[,],63k k k Z ππππ++∈D.2[2,2],63k k k Z ππππ++∈【答案】B【解析】()11()sin cos 1sin 21sin 21223f x x x x g x x π⎛⎫=+=+∴=++ ⎪⎝⎭,求单调减区间时令3722,2,3221212x k k x k k πππππππππ⎡⎤⎡⎤+∈++∴∈++⎢⎥⎢⎥⎣⎦⎣⎦C 思维扩展训练(满分30分)1. 已知函数⎪⎩⎪⎨⎧>≠><-=0)10(log 01)2sin()(x a a x x x x f a ,,且,,π的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) (A ))550(,(B ))155(,(C ))133(, (D ))330(, 【答案】A此时,只需在5x =时,log a y x =的纵坐标大于2-,即log 52a >-,得50a <<. 2. 已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是( )A .4[0,]3B .3[0,]4C .14[,]43D .13[,]44【答案】D【解析】因为()sin (),()1cos 0f x x x f x f x x '-=--=-=+≥,所以函数()f x 为奇函数且为增函数,所以由22(23)(41)0f y y f x x -++-+≤得222222(23)(41),(23)(41),2341,f y y f x x f y y f x x y y x x -+≤--+-+≤-+--+≤-+-22(2)(1)1,x y -+-≤当1y ≥时,1yx +表示半圆上的点P 与定点(10)A -,连线的斜率,其取值范围为13[,][,]44PB l k k =,其中(3,1),B l 为切线3. 若1212(,),(,)a a a b b b ==,定义一种运算:1122(,)a b a b a b ⊗=,已知1(2,)2m =,(,0)3n π=,且点(,)P x y ,在函数sin y x =的图象上运动,点Q 在函数()y f x =的图象上运动,且OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的最大值A 和最小正周期T 分别为( )A .2,A T π==B .2,4A T π==C .1,2A T π== D .1,42A T π== 【答案】D【解析】由条件1(2,sin )32OQ x x π=+,所以1(2)sin 32f x x π+=,从而求得1()sin()226x f x π=-, 1,4.2A T π∴==.4. 函数23()3sincos 3sin 4442x x x f x m =+-+,若对于任意的33x π2π-≤≤有()0f x ≥恒成立,则实数m 的取值范围是( ). A .32m ≥B .32m ≥-C .32m ≥-D .32m ≥ 【答案】D5. 已知函数2()sin 22cos 1f x x x =+-,有下列四个结论:①函数()f x 在区间3[,]88ππ-上是增函数; ②点3(,0)8π是函数()f x 图象的一个对称中心; ③函数()f x 的图象可以由函数2sin 2y x =的图象向左平移4π得到; ④若[0,]2x π∈,则()f x 的值域为[0,2].则所有正确结论的序号是( )A .①②③B .①③C .②④D .①② 【答案】D。
2006年高考数学试卷(陕西卷.理)含详解
2006高考数学试题陕西卷理科试题(必修+选修II )注意事项: 1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知集合P={x ∈N|1≤x ≤10},集合Q={x ∈R|x 2+x -6≤0}, 则P ∩Q 等于( ) A. {2} B.{1,2} C.{2,3} D.{1,2,3}2.复数(1+i)21-i 等于( )A.1-iB.1+iC.-1+ iD.-1-i3. n →∞lim 12n(n 2+1-n 2-1) 等于( ) A. 1 B. 12 C.14D.04.设函数f(x)=log a (x+b)(a>0,a ≠1)的图象过点(2,1),其反函数的图像过点(2,8),则a+b 等于( ) A.6 B.5 C.4 D.35.设直线过点(0,a),其斜率为1, 且与圆x 2+y 2=2相切,则a 的值为( ) A.± 2 B.±2 B.±2 2 D.±46."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( ) A.必要而不充分条件 B.充分而不必要条件 C.充分必要条件 D.既不充分又不必要条件7.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为( )A.2B. 3C.263D.2338.已知不等式(x+y)(1x + ay )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.89.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )²BC →=0且AB →|AB →| ²AC →|AC →| =12 , 则△ABC 为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形10.已知函数f(x)=ax 2+2ax+4(0<a<3),若x 1<x 2,x 1+x 2=1-a,则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定 11.已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是( )A.平面ABC 必平行于αB.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在△ABC 的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。
历年真题:陕西高考理科数学试题含答案(Word版)
陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D 【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.已知底面边长为1则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x =(B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【答案】 21【解析】.21t a n θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即 14.猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【答案】 (1) 省略 (2)21【解析】(1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角 的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,,,(1)=><==<∴=======∴n AB n AB n FG n FE n z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A (2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+= 19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B,其中1C 的离心率为2. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 (2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f(3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xxx x h nnnn g g g g nn n n g x x x g。
2006年高考全国卷3(理科数学陕西卷)
2006年普通高等学校招生全国统一考试理科数学(陕西卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}110P x N x =∈≤≤,集合2{|60}Q x R x x =∈+-≤,则P Q =A.{}2B.{}12,C.{}2,3D.{}12,3,2.复数2(1)1i i+-等于 A.1i - B.1i + C.1i -+ D.1i -- 3.n = A.1 B.12 C.14D.0 4.设函数()log () (0,1)a f x x b a a =+>≠的图象过点(2,1),其反函数的图像过点(2,8),则a b +等于A.6B.5C.4D.35.设直线过点(0,)a ,其斜率为1,且与圆222x y +=相切,则a 的值为A.2± C.± D.±46.“等式sin()sin 2αγβ+=成立”是“α,β,γ成等差数列”的A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件7.已知双曲线222 1 (2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为8.已知不等式1() ()9a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为A.2B.4C.6D.89.已知非零向量AB 与AC 满足()0ABACBC AB AC +⋅=,且12ABACAB AC ⋅=,则ABC ∆ A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形D.等边三角形10.已知函数2()2 4 (03)f x ax ax a =++<<,若12x x <,121x x a +=-,则A.12()()f x f x <B.12()()f x f x =C.12()()f x f x >D.1()f x 与2()f x 的大小不能确定11.已知平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是A.平面ABC 必平行于αB.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在ABC ∆的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2a b +,2b c +,2c + 3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7二、填空题:本大题共4小题,每小题5分,共20分.13.cos 43cos77sin 43cos167+的值为 .14.12(3x展开式3x -的系数为 (用数字作答). 15.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构 成正方形).在这4个球的上面放1个半径为R 的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是 .16. 某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分).17.(本小题满分12分)已知函数2())2sin ()612f x x x ππ=-+-(x R ∈)(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求使函数()f x 取得最大值的x 的集合.18.(本小题满分12分)甲、乙、丙3人投篮,投进的概率分别是13,25,12. (Ⅰ)现3人各投篮1次,求3人都没有投进的概率; (Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望E ξ.19. (本小题满分12分)如图,α⊥β,l αβ=,A α∈,B β∈,点A 在直线l 上的射影为1A ,点B 在l 的射影为1B ,已知2AB =,,11AA =,1BB,求: (Ⅰ)直线AB 分别与平面α,β所成角的大小; (Ⅱ)二面角11A AB B --的大小.20.(本小题满分12分) 已知正项数列{}n a ,其前n 项和n S 满足21056n n n S a a =++且1a ,3a ,15a 成等比数 列,求数列{}n a 的通项n a .21.(本小题满分12分)如图,三定点(2,1)A ,(0,1)B -,(2,1)C -,三动点D ,E ,M 满足AD t AB =, BE tBC =,DM tDE =,[0,1]t ∈. (Ⅰ)求动直线DE 斜率的变化范围; (Ⅱ)求动点M 的轨迹方程.22.(本小题满分14分) 已知函数321()24x f x x x =-++,且存在01(0,)2x ∈,使0(f x (Ⅰ)证明:()f x 是R 上的单调增函数;(Ⅱ)设10x =,1()n n x f x +=,112y =,1()n n y f y +=,其中1,2,n =,证明:101n n n n x x x y y ++<<<<. x AB A 1B 1 α βl(Ⅲ)证明:1112n n n n y x y x ++-<-.。
2006年高考理科数学答案
2006年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一.选择题 (1)B (2)D (3)A (4)B (5)C (6)B (7)C (8)A (9)D (10)B (11)B (12)B二.填空题(13)3π(14)11 (15)2400 (16)6π三.解答题(17)解:由,222,A C B C B A -=+=++ππ得所以有 .2s i n2c o sA CB =+2s i n2c o s 2c o s2c o s A A C B A +=++2s i n 22s i n 212A A +-=.23)212(s i n 22+--=A当.232cos2cos ,3,212sin取得最大值时即C B A A A ++==π(18分)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i = 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i = 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2) = 942194419441⨯+⨯+⨯.94=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B (3,94),729125)95()0(3===ξP,243100)95(94)1(213=⨯⨯==C P ξ,2438095)94()2(223=⨯⨯==C P ξ.72964)94()3(3===ξPξ的分布列为数学期望.34943=⨯=ξE(19)解法:(Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN .由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影, ∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB , ∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。
2006年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)
2006年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题:1. (2006春招上海) 抛物线x y 42=的焦点坐标为( )(A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(.2.(2006安徽文、理)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .42.解:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D 。
3.(2006福建文、理)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞3.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴ ba≥3,离心率e 2=22222c a ba a +=≥4,∴ e ≥2,选C.4、(2006广东)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A.2 B.332 C. 2 D.4 4、解:依题意可知 3293,322=+=+==b a c a ,2332===a c e ,故选C.5. (2006湖南文、理)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3D.25.解:过双曲线1:222=-b y x M 的左顶点A (1,0)作斜率为1的直线l :y=x -1, 若l 与双曲线M的两条渐近线2220y x b-=分别相交于点1122(,),(,)B x y C x y , 联立方程组代入消元得22(1)210b x x -+-=,∴ 1221222111x x b x x b ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,x 1+x 2=2x 1x 2,又||||BC AB =,则B 为AC 中点,2x 1=1+x 2,代入解得121412x x ⎧=⎪⎪⎨⎪=-⎪⎩,∴ b 2=9,双曲线M 的离心率e=c a = A.6、.(2006湖北文、理)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若1,2且⋅=,则点P 的轨迹方程是( )A. )0,0(123322>>=+y x y x B. )0,0(123322>>=-y x y x C. )0,0(132322>>=-y x y x D.)0,0(132322>>=+y x y x6. 解:设P (x ,y ),则Q (-x ,y ),又设A (a ,0),B (0,b ),则a >0,b >0,于是BP x y b PA a x y u u u r u u u r =(,-),=(-,-),由2BP PA u u u r u u u r =可得a =32x ,b =3y ,所以x >0,y >0又ABu u u r =(-a ,b )=(-32x ,3y ),由•OQ AB u u u r u u u r =1可得)0,0(132322>>=+y x y x ,故选D7. (2006江苏)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅u u u u r u u u r u u u u r u u u r=0,则动点P (x ,y )的轨迹方程为( ) (A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 7.【思路点拨】 主要考查平面向量的数量积运算,抛物线的定义.【正确解答】设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4MN =u u u u r则(2,),(2,)MP x y NP x y =+=-u u u r u u u r0=⋅+,则4(2)0x -=,化简整理得x y 82-= 所以选B【解后反思】向量的坐标表示和数量积的性质在平面向量中的应用是学习的重点和难点.也是高考常常考查的重要内容之一.在平时请多多注意用坐标如何来表示向量平行和向量垂直,既要注意它们联系,也要注意它们的区别.8、(2006江西理)设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A •u u u r u u u r=-4,则点A 的坐标是( )A .(2,±B. (1,±2)C.(1,2)D.(2,)8. 解:F (1,0)设A (20y 4,y 0)则O A u u u r =( 20y 4,y 0),F A u u u r =(1-20y 4,-y 0),由O A u u u r • F A u u u r=-4⇒y 0=±2,故选B9.(2006江西文、理)P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6 B.7 C.8 D.99. 解:设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时|PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9故选D10.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率10. 解:方程22520x x -+=的两个根分别为2,12,故选A11.(2006辽宁文、理) 曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同11. 【解析】由221(6)106x y m m m+=<--知该方程表示焦点在x 轴上的椭圆,由221(59)59x y m m m+=<<--知该方程表示焦点在y 轴上的双曲线,故只能选择答案A 。
2006年高考.全国Ⅱ卷.理科数学试题及详细解答
绝密★启用前2006年普通高等学校招生全国统一考试(全国II 卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3 至4页.考试结束后,将本试卷和答题卡一并交回.满分150分,考试时间120分钟. 注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.答在试卷上的答案无效. 参考公式:如果事件A 、B 互斥,那么 球的表面公式 P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A g B )=P (A )g P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 V =43πR 2n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 P (k )=C kn P k (1-P )n -k本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅰ卷(选择题 共30分)一、选择题(1)已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =(A ) (B ){x |0<x <3} (C ){x |1<x <3} (D ){x |2<x <3} (2)函数y =sin2x cos2x 的最小正周期是(A )2π (B )4π (C )π4 (D )π2(3)3(1-i )2=(A )32i (B )-32i (C )i (D )-i(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(A )2 3 (B )6 (C )4 3 (D )12 (6)函数y =ln x -1(x >0)的反函数为(A )y =e x +1(x ∈R ) (B )y =e x -1(x ∈R )(C )y =e x +1(x >1) (D )y =e x -1(x >1)(7)如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6,过A 、B分别作两平面交线的垂线,垂足为A ′、B ′,则A B ∶A ′B ′= (A )2∶1 (B )3∶1 (C )3∶2 (D )4∶3(8)函数y =f (x )的图像与函数g (x )=log 2x (x >0)的图像关于原点 对称,则f (x )的表达式为(A )f (x )=1log 2x (x >0) (B )f (x )=log 2(-x )(x <0)(C )f (x )=-log 2x (x >0) (D )f (x )=-log 2(-x )(x <0)(9)已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若f (sin x )=3-cos2x ,则f (cos x )=(A )3-cos2x (B )3-sin2x (C )3+cos2x (D )3+sin2x(11)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=(A )310 (B )13 (C )18 (D )19(12)函数f (x )= i =119|x -n |的最小值为(A )190 (B )171 (C )90 (D )45α βA B A ′B ′绝密★启用前2006年普通高等学校招生全国统一考试数学(理工农医类)第Ⅱ卷(本卷共10小题,共90分)注意事项:1.考生不能将答案直接答在试卷上,必须答在答题卡上. 2.答题前,请认真阅读答题卡上的“注意事项”.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡上. (13)在(x 4+1x)10的展开式中常数项是 (用数字作答)(14)已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD的长为 . (15)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = .(16)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. (18)(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.(19)(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点. (Ⅰ)证明:ED 为异面直线BB 1与AC 1的公垂线;(Ⅱ)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小.(20)(本小题满分12分) 设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围. (21)(本小题满分14分)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.AB C D EA 1B 1C 1设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式.2006年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数—选择题和填空题不给中间分.一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则 M N =I (D) (A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<解析:{}{}2log 12N x x x x =>=>,用数轴表示可得答案D 考察知识点有对数函数的单调性,集合的交集 本题比较容易. (2)函数sin 2cos 2y x x =的最小正周期是(D)(A )2π (B )4π (C )4π (D )2π 解析: 1sin 2cos 2sin 42y x x x ==所以最小正周期为242T ππ==,故选D考察知识点有二倍角公式,最小正周期公式 本题比较容易. (3)23(1)i =-(A)(A )32i (B )32i - (C )i (D )i -解析:2233333(1)2222i i i i i i ====--- 故选A本题考察的知识点复数的运算,(乘法和除法),比较简单(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A)(A )316 (B )916 (C )38 (D )932解析:设球的半径为R, 过球的一条半径的中点,作垂直于该半径的平面,由勾股定理可得一个半的圆,所以2122)32416R S S R ππ==,故选A 本题主要考察截面的形状和球的表面积公式,难度中等(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( C)(A) (B )6 (C) (D )12解析(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=所以选C本题主要考察数形结合的思想和椭圆的基本性质,难度中等 (6)函数ln 1(0)y x x =+>的反函数为(B) (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>解析:1ln 1(0)ln 1()y y x x x y x ey R -=+>⇒=-⇒=∈所以反函数为1()x y e x R -=∈故选B本题主要考察反函数的求法和对数式与指数式的互化,难度中等(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
2006年全国卷高考理科数学解析版
2006年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文)试题一、选择题:1、 已知向量a 、b 满足|a | = 1,|b | = 4,且2a b =,则a 与b 夹角为A 、6πB 、4πC 、3πD 、2π2、 设集合M= {x|2x x -0<},N = { x | |x|2<},则A 、M∩N=ΦB 、M∩N=M 、C 、M ∪N=MD 、M ∪N=R 3、已知函数y = e x 的图像与函数y = f (x )的图像关于直线 y =x 对称,则A 、2(2)()x f x e x R =∈B 、(2)ln 2ln (0)f x x x =>C 、(2)2()xf x e x R =∈ D 、(2)ln 2ln (0)f x xx =+>4、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A 、14-B 、- 4C 、4D 、145、设n S 是等差数列{n a }的前n 项和,若735S =,则4a =A 、8B 、7C 、6D 、56、函数()tan()4f x x π=+的单调增区间为A 、(,),22k k k Z ππππ-+∈ B 、(,(1)),k k k Z ππ+∈ C 、3(,),44k k k Z ππππ-+∈ D 、3(,),44k k k Z ππππ-+∈7、从圆222210x x y y -+-+=外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为A 、12 B 、35C2D 、08、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
若a 、b 、c 成等比数列,且c = 2a ,则cosB =A 、14B 、34C、4D39、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A 、16πB 、20πC 、24πD 、32π 10、在101()2x x-的展开式中,x 的系数为A 、- 120B 、120C 、- 15D 、15 11、抛物线2y x =-上的点到直线4x + 3y - 8 =0距离的最小值是A 、14B 、34C 、85D 、312、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但是不允许折断),能够得到的三角形的最大面积为A、 cm 2 B、cm 2 C、 cm 2 D 、20cm 2 二、填空题:13、已知函数1()21xf x a =-+,若f (x )为奇函数,则a =14、已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于 15、设 z = 2y – x ,式中变量x 、y 满足条件2132231x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则z 的最大值为NC16、安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日。
2006年普通高等学校夏季招生考试数学(理工农医类)陕西卷(新课程)
2006年普通高等学校夏季招生考试数学(理工农医类)陕西卷(新课程)注意事项: 1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知集合{}|110,P x N x =∈≤≤集合{}2|60,Q x R x x =∈+-=则P Q 等于(A ){}1,2,3 (B ){}2,3 (C ){}1,2 (D ){}22.复数()ii -+112等于(A )1i + (B )1i -- (C )1i - (D )1i -+3.n 等于(A )0 (B )14 (C )12(D )1 4.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于(A )3 (B )4 (C )5 (D )65.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为(A)4± (B)± (C)2± (D)6."等式sin()sin 2αγβ+=成立"是",,αβγ成等差数列 "的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分又不必要条件7.已知双曲线2221(2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为(A (B (C (D )2 8.已知不等式1()()9ax y xy++≥对任意正实数,x y 恒成立,则正实数a 的最小值为(A)8 (B)6 (C )4 (D )29.已知非零向量AB 与AC 满足().0AB AC BC AB AC+=且1..2AB AC AB AC = 则ABC ∆为 (A )等边三角形 (B )直角三角形(C )等腰非等边三角形 (D )三边均不相等的三角形10.已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则 (A )12()()f x f x > (B )12()()f x f x <(C )12()()f x f x = (D )1()f x 与2()f x 的大小不能确定11.已知平面α外不共线的三点A 、B 、C 到α的距离都相等,则正确的结论是 (A )平面ABC 必平行于α (B )平面ABC 必不垂直于α(C )平面ABC 必与α相交(D )存在ABC ∆的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006高考数学试题陕西卷理科试题(必修+选修II )注意事项: 1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知集合P={x ∈N|1≤x ≤10},集合Q={x ∈R|x 2+x -6≤0}, 则P ∩Q 等于( ) A. {2} B.{1,2} C.{2,3} D.{1,2,3}2.复数(1+i)21-i 等于( )A.1-iB.1+iC.-1+ iD.-1-i3. n →∞lim 12n(n 2+1-n 2-1) 等于( ) A. 1 B. 12 C.14D.04.设函数f(x)=log a (x+b)(a>0,a ≠1)的图象过点(2,1),其反函数的图像过点(2,8),则a+b 等于( ) A.6 B.5 C.4 D.35.设直线过点(0,a),其斜率为1, 且与圆x 2+y 2=2相切,则a 的值为( ) A.± 2 B.±2 B.±2 2 D.±46."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( ) A.必要而不充分条件 B.充分而不必要条件 C.充分必要条件 D.既不充分又不必要条件7.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为( )A.2B. 3C.263D.2338.已知不等式(x+y)(1x + ay )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.89.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )²BC →=0且AB →|AB →| ²AC →|AC →| =12 , 则△ABC 为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形10.已知函数f(x)=ax 2+2ax+4(0<a<3),若x 1<x 2,x 1+x 2=1-a,则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定 11.已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是( )A.平面ABC 必平行于αB.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在△ABC 的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。
13.cos43°cos77°+sin43°cos167°的值为14.(3x -1x )12展开式x -3的系数为 (用数字作答)15.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R 的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)。
17.(本小题满分12分)已知函数f(x)=3sin(2x -π6)+2sin 2(x -π12) (x ∈R)(Ⅰ)求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x 的集合.18. (本小题满分12分)甲、乙、丙3人投篮,投进的概率分别是13, 25 , 12.(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望E ξ.19. (本小题满分12分)如图,α⊥β,α∩β=l , A ∈α, B ∈β,点A 在直线l 上的射影为A 1, 点B 在l 的射影为B 1,已知AB=2,AA 1=1, BB 1=2, 求:(Ⅰ) 直线AB 分别与平面α,β所成角的大小; (Ⅱ)二面角A 1-AB -B 1的大小.20. (本小题满分12分)已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n .21. (本小题满分12分)如图,三定点A(2,1),B(0,-1),C(-2,1); 三动点D,E,M 满足AD →=tAB →, BE → = t BC →, DM →=t DE →, t ∈[0,1]. (Ⅰ) 求动直线DE 斜率的变化范围; (Ⅱ)求动点M 的轨迹方程.22.(本小题满分14分)已知函数f(x)=x 3-x 2+x 2 + 14 , 且存在x 0∈(0,12) ,使f(x 0)=x 0.(I )证明:f(x)是R 上的单调增函数;设x 1=0, x n+1=f(x n ); y 1=12, y n+1=f(y n ),其中 n=1,2,……(II )证明:x n <x n+1<x 0<y n+1<y n ;(III )证明:y n+1-x n+1y n -x n < 12 .A BA 1B 1αβl 第19题图参考答案1.已知集合P ={x ∈N |1≤x ≤10}={1,2,3,……,10},集合Q ={x ∈R | x +x -6≤0} ={|32}x x -≤≤, 所以P ∩Q 等于{1,2} ,选B .2.复数(1+i)21-i =2(1)11i i i i i=+=-+-,选C . 3. n →∞lim 12n(n 2+1-n 2-1) =n=12n →∞=,选B .4.函数f (x )=log a (x +b )(a >0,a ≠1)的图象过点(2,1),其反函数的图象过点(2,8),则log (2)1log (8)2a a b b +=⎧⎨+=⎩,∴228b ab a+=⎧⎨+=⎩,3a =或2a =-(舍),b =1,∴a +b =4,选C . 5.设直线过点(0,a ),其斜率为1, 且与圆x 2+y 2=2相切,设直线方程为y x a =+,圆心(0,0)道直线的距离等于半径2,∴=,∴ a 的值±2,选B .6.若等式sin(α+γ)=sin2β成立,则α+γ=k π+(-1)k ·2β,此时α、β、γ不一定成等差数列,若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件。
选A .7.已知双曲线22212x y a -=(a >2)的两条渐近线的夹角为π3 ,则2tan 63a π==,∴ a 2=6,双曲线的离心率为233 ,选D .8.已知不等式(x +y )(1a x y +)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥9,∴2-4(舍去),所以正实数a 的最小值为4,选B .9.已知非零向量AB →与AC →满足(||||AB AC AB AC +)·BC →=0,即角A 的平分线垂直于BC ,∴ AB =AC ,又cos A =||||AB AC AB AC ⋅=12 ,∠A =3π,所以△ABC 为等边三角形,选D . 10.已知函数f (x )=ax 2+2ax +4(0<a <3),二次函数的图象开口向上,对称轴为1x =-,0<a <3,∴ x 1+x 2=1-a ∈(-2,1),x 1与x 2的中点在(-1,21)之间,x 1<x 2,∴ x 2到对称轴的距离大于x 1到对称轴的距离,∴ f (x 1)<f (x 2) ,选A . 11.已知平面α外不共线的三点A 、B 、C 到α的距离都相等,则可能三点在α的同侧,即.平面ABC 平行于α,这时三条中位线都平行于平面α;也可能一个点A 在平面一侧,另两点B 、C 在平面另一侧,则存在一条中位线DE //BC ,DE 在α内,所以选D .12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16。
当接收方收到密文14,9,23,28时,则214292323428a b b c c d d +=⎧⎪+=⎪⎨+=⎪⎪=⎩,解得6417a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,解密得到的明文为C . 二、填空题 13.-1214.594 15.3R 16.60013.cos43°cos77°+sin43°cos167°=cos 43cos 77sin 43sin 77cos120︒︒-︒︒=︒=-21. 14.(3x -1x )12展开式中,x -3项为221012(3)(C x ⋅=5943x -,3x -的系数是594. 15.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R 的小球,它和下面4个球恰好都相切,5个球心组成一个正四棱锥,这个正四棱锥的底面边长为4R ,侧棱长为3R ,求得它的高为R ,所以小球的球心到水平桌面α的距离是3R .16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,可以分情况讨论,① 甲、丙同去,则乙不去,有2454C A ⋅=240种选法;②甲、丙同不去,乙去,有3454C A ⋅=240种选法;③甲、乙、丙都不去,有45120A =种选法,共有600种不同的选派方案.三、解答题17.解:(Ⅰ) f (x )=3sin(2x -π6)+1-cos2(x -π12)= 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1= 2sin(2x -π3) +1∴ T =2π2=π(Ⅱ)当f (x )取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2即x =k π+5π12 (k ∈Z ) ∴所求x 的集合为{x ∈R |x = k π+ 5π12, (k ∈Z )}. 18.解: (Ⅰ)记"甲投篮1次投进"为事件A 1 , "乙投篮1次投进"为事件A 2 , "丙投篮1次投进"为事件A 3, "3人都没有投进"为事件A . 则 P (A 1)= 13, P (A 2)= 25, P (A 3)= 12,∴ P (A ) = P (A 1-A 2-A 3-)=P (A 1-)·P (A 2-)·P (A 3-)= [1-P (A 1)] ·[1-P (A 2)] ·[1-P (A 3)]=(1-13)(1-25)(1-12)=15∴3人都没有投进的概率为15.(Ⅱ)解法一: 随机变量ξ的可能值有0,1,2,3), ξ~ B (3, 25),P (ξ=k )=C 3k (25)k (35)3-k (k =0,1,2,3) , E ξ=np = 3×25 = 65 .解法二: ξ的概率分布为:E ξ=0×27125 +1×54125 +2×36125 +3×8125 = 65 .19.解法一: (Ⅰ)如图, 连接A 1B ,AB 1, ∵α⊥β, α∩β=l ,AA 1⊥l , BB 1⊥l , ∴AA 1⊥β, BB 1⊥α. 则∠BAB 1,∠ABA 1分别是AB 与α和β所成的角. Rt △BB 1A 中, BB 1= 2 , AB =2, ∴sin ∠BAB 1 =BB 1AB = 22. ∴∠BAB 1=45°. Rt △AA 1B 中, AA 1=1,AB =2, sin ∠ABA 1=AA 1AB = 12, ∴∠ABA 1= 30°.故AB 与平面α,β所成的角分别是45°,30°.(Ⅱ) ∵BB 1⊥α, ∴平面ABB 1⊥α.在平面α内过A 1作A 1E ⊥AB 1交AB 1于E ,则A 1E ⊥平面AB 1B .过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则由三垂线定理得A 1F ⊥AB , ∴∠A 1FE 就是A BA 1B 1αβl 第19题解法一图EF 第19题解法二图所求二面角的平面角. 在Rt △ABB 1中,∠BAB 1=45°,∴AB 1=B 1B =2. ∴Rt △AA 1B 中,A 1B =AB 2-AA 12 =4-1 = 3. 由AA 1·A 1B =A 1F ·AB 得 A 1F =AA 1·A 1B AB = 1×32 = 32,∴在Rt △A 1EF 中,sin ∠A 1FE =A 1E A 1F = 63 , ∴二面角A 1-AB -B 1的大小为arcsin 63. 解法二: (Ⅰ)同解法一.(Ⅱ) 如图,建立坐标系, 则A 1(0,0,0),A (0,0,1),B 1(0,1,0),B (2,1,0).在AB 上取一点F (x ,y ,z ),则存在t ∈R ,使得AF →=t AB → , 即(x ,y ,z -1)=t (2,1,-1), ∴点F 的坐标为(2t , t ,1-t ).要使A 1F →⊥AB →,须A 1F →·AB →=0, 即(2t , t ,1-t ) ·(2,1,-1)=0, 2t +t -(1-t )=0,解得t =14 , ∴点F 的坐标为(24,-14, 34 ), ∴A 1F →=(24,14,34 ). 设E 为AB 1的中点,则点E 的坐标为(0,12, 12). ∴EF →=(24,-14,14). 又EF →·AB →=(24,-14,14)·(2,1,-1)= 12 - 14 - 14 =0, ∴EF →⊥AB →, ∴∠A 1FE 为所求二面角的平面角.又cos ∠A 1FE = A 1F ,→·EF →|A 1F →|·|EF →| = (24,14,34)·(24,-14,14)216+116+916 ·216+116+116 = 18-116+31634 ·12 = 13 = 33 ,∴二面角A 1-AB -B 1的大小为arccos33. 20.解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3. 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.21.解法一: 如图, (Ⅰ)设D (x 0,y 0),E (x E ,y E ),M (x ,y ).由AD →=t AB →, BE → = t BC →, 知(x D -2,y D -1)=t (-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2t y E =2t -1. ∴k DE = y E -y D x E -x D =2t -1-(-2t+1)-2t -(-2t+2)= 1-2t .∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) ∵DM →=t DE → ∴(x +2t -2,y +2t -1)=t (-2t +2t -2,2t -1+2t -1)=t (-2,4t -2)=(-2t ,4t 2-2t ). ∴⎩⎨⎧x=2(1-2t)y=(1-2t)2 , ∴y =x 24 , 即x 2=4y . ∵t ∈[0,1], x =2(1-2t )∈[-2,2]. 即所求轨迹方程为: x 2=4y , x ∈[-2,2]解法二: (Ⅰ)同上.(Ⅱ) 如图, OD →=OA →+AD → = OA →+ t AB → = OA →+ t (OB →-OA →) = (1-t ) OA →+t OB →,OE → = OB →+BE → = OB →+t BC → = OB →+t (OC →-OB →) =(1-t ) OB →+t OC →,OM → = OD →+DM →= OD →+ t DE →= OD →+t (OE →-OD →)=(1-t ) OD →+ t OE →= (1-t 2) OA → + 2(1-t )t OB →+t 2OC →.设M 点的坐标为(x ,y ),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得⎩⎨⎧x=(1-t 2)·2+2(1-t)t·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y , ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y , x ∈[-2,2]22.解: (I )∵f '(x )=3x 2-2x +12 = 3(x -13)2+16 >0 , ∴f (x )是R 上的单调增函数.(II )∵0<x 0<12 , 即x 1<x 0<y 1.又f (x )是增函数, ∴f (x 1)<f (x 0)<f (y 1).即x 2<x 0<y 2.又x 2=f (x 1)=f (0)=14>0 =x 1, y 2=f (y 1)=f (12)=38<12=y 1,综上, x 1<x 2<x 0<y 2<y 1.用数学归纳法证明如下:(1)当n =1时,上面已证明成立.(2)假设当n =k (k ≥1)时有x k <x k +1<x 0<y k +1<y k .当n =k +1时,由f (x )是单调增函数,有f (x k )<f (x k +1)<f (x 0)<f (y k +1)<f (y k ),∴x k +1<x k +2<x 0<y k +2<y k +1 由(1)(2)知对一切n =1,2,…,都有x n <x n +1<x 0<y n +1<y n .(III )y n+1-x n+1y n -x n = f(y n )-f(x n )y n -x n = y n 2+x n y n +x n 2-(y n +x n )+ 12 ≤(y n +x n )2-(y n +x n )+ 12=[(y n +x n )-12]2+14 . 由(Ⅱ)知 0<y n +x n <1.∴-12 < y n +x n -12 < 12 , ∴y n+1-x n+1y n -x n < (12)2+14 =12第21题解法图。