第46讲 圆的方程(讲)(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第46讲圆的方程(讲)
思维导图
知识梳理
1.圆的定义与方程
2.点与圆的位置关系
圆的标准方程为(x-a)2+(y-b)2=r2(r>0),圆心C的坐标为(a,b),半径为r,设M的坐标为(x0,y0).
题型归纳
题型1 求圆的方程
【例1-1】(2020•和平区校级二模)已知圆C的圆心在直线x﹣2y﹣3=0上,且过点A(2,﹣3),B(﹣2,﹣5),则圆C的标准方程为.
【分析】根据题意,设圆心C的坐标为(2t+3,t),由圆经过点A、B,可得(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t的值,即可得圆心C的坐标,又由r2=|CA|2,即可得圆的半径,由圆的标准方程的形式分析可得答案.
【解答】解:根据题意,圆C的圆心在直线x﹣2y﹣3=0上,设圆心的坐标为(2t+3,t),
圆C经过点A(2,﹣3),B(﹣2,﹣5),则有(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t=﹣2,则2t+3=﹣1,即圆心C的坐标为(﹣1,﹣2),
圆的半径为r,则r2=|CA|2=(﹣1﹣2)2+(﹣2+3)2=10,
故圆C的标准方程为(x+1)2+(y+2)2=10;
故答案为:(x+1)2+(y+2)2=10.
【例1-2】(2020•东城区模拟)已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C 的方程为()
A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2
C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =4
【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.
【解答】解:圆心在y=x上,设圆心为(a,a),
∵圆C与直线y=﹣x及x+y﹣4=0的相切,
∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,
即:⇒a=1,
∴圆心坐标为(1,1),R==,
圆C的标准方程为(x﹣1)2+(y﹣1)2=2.
故选:A.
【例1-3】(2019•武侯区校级模拟)已知圆C与y轴相切,圆心在x轴的正半轴上,并且截直线x﹣y+1=0
所得的弦长为2,则圆C的标准方程是.
【分析】设圆心为(a,0),a>0,则由题意可得圆C的标准方程是(x﹣a)2+y2=a2,再根据半径、半弦长、弦心距构成直角三角形,求出a的值,可得圆C的标准方程.
【解答】解:圆C与y轴相切,圆心在x轴的正半轴上,设圆心为(a,0),a>0,
则圆C的标准方程是(x﹣a)2+y2=a2,
∵它截直线x﹣y+1=0所得的弦长为2,故有a2=12+,求得a=3,
则圆C的标准方程是(x﹣3)2+y2=9,
故答案为:(x﹣3)2+y2=9.
【跟踪训练1-1】(2020•辽宁三模)在直线l:y=x﹣1上有两个点A、B,且A、B的中点坐标为(4,3),线段AB的长度|AB|=8,则过A、B两点且与y轴相切的圆的方程为()
A.(x﹣4)2+(y﹣3)2=16或(x﹣11)2+(y+4)2=121
B.(x﹣2)2+(y﹣3)2=4或(x﹣12)2+(y+5)2=144
C.(x﹣4)2+(y﹣3)2=16或(x﹣12)2+(y+5)2=144
D.(x﹣2)2+(y﹣3)2=4或(x﹣11)2+(y+4)2=121
【分析】根据题意,分析可得要求圆的圆心在AB的垂直平分线上,由AB的中点坐标以及直线AB的方程可得AB的垂直平分线方程,据此可以设要求圆的圆心为(m,7﹣m),其半径r=|m|,求出圆心到直线l的距离,结合直线与圆的位置关系可得()2+d2=r2,即16+=m2,解可得m的值,将m的值代入圆的方程,即可得答案.
【解答】解:根据题意,要求圆经过过A、B两点,则要求圆的圆心在AB的垂直平分线上,
又由A、B在直线y=x﹣1上且A、B的中点坐标为(4,3),则AB的垂直平分线方程为y﹣3=﹣(x﹣4),
即x+y=7,
设要求圆的圆心为(m,7﹣m),要求圆与y轴相切,则其半径r=|m|,
圆心到直线l:y=x﹣1的距离d=,
又由线段AB的长度|AB|=8,则有()2+d2=r2,即16+=m2,
解可得:m=4或12,
则要求圆的标准方程为:(x﹣4)2+(y﹣3)2=16或(x﹣12)2+(y+5)2=144;
故选:C.
【跟踪训练1-2】(2020•怀柔区一模)已知圆C与圆(x﹣1)2+y2=1关于原点对称,则圆C的方程为()A.x2+y2=1B.x2+(y+1)2=1
C.x2+(y﹣1)2=1D.(x+1)2+y2=1
【分析】由已知圆的方程求得圆心坐标与半径,再求出圆心关于原点的对称点,则答案可求.
【解答】解:圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.
点(1,0)关于原点的对称点为(﹣1,0),
则所求圆的方程为(x+1)2+y2=1.
故选:D.
【跟踪训练1-3】(2020春•金湖县校级期中)已知圆心为点C(1,﹣1),并且在直线4x﹣3y﹣2=0上截得的弦长为2的圆的方程为()
A.(x+1)2+(y﹣1)2=2B.(x+1)2+(y﹣1)2=4
C.(x﹣1)2+(y+1)2=2D.(x﹣1)2+(y+1)2=4
【分析】利用点到直线的距离公式求出圆心到直线的距离,再由垂径定理求半径,则圆的方程可求.【解答】解:圆心C到直线4x﹣3y﹣2=0的距离d=,
又圆截直线4x﹣3y﹣2=0所得的弦长为2,
∴圆的半径r=.
则所求圆的方程为(x﹣1)2+(y+1)2=4.
故选:D.
【名师指导】
1.求圆的方程常见的三种类型
(1)已知不共线的三点.
(2)已知两点及圆心所在的直线.
(3)已知直线与圆的位置关系.
2.求圆的方程的两种方法