2017中考数学试题汇编分式
河北省2017年中考数学真题试题(含解析)
河北省2017年中考数学真题试题第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A .2(3)−B .32−÷C .0(2017)⨯−D .23−【答案】A.【解析】试题分析:因为负数的偶数次方是正数,异号两数相除商为负,零乘以任何数都等于0,较小的数减去较大的数差为负数,故答案选A.考点:乘方,有理数的除法,有理数的乘法,有理数的减法.2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2−C .0.813D .8.13 【答案】D.【解析】试题分析:科学记数法中,a 的整数位数是一位,故答案选D.考点:科学记数法.3.用量角器测量MON ∠的度数,操作正确的是( )【答案】C.考点:角的比较. 4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n【答案】B.【解析】 试题分析:m 个2相乘表示为2m ,n 个3相加表示为3n ,故答案选B.考点:有理数的乘方.5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④【答案】C.考点:中心对称图形.6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分【答案】B.考点:绝对值,倒数,相反数,立方根,平均数.7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变【答案】D.【解析】试题分析:角的度数与角的边的大小没有关系,故答案选D.考点:角的比较.8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )【答案】A. 【解析】试题分析:主视图从图形的正面观察得到的图形,注意后排左上角的那个小正方体,故答案选A. 考点:三视图.9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【答案】D.考点:菱形的性质,等腰三角形的性质.10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒【答案】D.考点:方向角.11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )【答案】A.【解析】 试题分析:正方形的对角线的长是10214.14≈,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++=C .34446++=D .14446−÷+= 【答案】D.考点:算术平方根,立方根,0指数幂,负数指数幂.13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数 【答案】B.【解析】试题分析:因为321222111x x x x x −−−==−−−−,故答案选B. 考点:分式的加减.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断【答案】B.考点:中位数,扇形统计图.15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数k y x=(0x >)的图象是( )【答案】D.【解析】试题分析:因为在封闭区域内的整数点的个数是4,所以k=4,故答案选D.考点:二次函数的图象,反比例函数的图象.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)【答案】C.考点:正多边形的有关计算.二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为 m .【答案】100.考点:三角形的中位线定理.18.如图,依据尺规作图的痕迹,计算α∠=°.【答案】56.【解析】试题分析:如图,根据作图痕迹可知,GH垂直平分AC,AG平分∠CAD. ∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ABC=68°。
中考数学复习分式方程应用题(含答案)
13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。
全国181套中考数学试题分类汇编5分式
5:分式一、选择题1.(重庆江津4分)下列式子是分式的是A 、2x B 、1x x + C 、2x y + D 、xπ【答案】B 。
【考点】分式的定义。
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式:∵2x ,2x y +,xπ的分母中均不含有字母,∴它们是整式,而不是分式;1x x +分母中含有字母,因此是分式。
故选B 。
2.(浙江金华、丽水3分)计算111a a a ---的结果为A 、11a a +- B 、1a a -- C 、﹣1D 、2【答案】C 。
【考点】分式的加减法。
【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。
故选C 。
3.(广西来宾3分)计算11xx y--的结果是A 、()y x x y -- B 、()2x y x x y +- C 、()2x y x x y -- D 、()y x x y -【答案】A 。
【考点】分式的加减法。
【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案:()()()11x y x y x x yx x y x x y x x y --=-=-----。
故选A 。
4.(江苏苏州3分)已知1112a b -=,则ab a b-的值是A .12B .-12C .2D .-2【答案】D 。
【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a ab a b ab a b--=⇒=⇒=--。
故选D 。
5.(江苏南通3分)设0m >n >,224m n mn +=,则22m n m n-=A .2 3B . 3C . 6D .3 【答案】A 。
【考点】代数式变换,完全平方公式,平方差公式,根式计算。
【分析】由224m n mn +=有()()2262m n mn m n mn +=-= ,,因为0m >n >,所以m n +=,m n -=,则()()22m n m n m n m nm nm n+--===A 。
【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析
2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。
山东数学中考分类汇编--有关分式方程的应用题
有关分式方程的应用题1.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?2.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?3.(2019•泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?4.(2018年东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.4.(2018年泰安)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)(2022•菏泽)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元?(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?5(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.6.(2018•菏泽)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?7(2019济南)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?8济南2021.24.(10分)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?9(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?10.(2019年青岛市)(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?11.(2017年青岛市)(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元日总收入(元)(2)今年旺季来临,豪华间的间数不变。
中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
04解答题(基础题)-江苏省泰州市五年(2017-2021)中考数学真题分类汇编(含答案,13题)
04解答题(基础题)知识点分类一.二次根式的混合运算(共1小题)1.(2019•泰州)(1)计算:(﹣)×;(2)解方程:+3=.二.解分式方程(共1小题)2.(2021•泰州)(1)分解因式:x3﹣9x;(2)解方程:+1=.三.分式方程的应用(共1小题)3.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.四.解一元一次不等式组(共1小题)4.(2020•泰州)(1)计算:(﹣π)0+()﹣1﹣sin60°;(2)解不等式组:五.一次函数图象上点的坐标特征(共1小题)5.(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB 的内部,求m的取值范围.六.一次函数的应用(共1小题)6.(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?七.作图—基本作图(共1小题)7.(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.八.相似三角形的判定与性质(共1小题)8.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.九.解直角三角形的应用-仰角俯角问题(共2小题)9.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB 步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)10.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C 离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)一十.折线统计图(共2小题)11.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.观察统计图回答下列问题:(1)这5年甲种家电产量的中位数为 万台;(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 年;(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.12.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m (1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.一十一.统计图的选择(共1小题)13.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)月份789101112年份2017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 ;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.参考答案与试题解析一.二次根式的混合运算(共1小题)1.(2019•泰州)(1)计算:(﹣)×;(2)解方程:+3=.【解析】解:(1)原式=﹣=4﹣=3;(2)去分母得2x﹣5+3(x﹣2)=3x﹣3,解得x=4,检验:当x=4时,x﹣2≠0,x=4为原方程的解.所以原方程的解为x=4.二.解分式方程(共1小题)2.(2021•泰州)(1)分解因式:x3﹣9x;(2)解方程:+1=.【解析】解:(1)原式=x(x2﹣9)=x(x+3)(x﹣3);(2)方程整理得:+1=﹣,去分母得:2x+x﹣2=﹣5,解得:x=﹣1,检验:当x=﹣1时,x﹣2=﹣3≠0,∴分式方程的解为x=﹣1.三.分式方程的应用(共1小题)3.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.【解析】解:设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,依题意,得:﹣=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴(1+50%)x=75.答:走路线B的平均速度为75km/h.四.解一元一次不等式组(共1小题)4.(2020•泰州)(1)计算:(﹣π)0+()﹣1﹣sin60°;(2)解不等式组:【解析】解:(1)原式=1+2﹣×=1+2﹣=;(2)解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2.五.一次函数图象上点的坐标特征(共1小题)5.(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB 的内部,求m的取值范围.【解析】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.六.一次函数的应用(共1小题)6.(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【解析】解:(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得,解得,∴线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m千克,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=,解得m=200或m=400,经检验,m=200,m=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.七.作图—基本作图(共1小题)7.(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【解析】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.八.相似三角形的判定与性质(共1小题)8.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.【解析】解:(1)∵PD∥AB,∴,∵AC=3,BC=4,CP=x,∴,∴CD=,∴AD=AC﹣CD=3﹣,即AD=;(2)根据题意得,S=,∴当x≥2时,S随x的增大而减小,∵0<x<4,∴当S随x增大而减小时x的取值范围为2≤x<4.九.解直角三角形的应用-仰角俯角问题(共2小题)9.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB 步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【解析】解:如图,过点C、B分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.10.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C 离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)【解析】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),答:观众区的水平宽度AB为20m;(2)作CM⊥EF于M,DN⊥EF于N,则四边形MFBC、MCDN为矩形,∴MF=BC=10,MN=CD=4,DN=MC=BF=23(m),在Rt△END中,tan∠EDN=,则EN=DN•tan∠EDN≈7.59(m),∴EF=EN+MN+MF=7.59+4+10≈21.6(m),答:顶棚的E处离地面的高度EF约为21.6m.一十.折线统计图(共2小题)11.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.观察统计图回答下列问题:(1)这5年甲种家电产量的中位数为 935 万台;(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 2020 年;(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.【解析】解:(1)这5年甲种家电产量从小到大排列为:466,921,935,1035,1046,∴这5年甲种家电产量的中位数为935万台,故答案为:935;(2)由折线统计图得,2020年甲、丙2种家电产量和小于乙种家电产量,∴2020年的扇形统计图的乙种家电产量占比对应的圆心角大于180°,故答案为:2020;(3)不同意小明的观点,理由:由折线统计图得,丙种家电的方差较小,但丙种家电的产量低,而且是下降趋势,乙种家电的方差较大,但乙种家电的产量高,而且是上升趋势,∴不同意小明的观点.12.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m (1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.【解析】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.(2)通过折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:需要对电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢.(3)由题意得,=45%,解得,m=88,经检验,m=88是分式方程的解,且符合题意.答:统计表中的m的值为88人.一十一.统计图的选择(共1小题)13.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)月份789101112年份2017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 30.5 ;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.【解析】解:(1)2018年7~12月PM2.5平均浓度的中位数为:(25+36)÷2=30.5;故答案为:30.5;(2)根据统计图的特点可得:更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是折线统计图;故答案为:折线统计图;(3)2018年7~12月与2017年同期相比,空气质量有所改善,理由如下:2018年7~12月每月的PM2.5平均浓度都比2017年同期每月的PM2.5平均浓度小.。
中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。
2017中考数学专题复习数与式因式分解+分式+二次根式
第四讲 因式分解【基础知识回顾】 一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是运算,即:多项式 整式的积【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】 二、因式分解常用方法: 1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】 2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= , ②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点, 找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】 【重点考点例析】考点一:因式分解的概念对应训练1.(2015•河北)下列等式从左到右的变形,属于因式分解的是( ) A .a (x-y )=ax-ay B .x 2+2x+1=x (x+2)+1 C .(x+1)(x+3)=x 2+4x+3 D .x 3-x=x (x+1)(x-1) 考点二:因式分解例2 (2015•无锡)分解因式:2x 2-4x= . 例3 (2015•南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x-y ) B .a 3-2a 2b+ab 2=a (a-b )2 C .x 2-2x+4=(x-1)2+3 D .ax 2-9=a (x+3)(x-3) 例4 (2015•湖州)因式分解:mx 2-my 2.( )( )对应训练2.(2015•温州)因式分解:m2-5m= .3.(2015•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)24.(2015•北京)分解因式:ab2-4ab+4a= .考点三:因式分解的应用例5 (2015•宝应县一模)已知a+b=2,则a2-b2+4b的值为.对应训练5.(2015•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3= .【2016中考名题赏析】1.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子2.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 3.(2016•长春)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)4.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2 5.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.226.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【真题过关】一、选择题1.(2015•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9 2.(2015•佛山)分解因式a3-a的结果是()A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)3.(2015•恩施州)把x2y-2y2x+y3分解因式正确的是()A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2二、填空题4.(2015•自贡)多项式ax2-a与多项式x2-2x+1的公因式是.5.(2015•太原)分解因式:a2-2a= .6.(2015•广州)分解因式:x2+xy= .7.(2015•盐城)因式分解:a2-9= .8.(2015•厦门)x2-4x+4=()2.第五讲分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做分式【名师提醒:①若则分式AB无意义②若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
2017-2021年广东中考数学真题分类汇编之方程与不等式
2017-2021年广东中考数学真题分类汇编之方程与不等式一.选择题(共11小题)1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥2.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6 3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是()A.B.C.D.4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7 5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2 6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是()A.B.C.D.7.(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥2 8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=3309.(2021•深圳)不等式x+1>2的解集在数轴上表示为()A.B.C.D.10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=二.填空题(共6小题)12.(2021•广州)方程x2﹣4x=0的实数解是.13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为.14.(2020•广州)方程=的解是.15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.16.(2021•广东)二元一次方程组的解为.17.(2018•广州)方程=的解是.三.解答题(共3小题)18.(2021•广东)解不等式组.19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.2017-2021年广东中考数学真题分类汇编之方程与不等式参考答案与试题解析一.选择题(共11小题)1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.2.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【考点】解分式方程.【专题】计算题;分式方程及应用;运算能力.【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+y=10000.联立两方程组成方程组得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【考点】分式方程的解.【专题】新定义.【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【考点】根与系数的关系.【专题】一元二次方程及应用.【分析】由根的判别式Δ=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵Δ=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.7.(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥2【考点】解一元一次不等式.【专题】计算题;一元一次不等式(组)及应用.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=330【考点】由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.9.(2021•深圳)不等式x+1>2的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;几何直观;运算能力.【分析】先移项、合并同类项解出不等式的解集,再在数轴上表示出来即可.【解答】解:因为x+1>2,所以x>1,在数轴上表示为:故选:D.【点评】此题考查一元一次不等式的解法及在数轴上表示不等式的解集,关键是解出不等式的解集.10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【考点】根的判别式;一次函数的性质.【专题】一元二次方程及应用;运算能力;推理能力.【分析】利用一次函数的性质得到a≤0,再判断Δ=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一元一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是一元二次方程,∵Δ=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【专题】分式方程及应用.【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.二.填空题(共6小题)12.(2021•广州)方程x2﹣4x=0的实数解是x1=0,x2=4.【考点】解一元二次方程﹣因式分解法.【专题】一次方程(组)及应用;运算能力.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为2.【考点】一元二次方程的解.【专题】一元二次方程及应用;推理能力.【分析】根据一元二次方程的解把x=1代入一元二次方程得到关于m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx﹣3=0得12+m﹣3=0,解得m=2.故答案是:2.【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(2020•广州)方程=的解是x=.【考点】解分式方程.【专题】分式方程及应用;运算能力.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验,分式方程的解为x=.故答案为:x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为x2﹣2=0(答案不唯一).【考点】一元二次方程的定义.【专题】一元二次方程及应用;推理能力.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.16.(2021•广东)二元一次方程组的解为.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】直接利用加减消元法求解可得问题的答案.【解答】解:,①×2﹣②,得:3y=﹣6,即y=﹣2,将y=﹣2代入②,得:2x+(﹣2)=2,解得:x=2,所以方程组的解为.故答案为.【点评】本题考查的是解二元一次方程组,利用加减消元法把方程组化为一元方程是解答此题的关键.17.(2018•广州)方程=的解是x=2.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+6=4x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三.解答题(共3小题)18.(2021•广东)解不等式组.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【考点】一元一次不等式的应用;一元一次方程的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【考点】一元二次方程的应用.【专题】方程思想;一元二次方程及应用.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.考点卡片1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.3.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.4.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.5.一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.6.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).7.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.8.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.10.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.。
中考数学—分式的真题汇编含答案
一、选择题1.下列计算正确的是( ). A .32b b b x x x+= B .0a a a b b a -=-- C .2222bc a a b c ab⋅=D .22()1aa a a a -÷=- 2.化简:(a-2)·22444a a a --+的结果是( )A .a-2B .a +2C .22-+a a D .22+-a a 3.下列等式成立的是( ) A .212x y x y=++ B .2(1)(1)1x x x ---=- C .x xx y x y=--++ D .22(1)21x x x --=++ 4.分式(a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的 5.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯6.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<<7.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥38.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1C .1-D .±19.化简21(1)211x x x x ÷-+++的结果是( )A .11x + B .1x x+ C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的11.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .512.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 13.分式中,最简分式个数为( )个.A .1B .2C .3D .414.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++15.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个16.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 17.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D .18.在,,中,是分式的有( )A .0个B .1个C .2个D .3个 19.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)020.下列分式中,最简分式是( ) A .B .C .D .21.下列4个分式:①;②;③;④中最简分式有( )A .1个B .2个C .3个D .4个22.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-623.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x =24.化简-的结果是( ) A .B .C .D .25.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 A 选项:∵334b b b b b x x x x++==,∴A 错误; B 选项:∵2a a a a aa b b a a b a b a b -=+=-----,∴B 错误; C 选项:∵2222bc a a b c ab⋅=,故C 正确; D 选项:∵221()(1)(1)1a a a a a a a a a--÷=-⋅=--,∴D 错误; 故选C.2.B解析:B . 【解析】试题解析:原式=(a-2)•2(2)(2)(2)a a a +--=a+2,故选B .考点:分式的乘除法.3.D解析:D 【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案. 【详解】A 、2122x y x y =++,22x y +≠1x y+,不符合题意;B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意;C 、x x y -+=--x x y ,x x y -+≠-+x x y,不合题意;D 、(-x-1)2=x 2+2x+1,符合题意. 故选D.考点:分式的基本性质.4.B解析:B 【解析】,分式的值缩小为原来的 .故选B .5.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭,d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.7.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.8.B解析:B 【解析】由题意得:101x x -=⇒= ,故选B.9.A解析:A 【分析】根据分式混合运算法则计算即可. 【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B 【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值11.B解析:B 【解析】试题解析:2235a b -,37xy的分母中均不含有字母,因此它们是整式,而不是分式.12x y +,52a b a b --,3m的分母中含有字母,因此是分式. 故选B .12.C解析:C . 【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a ∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C . 考点:分式的值.13.C解析:C 【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.14.D解析:D 【解析】 A 选项错误,x y x y -+=-y xy x-+;B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y xx y --;C 选项错误,2a a ab+=1a a ab +()=1a b +;D 选项正确. 故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.解析:C 【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3 故选:C.16.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b++==--,故选:C . 考点:分式的化简求值.17.C解析:C 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可. 解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣. 故选C .考点:分式的化简求值.18.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式. 故选:C .19.C解析:C 【解析】9,227是无限循环小数,π是无限不循环小数,031=,所以π是无理数,故选C .解析:B 【解析】试题分析:选项A ,原式=,所以A 选项错误;选项B ,是最简分式,所以B 选项正确;选项C ,原式=,所以C 选项错误;选项D ,原式=,所以D 选项错误.故选B . 考点:最简分式.21.B解析:B 【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个; 故选:B.22.C解析:C【解析】0.0000021=2.1×10-6,故选C .23.C解析:C 【解析】∵()()02x 12x 2----无意义, ∴x −1=0或x −2=0, ∴x=1或x=2. 故选C.24.D解析:D 【解析】试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B.。
2017年海南省中考数学试题(解析版)
2017年海南省中考数学试卷一.选择题(每小题 3 分,共14小题,合计42 分) 1.(2017海南,1,3分) 2017 的相反数是( ) A .-2017B . 2017C .-12017D .12017【答案】A【解析】本题考查相反数的概念:只有符号不同的两个数互为相反数。
2.(2017海南,2,3分)已知a =-2,则代数式a +1的值为( ) A .-3B .-2C .-1D . 1【答案】C【解析】当a =-2时,原式=-2+1 =-1 3.(2017海南,3,3分)下列运算正确的是( ) A .a 3+a 2=a 5 B .a 3÷a 2=a C .a 3·a 2=a 6 D . (a 3)2=a 9【答案】B【解析】A .整式的加减就是合并同类项,a 3与a 2不是同类项,故不能合并;所以此式错误;B .同底数幂相除,底数不变,指数想减,故此式正确; C .同底数幂相乘,底数不变,指数想加,故此式错误; D.幂的乘方,底数不变,指数相乘,故此式错误。
4.(2017海南,4,3分)下图是一个几何体的三视图,则这个几何体是( )A .三棱柱B .圆柱C .圆台D .圆锥【答案】D【解析】考查几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.5.(2017海南,5,3分)如图,直线a ∥b ,c ⊥a ,则c 与b 相交所形成的∠1的度数为( ) A . 45°B . 60°C . 90°D . 120°俯视图左视图主视图【答案】C【解析】∵a ‖b (已知),∴∠1=∠2(两直线平行,同位角相等)∵c ⊥a (已知),∴∠2=90°(垂直的定义),∴∠1=90°(等量代换)6.(2017海南,6,3分)如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(-2, 3),先把△ABC 向右平移 4 个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2 的坐标是( ) A .(-3, 2)B .( 2,-3)C .( 1,-2)D .(-1, 2)【答案】B【解析】图形向右平移 4 个单位长度,对应点的横坐标加4,纵坐标不变,所以点A 1 的坐标是(2, 3);关于x 轴对称的点横坐标不变,纵坐标互为相反数,所以点A 2 的坐标是(2,-3);7.(2017海南,7,3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里.数据2000000用科学记数法表示为2×10n ,则n 的值为( ) A .5B .6C .7D .8【答案】B【解析】n 的值为整数位数减去1aa图18. (2017海南,8,3分)若分式211x x --的值为0,则x 的值为( )A .-1B . 0C . 1D .±1【答案】A【解析】要使分式的值为0,则分子=0,且分母≠09.(2017海南,9,3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这 20 名同学年龄的众数和中位数分别是( ) A .15,14 B .15,15 C .16,14 D .16,15【答案】D【解析】这组数据16出现的次数最多,出现了7次,则这组数据的众数是16; 把这组数据从小到大排列,中间的数为第10个与第11个,这两个年龄都是15,故中位数是15.10.(2017海南,10,3分)如图3,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( ) A .12B .14C .18D .116【答案】D【解析】本题可画出树状图或列表格来计算概率。
中考数学复习《分式方程》测试题(含答案)
中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。
(完整版)2017年河南省中考数学试卷(含答案解析版)
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是( )A .2B .0C .﹣1D .﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A .74.4×1012B .7.44×1013C .74.4×1013D .7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(3分)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.(3分)一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.(3分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )sA .AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .181614129.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)33310.(3分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )an l l n beA .B .2﹣C .2﹣D .4﹣2π33π332π332π3二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .412.(3分)不等式组的解集是 .{x ‒2≤0x ‒12<x 13.(3分)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m2x 与n 的大小关系为 .14.(3分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 .15.(3分)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别2是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.2217.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x <304B 30≤x <6016C 60≤x <90a D 90≤x <120b Ex ≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a +b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.18.(9分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.g o19.(9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°45≈,tan53°≈,≈1.41)3543220.(9分)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于点kx A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.g21.(10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想 图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛23物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是( )A.2B.0C.﹣1D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( rA.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D .【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大. 4.(3分)(2017•河南)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x ﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,1x ‒13x ‒1去分母得:1﹣2(x ﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B.95分,90分C.90分,95分D.95分,85分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD是菱形的只有( )A .AC ⊥BDB .AB=BCC .AC=BD D .∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线相等是平行四边形的菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .18161412【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.41614故选:C .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比. 9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)333【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=12=,于是得到结论.AD '2‒OA 23【解答】解:∵AD′=AD=2,AO=AB=1,12∴OD′==,AD '2‒OA 23∵C′D′=2,C′D′∥AB ,∴C (2,),3故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2π33π332π332π3【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.12360⋅π×2236012332π3故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .4【考点】22:算术平方根;1E :有理数的乘方.【分析】表示4的算术平方根,值为2.4【解答】解:23﹣=8﹣2=6,4故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单. 12.(3分)(2017•河南)不等式组的解集是 ﹣1<x ≤2 .{x ‒2≤0x ‒12<x 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:{x ‒2≤0①x ‒12<x②解不等式①0得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,故答案为﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图2x 象上,则m 与n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在2x 每个象限内,y 随x 的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,2x ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .故答案为m <n .【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键. 14.(3分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=1212故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,2点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 +或112212.【考点】PB :翻折变换(折叠问题);KW :等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.2【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;1212212②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,2∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,2∵BC=+1,2d ∴CM +BM=BM +BM=+1,22∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,12212故答案为:+或1.12212【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.22【考点】4J :整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),然后把x=+1,y=﹣122代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y )=4x 2+4xy +y 2+x 2﹣y 2﹣5x 2+5xy=9xy22当x=+1,y=﹣1时,22原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b ,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A 组所占的百分比是=8%,则m=8.450a +b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是360°×=144°;2050(3)每月零花钱的数额x 在60≤x <120范围的人数是1000×=560(人).2850【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小. 18.(9分)(2017•河南)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt △ADB 中,由勾股定理得:BD==8,102‒62在Rt △BDC 中,由勾股定理得:BC==4.82+425【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)4535432【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作CE ⊥AB 于E .设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,根据tan53°=,可得=,求出x ,再求出BC 、AC ,分别求出A 、B 两船到C 的EC BE 43xx ‒5时间,即可解决问题.【解答】解:如图作CE ⊥AB 于E .g在Rt △ACE 中,∵∠A=45°,∴AE=EC ,设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,∵tan53°=,ECBE ∴=,43x x ‒5解得x=20,∴AE=EC=20,∴AC=20=28.2,2BC==25,ECsin 53°∴A 船到C 的时间≈=0.94小时,B 船到C 的时间==1小时,28.2302525∴C 船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 20.(9分)(2017•河南)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的kx 图象交于点A (m ,3)和B (3,1).th (1)填空:一次函数的解析式为 y=﹣x +4 ,反比例函数的解析式为 y= ;3x (2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B (3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x ,y ),由于点P 在直线AB 上,从而可知PD=y ,OD=x ,由题意可知:1≤x ≤3,从而可求出S 的范围【解答】解:(1)将B (3,1)代入y=,k x ∴k=3,将A (m ,3)代入y=,3x ∴m=1,∴A (1,3),将A (1,3)代入代入y=﹣x +b ,∴b=4,∴y=﹣x +4(2)设P (x ,y ),由(1)可知:1≤x ≤3,∴PD=y=﹣x +4,OD=x ,∴S=x (﹣x +4),12∴由二次函数的图象可知:S 的取值范围为:≤S ≤232故答案为:(1)y=﹣x +4;y=.3x 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A :二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,{2x +6y =1303x =4y 解得:.{x =20y =15答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,Eb分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 PM=PN ,位置关系是 PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB :几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出1212BD=CE ,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=BD ,PN=BD ,即可得出PM=PN ,同(1)的方法即可得出结论;1212(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论.【解答】解:(1)∵点P ,N 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,12∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,12∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC +∠ACD=90°,∴∠MPN=∠DPM +∠DPN=∠DCA +∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN ,(2)由旋转知,∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD=∠ACE ,BD=CE ,同(1)的方法,利用三角形的中位线得,PN=BD ,PM=CE ,1212∴PM=PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB +∠PNC=∠DCB +∠DBC ,∴∠MPN=∠DPM +∠DPN=∠DCE +∠DCB +∠DBC =∠BCE +∠DBC=∠ACB +∠ACE +∠DBC =∠ACB +∠ABD +∠DBC=∠ACB +∠ABC ,∵∠BAC=90°,∴∠ACB +∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2,2在Rt △ABC 中,AB=AC=10,AN=5,2∴MN 最大=2+5=7,222∴S △PMN 最大=PM 2=×MN 2=×(7)2=.121212142492【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)的关键是判断出△ABD ≌△ACE ,1212解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目. 23.(11分)(2017•河南)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴23交于点B ,抛物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【考点】HF :二次函数综合题.【分析】(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值;②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值.【解答】解:(1)∵y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,23∴0=﹣2+c ,解得c=2,∴B (0,2),∵抛物线y=﹣x 2+bx +c 经过点A ,B ,43∴,解得,{‒12+3b +c =0c =2{b =103c =2∴抛物线解析式为y=﹣x 2+x +2;43103(2)①由(1)可知直线解析式为y=﹣x +2,23∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,∴P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∴PM=﹣m +2,PA=3﹣m ,PN=﹣m 2+m +2﹣(﹣m +2)=﹣m 2+4m ,23431032343∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN ⊥MN ,∴BN=OM=m ,∴=,即=,解得m=0(舍去)或m=2,BN AM PN PM m3‒m ‒43m 2+4m‒23m +2∴M (2,0);当∠NBP=90°时,则有=,PN PA BPMP ∵A (3,0),B (0,2),P (m ,﹣m +2),23∴BP==m ,AP==(3﹣m ),m 2+(‒23m +2‒2)2133(m ‒3)2+(‒23m +2)2133∴=,解得m=0(舍去)或m=,‒43m 2+4m 133(3‒m )133m‒23m +2118∴M (,0);118综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2,0)或(,0);118②由①可知M (m ,0),P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(﹣m +2)=﹣m 2+m +2,解得m=3(三点重2343103合,舍去)或m=;12当M 为线段PN 的中点时,则有﹣m +2+(﹣m 2+m +2)=0,解得m=3(舍去)2343103或m=﹣1;当N 为线段PM 的中点时,则有﹣m +2=2(﹣m 2+m +2),解得m=3(舍去)或2343103m=﹣;14综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.1214【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年天津市中考数学试卷含答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈取1.414.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)1cos602=. 【解析】3638<【提示】利用二次根式的性质,得出【考点】无理数的估算【解析】ABC △绕点60得DBE △60,AB =ABD ∴△是等边三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】3k =-<,10y >,数学试卷 第9页(共18页) 数学试卷 第10页(共18页)231y y y ∴<<.【提示】根据反比例函数的性质判断即可. 【考点】反比例函数的图象和性质 11.【答案】B【解析】如图连接PC ,AB AC =,BD CD =,AD BC ∴⊥,PB PC ∴=,PB PE PC PE ∴+=+,PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【提示】如图连接PC ,只要证明PB PC =,即可推出PB PE PC PE +=+,由P E P C C E +≥,推出P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【考点】等腰三角形的性质 12.【答案】A【解析】当0y =,则2043x x -=+,(1)(3)0x x --=,解得11x =,23x =,(1,0)A ∴,(3,0)B ,2243(2)1y x x x =+=---,∴M 点坐标为(2,1)-,平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为22(1)21y x x x =+=++.【提示】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A ,B ,M 点坐标,进而得出平移方向和距离,即可得出平移后解析式. 【考点】二次函数图象的平移交换第Ⅱ卷二、填空题 13.【答案】3x【解析】共【解析】若正比例函数.P 直角45,∴△1,∴数学试卷 第11页(共18页) 数学试卷 第12页(共18页)四边形DEMG 的面积,PAB PBC PCA S S S ∴=△△△.(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案; (2)移项、合并同类项、系数化为1即可求得答案; (3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集. 【考点】解不等式组 20.【答案】(1)40 30(2)平均数为15 众数为16 中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT∠=,9040ABT∴∠-∠=;由AB是⊙的直径,得90ACB=,9040CAB ABC∴∠=-∠=,40CAB=;AD,50,65,65BCD∴∠∠,OA OD=65ODA OAD=∠,50ADC∠=,655015CDO ODA ADC∴∠=∠-∠=-=.90,根据的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等65,利用同圆的半径相等65,由此可得结论【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质64,45B∠,PAsin120sin64PA A=,cos120cos64AC PA A=;PCB中,45B∠=,PC BC∴,12045=120cos64120sin641200.90+≈⨯所以BP的长为153海里,BA的长为161海里.数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷 第15页(共18页) 数学试卷 第16页(共18页))点A B OB '⊥90,在Rt A '△2OA OB '-∴点A '的坐标为P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45,(,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥,PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点⎝⎭⎝⎭60,求120,由120,1PA=,证出,得出四边形B OP=45,得出点330,OAM,由直角三角形的性质求出)抛物线2y x-=(2)①由点P'与点抛物线的顶点坐标为P(10)A-,,2( P A'∴=10 m>,∴∴m的值为数学试卷第17页(共18页)数学试卷第18页(共18页)。
中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学
专题02 代数式和因式分解一、选择题1.(2017年某某省某某地区第3题)下列计算正确的是( ) A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0 D .(a 2)3=a6【答案】D. 【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意; C 、原式=1,不符合题意;D 、原式=a 6,符合题意, 故选D考点:整式的混合运算2.(2017年某某省黔东南州第3题)下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2C .6ab 2÷(﹣2ab )=﹣3bD .a (a+b )=a 2+b 【答案】C 【解析】考点:整式的混合运算3. (2017年某某省某某市第7题)下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B 【解析】考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方4.(2017年某某省某某市第14题)计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【解析】考点:约分5.(2017年某某省第4题)下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】试题分析: A.根据幂的乘方,可得(﹣a5)2=a10,故A正确;B.根据单项式乘以单项式,可得2a•3a2=6a3,故B错误;C.根据合并同类项法则,可得﹣2a+a =a,故C错误;D.根据单项式除以单项式法则,可得﹣6a6÷2a2=﹣3a4,故D错误;故选:A考点:整式的混合运算6.(2017年某某省东营市第2题)下列运算正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .|3﹣2|=2﹣3 C .8﹣3=5 D .﹣(﹣a+1)=a+1【答案】B 【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号 7. (2017年某某省某某市第2题)下列运算正确的是( ) A .2222a a a = B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=- 【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知a 2•a 2=a 4,此选项错误; B 、根据合并同类项法则,可知a 2+a 2=2a 2,此选项错误; C 、根据完全平方公式,可知(1+2a )2=1+4a+4a 2,此选项错误; D 、根据平方差公式,可知(﹣a+1)(a+1)=1﹣a 2,此选项正确; 故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式8. (2017年某某省某某市第5题)化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-【答案】A 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算9. (2017年某某省威海市第3题)下列运算正确的是( ) A .422743x x x =+ B .333632x x x =⋅ C .32a a a =÷- D .363261)21(b a b a -=-【答案】C 【解析】考点:1、整式的混合运算,2、负整数指数幂10.(2017年某某省潍坊市第1题)下列计算,正确的是().A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知原式=a 5,故A 错误; B 、根据同底数幂相除,可知原式=a 2,故B 错误; C 、根据合并同类项法则,可知原式=2a 2,故C 错误;D 、根据幂的乘方,底数不变,指数相乘,可知422a a =)(,故正确. 故选:D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方11. (2017年某某省潍坊市第9题)若代数式12--x x 有意义,则实数x 的取值X 围是(). A.1≥x B.2≥x C.1>x D.2>x 【答案】B 【解析】试题分析:根据二次根式有意义的条件可知:2010x x -⎧⎨-⎩≥>,解得:x ≥2.故选:B考点:二次根式有意义的条件12. (2017年某某省某某市第4题)下列运算正确的是( )A .235()a a = B .235a a a ⋅= C .1a a -=- D .22()()a b a b a b +-=+【答案】B. 【解析】试题分析:选项A ,原式=a 6;选项B ,原式=a 5;选项C ,原式=1a;选项D ,原式=a 2﹣b 2,故选B. 考点:整式的运算.13.(2017年某某省内江市第8题)下列计算正确的是( ) A .232358x y xy x y += B .222()x y x y +=+ C .2(2)4x x x -÷= D .1y x x y y x+=-- 【答案】C . 【解析】考点:分式的加减法;整式的混合运算.14. (2017年某某省某某市第7题)下列运算正确的是( ) A.358x x x +=B.3515x x x +=C.()()2111x x x +-=-D.()5522x x =【答案】C. 【解析】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幂的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=532x =,选项D 错误,故选C. 考点:整式的计算.15. (2017年某某省某某市第6题)下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236a a -=-【答案】B 【解析】考点:幂的性质16. (2017年某某省六盘水市第3题)下列式子正确的是( ) A.7887m n m nB.7815m n mnC.7887m n n mD.7856m n mn 【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.17. (2017年某某省六盘水市第8题)使函数3y x 有意义的自变量的取值X 围是( )A. 3≥xB. 0≥xC.3≤xD.0≤x【答案】C .试题分析:根据二次根式a ,被开方数0≥a 可得3-x ≥0,解得x ≤3,故选C . 考点:函数自变量的取值X 围.18. (2017年某某省某某市第2题)下列运算正确的是 A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=【答案】B . 【解析】考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 19. (2017年某某省黄冈市第2题)下列计算正确的是( ) A . 235x y xy += B .()2239m m +=+ C . ()326xy xy = D .1055a a a ÷=【答案】D 【解析】试题分析:A 、原式中的2x 与3y 不是同类项,不能进行加减计算,故不正确;B 、根据完全平方公式()2222a b a ab b ±=±+,可知22(3)69m m m +=++,故不正确;C 、根据积的乘方,等于各项分别乘方,可得2336()xy x y =,故不正确; D 、根据同底数幂相除,底数不变,指数相减,可知1055a a a ÷=,故正确. 故选:D考点:整式的运算20.(2017年某某省某某市第2题)下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方二、填空题1.(2017年某某省某某地区第16题)分解因式:2x2﹣8xy+8y2=.【答案】2(x﹣2y)2【解析】试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用2.(2017年某某省某某市第12题)若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值3.(2017年某某省黔东南州第13题)在实数X围内因式分解:x5﹣4x=.【答案】x(x2+3)(x)【解析】试题分析:先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.)(x即原式=x(x4﹣22)=x(x2+2)(x2﹣2)=x(x2+2)(故答案是:x(x2+3)()(x)考点:实数X围内分解因式4.(2017年某某省荆州市第12题)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.【答案】4【解析】考点:1、算术平方根;2、同类项;3、解二元一次方程组 5. (2017年某某某某市第14题)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是. 【答案】±1 【解析】试题分析:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故﹣a=±1,求解得a=±1, 故答案为:±1. 考点:完全平方式6.(2017年某某省东营市第12题)分解因式:﹣2x 2y+16xy ﹣32y=. 【答案】﹣2y (x ﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y (x 2﹣8x+16)=﹣2y (x ﹣4)2故答案为:﹣2y (x ﹣4)2 考点:因式分解7.(2017年某某省潍坊市第13题)计算:212(1)11x x x --÷-- = .【答案】x+1【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,从而可以解212(1)11x x x --÷-- =11(1)(1)12x x x x x --+-⋅-- =2(1)(1)12x x x x x -+-⋅--=x+1,故答案为:x+1. 考点:分式的混合运算8. (2017年某某省潍坊市第14题)因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】考点:因式分解﹣提公因式法9. (2017年某某省某某市第10题)函数1y x =+的自变量x 的取值X 围是.【答案】x ≥﹣1. 【解析】试题分析:由题意得,x+1≥0,解得x ≥﹣1. 考点:函数自变量的取值X 围.10. (2017年某某省某某市第11题)把多项式2312x -因式分解的结果是. 【答案】3(x ﹣2)(x+2). 【解析】试题分析:先提取公因式,再利用平方差公式进行二次分解即可,即3x 2﹣12=3(x 2﹣4)=3(x ﹣2)(x+2). 考点:因式分解.11.(2017年某某省内江市第13题)分解因式:231827x x -+=. 【答案】23(3)x - . 【解析】试题分析:231827x x -+=23(69)x x -+=23(3)x -.故答案为:23(3)x -.考点:提公因式法与公式法的综合运用. 12.(2017年某某省内江市第14题)在函数123y x x =+--中,自变量x 的取值X 围是. 【答案】x ≥2且x ≠3.考点:函数自变量的取值X 围.13.(2017年某某省内江市第22题)若实数x 满足2210x x --=,则322742017x x x -+-=. 【答案】﹣2020. 【解析】 试题分析:∵2210x x --=,∴221x x =+,322742017x x x -+-=2(21)7(21)42017x x x x +-++-=24214742017x x x x +--+-=2482024x x --=4(21)82024x x +--=4﹣2024=﹣2020,故答案为:﹣2020. 考点:因式分解的应用;降次法;整体思想.14. (2017年某某省某某市第11题)因式分解23a a +=. 【答案】3(3a+1). 【解析】试题分析:直接提公因式a 即可,即原式=3(3a+1). 考点:因式分解.15. (2017年某某省某某市第13题)2121x xx x x +⋅=++. 【答案】11x +. 【解析】 试题分析:原式=211(1)1x x x x x +⋅=++. 考点:分式的运算.16.(2017年某某省六盘水市第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.17.(2017年某某省日照市第13题)分解因式:2m 3﹣8m=.【答案】2m (m+2)(m ﹣2).试题分析:提公因式2m ,再运用平方差公式对括号里的因式分解即可,即2m 3﹣8m=2m (m 2﹣4)=2m (m+2)(m ﹣2).考点:提公因式法与公式法的综合运用.18. (2017年某某省某某市第10题)因式分解:269x x -+=. 【答案】(x-3)2. 【解析】试题解析:x 2-6x+9=(x-3)2. 考点:因式分解-运用公式法.19. (2017年某某省黄冈市第8题)分解因式:22mn mn m -+=____________. 【答案】m (n-1)2考点:分解因式20. (2017年某某省黄冈市第11题) 化简:23332xx x x x -⎛⎫+= ⎪---⎝⎭_____________. 【答案】1 【解析】试题分析:原式变形后,利用乘法分配律计算,再约分化简即可得23()332x x x x x -+⋅---=23()332x x x x x --⋅---=222x x x ---=1. 考点:分式的运算21.(2017年某某省某某市第13题)分解因式:=++2422a a . 【答案】2(a+1)2【解析】一般步骤:一提(公因式)、二套(平方差公式()()22-=+-a b a b a b ,完全平方公式()2222±+=±a ab b a b)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解22.(2017年某某省某某市第16题)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.【答案】30﹣2t【解析】考点:列代数式三、解答题1.(2017年某某省某某地区第22题)先化简,再求值:(2221x xx x-+-+2242xx x-+)÷1x,且x为满足﹣3<x<2的整数.【答案】【解析】试题分析:首先化简(2221x xx x-+-+2242xx x-+)÷1x,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值X围,求出算式的值是多少即可.试题解析:(2221x xx x-+-+2242xx x-+)÷1x=[2(1)1)xx x--(+(2)(2(2)x xx x+-+)]×x=(1xx-+2xx-)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.2.(2017年某某省某某市第18题)化简:(21a++221aa+-)÷1aa-【答案】31aa+.【解析】考点:分式的混合运算3.(2017年某某省黔东南州第18题)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【答案】3x-【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=221(1).(1)(1) x x x xx x x-+++-=2(1)(1).(1)(1)x x x x x x -++- =x ﹣1,当x=3+1时,原式=3. 考点:分式的化简求值4. (2017年某某某某市第19题)先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-12【解析】考点:分式的化简求值5.(2017年某某省东营市第19题)(1)计算:6cos45°+(13)﹣1+3﹣1.73)0+|5﹣2|+42017×(﹣0.25)2017(2)先化简,再求值:(31a +﹣a+1)÷244412a a a a -+++-﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【答案】(1)8(2)﹣a ﹣1,当a=0时,原式=﹣0﹣1=﹣1 【解析】考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方6. (2017年某某省威海市第19题)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的X 围内选取一个合适的整数作为x 的值代入求值.【答案】1x -,12【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x <中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:22211(1)11x x x x x x -+-÷-+-+ =2(1)1(1)(1)(1)(1)1x x x x x x x ----+÷+-+=211111x x x x x -+⋅+--+ =1(1)x x x --- =1x-∵﹣5<x <5且x+1≠0,x ﹣1≠0,x ≠0,x 是整数, ∴x=﹣2时,原式=﹣12-=12. 考点:1、分式的化简求值,2、估算无理数的大小 7. (2017年某某省某某市第18题)先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a=1时,原式=14. 【解析】考点:分式的化简求值.8. (2017年某某省某某市第16题)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =-.【答案】11x +,33【解析】考点:分式的化简求值9.(2017年某某省日照市第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式==3﹣2﹣1+(1﹣32)×4 =3-2-1+4-23 =-3+1; (2)原式=21111(1)1a a a a a ++-÷+--考点:分式的化简求值;实数的运算.。
2017全国部分省市中考数学真题汇编分式(含解析)
14.规定 x=x0 时,代数式 则
的值记为 f(x0) .例如:x=﹣1 时,
,
的值等于 三.解答题 15.已知分式 ,试问:
.
(1)当 m 为何值时,分式有意义? (2)当 m 为何值时,分式值为 0? 16.已知 x,y,z 都不为零,且满足 4x﹣3y﹣6z=0,x+2y﹣7z=0.求 17.探索: (1)如果 (2)如果 总结:如果 =3+ =5+ =a+ ,则 m= ,则 m= ; ; ; 的值.
B.﹣1 C.±1 D.2 =( )
4.若 a2﹣ab=0(b≠0) ,则 A.0 B. C.0 或
D.1 或 2 )
5.下列关于分式的判断,正确的是( A.当 x=2 时, B.无论 x 为何值, C.无论 x 为何值, D.当 x≠3 时, 6.若分式 A.﹣ B. 的值为零 的值总为正数 不可能得整数值 有意义 ,则分式 C.﹣ D.
2. (2017•重庆)要使分式 A .x >3
有意义,x 应满足的条件是(
)
B.x=3 C.x<3D.x≠3
【分析】根据分式有意义的条件:分母≠0,列式解出即可. 【解答】解:当 x﹣3≠0 时,分式 即当 x≠3 时,分式 故选 D. 【点评】本题考查的知识点为:分式有意义,分母不为 0. 有意义, 有意义,
20.已知 x2+4x+1=0,且
,求 t 的值.
第 2 页(共 11 页)
参考答案与解析 考答案与解析
一.选择题 1. (2017•北京)若代数式 有意义,则实数 x 的取值范围是( )
A.x=0 B.x=4 C.x≠0D.x≠4 【分析】根据分式有意义的条件即可求出 x 的范围; 【解答】解:由代数式有意义可知:x﹣4≠0, ∴x≠4, 故选(D) 【点评】 本题考查分式有意义的条件, 解题的关键是正确理解分式有意义的条件, 本题属于基础题型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考数学试题分类汇编(分式 )一、选择题1.(2017重庆A 卷第7题)要使分式43x -有意义,x 应满足的条件是( ) A .x >3 B .x =3C .x <3D .x ≠3 .2,(2017北京第7题)如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A . -3B . -1C . 1D .33. (2017天津第7题)计算111+++a a a 的结果为( ) A .1 B .a C . 1+a D .11+a4.(2017广东广州第7题)计算()232b a ba,结果是( ) A .55a b B .45a b C . 5ab D .56ab5. (2017山东日照第6题)式子2a -有意义,则实数a 的取值范围是( )A .a ≥﹣1B .a ≠2C .a ≥﹣1且a ≠2D .a >2 .6.(2017四川省广安市)要使二次根式42-x 在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =27.(2017四川省眉山市)已知2211244m n n m +=--,则11m n-的值等于( ) A .1 B .0 C .﹣1 D .14-8.(2017河北省)若321x x --= +11x -,则 中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数9.(2017浙江省丽水市)化简2111x x x+--的结果是( ) A .x +1 B .x ﹣1 C .21x - D .211x x +-10. (2017辽宁大连第3题)计算22)1(3)1(3---xx x 的结果是( ) A .2)1(-x x B .11-x C .13-x D .13+x11. (2017海南第8题)若分式211x x --的值为0,则x 的值为( )A .﹣1B .0C .1D .±1二、填空题1.(2017浙江衢州第12题)计算:=+-++1112x xx x __________ 2.(2017湖北武汉第12题)计算2111x x x -++的结果为 3.(2017山东临沂第17题)计算:22x y xy y x x x ⎛⎫--+-= ⎪⎝⎭.4. (2017湖南湘潭第11题)计算:1322a a a -+=++ 5. (2017浙江舟山第12题)若分式142+-x x 的值为0,则x 的值为 .6.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 7.(2017湖北咸宁第10题)化简:xx x x 112++- . 8. (2017湖北孝感第12题)如图所示,图1是一个边长为a 的正方形剪去一个边长为1 的小正方形,图2,是一个边长为()1a -的正方形,记图1,图2中阴影部分的面积分别为12,S S ,则12S S 可化简为 .三.解答题1.(2017山东德州第18题)先化简,在求值:222442342a a a a a a-+-÷--+,其中a =72.【答案】12. 2.(2017重庆A 卷第21题)计算:2321(2)a 22a a a a -++-÷++.【答案】a+1a-1. 3.(2017广西贵港)先化简,在求值:21142111a a a a +⎛⎫-+⎪-+-⎝⎭,其中2a =-+. 【答案】4.(2017江苏盐城第19题)先化简,再求值:35222x (x )x x +÷+---,其中x【答案】13. 5.(2017贵州黔东南州第18题)先化简,再求值:2211(1)x x x x x x----÷+,其中x.6.(2017山东烟台第19题)先化简,再求值:xyx y x x y xy x +-÷--2222)2(,其中2=x ,12-=y . 【答案】1.7.(2017四川泸州第19题)化简:2x-225(1)x 14x x +++- 【答案】12x x ++ 8.(2017四川宜宾第17(2)题)化简(1﹣11a -)÷(2244a a a a-+-). 【答案】a2a -.9.(2017四川自贡第20题)先化简,再求值:211()a 22a a a -+÷++,其中a =2.【答案】3.10.(2017江苏徐州第19(2)题)2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭. 【答案】x -2.11.(2017福建第17题) 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 【答案】1a+1,212.(2017山东青岛第16题) 化简:bb a a b a 222)(-÷-;【答案】aa b+ 13. (2017四川泸州第19题)化简:2225(1)14x x x x -+⋅++- . 【答案】12x x ++ 14. (2017山东滨州第19题)(本小题满分8分) (1)计算:(a -b )(a 2+ab +b 2)(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n--÷++++. 【答案】(1)a 3-b 3;(2)m +n .15. (2017山东日照第17题)先化简,再求值:﹣÷,其中a =.【答案】原式= 221a --,当a 2时,原式=2-. 16. (2017江苏宿迁第18题)(本题满分6分) 先化简,再求值:2111x x x x ++--,其中2x =. 【答案】3.17. (2017山东菏泽第17题)先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪->⎩的整数解. 【答案】4.18. (2017浙江台州第18题)先化简,再求值:1211x x⎛⎫-⋅ ⎪+⎝⎭,其中2017x =.【答案】1100919.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54. 20.(2017四川省广安市)先化简,再求值:2211a a a a a +-⎛⎫+÷ ⎪⎝⎭,其中a =2.【答案】11a a +-,3. 21.(2017四川省绵阳市)先化简,再求值:y x yxyx x y xy x y x 2)22(222-÷--+--,其中x=y. 【答案】1y x-,2-.22.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x. 【答案】2x,23.(2017广西四市)先化简,再求值:2211121x x x x x---÷++,其中15-=x .【答案】11x +,524.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y⎛⎫+÷⎪+-+⎝⎭,其中2x =,2y =. 【答案】2xy x y -,12. 25.(2017重庆市B 卷)计算: (1)2()(2)x y x y x +-- ;(2)23469(2)22a a a a a a --++-÷--. 【答案】(1)222x y +;(2)3aa -. 26. (2017贵州遵义第20题)化简分式:(2223442x x x x x ---+-)÷234x x --,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值. 【答案】x +2,原式=3.27. (2017湖南株洲第20题)化简求值:(x ﹣2y x )•y x y+﹣y ,其中x =2,y【答案】2y x -,﹣32.28. (2017内蒙古通辽第19题) 先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-1229. (2017郴州第18题) 先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a =1时,原式=14. 30.(2017湖南常德第19题)先化简,再求值:⎪⎪⎭⎫⎝⎛--+-+-⎪⎪⎭⎫ ⎝⎛---+-22231231334222x x x x x x x x x ,其中x =4. 【答案】x ﹣2,2.31. (2017广西百色第20题)已知2018a b =+,求代数式222222212a b a b a ab b a b -⋅÷-++-的值. 【答案】4036.32. (2017内蒙古呼和浩特第17题)先化简,再求值:2222441242x x x x x x x --+÷++-,其中65x =-. 【答案】32x ,﹣54. 33. (2017青海西宁第22题) 先化简,再求值:22n m n m n m ⎛⎫--÷⎪-⎝⎭,其中m n -=【答案】1n-m. 34. (2017湖南张家界第16题)先化简22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,再从不等式2x ﹣1<6的正整数解中选一个适当的数代入求值. 【答案】12x x +- 35. (2017新疆乌鲁木齐第17题)先化简,再求值:22282242x x x x x x x +-⎛⎫-÷⎪--+⎝⎭,其中x =。