南京市高二上期末数学试卷解析理科

合集下载

江苏省南京市高二上学期期末数学试题(解析版)

江苏省南京市高二上学期期末数学试题(解析版)

一、单选题1.已知等比数列中,,,则( ) {}n a 22a =44a =8a =A .8 B .16C .32D .36【答案】B【分析】根据等比数列通项公式基本量计算出公比,从而求出. 816a =【详解】等比数列中,,,{}n a 22a =44a =,解得,故. 13124a q a q =⎧⎨=⎩22q =4844416a a q ==⨯=故选:B .2.过抛物线的焦点作倾斜角为120°的直线交抛物线于、两点,则长为( ) 22y x =F A B AB A .2 B .C .D .12312【答案】A【分析】先求出直线AB 的方程,利用“设而不求法”求解. 【详解】根据抛物线方程得:焦点坐标.22y x =1(0,)8F 直线AB 的斜率为由直线方程的点斜式方程可得AB:.tan120k =︒=18y -=将直线方程代入到拋物线当中,整理得:.22y x =21208x -=设,则有,.1122(,),(,)A x y Bx y 12x x +=12116x x=-所以弦长. 2||22AB x -===故选:A3.已知圆与圆相交于两点,则两圆的公共弦221:40C x y +-=222:44120C xy x y +-+-=,A BAB =A .B .CD .2【答案】A【分析】两圆方程相减得所在的直线方程,再求出到直线的距离,从而由的半径,利AB 1C AB 1C 用勾股定理及垂径定理即可求出.AB 【详解】圆与圆相减得所在的直线方程:221:40C x y +-=222:44120C x y x y +-+-=AB.20x y -+=∵圆的圆心,,221:40C x y +-=()10,0C 2r =圆心到直线:的距离∴()0,0AB 20x y -+=d则. AB ===故选A【点睛】本题考查了圆与圆的公共弦的弦长和直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键,属于基础题.4.中国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了中国劳动人民的非凡智慧.一个抛物线型拱桥,当水面离拱顶2m 时,水面宽8m .若水面下降1m ,则水面宽度为( )A . mB . mC .mD .12 m【答案】B【分析】以拱桥顶点为原点,建立直角坐标系,设抛物线方程并求出,最后求()220x py p =->p 解当时的值即可求出水面宽度.=3y -x 【详解】由题意,以拱桥顶点为原点,建立直角坐标系,设抛物线方程,()220x py p =->由题意知,抛物线经过点和点, ()4,2A --()4,2B 代入抛物线方程解得,, 4p =所以抛物线方程,28x y =-水面下降米,即,解得 1=3y -1x =2x =-所以此时水面宽度.12d x ==故选:B【点睛】本题主要考查通过建模解决实际问题和抛物线的性质,属于基础题.5.若曲线上存在点,使到平面内两点,距离之差的绝对值为8,则称曲线C M M (5,0)A -(5,0)B 为“好曲线”.以下曲线不是“好曲线”的是( )C A . B .C .D .5x y +=229x y +=221259x y +=216x y =【答案】B【分析】先求出点的轨迹方程为,“好曲线”一定与有公共点,联立后求出交M 221169x y -=221169x y -=点坐标或由判断出有无公共点,判断出结论.∆【详解】由题意知:平面内两点,距离之差的绝对值为8, M (5,0)A -(5,0)B 由双曲线定义知:的轨迹是以,为焦点的双曲线且,, M A B 4a =5c =故,22225169b c a =-=-=即轨迹方程为:,221169x y -= “好曲线”一定与有公共点,∴221169x y -=联立与得:,,221169x y -=5x y +=271605440x x -+=103860∆=>故与有公共点,A 为“好曲线”,5x y +=221169x y -=联立与得:,无解,B 不是“好曲线”,221169x y -=229x y +=263025y =-<联立与得:,,有解,C 为“好曲线”, 221169x y -=221259x y +=280041x =28141y =联立与得:,,有解,故D 为“好曲线”.221169x y -=216x y =2990y y -+=8136450∆=-=>故不是“好曲线”的是B . 故选:B .6.如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PB 2为钝角,则该椭圆离心率的取值范围是A .B . ⎫⎪⎪⎭⎛ ⎝C .D .⎛ ⎝⎫⎪⎪⎭【答案】C【分析】过作直线的垂线,题意说明射线在直线上方,由此可得的不等关系1B 22A B l 1B P l ,,a b c (利用直线与轴交点得出不等式),从而可得离心率的范围.x 【详解】设直线l 为过且与垂直的直线,易知则直线l 的斜率为,1B 22A B 22,B A b k a=-ak b =而,则该直线l 的方程为,所以该直线与x 轴的交点坐标为,要使得()10,B b -ay x b b =-2,0b a ⎛⎫ ⎪⎝⎭为钝角,则说明直线在直线l 上方,故满足,结合,得到12B PB ∠1B P 2b c a<222b a c =-得,结合解得. 22,,cac a c e a <-=结合210e e +-<01,e <<e ⎛∈ ⎝故选:C.【点睛】本题考查求椭圆离心率的范围,解题关键是利用过与直线垂直的直线与射线1B 22A B l 1B P 关系得出不等式.7.已知数列的前项和为,,当时,,则等于( ) {}n a n n S 11a =2n ≥12n n a S n -+=2021S A .1008 B .1009C .1010D .1011【答案】D【分析】由时,得到,两式作差,整理可得:,结合2n ≥12n n a S n -+=121n n a S n ++=+11n n a a ++=并项求和,即可求解.【详解】解:由题意可得,当时,,, 2n ≥12n n a S n -+=121n n a S n ++=+两式作差可得, 121n n n a a a +-+=即,11(2)n n a a n ++=≥即当时,数列任意连续两项之和为1,又因为, 2n ≥11a =所以, 202112345202020212020()()()110112S a a a a a a a =+++++++=+= 故选:.D 8.若对任意正实数x ,不等式恒成立,则实数a 的范围是( )()21xe a x -≤A . B . C .D . ln 2122a ≤+ln 212a ≤+1ln 22a ≤+ln 2122a ≥+【答案】A【分析】转化问题为恒成立,设,则,利用导函数求得的21e x a x ≤+()21ex f x x =+()min a f x ≤()f x 最小值,即可求解. 【详解】因为不等式恒成立,,()2e 1xa x -≤2e 0x >所以恒成立, 21e xa x ≤+设,则, ()21e xf x x =+()min a f x ≤因为,令,则,()221e x f x '=-+()0f x '=ln 22x =所以当时,,当时,, ln 2,2x ⎛⎫∈-∞ ⎪⎝⎭()0f x '<ln 2,2x +∈∞⎛⎫⎪⎝⎭()0f x ¢>所以在上单调递减,在上单调递增, ()f x ln 2,2⎛⎫-∞ ⎪⎝⎭ln 2,2+∞⎛⎫⎪⎝⎭所以, ()min ln 21ln 2222f x f ⎛⎫==+⎪⎝⎭所以, ln 2122a ≤+故选:A二、多选题9.设是抛物线上两点,是坐标原点,若,下列结论正确的为()()1122,,,A x y B x y 24y x =O OA OB ⊥( ) A .为定值 B .直线过抛物线的焦点 12y y AB 24y x =C .最小值为16 D .到直线的距离最大值为4AOB S A O AB 【答案】ACD【解析】由抛物线方程及斜率公式即可判断A ;设直线方程,结合韦达定理即可判断B ;利用AB韦达定理求得的最小值,即可判断C ;由直线过定点可判断D.12y y -AB 【详解】对于A ,因为,所以, OA OB ⊥12122212121216144OA OB y y y y k k y y x x y y =⋅=⋅==-所以,故A 正确;1216y y =-对于B ,设直线,代入可得, :AB x my b =+24y x =2440y my b --=所以,即,所以直线过点, 12416y y b =-=-4b =AB ()4,0而抛物线的焦点为,故B 错误; 24y x =()1,0对于C ,因为,18y -=≥当时,等号成立,0m =又直线过点,所以,故C 正确;AB ()4,0()min 148162AOB S =⨯⨯=△对于D ,因为直线过点,所以到直线的距离最大值为4,故D 正确. AB ()4,0O AB 故选:ACD.【点睛】解决本题的关键是利用抛物线的方程合理化简及韦达定理的应用,细心计算即可得解. 10.以下四个命题为真命题的是( )A .过点且在轴上的截距是在轴上截距的倍的直线的方程为 ()1010-,x y 411542y x =-+B .直线的倾斜角的范围是 20xcos θ+=][50,66πππ⎡⎫⋃⎪⎢⎣⎭,C .曲线:与曲线:恰有一条公切线,则 1C 2220x y x ++=2C 22480x y x y m +--+=4m =D .设是直线上的动点,过点作圆:的切线,,切点为,P 20x y --=P O 221x y +=PA PB A B ,则经过,,三点的圆必过两个定点 A P O 【答案】BD【分析】根据直线方程的求解、直线斜率与倾斜角的关系,圆与圆的位置关系,以及圆方程的求解,对每个选项进行逐一分析,即可判断和选择.【详解】A :当直线方程为时,也满足题意,故A 错误;y x =-B,设其倾斜角为,则θ⎡∈⎢⎣αtan α⎡∈⎢⎣故倾斜角的范围是,故B 正确; ][50,66πππ⎡⎫⋃⎪⎢⎣⎭,C :曲线:,曲线:,解得; 1C ()2211x y ++=2C ()()2224200x y m -+-=->20m <若它们有一条公切线,且它们内切,圆心距,51d ==-解得,故C 错误;16m =-D :设点,根据切线的性质可得:,(),2P m m -AO PA ⊥经过三点的圆即为以为直径的圆,则圆的方程为,,,A P O PO ()()20x x m y y m -+-+=整理得:,()()2220x y y m x y ++-+=令,解得或, 2220,0x y y x y ++=+=0x y ==1,1x y ==-故经过三点的圆必过定点和,故D 正确. ,,A P O ()0,0()1,1-故选:BD.【点睛】本题综合考察直线和圆方程的求解,其中D 选项中,对圆恒过定点的处理,是解决问题的关键;同时要注意直线截距定义的把握以及直线倾斜角和斜率之间的关系,属综合中档题. 11.已知等比数列的公比为,其前项的积为,且满足,,,{}n a q n n T 11a >9910010a a ->99100101a a -<-则( ) A .B .01q <<9910110a a -<C .的值是中最大的 D .使成立的最大正整数数的值为198100T n T 1n T >n 【答案】ABD【分析】根据题目所给已知条件,结合等比数列的性质对选项逐一分析,由此确定正确选项. 【详解】∵,∴,∴. 9910010a a ->199000a a >0q >∵,∴, 99100101a a -<-()()99100110a a --<又,∴.故A 正确.11a >01q <<由A 选项的分析可知,,∴,∴,,故991a >10001a <<2991011001a a a =<9910110a a -<1009910099T T a T =<B 正确,C 不正确.∴,()()()()99198121981198219799100991001T a a a a a a a a a a a ===> ,()()()1991991219819911992198991011001001T a a a a a a a a a a a a ===< ∴使成立的最大正整数数的值为198,故D 正确.1n T >n故选:ABD12.(多选)已知函数,下列关于的四个命题,其中真命题有( )2()x x f x e =()f x A .函数在上是增函数 ()f x []0,1B .函数的最小值为0 ()f x C .如果时,,则的最小值为2 []0,x t ∈max 24()f x e=t D .函数有2个零点 ()f x 【答案】ABC【分析】利用导数研究函数的单调性,画出函数图像,数形结合解决问题.【详解】对于A ,因为,求导得,当或时,,当()2x x f x e=()()2xx x f x e -'=0x <2x >()0f x '<时,,故在和上单调递减,在上单调递增,故A 正确;02x <<()0f x '>()f x (),0∞-()2,∞+()0,2对于B , 当时,,当时,,故B 正确; 0x =()0f x =x →+∞()0f x →对于C , 当时,,则的图像如下所示: 2x =()242f e =()f x如果时,,由图可知的最小值为, 故C 正确; []0,x t ∈()2max 4f x e =t 2对于D , 由图可知只有一个零点,故D 不正确. ()f x 故选:ABC.【点睛】关键点点睛:本题考查利用导数研究函数的单调性,最值以及零点,解题的关键是要利用导数研究函数的单调性,最值,进而作出函数的图像,考查学生的运算能力与数形结合思想,属中档题.三、填空题13.已知直线与垂直,则m 的值为______. 1:210l x my ++=()2:4120l mx m y +++=【答案】0或-9##-9或0【分析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得1:210l x my ++=()2:4120l mx m y +++=24(1)0m m m ⨯++=或,0m =9m =-所以m 的值为0或-9. 故答案为:0或-9 14.设曲线在点处的切线与轴的交点的横坐标为,令,则()1*N n y xn +=∈(1,1)x n x lg nn ax =的值为___. 122999a a a a ++++ 【答案】3-【分析】由导数的几何意义求得切线方程,令再求的与轴的交点的横坐标为,代入0y =x n x 中求得的通项公式,进而求得的值.lg n n a x =n a 122999a a a a ++++ 【详解】曲线,()1*N n y xn +=∈,(1),(1)n y n x '∴=+f ∴'1n =+曲线在处的切线方程为,∴1*()n y x n N +=∈(1,1)1(1)(1)y n x -=+-该切线与轴的交点的横坐标为, x 1n nx n =+, lg n n a x = , lg lg(1)n a n n ∴=-+12999a a a ∴+++ (lg1lg 2)(lg 2lg 3)(lg 3lg 4)(lg 4lg 5)(lg 5lg 6)(lg 999lg1000)=-+-+-+-+-++- lg1lg1000 3.=-=-故答案为:.3-15.甲、乙两地相距240 km ,汽车从甲地以速度v (km/h)匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为v 3元.为使全程运输成本最16400小,汽车应以________km/h 的速度行驶. 【答案】80【分析】根据汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为元,可构建函数,利用导数可求函数的极值,极值就是最值. 316400v【详解】解:设全程运输成本为元, y 由题意,得,, 3224011601(160)240()64006400y v v v v =+=+0v >. 21602240()6400y v v '=-+令,得.0y '=80v =当时,;当时,. 80v >0'>y 080v <<0'<y 所以函数在上递减,在上递增, 3224011601(160)240()64006400y v v v v =+=+()0,80()80,+∞所以 km/h 时,. 80v =720min y =故答案为:80.16.若倾斜角为的直线过椭圆的左焦点且交椭圆于,两点,若6π22221,(0)x y a b a b +=>>F A B ,则椭圆的离心率为___. ||3||AFBF =【分析】根据题意得出直线的方程为,设,将直线方程与椭圆AB )y x c =+1122(,),(,)A x y B x y 方程联立可得可得:,进而化简1y =2y =||3||AF BF=123y y =-即可求解.【详解】椭圆左焦点,直线的倾斜角为(,0)F c -AB 6π直线的方程为,设,∴AB )y x c =+1122(,),(,)A x y B x y 联立,得. )22221y x c x y a b ⎧=+⎪⎪⎨⎪+=⎪⎩()2222430a b y cy b +--=解得:1y =2y=,.||3||AF BF = 123y y ∴=-,)2222232c abc ab +=-⨯-即,解得:224c ab =c e a ==四、解答题17.已知点及圆:.()2,0P C 226440x y x y +-++=(1)若直线过点且与圆心的距离为,求直线的方程.l P C 1l (2)设直线与圆交于,两点,是否存在实数,使得过点的直线垂直平10ax y -+=C A B a ()2,0P 2l 分弦?若存在,求出实数的值;若不存在,请说明理由.AB a 【答案】(1)或;(2)见解析3460x y +-=2x =【详解】试题分析:(1)当直线斜率存在时,设出直线方程,利用圆心到直线的距离等于建立方程,解出1子线的斜率,由此求得直线方程.当直线斜率不存在时,直线方程为,经验证可知也符合.(2)将直线2x =方程代入圆的方程,利用判别式大于零求得的取值范围,利用”圆的弦的垂直平分线经过圆心”,求出a 直线的斜率,进而求得的值,由此判断不存在.a a 试题解析:(1)设直线l 的斜率为k(k 存在),则方程为y -0=k(x -2),即kx -y -2k =0.又圆C 的圆心为(3,-2),半径r =3,1,解得k =. 34-所以直线方程为,即3x +4y -6=0. ()324y x =--当l 的斜率不存在时,l 的方程为x =2,经验证x =2也满足条件(2)把直线y =ax +1代入圆C 的方程,消去y ,整理得(a 2+1)x 2+6(a -1)x +9=0.由于直线ax -y +1=0交圆C 于A ,B 两点,故Δ=36(a -1)2-36(a 2+1)>0,解得a<0.则实数a 的取值范围是(-∞,0).设符合条件的实数a 存在.由于l 2垂直平分弦AB ,故圆心C(3,-2)必在l 2上.所以l 2的斜率k PC =-2.而k AB =a =-,所以a =. 1PCk -12由于,故不存在实数a ,使得过点P(2,0)的直线l 2垂直平分弦AB ()1,02∉-∞【点睛】本小题主要考查直线和圆的位置关系,考查直线和圆相交时的代数表示方法.第一问由于题目给出圆心到直线的距离,故可利用点到直线的距离公式,建立方程,求的直线的斜率.由于直线的斜率可能不存在,故必须对直线斜率不存在的情况进行验证.直线和圆相交,那么直线和圆方程联立所得一元二次不等式的判别式要大于零.18.已知函数. ()()()1ln 0a f x x a x a x=-+->(1)当时,求的单调区间;3a =()f x (2)讨论的极值.()f x 【答案】(1)单调递增区间为,,单调递减区间为()0,1()3,+∞()1,3(2)答案见解析【分析】(1)求导,令导数大于0得增区间,导数小于0得减区间;(2)先求导函数,分类讨论函数的单调性,根据单调性得极值即可.【详解】(1)当时,, 3a =()34ln f x x x x =--则. ()()()22223143431x x x x f x x x x x ---+'=-+==由,得或;由,得.()0f x ¢>01x <<3x >()0f x '<13x <<所以的单调递增区间为,,单调递减区间为.()f x ()0,1()3,+∞()1,3(2) ()()()21x a x f x x --'=当时,的单调递增区间为,,单调递减区间为,01a <<()f x ()0,a ()1,+∞(),1a 故此时的极大值为,极小值为;()f x ()()11ln f a a a a =--+()11f a =-当时,,即在上单调递增.此时无极值;1a =()0f x '≥()f x ()0,∞+()f x 当时,的单调递增区间为,,单调递减区间为,故此时的极大值1a >()f x ()0,1(),a +∞()1,a ()f x 为,极小值为.()11f a =-()()11ln f a a a a =--+综上所述:当时, 的极大值为,极小值为; 01a <<()f x ()()11ln f a a a a =--+()11f a =-当时,,即在上单调递增.此时无极值;1a =()f x ()0,∞+()f x 当时, 的极大值为,极小值为.1a >()f x ()11f a =-()()11ln f a a a a =--+ ()()()21x a x f x x --'=19.已知是递增的等差数列,,且,,成等比数列.{}n a 13a =13a 4a 1a (1)求数列的通项公式;{}n a(2)设数列的前n 项和为,求证:. 11n n a a +⎧⎫⎨⎬⎩⎭n T 11156n T ≤<【答案】(1)21n a n =+(2)见解析.【分析】(1)根据等差数列的基本量以及等比中项的关系即可求解.(2)根据裂项相消求和,即可求出,然后根据单调性即可证明.n T 【详解】(1)设的公差为 ,因为,,成等比数列,{}n a d 13a 4a 1a 所以 ,()()222411333331220a a a d d d d =⋅⇒+=+⇒-=因为是递增,所以,故 ,所以. {}n a 0d >2d =21n a n =+(2), ()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭所以 , 11111111112355721232323n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 因为 单调递减,所以 单调递增, 123n +n T 故当 时, ,而, 1n =min 11()15n T T ==111123236n n T ⎛⎫=-< ⎪+⎝⎭故. 11156n T ≤<20.已知过圆C 1:x 2+y 2=1上一点的切线,交坐标轴于A 、B 两点,且A 、B 恰好分别为1(2E 椭圆C 2:(a >b >0)的上顶点和右顶点. 22221x y a b+=(1)求椭圆C 2的方程;(2)已知P 为椭圆的左顶点,过点P 作直线PM 、PN 分别交椭圆于M 、N 两点,若直线MN 过定点Q (﹣1,0),求证:PM ⊥PN .【答案】(1);(2)证明见解析. 221443x y +=【分析】(1)设切线方程为y k (x ﹣),由圆心到直线的距离等于半径,建立方程,解出k =﹣12A (0,和B (2,0),直接写出椭圆的方程; (2)由(1)可知p (﹣2,0),设直线MN 方程为:x =my ﹣1,M (x 1,y 1),N (x 2,y 2)用设而不求法表示出,整理化简可得,即可证明PM ⊥PN .PM PN A 0PM PN = A 【详解】(1)设过点的切线方程为yk (x ﹣),即kx ﹣y =0, 12E ⎛ ⎝1212k 因为圆心到直线的距离等于半径,,解得k =所以切线方程为,0x y -=令x =0,得y A (0,令y =0,得x =2,B (2,0).所以b a =2, 所以椭圆C 2方程为:. 221443x y +=(2)由(1)可知p (﹣2,0),设直线MN 方程为:x =my ﹣1,M (x 1,y 1),N (x 2,y 2)联立直线与椭圆的方程得:(m 2+3)y 2﹣2my ﹣3=0,y 1+y 2=,y 1y 2=, 223m m +233m -+x 1+x 2=(my 1﹣1)+(my 2﹣1)=m (y 1+y 2)﹣2,x 1x 2=(my 1﹣1)(my 2﹣1)=m 2y 1y 2﹣m (y 1+y 2)+1,=(x 1+2,y 1)•(x 2+2,y 2)=(x 1+2)(x 2+2)+y 1y 2 PM PN A =x 1x 2+2(x 1+x 2)+4+y 1y 2,=m 2y 1y 2﹣m (y 1+y 2)+1+2[m (y 1+y 2)﹣2]+4+y 1y 2,=(m 2+1)y 1y 2+m (y 1+y 2)+1,=(m 2+1)()+m ()+1, 233m -+223m m +==0, 222233233m m m m --++++所以PM ⊥PN .21.已知数列{an }为等差数列,S 2=0,S 6﹣S 3=21.(1)求数列{an }的通项公式;(2)设bn ,求数列{bn }的前n 项和Tn . 11n n a a +=【答案】(1)an =2n ﹣3;(2)Tn 21n n =--【分析】(1)设等差数列的首项为,公差为,根据所给条件得到方程组,解得即可; {}n a 1a d (2)由(1)可得,再利用裂项相消法求前项和;()()12123n b n n =--n 【详解】(1)数列{an }为等差数列,S 2=0,S 6﹣S 3=21.设数列的首项为a 1,公差为d ,则:,112047a d a d +=⎧⎨+=⎩解得:,d =2,11a =-所以,an =2n ﹣3;(2)由于:an =2n ﹣3, 所以:, ()()111111212322321n n n b a a n n n n +⎡⎤===-⎢⎥----⎣⎦所以:(), 12n T =11111132321n n --+-++--- , 111221n ⎛⎫=-- ⎪-⎝⎭. 21n n =--【点睛】本题考查等差数列的通项公式及求和公式的应用,裂项相消法求和,属于中档题.22.已知函数.()()ln 2e x f x x ax x =-+-(1)当时,求曲线在点处的切线方程;1a =()y f x =()()1,1f (2)当时,对任意的恒成立,求满足条件的实数的最小整数值. 1a ≥()f x b ≤1,13x ⎛⎫∈ ⎪⎝⎭b 【答案】(1)1e y =--(2)−3【分析】(1)求出在处的导数值,求出,即可得出切线方程;()f x 1x =()1f(2)不等式化为对任意的恒成立即可,构造函数()2e ln x b x x x ≥-+-1,13x ⎛⎫∈ ⎪⎝⎭,利用导数求出最大值即可得出.()()2e ln x g x x x x =-+-【详解】(1)当时,,, 1a =()()ln 2e x f x x x x =-+-()()111e x f x x x'=-+-则,,所以切线方程为.()11e f =--()10f '=1e y =--(2)因为对任意的恒成立, ()f x b ≤1,13x ⎛⎫∈ ⎪⎝⎭即,当时,对任意的恒成立, ()2e ln x b x x ax ≥-+-1a ≥1,13x ⎛⎫∈ ⎪⎝⎭∵,,∴, 1a ≥0x >()()2e ln 2e ln x x x x ax x x x -+-≤-+-只需对任意的恒成立即可. ()2e ln x b x x x ≥-+-1,13x ⎛⎫∈ ⎪⎝⎭构造函数,, ()()2e ln x g x x x x =-+-()()()111e 11e x x g x x x x x ⎛⎫'=-+-=-- ⎪⎝⎭∵,∴,且单调递增, 1,13x ⎛⎫∈ ⎪⎝⎭10x -<()1e x t x x =-∵,, 121e 202t ⎛⎫=-< ⎪⎝⎭()1e 10t =->∴一定存在唯一的,使得, 01,12x ⎛⎫∈ ⎪⎝⎭()00t x =即,, 001e x x =00ln x x =-且当时,,即;当时,,即. 013x x <<()0t x <()0g x '>01x x <<()0t x >()0g x '<所以函数在区间上单调递增,在区间上单调递减, ()y g x =01,3x ⎛⎫ ⎪⎝⎭()0,1x ∴, ()()()()000000max 012e ln 124,3x g x g x x x x x x ⎛⎫==-+-=-+∈-- ⎪⎝⎭所以b 的最小整数值为−3.。

江苏省南京市高二上学期期末数学试题(解析版)

江苏省南京市高二上学期期末数学试题(解析版)

高二上学期期末数学试题一、单选题1.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()f x ()y f x =()y f x '=( )A .B .C .D .【答案】D【分析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据()f x ()f x ()f x '此可判断的图象.()f x '【详解】由的图象可知,在上为增函数,()f x ()f x (),0∞-且在上存在正数,使得在上为增函数, ()0,∞+,m n ()f x ()()0,,,m n +∞在为减函数,(),m n 故在有两个不同的零点,且在这两个零点的附近,有变化, ()f x '()0,∞+()f x '故排除A ,B.由在上为增函数可得在上恒成立,故排除C. ()f x (),0∞-()0f x '≥(),0∞-故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.2.函数的单调递增区间( )()(31)x f x x e =-A .B .C .D .1(,3-∞2(,3-∞-2(,)3-+∞1(,)3+∞【答案】C【分析】求导,令求解. ()0f x '>【详解】解:因为, ()(31)x f x x e =-所以,()(32)x f x x e =+'令,解得,()0f x '>23x >-所以函数的单调递增区间是,()f x 2(,)3-+∞故选:C3.如图,在正方体中,,,,若为的中点,在1111ABCD A B C D -AB a = AD b = 1AA c =E 1DDF 上,且,则等于( )BD 3BF FD =EFA .B .111332a b c --111442a b c --C .D .111442a b c -+ 111233a b c -+ 【答案】B【分析】利用空间向量的线性元素和空间向量的基本定理求解. 【详解】,11142=-=-EF DF DE DB DD , ()11111142442=--=--AB AD DD a b c 故选:B4.直线与圆相交于点,点是坐标原点,若是正三角x y +=2222(1)x y a a +=+-,A B O AOB A 形,则实数的值为 a A .1B .-1C .D .1212-【答案】C【详解】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到(0,0)O r 直线的距离为,则d d 由条件得,整理得. r =2243d r =所以,解得.选C . 222633(1)a a a =+-12a =5.已知函数有两个零点,则实数a 的取值范围为( )()2ln xf x ax ax x e =--A .B .C .D .10,e ⎛⎫ ⎪⎝⎭()0,e 1,e ⎛⎫+∞ ⎪⎝⎭(),e +∞【答案】D【分析】令,再参变分离得到,再求导分析的单调性,进()0f x =2ln x e a x x x =-()2ln xe g x x x x=-而得到函数图象,数形结合即可得实数a 的取值范围【详解】函数有两个零点,即有两根,又()2ln x f x ax ax x e =--()2ln 0xa x x x e --=,故可转换为有两根,令, 则()2ln ln 0x x x x x x -=->2ln x e a x x x =-()2ln xe g x x x x =-,令,则,故()()()()()()22222ln 2ln 111ln ln ln x x e x x x x x e x x x g x xx x xx x --++---'==--()1ln h x x x =--()1x h x x-'=在上单调递减,在上单调递增,故,当且仅当时等号成立,故()h x ()0,1()1,+∞()()10h x h ≥=1x =在上,单调递减;在上,单调递增,所以()0,1()0g x '<()g x ()1,+∞()0g x '>()g x ,又当与时,故实数a 的取值范围为 ()()min 1g x g e ==0x +→x →+∞()g x ∞→+(),e +∞故选:D【点睛】本题主要考查了利用导数解决函数的零点个数问题,需要根据题意参变分离,再求导分析单调性与最值,属于难题6.在平面直角坐标系中,已知点,若是抛物线上一动点,则到轴的距离xOy (1,2)A P 22y x =P y 与到点的距离之和的最小值为( ) P A AB C .D【答案】D【分析】根据题意画出图形,利用抛物线定义与三角形三边关系即可求解. 【详解】依题意,可得出如下图形:抛物线的方程为,22y x =抛物线的焦点为,,准线方程为,∴1(2F 0)l 12x =-设点在轴上的射影为点,延长交准线于点,连结, P y Q PQ l B PF 则长即为点到轴的距离,可得,PQ P y 12PB PQ =+根据抛物线的定义,得,||||PB PF =, 1122PQ PA PB PA PF PA ∴+=+-=+-根据平面几何知识,可得,得. PF PA AF +≥12PQ PA AF +≥-当且仅当、、三点共线时等号成立,P A F1122==当、、三点共线时,的最小值为∴P A F PQ PA +即到轴的距离与到点P y P A 故选:D.7.已知定义在上的函数满足:,且,则的解集为R ()f x ()()0xf x f x '+>()12f =()2e e xxf >( ) A . B . C .D .()0,+∞()ln2,+∞()1,+∞()0,1【答案】A【分析】令,利用导数可判断其单调性,从而可解不等式. ()()g x xf x =()2e e xxf >【详解】设,则, ()()g x xf x =()()()0g x xf x f x ''=+>故为上的增函数,()g x R 而可化为即, ()2e exx f >()()e e 211x x f f >=⨯()()g e 1x g >故即,所以不等式的解集为, e 1x >0x >()2e e xxf >()0,+∞故选:A.8.已知数列是首项为1,公差为2的等差数列,数列满足关系:{}n a {}n b ,数列的前项和为,则的值为( ) 312123112n n n a a a a b b b b +++⋯+=-{}n b n n S 5S A .454 B .450 C .446 D .442【答案】A【分析】由已知可得,进而根据已知可推出当时,.进而得出21n a n =-2n ≥12n n n a b =()212n n b n =-⋅,求出前5项,相加即可得出答案.【详解】由题意可得:. 12(1)21n a n n =+-=-又①, 312123112n nn a a a a b b b b +++⋯+=-当时,②, 2n ≥311211231112n n n a a a a b b b b ---+++⋯⋯+=-①-②可得:, 111111222n n n n n a b -⎛⎫=---= ⎪⎝⎭所以.()2212n nn n b a n ==-⋅又时,,可得,显然满足, 1n =11112a b =-12b =()212n n b n =-⋅所以.()212nn b n =-⋅所以. 512345S b b b b b =++++2345232527292454=+⨯+⨯+⨯+⨯=故选:A.二、多选题9.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有,则P ,A ,B ,C 四点共面111632OP OA OB OC =++C .已知向量是空间的一个基底,若,则也是空间的一个基底{},,a b c m a c =+{},,a b m D .若,则是钝角 0a b ⋅<,a b 【答案】ABC【分析】对于A ,根据共线向量的概念理解判断;对于B :根据且OP xOA yOB zOC =++u u u r u u r u u u r u u u rP ,A ,B ,C 四点共面,分析判断;对于C :基底向量的定义是空间的一个1x y z ++=⇔{},,a b c基底不共面,分析判断;对于D :根据数量积的定义可得,结合向量夹角的,,a b c ⇔cos ,0a b < 范围分析判断.【详解】对于A ,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线, 则这三个向量一定共面,所以A 正确;对于B ,若对空间中任意一点O ,有因为,111632OP OA OB OC =++ 1111632++=根据空间向量的基本定理,可得P ,A ,B ,C 四点一定共面,所以B 正确;对于C ,由于是空间的一个基底,则向量不共面{},,a b c ,,a b c∵,则共面m a c =+,,a c m ∴可得向量不共面,所以也是空间的一个基底,所以C 正确;,,a b m{},,a b m 对于D ,若,即,又,所以,所以Dcos ,0⋅=< a b a b a b cos ,0a b <[],0,π∈ a b π,,π2a b ⎛⎤∈ ⎥⎝⎦ 不正确. 故选:ABC .三、单选题10.函数,下列对函数的性质描述正确的是( ) 3()32()f x x ax a R -+∈=()f x A .函数的图象关于点对称 ()f x ()0,2B .若,则函数f (x )有极值点0a ≤C .若,函数在区间单调递减0a >()f x (,-∞D .若函数有且只有3个零点,则a 的取值范围是 ()f x ()1,+∞【答案】AD【分析】利用函数的对称性即可判断选项A 是否正确;对函数求导,分别就和进行()f x 0a ≤0a >讨论,即可判断选项B 、C 是否正确;函数有三个不同的零点,根据函数3()32()f x x ax a R -+∈=的单调性,可知函数的极小值小于0,极大值大于0,列出不等式组,求出a 的取值范围,由()f x 此即可判断选项D 是否正确.【详解】对于选项A ,因为,所以,所以3()32()f x x ax a R -+∈=3()32()f x x ax a R --++∈=,所以函数的图象关于点对称,故选项A 正确;()()4f x f x +-=()f x ()0,2对于选项B ,由,当时,,函数在定义域内为增函()()22333f x x a x a '=-=-0a ≤()0f x '≥()f x 数,此时函数没有极值点,故选项B 错误;()f x 对于选项C ,当时,由,解得又∵时,,所以函0a>()0f x '=x =(x ∈-∞()0f x >′数在区间单调递增,故选项C 错误;()f x (,-∞对于选项D ,由,()()22333f x x a x a '=-=-当时,,函数在定义域内为增函数,故不存在三个零点,不符合题意; 0a ≤()0f x '≥()f x当时,由,解得0a >()0f x '=x =又∵时,,时,,时,,(x∈-∞,()0f x >′(x ∈()0f x <′)x ∈+∞()0f x >′∴函数单调递增区间为和,单调递减区间为,()f x (,-∞)+∞(∴函数的极小值和极大值.22f=-+(22f =+∵函数有三个不同的零点,3()32()f x x axa R -+∈=∴,即 , 解得,故选项D 正确. 000a f f⎧>⎪⎪>⎨⎪⎪<⎩01010a >⎧⎪>⎨⎪>⎩1a >故选:AD.【点睛】方法点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.四、多选题11.在平面直角坐标系中,三点A (-1,0),B (1,0),C (0,7),动点P 满足,则以下结论正确的是( )A .点P 的轨迹方程为(x -3)2+y 2=8B .△PAB 面积最大时,PA=C .∠PAB 最大时,PA=D .P 到直线AC 距离最小值为【答案】ACD【分析】根据可求得点轨迹方程为,A 正确;PA =P ()2238x y -+=根据直线过圆心可知点到直线的距离最大值为AB P AB (3,P ±,由此可确定B 不正确;当最大时,为圆的切线,利用切线长的求法可知C 错误; ∠PAB PA 求得方程后,利用圆上点到直线距离最值的求解方法可确定D 正确.AC【详解】解:对于A :设,由得:,即(),P x y PA =222PA PB =()()2222121x y x y ⎡⎤++=-+⎣⎦,化简可得:,即点轨迹方程为,故A 正确; ()2238x y -+=P ()2238x y -+=对于B :直线过圆的圆心,点到直线的距离的最大值为圆AB ()2238x y -+=∴P AB的半径,即为,()2238x y -+=r,面积最大为,2AB = PAB ∴A 122⨯⨯=(3,P ±B 不正确;PA ∴==对于C :当最大时,则为圆的切线,∠PAB PA ()2238x y -+=,故C 正确;∴PA ==对于D :直线的方程为,则圆心到直线, AC 770x y -+=()3,0AC =点到直线D 正确.∴P AC -=故选:ACD.12.“已知函数,对于上的任意,,若______,则必有2()cos f x x x =-,22ππ⎡⎤-⎢⎥⎣⎦1x 2x ()()12f x f x >恒成立.”在横线中填上下列选项中的某个条件,使得上述说法正确的可以是( ) A . B .C .D .12x x >120x x +>2212x x >121x x >【答案】CD【分析】确定函数的奇偶性和单调性后再判断.【详解】,是偶函数,22()()cos()cos ()f x x x x x f x -=---=-=()f x在上,是增函数,是减函数,因此是增函数, 0,2π⎡⎤⎢⎥⎣⎦2y x =cos y x =()f x 因此,四个选项中只有CD 能得出. 12x x >12()()f x f x ⇔>12x x >故选:CD .五、填空题13.已知数列为等差数列,.若数列也为等差数列,则___________.{}n a 13a =2{}n a n a =【答案】3【分析】根据等差数列的通项公式与中项公式即可求解. 【详解】依题意,由数列为等差数列,设其公差为,且, {}n a d 13a =得,, 23a d =+332a d =+又数列也为等差数列,2{}n a 则,即,2222132a a a =+()()2223932d d +=++解得:. 0d =.3n a ∴=故答案为:3.14.若函数在上单调递增,则实数的取值范围为____()sin cos f x x x =+[]0,a a 【答案】0,4π⎛⎤⎥⎝⎦【解析】利用辅助角公式进行化简解析式,再借助正弦函数的单调递增区间进行求解即可.【详解】由题意知,,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭所以,22,242k x k k z πππππ-+≤+≤+∈解得, 322,44k x k k z ππππ-+≤≤+∈令可得,, 0k =344x ππ-≤≤所以为函数的一个单调递增区间,3,44ππ⎡⎤-⎢⎥⎣⎦()f x 因为函数在上单调递增,所以.()f x []0,a 04a π<≤故答案为:0,4π⎛⎤⎥⎝⎦【点睛】本题考查利用辅助角公式进行化简、利用正弦函数的单调区间求参数的取值范围;考查运算求解能力和整体代换的思想;熟练掌握辅助角公式和正弦函数的单调区间是求解本题的关键;属于中档题.六、双空题15.已知数列的各项均为正数,其前n 项和为,且,n ,则=_______;{}n a n S 12n n n S a a +=N *∈4a 若=2,则=_______. 1a 20S 【答案】 4 220【分析】当时,利用, 即可得到 ,取即可.2n ≥1n n n a S S -=-n a 4n =利用已知递推公式,结合首项可以求得,进一步做差可以得出的奇数项和偶数项分别成22a ={}n a 等差数列,分组后利用等差数列求和公式即可. 【详解】根据①,得②, 12n n n S a a +=112n n n S a a --=①﹣②得, 112n n a a +--=()2n ≥又时,,可得 1n =1122a a a =⋅22a =故;4224a a =+=当=2,,可得 , 1a 22a =,1n n n a n n ⎧=⎨+⎩为偶数,为奇数即可求得201351924620=(++++)+(++++)S a a a a a a a a L L . (220)10(2+20)10=22022+⨯⨯=+故答案为:4;220【点睛】本题主要考查了与的关系,数列的递推关系式,以及等差数列的定义和通项,属于n a n S 中档题.七、填空题16.已知函数为定义在R 上的增函数,且对,若不等式()f x ()()R,2x f x f x ∀∈+-=对恒成立,则实数a 的取值范围是_______ 1()2ln 2f ax f x ⎛⎫+≥ ⎪⎝⎭()0,x ∀∈+∞【答案】 2,e⎡⎫+∞⎪⎢⎣⎭【分析】由,可得,则不等式可转化为()()R,2x f x f x ∀∈+-=12ln (2ln )2(2ln )f f x f x x ⎛⎫=-=- ⎪⎝⎭对恒成立,根据函数为定义在R 上的增函数,可得,通()(2ln )f ax f x ≥()0,x ∀∈+∞()f x 2ln ax x ≥过分离参数,利用导数研究函数的单调性极值即可求得结果【详解】因为,()()R,2x f x f x ∀∈+-=所以,12ln (2ln )2(2ln )f f x f x x ⎛⎫=-=- ⎪⎝⎭因为不等式对恒成立,1()2ln 2f ax f x ⎛⎫+≥ ⎪⎝⎭()0,x ∀∈+∞所以对恒成立,()(2ln )f ax f x ≥()0,x ∀∈+∞因为函数为定义在R 上的增函数,()f x 所以,得在上恒成立,2ln ax x ≥2ln xa x ≥()0,x ∀∈+∞令,,则,2ln ()xg x x =()0,x ∈+∞22(1ln )()x g x x -'=当时,,当时,,0e x <<()0g x '>e x >()0g x '<所以 在上递增,在上递减,2ln ()xg x x =()0,e ()e,+∞所以当时,取得最大值,,e x =()g x max 2()(e)=e g x g =所以, 2e a ≥所以实数a 的取值范围是,2,e ⎡⎫+∞⎪⎢⎣⎭故答案为:2,e ⎡⎫+∞⎪⎢⎣⎭八、解答题17.记S n 为等比数列的前n 项和,已知S 2=2,S 3=-6.{}n a (1)求的通项公式;{}n a (2)求Sn ,并判断Sn +1,Sn ,Sn +2是否成等差数列.【答案】(1);(2)见解析.(2)n n a =-【详解】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利2q =-12a =-用等差中项证明Sn +1,Sn ,Sn +2成等差数列.试题解析:(1)设的公比为.由题设可得 ,解得,. {}n a q ()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩2q =-12a =-故的通项公式为.{}n a ()2n n a =-(2)由(1)可得. ()()111221133nn n n a q S q +-==-+--由于, ()()321214222212123333n n n n n n n n S S S +++++⎡⎤-+=-+-=-+-=⎢⎥⎣⎦故,,成等差数列.1n S +n S 2n S +点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18.已知E ,F 分别是正方体的棱BC 和CD 的中点.1111ABCD A B CD -(1)求与所成角的大小;1A D EF (2)求与平面所成角的余弦值.1A E 1B FB 【答案】(1)60°; (2).23【分析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而结合异面直线成角的范围即可求出结果;(2)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出求出线面角的正弦值,进而结合线面角的范围即可求出结果;【详解】(1)以AB ,AD ,所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,1AA设正方体的棱长为,则,,,,1111ABCD A B C D -2a 1(0,0,2)A a (0,2,0)D a ()2,,0E a a (),2,0F a a 所以,,设与EF 所成角的大小为,1(0,2,2)A D a a =- (,,0)EF a a =- 1A D α则, 1111cos cos ,2A D EF A D EF A D EF α⋅====⋅ 因为异面直线成角的范围是,所以与所成角的大小为60°.(0,90⎤⎦ 1A D EF (2)设平面的法向量为,与平面所成角为,. 1B FB ()0000,,n x y z = 1A E 1B FB β0,2⎡⎤∈⎢⎥⎣⎦πβ因为,,所以,,(2,0,0)B a 1(2,0,2)B a a (,2,0)BF a a =- 1(0,0,2)BB a = 所以,令,得为平面的一个法向量,又因为0000102020n BF ax ay n BB az ⎧⋅=-+=⎪⎨⋅==⎪⎩ 02x =0(2,1,0)n = 1B FB ,1(2,,2)A E a a a =- 所以101010sin cos ,A E n A E n AE n β⋅====⋅ 所以. 2cos 3β==19.已知公差大于0的等差数列满足. {}n a 122311111+++⋅⋅⋅+=+n n n a a a a a a n (1)求的通项公式; {}n a (2)若,求数列的前21项和.1(1)n n n n b a a +=-{}n b 21S 【答案】(1);n a n =(2).242-【分析】(1)利用等差数列的通项公式结合条件列方程组解得,,即得;1a d (2)由题可得,然后分组求和法可得,结合条件进而即得.n b 2n S 【详解】(1)根据题意,当时,,即①,1n =12112a a =122a a =当时,,所以②, 2n =12231123a a a a +=236a a =设等差数列的公差为,{}n a (0)d d >由①②得,解得, 1111()2()(2)6a a d a d a d +=⎧⎨++=⎩111a d =⎧⎨=⎩所以;11n a n n =+-=(2)因为,则,1(1)n n a a n n +=+1(1)(1)(1)n n n n n b a a n n +=-=-+所以,212(21)22(21)4n n b b n n n n n -+=--⋅++=所以, 22122124(1)4(12)222n n n n n S b b b b n n n -+=++++=⨯+++==+ 所以,又,20210020220S =⨯+=212122462b =-⨯=-故.21220462242S =-=-20.已知函数.2()2(1)2ln (0)f x x a x a x a =-++>(1)当时,求曲线在点处的切线方程;1a =()y f x =(1, (1))f (2)求的单调区间;()f x 【答案】(1)(2)详见解析=3y -【解析】(1)分别求得和,从而得到切线方程;()1f ()1f '(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负()0f x '=01a <<1a =1a >得到函数的单调区间.【详解】(1),,, 1a = ()242ln f x x x x ∴=-+()224f x x x'∴=-+,又,()10f '∴=()1143f =-=-在处的切线方程为.()f x \()()1,1f =3y -(2), ()()()()()()222122122210x a x a x a x a f x x a x x x x-++--'=-++==>令,解得:,.()0f x '=1x a =21x =①当时,若和时,;若时,;01a <<()0,x a ∈()1,+∞()0f x ¢>(),1x a ∈()0f x '<的单调递增区间为,;单调递减区间为;()f x \()0,a ()1,+∞(),1a ②当时,在上恒成立,1a =()0f x '≥()0,∞+的单调递增区间为,无单调递减区间;()f x \()0,∞+③当时,若和时,;若时,;1a >()0,1x ∈(),a +∞()0f x ¢>()1,x a ∈()0f x '<的单调递增区间为,;单调递减区间为;()f x \()0,1(),a +∞()1,a 综上所述:当时,的单调递增区间为,;单调递减区间为; 01a <<()f x ()0,a ()1,+∞(),1a 当时,的单调递增区间为,无单调递减区间;1a =()f x ()0,∞+当时,的单调递增区间为,;单调递减区间为.1a >()f x ()0,1(),a +∞()1,a 【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.21.已知函数,.()ln f x kx x x =-R k ∈(1)当时,求函数的单调区间;2k =()f x (2)当时,恒成立,求的取值范围;01x <≤()f x k ≤k 【答案】(1)单调递增区间为,单调递减区间为()f x (0,e)(e,)+∞(2),[1)∞+【分析】(1)直接对函数求导,利用导函数的正负即可求出单调区间.()f x (2)求出导函数,对参数进行分类讨论即可.k 【详解】(1)当时,,,,2k =()2ln f x x x x =-0x >()1ln f x x '=-由,解得;由,解得,()0f x ¢>0e x <<()0f x '<e x >所以函数单调递增区间为,单调递减区间为.()f x (0,e)(e,)+∞(2),故,()ln f x kx x x =-()1ln f x k x '=--当时,因为,所以,因此恒成立,1k ≥01x <≤10ln k x -≥≥()0f x '≥即在,上单调递增,所以(1)恒成立,()f x (01]()f x f ≤k =当时,令,解得,1k <()0f x '=1e (0,1)k x -=∈当,,单调递增;1(0,e )k x -∈()0f x ¢>()f x当,,单调递减,1(e ,)k x -∈+∞()0f x '<()f x 于是,与恒成立相矛盾,()1(e )1k f f k ->=()f x k ≤综上,的取值范围为,.k [1)∞+22.已知分别是椭圆的左、右焦点,动点在椭圆上,面12,F F ()2222:10x y C a b a b+=>>M C 12MF F △积最大值为,离心率2e =(1)求椭圆的标准方程;C (2)若过点的直线与椭圆交于两点,问:是否存在实数,使得恒1F l C ,A B 1111AF BF t AF BF +=成立.如果存在.求出的值.如果不存在,说明理由.t 【答案】(1);(2)存在实数. 22142x y +=2t =【分析】(1)根据离心率公式,三角形面积公式以及关系列方程组求解即可求出方程;,,ab c (2)讨论直线斜率是否存在,从而设直线方程代入椭圆方程,结合韦达定理得出两根关系,利用弦长公式代入条件化简求解即可求出结果.【详解】(1)由题意可得222122,2c e a c b a b c ⎧==⎪⎪⎪⨯⨯=⎨⎪=+⎪⎪⎩解得.2224,2,2a b c ===故椭圆的标准方程为; C 22142x y +=如图,由可知.()2()1())12,F F 当直线的斜率不存在时,l ,则 2111b AF BF a +==11112AF BF t AF BF +==当直线的斜率存在时,设其斜率为,l k 则直线的方程为, l (y k x =+()()1122,,.A x y B x y 联立 (22142y k x x y ⎧=⎪⎨⎪+=⎩整理得, ()222221440k x x k +++-=则2121224421k x x x x k +=-=+从而1x -=故212214+421k AF BF AB x k ===++则())()221112122211221k AF BF k x x x x k +=++++=+因为, 1111+AF BF t AF BF =所以 ()221121124++421==22121k AF BF k t AF BF k k +=++综上,存在实数,使得恒成立.2t =1111AF BF t AF BF =+【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。

江苏省南京市高二数学上学期期末调研试题 理(含解析)苏教版

江苏省南京市高二数学上学期期末调研试题 理(含解析)苏教版

江苏省南京市2013-2014学年高二数学上学期期末调研试题 理(含解析)苏教版一、填空题:本大题共14小题,每小题3分,共42分. 1.命题“∀x ∈N ,x 2≠x ”的否定是 .4.记函数f (x )=x +1x的导函数为f '(x ),则 f '(1)的值为 . 【答案】-1 【解析】试题分析:根据商的导数运算法则得22(1)1()x x f x x x -+'==-,所以(1)1f '=-解此类问题要注意顺序,不能将题目做成求(1)f 的导数 考点:商的导数运算法则5.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -4≤0,x -y ≥0,y ≥0,则z =x +2y的最大值为 .8.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3, ∠BAA 1=60︒,E 为棱C 1D 1的中点,则→AB ⋅→AE = .CAB D A 1 B 1C 1D 1E(第8题图)11.已知圆柱的体积为16π cm 3,则当底面半径r = cm 时,圆柱的表面积最小. 【答案】2 【解析】试题分析:圆柱的体积为221616V r h r h ππ==⇒=,圆柱的表面积22232162222()S rh r r r πππππ=+=+=+,由2162(2)0S r π'=-+=得2r =, x(0,2)2 (2,)+∞ S '- 0+S ]极小值,也是最小值[当底面半径r =2时,圆柱的表面积最小.考点:利用导数求最值,12.在平面直角坐标系xOy 中,已知椭圆x 24+y 23=1的左焦点为F ,直线x -y -1=0,x -y +1=0与椭圆分别相交于点A ,B ,C ,D ,则AF +BF +CF +DF = .13.定义在R 上的函数y =f (x )的图像经过坐标原点O ,且它的导函数y =f '(x ) 的图像是如图所示的一条直线,则y =f (x )的图像一定不经过第 象限.【答案】一 【解析】试题分析:设导函数y =f '(x )的零点为00,(0)x x <,所以当0x x <时,()f x 单调增;当0x x >时,()f x 单调减,又(0)0f =,则由图像知()f x 一定不经过第一象限.考点:导函数与原函数的关系14.已知A 是曲线C 1:y =ax -2(a >0)与曲线C 2:x 2+y 2=5的一个公共点.若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是 .(第13题图)Oxy二、解答题:本大题共6小题,共58分. 15.(本题满分8分)已知m ∈R ,设p :复数z 1=(m -1)+(m +3)i (i 是虚数单位)在复平面内对应的点在第二象限,q :复数z 2=1+(m -2)i 的模不超过10.(1)当p 为真命题时,求m 的取值范围;(2)若命题“p 且q ”为假命题,“p 或q ”为真命题,求m 的取值范围. 【答案】(1)(-3,1) (2)(-3,-1)∪[1,5] 【解析】试题分析:(1)复数(,)z a bi a b R =+∈对应的点为(,)a b ,所以有⎩⎨⎧m -1<0,m +3>0.从而可解得m 的取值范围为(-3,1),(2)因为命题“p 且q ”一假就假,所以p ,q 中至少有一个为假;因为命题“p 或q ”一真就真,所以p ,q 中至少有一个为真;综合得p ,q 中一真一假.若q 为真,则q 为假;或若q 为假,则q 为真.先求命题为真时参数范围,再根据集合的补集求命题为假时参数范围.试题解析:解(1)因为复数z 1=(m -1)+(m +3)i 在复平面内对应的点在第二象限, 所以⎩⎨⎧m -1<0,m +3>0.解得-3<m <1,即m 的取值范围为(-3,1). ……………… 3分16.(本题满分10分)在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.17.(本题满分10分)在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.(1)若AC1⊥D1F,求a的值;(2)若a=2,求二面角E-FD1-D的余弦值.试题解析:ABC D C 1BA 1D 1E F (第17题z y x ABCD C 1B 1A 1D 1E F(第17题图)18.(本题满分10分)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年....销量..(单位:万件)与(2-x)2成正比,比例系数为4.(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.【答案】(1)y=4x3-20x2+33x-17,(1≤x≤2)(2)不能【解析】(2)由(1)知y =4x 3-20x 2+33x -17,1≤x ≤2, 从而y ′=12x 2-40x +33=(2x -3)(6x -11). 令y ′=0,解得x =32,或x =116.列表如下:x (1,32)32 (32,116) 116 (116,2) f ′(x )+-+f (x ) 递增 极大值 递减 极小值 递增……………… 7分又f (32)=1,f (2)=1,所以f (x )在区间[1,2]上的最大值为1(万元).而往年的收益为(2-1)×1=1(万元),所以,商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益. ……………… 10分考点:函数解析式,利用导数求函数最值19.(本题满分10分)已知函数f (x )=ax 2-(4a +2)x +4ln x ,其中a ≥0. (1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.【答案】(1)2x -y -4=0,(2)当a =0时,f (x )的单调增区间是(0,2),单调减区间是(2,+∞); 当0<a <12时,f (x )的单调增区间是(0,2)和(1a ,+∞),减区间为(2,1a );当a =12时,f (x )的单调增区间是(0,+∞);当a >12时,f (x )的单调增区间是(0,1a )和(2,+∞),减区间为(1a,2)(2)因为f (x )=ax 2-(4a +2)x +4ln x ,所以f ′(x )=2ax -(4a +2)+4x =2ax 2-(4a +2)x +4x =2(ax -1)(x -2)x,其中x >0.①当a =0时,f ′(x )=-2(x -2)x,x >0.由f ′(x )>0得,0<x <2,所以函数f (x )的单调增区间是(0,2);单调减区间是(2,+∞);……………… 6分②当0<a <12时,因为1a >2,由f ′(x )>0,得x <2或x >1a.所以函数f (x )的单调增区间是(0,2)和(1a ,+∞);单调减区间为(2,1a);……………… 8分③当a =12时,f ′ (x )=(x -2)2x ≥0,且仅在x =2时,f ′(x )=0,所以函数f (x )的单调增区间是(0,+∞);④当a >12时,因0<1a <2,由f ′(x )>0,得0<x <1a或x >2,20.(本题满分10分)在平面直角坐标系xOy 中,△ABC 的顶点B 、C 的坐标为B (-2,0),C (2,0),直线AB ,AC 的斜率乘积为-14,设顶点A 的轨迹为曲线E . (1)求曲线E 的方程;(2)设曲线E 与y 轴负半轴的交点为D ,过点D 作两条互相垂直的直线l 1,l 2,这两条直线与曲线E 的另一个交点分别为M ,N .设l 1的斜率为k (k ≠0),△DMN 的面积为S ,试求S ∣k ∣的取值范围. 【答案】(1)x 24+y 2=1(x ≠±2)(2)(0,2017)∪(2017,8017)∪(8017,8)试题解析:解(1)设顶点A 的坐标为(x ,y ),则k AB =y x +2,k AC =y x -2,………… 2分 因为k AB ⋅k AC =-14,所以y x +2⋅ y x -2=-14, 即x 24+y 2=1.(或x 2+4y 2=4).所以曲线E 的方程为x 24+y 2=1(x ≠±2) . ……………… 4分。

2021-2022学年江苏省南京市高二(上)期末数学试卷(理科)

2021-2022学年江苏省南京市高二(上)期末数学试卷(理科)

2021-2021学年江苏省南京市高二〔上〕期末数学试卷〔理科〕一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应位置上1.〔5分〕命题“假设a=b,那么|a|=|b|〞的逆否命题是.2.〔5分〕双曲线=1的渐近线方程是.3.〔5分〕复数为纯虚数,其中i是虚数单位,那么实数a的值是.4.〔5分〕在平面直角坐标系xOy中,点〔4,3〕到直线3x﹣4y+a=0的间隔为1,那么实数a的值是.5.〔5分〕曲线y=x4与直线y=4x+b相切,那么实数b的值是.6.〔5分〕实数x,y满足条件那么z=2x+y的最大值是.7.〔5分〕在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,那么点P的横坐标是.8.〔5分〕在平面直角坐标系xOy中,圆O:x2+y2=r2〔r>0〕与圆M:〔x﹣3〕2+〔y+4〕2=4相交,那么r的取值范围是.9.〔5分〕观察以下等式:〔sin〕﹣2+〔sin〕﹣2=×1×2;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+sin〔〕﹣2=×2×3;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×3×4;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×4×5;…照此规律,〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+〔sin〕﹣2=.10.〔5分〕假设“∃x∈R,x2+ax+a=0〞是真命题,那么实数a的取值范围是.11.〔5分〕函数f〔x〕=〔x2+x+m〕e x〔其中m∈R,e为自然对数的底数〕.假设在x=﹣3处函数f 〔x〕有极大值,那么函数f 〔x〕的极小值是.12.〔5分〕有以下命题:①“m>0〞是“方程x2+my2=1表示椭圆〞的充要条件;②“a=1〞是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行〞的充分不必要条件;③“函数f 〔x〕=x3+mx单调递增〞是“m>0〞的充要条件;④p,q是两个不等价命题,那么“p或q是真命题〞是“p且q是真命题〞的必要不充分条件.其中所有真命题的序号是.13.〔5分〕椭圆E:+=1〔a>b>0〕的焦距为2c〔c>0〕,左焦点为F,点M的坐标为〔﹣2c,0〕.假设椭圆E上存在点P,使得PM=PF,那么椭圆E 离心率的取值范围是.14.〔5分〕t>0,函数f〔x〕=,假设函数g〔x〕=f〔f〔x〕﹣1〕恰有6个不同的零点,那么实数t的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.〔14分〕在平面直角坐标系xOy中,△ABC三个顶点坐标为A〔7,8〕,B〔10,4〕,C〔2,﹣4〕.〔1〕求BC边上的中线所在直线的方程;〔2〕求BC边上的高所在直线的方程.16.〔14分〕数列{a n}满足a1=1,〔a n﹣3〕a n+1﹣a n+4=0〔n∈N*〕.〔1〕求a2,a3,a4;〔2〕猜测{a n}的通项公式,并用数学归纳法证明.17.〔14分〕在平面直角坐标系xOy中,圆M的圆心在直线y=﹣2x上,且圆M 与直线x+y﹣1=0相切于点P〔2,﹣1〕.〔1〕求圆M的方程;〔2〕过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.18.〔16分〕某休闲广场中央有一个半径为1〔百米〕的圆形花坛,现方案在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形〔梯形ABCF和梯形DEFC〕构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径〔如图〕.设∠AOF=θ,其中O为圆心.〔1〕把六边形ABCDEF的面积表示成关于θ的函数f〔θ〕;〔2〕当θ为何值时,可使得六边形区域面积到达最大?并求最大面积.19.〔16分〕在平面直角坐标系xOy中,椭圆E:+=1〔a>b>0〕的离心率为,两个顶点分别为A〔﹣a,0〕,B〔a,0〕,点M〔﹣1,0〕,且3=,过点M斜率为k〔k≠0〕的直线交椭圆E于C,D两点,其中点C在x轴上方.〔1〕求椭圆E的方程;〔2〕假设BC⊥CD,求k的值;〔3〕记直线AD,BC的斜率分别为k1,k2,求证:为定值.20.〔16分〕函数f〔x〕=ax﹣lnx〔a∈R〕.〔1〕当a=1时,求f〔x〕的最小值;〔2〕假设存在x∈[1,3],使+lnx=2成立,求a的取值范围;〔3〕假设对任意的x∈[1,+∞〕,有f〔x〕≥f〔〕成立,求a的取值范围.2021-2021学年江苏省南京市高二〔上〕期末数学试卷〔理科〕参考答案与试题解析一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应位置上1.〔5分〕命题“假设a=b,那么|a|=|b|〞的逆否命题是假设|a|≠|b|,那么a≠b.【解答】解:命题“假设a=b,那么|a|=|b|〞的逆否命题是命题“假设|a|≠|b|,那么a≠b〞,故答案为:“假设|a|≠|b|,那么a≠b〞2.〔5分〕双曲线=1的渐近线方程是y=±2x.【解答】解:∵双曲线标准方程为=1,其渐近线方程是=0,整理得y=±2x.故答案为y=±2x.3.〔5分〕复数为纯虚数,其中i是虚数单位,那么实数a的值是2.【解答】解:==,∵复数为纯虚数,∴,解得a=2.故答案为:2.4.〔5分〕在平面直角坐标系xOy中,点〔4,3〕到直线3x﹣4y+a=0的间隔为1,那么实数a的值是±5.【解答】解:由题意,=1,∴a=±5.故答案为±5.5.〔5分〕曲线y=x4与直线y=4x+b相切,那么实数b的值是﹣3.【解答】解:设直线与曲线的切点为P〔m,n〕那么有:⇒,化简求:m=1,b=n﹣4;又因为点P满足曲线y=x4,所以:n=1;那么:b=n﹣4=﹣3;故答案为:﹣3.6.〔5分〕实数x,y满足条件那么z=2x+y的最大值是9.【解答】解:实数x,y满足条件作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,那么当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由可得A〔3,3〕.此时z=9,故答案为:9.7.〔5分〕在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,那么点P的横坐标是4.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的间隔与到准线的间隔是相等的,∴|PF|=x+1=5,∴x=4,故答案为:48.〔5分〕在平面直角坐标系xOy中,圆O:x2+y2=r2〔r>0〕与圆M:〔x﹣3〕2+〔y+4〕2=4相交,那么r的取值范围是3<r<7.【解答】解:由题意,圆心距为5,∴|r﹣2|<5<r+2,∴3<r<7.故答案为3<r<7.9.〔5分〕观察以下等式:〔sin〕﹣2+〔sin〕﹣2=×1×2;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+sin〔〕﹣2=×2×3;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×3×4;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×4×5;…照此规律,〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+〔sin〕﹣2=n〔n+1〕.【解答】解:观察以下等式:〔sin〕﹣2+〔sin〕﹣2=×1×2;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+sin〔〕﹣2=×2×3;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×3×4;〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+sin〔〕﹣2=×4×5;…照此规律〔sin〕﹣2+〔sin〕﹣2+〔sin〕﹣2+…+〔sin〕﹣2=×n 〔n+1〕,故答案为:n〔n+1〕10.〔5分〕假设“∃x∈R,x2+ax+a=0〞是真命题,那么实数a的取值范围是〔﹣∞,0]∪[4,+∞〕.【解答】解:假设“∃x∈R,x2+ax+a=0〞是真命题,那么△=a2﹣4a≥0,解得:a∈〔﹣∞,0]∪[4,+∞〕,故答案为:〔﹣∞,0]∪[4,+∞〕11.〔5分〕函数f〔x〕=〔x2+x+m〕e x〔其中m∈R,e为自然对数的底数〕.假设在x=﹣3处函数f 〔x〕有极大值,那么函数f 〔x〕的极小值是﹣1.【解答】解:f〔x〕=〔x2+x+m〕e x,f′〔x〕=〔x2+3x+m+1〕e x,假设f〔x〕在x=﹣3处函数f 〔x〕有极大值,那么f′〔﹣3〕=0,解得:m=﹣1,故f〔x〕=〔x2+x﹣1〕e x,f′〔x〕=〔x2+3x〕e x,令f′〔x〕>0,解得:x>0,令f′〔x〕<0,解得:x<﹣3,故f〔x〕在〔﹣∞,﹣3〕递增,在〔﹣3,0〕递减,在〔0,+∞〕递增,故f〔x〕=f〔0〕=﹣1,极小值故答案为:﹣1.12.〔5分〕有以下命题:①“m>0〞是“方程x2+my2=1表示椭圆〞的充要条件;②“a=1〞是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行〞的充分不必要条件;③“函数f 〔x〕=x3+mx单调递增〞是“m>0〞的充要条件;④p,q是两个不等价命题,那么“p或q是真命题〞是“p且q是真命题〞的必要不充分条件.其中所有真命题的序号是②④.【解答】解:对于①,当m=1时,方程x2+my2=1表示圆,故错;对于②,∵a=±1时,直线l1与直线l2都平行,故正确;对于③,假设函数f 〔x〕=x3+mx单调递增⇒m≥0,故错;对于④,p或q是真命题⇒p且q不一定是真命题;⇒p且q是真命题⇒p或q 一定是真命题,故正确;故答案为:②④13.〔5分〕椭圆E:+=1〔a>b>0〕的焦距为2c〔c>0〕,左焦点为F,点M的坐标为〔﹣2c,0〕.假设椭圆E上存在点P,使得PM=PF,那么椭圆E 离心率的取值范围是[] .【解答】解:设P〔x,y〕,由PM=PF⇒PM2=2PF2⇒〔x+2c〕2+y2=2〔x+c〕2+2y2⇒x2+y2=2c2,椭圆E上存在点P,使得PM=PF,那么圆x2+y2=2c2与椭圆E:+=1〔a>b>0〕有公共点,∴b≤≤a⇒⇒.故答案为:[]14.〔5分〕t>0,函数f〔x〕=,假设函数g〔x〕=f〔f〔x〕﹣1〕恰有6个不同的零点,那么实数t的取值范围是〔3,4〕.【解答】解:∵函数f〔x〕=,∴函数f′〔x〕=,当x<,或x<t时,f′〔x〕>0,函数为增函数,当<x<t时,f′〔x〕<0,函数为减函数,故当x=时,函数f〔x〕取极大值,函数f〔x〕有两个零点0和t,假设函数g〔x〕=f〔f〔x〕﹣1〕恰有6个不同的零点,那么方程f〔x〕﹣1=0和f〔x〕﹣1=t各有三个解,即函数f〔x〕的图象与y=1和y=t+1各有三个零点,由y|x=t==,故,=〔t﹣3〕〔2t+3〕2>0得:t>3,故不等式的解集为:t∈〔3,4〕,故答案为:〔3,4〕二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.〔14分〕在平面直角坐标系xOy中,△ABC三个顶点坐标为A〔7,8〕,B〔10,4〕,C〔2,﹣4〕.〔1〕求BC边上的中线所在直线的方程;〔2〕求BC边上的高所在直线的方程.【解答】解:〔1〕由B〔10,4〕,C〔2,﹣4〕,得BC中点D的坐标为〔6,0〕,…〔2分〕所以AD的斜率为k==8,…〔5分〕所以BC边上的中线AD所在直线的方程为y﹣0=8〔x﹣6〕,即8x﹣y﹣48=0.…〔7分〕〔2〕由B〔10,4〕,C〔2,﹣4〕,得BC所在直线的斜率为k==1,…〔9分〕所以BC边上的高所在直线的斜率为﹣1,…〔12分〕所以BC边上的高所在直线的方程为y﹣8=﹣1〔x﹣7〕,即x+y﹣15=0.…〔14分〕16.〔14分〕数列{a n}满足a1=1,〔a n﹣3〕a n+1﹣a n+4=0〔n∈N*〕.〔1〕求a2,a3,a4;〔2〕猜测{a n}的通项公式,并用数学归纳法证明.【解答】解:〔1〕令n=1,﹣2a2+3=0,a2=,令n=2,﹣a3﹣+4=0,a3=,令n=3,﹣a4﹣+4=0,a4=.〔2〕猜测a n=〔n∈N*〕.证明:当n=1时,a1=1=,所以a n=成立,假设当n=k时,a n=成立,即a k=,那么〔a k﹣3〕a k+1﹣a k+4=0,即〔﹣3〕a k+1﹣+4=0,所以a k=,即a k+1==,+1所以当n=k+1时,结论a n=成立.综上,对任意的n∈N*,a n=成立.17.〔14分〕在平面直角坐标系xOy中,圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P〔2,﹣1〕.〔1〕求圆M的方程;〔2〕过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:〔1〕过点〔2,﹣1〕且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…〔2分〕由解得,所以圆心M的坐标为〔1,﹣2〕,…〔4分〕所以圆M的半径为r=,…〔6分〕所以圆M的方程为〔x﹣1〕2+〔y+2〕2=2.…〔7分〕〔2〕因为直线l被圆M截得的弦长为,所以圆心M到直线l的间隔为d==,…〔9分〕假设直线l的斜率不存在,那么l为x=0,此时,圆心M到l的间隔为1,不符合题意.假设直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…〔11分〕整理得k2+8k+7=0,解得k=﹣1或﹣7,…〔13分〕所以直线l的方程为x+y=0或7x+y=0.…〔14分〕18.〔16分〕某休闲广场中央有一个半径为1〔百米〕的圆形花坛,现方案在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形〔梯形ABCF 和梯形DEFC〕构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径〔如图〕.设∠AOF=θ,其中O为圆心.〔1〕把六边形ABCDEF的面积表示成关于θ的函数f〔θ〕;〔2〕当θ为何值时,可使得六边形区域面积到达最大?并求最大面积.【解答】〔此题总分值16分〕解:〔1〕作AH⊥CF于H,那么OH=cosθ,AB=2OH=2cosθ,AH=sinθ,…〔2分〕那么六边形的面积为f 〔θ〕=2×〔AB+CF〕×AH=〔2cosθ+2〕sinθ=2〔cosθ+1〕sinθ,θ∈〔0,〕.…〔6分〕〔2〕f′〔θ〕=2[﹣sinθsinθ+〔cosθ+1〕cosθ]=2〔2cos2θ+cosθ﹣1〕=2〔2cosθ﹣1〕〔cosθ+1〕.…〔10分〕令f′〔θ〕=0,因为θ∈〔0,〕,所以cosθ=,即θ=,…〔12分〕当θ∈〔0,〕时,f′〔θ〕>0,所以f 〔θ〕在〔0,〕上单调递增;当θ∈〔,〕时,f′〔θ〕<0,所以f 〔θ〕在〔,〕上单调递减,…〔14分〕所以当θ=时,f 〔θ〕取最大值f 〔〕=2〔cos+1〕sin=.…〔15分〕答:当θ=时,可使得六边形区域面积到达最大,最大面积为平方百米.…〔16分〕19.〔16分〕在平面直角坐标系xOy中,椭圆E:+=1〔a>b>0〕的离心率为,两个顶点分别为A〔﹣a,0〕,B〔a,0〕,点M〔﹣1,0〕,且3=,过点M斜率为k〔k≠0〕的直线交椭圆E于C,D两点,其中点C在x轴上方.〔1〕求椭圆E的方程;〔2〕假设BC⊥CD,求k的值;〔3〕记直线AD,BC的斜率分别为k1,k2,求证:为定值.【解答】解:〔1〕因为3=,所以3〔﹣1+a,0〕=〔a+1,0〕,解得a=2.…〔2分〕又因为=,所以c=,所以b2=a2﹣c2=1,所以椭圆E的方程为+y2=1.…〔4分〕〔2〕设点C的坐标为〔x0,y0〕,y0>0,那么=〔﹣1﹣x0,﹣y0〕,=〔2﹣x0,﹣y0〕.因为BC⊥CD,所以〔﹣1﹣x0〕〔2﹣x0〕+y02=0.①…〔6分〕又因为+y02=1,②联立①②,解得x0=﹣,y0=,…〔8分〕所以k==2.…〔10分〕〔3〕,设C〔x0,y0〕,那么CD:y=〔x+1〕〔﹣2<x0<2且x0≠﹣1〕,由消去y,得x2+8y02x+4y02﹣4〔x0+1〕2=0.…〔12分〕又因为+y02=1,所以得D〔,〕,…〔14分〕所以===3,所以为定值.…〔16分〕20.〔16分〕函数f〔x〕=ax﹣lnx〔a∈R〕.〔1〕当a=1时,求f〔x〕的最小值;〔2〕假设存在x∈[1,3],使+lnx=2成立,求a的取值范围;〔3〕假设对任意的x∈[1,+∞〕,有f〔x〕≥f〔〕成立,求a的取值范围.【解答】解:〔1〕f〔x〕=x﹣lnx〔x>0〕的导数为f′〔x〕=1﹣=,当x>1时,f′〔x〕>0,f〔x〕递增;当0<x<1时,f′〔x〕>0,f〔x〕递减.即有f〔x〕在x=1处获得极小值,也为最小值,且为1;〔2〕存在x∈[1,3],使+lnx=2成立,即为=2﹣lnx,即有a=,设g〔x〕=,x∈[1,3],那么g′〔x〕=〔1﹣lnx〕〔1+〕,当1<x<e时,g′〔x〕>0,g〔x〕递增;当e<x<3时,g′〔x〕<0,g〔x〕递减.那么g〔x〕在x=e处获得极大值,且为最大值e+;g〔1〕=2,g〔3〕=3〔2﹣ln3〕+>2,那么a的取值范围是[2,e+];〔3〕假设对任意的x∈[1,+∞〕,有f〔x〕≥f〔〕成立,即为ax﹣lnx≥﹣ln,即有a〔x﹣〕≥2lnx,x≥1,令F〔x〕=a〔x﹣〕﹣2lnx,x≥1,F′〔x〕=a〔1+〕﹣,当x=1时,原不等式显然成立;当x>1时,由题意可得F′〔x〕≥0在〔1,+∞〕恒成立,即有a〔1+〕﹣≥0,即a≥,由=<=1,那么a≥1.综上可得a的取值范围是[1,+∞〕.。

南京市高二(上)期末数学试卷(解析版)(理科)

南京市高二(上)期末数学试卷(解析版)(理科)

南京市高二(上)期末数学试卷(解析版)(理科)高二(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.抛物线y2=4x的焦点坐标为.2.命题:“∃x∈R,x2﹣x﹣1<0”的否定是.3.双曲线﹣=1的渐近线方程是.4.“x>1”是“x2>1”的条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5.过点(1,1)且与直线2x﹣y+1=0平行的直线方程为.6.函数f(x)=xe x的最小值是.7.两直线l1:ax+2y+6=0,l2:x+(a﹣1)y+(a2﹣1)=0,若l1⊥l2,则a= .8.过点(2,1)且与点(1,3)距离最大的直线方程是.9.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.10.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是.11.底面边长为2,侧棱长为的正四棱锥的体积为.12.已知函数f(x)满足f(1)=1,对任意x∈R,f′(x)>1,则f(x)>x的解集是.13.如图,过椭圆+=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且=2,则椭圆的离心率是.14.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(14分)命题p:f(x)=x3+ax2+ax在R上的单调递增函数,命题q:方程+=1表示双曲线.(1)当a=1时,判断命题p的真假,并说明理由;(2)若命题“p且q“为真命题,求实数a的取值范围.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,AC=BC,F为A1B1的中点.求证:(1)B1C∥平面FAC1;(2)平面FAC1⊥平面ABB1A1.17.(14分)如图,在半径为30cm的半圆形铁皮上截取一块矩形材料ABCD(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).(1)设BC为xcm,AB为ycm,请写出y关于x的函数关系,并写出x的取值范围;(2)若要求圆柱体罐子的体积最大,应如何截取?18.(16分)在平面直角坐标系xOy中,△ABC顶点的坐标为A(﹣1,2),B (1,4),C(3,2).(1)求△ABC外接圆E的方程;(2)若直线l经过点(0,4),且与圆E相交所得的弦长为2,求直线l的方程;(3)在圆E上是否存在点P,满足PB2﹣2PA2=12,若存在,求出点P的坐标;若不存在,请说明理由.19.(16分)如图,在平面直角坐标系xOy中,椭圆+=1(a>b>0)的焦距为2,且过点(1,),椭圆上顶点为A,过点A作圆(x﹣1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为kAB ,KAC.(1)求椭圆的标准方程;(2)求kAB •kAC的值;(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(16分)已知函数f(x)=lnx+ax,g(x)=ax2+2x,其中a为实数,e为自然对数的底数.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)的极大值为﹣2,求实数a的值;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,求实数a的取值范围.高二(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.抛物线y2=4x的焦点坐标为(1,0).【考点】抛物线的简单性质.【分析】先确定焦点位置,即在x轴正半轴,再求出P的值,可得到焦点坐标.【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)【点评】本题主要考查抛物线的焦点坐标.属基础题.2.命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题:“∃x∈R,x2﹣x ﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0;故答案为:∀x∈R,x2﹣x﹣1≥0.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.3.双曲线﹣=1的渐近线方程是y=±x .【考点】双曲线的简单性质.【分析】把曲线的方程化为标准方程,求出a和b的值,再根据焦点在x轴上,求出渐近线方程.【解答】解:双曲线,∴a=2,b=3,焦点在x轴上,故渐近线方程为 y=±x=±x,故答案为 y=±.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,本题的关键是求出a、b的值,要注意双曲线在x轴还是y轴上,是基础题.4.“x>1”是“x2>1”的充分不必要条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由x2>1得x>1或x<﹣1.∴“x>1”是“x2>1”的充分不必要条件.故答案为:充分不必要.【点评】本题主要考查充分条件和必要条件的应用,利用向量相等的定义是解决本题的关键.5.过点(1,1)且与直线2x﹣y+1=0平行的直线方程为2x﹣y﹣1=0 .【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可设要求直线方程为2x﹣y+c=0,代点求c值可得.【解答】解:由直线的平行关系可设要求直线方程为2x﹣y+c=0,由直线过点(1,1)可得2×1﹣1+c=0,解得c=﹣1,∴所求直线方程为2x﹣y﹣1=0,故答案为:2x﹣y﹣1=0.【点评】本题考查直线的一般式方程和平行关系,属基础题.6.函数f(x)=xe x的最小值是﹣.【考点】利用导数求闭区间上函数的最值.【分析】求导函数,确定函数的单调性,即可求得函数的最小值.【解答】解:求导函数,可得y′=e x+xe x,令y′=0可得x=﹣1令y′>0,可得x>﹣1,令y′<0,可得x<﹣1∴函数在(﹣∞,﹣1)上单调减,在(﹣1,+∞)上单调增∴x=﹣1时,函数y=xe x取得最小值,最小值是﹣,故答案为:﹣.【点评】本题考查导数知识的运用,考查函数的单调性与最值,属于基础题.7.两直线l1:ax+2y+6=0,l2:x+(a﹣1)y+(a2﹣1)=0,若l1⊥l2,则a= .【考点】直线的一般式方程与直线的垂直关系.【分析】利用直线相互垂直与斜率的关系即可得出.【解答】解:当a=0或a=1时,不满足条件,舍去.两条直线的斜率分别为:,.∴l1⊥l2,∴k1k2==﹣1,解得a=.故答案为:.【点评】本题考查了直线相互垂直的充要条件,属于基础题.8.过点(2,1)且与点(1,3)距离最大的直线方程是x﹣2y=0 .【考点】确定直线位置的几何要素.【分析】过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.则kl •kAB=﹣1,即可得出.【解答】解:过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.∴kl •kAB=﹣1,∴kl=.∴直线l的方程为:y﹣1=(x﹣2),化为x﹣2y=0.故答案为:x﹣2y=0.【点评】本题考查了相互垂直的直线斜率之间的关系、点斜式,考查了推理能力与计算能力,属于中档题.9.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.【考点】旋转体(圆柱、圆锥、圆台).【分析】由圆锥的侧面展开图是一个半径为2的半圆知,圆锥的轴截面为边长为2的正三角形.【解答】解:∵圆锥的侧面展开图是一个半径为2的半圆,∴圆锥的轴截面为边长为2的正三角形,则圆锥的高h=2×sin60°=.【点评】考查了学生的空间想象力.10.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是(x ﹣1)2+(y﹣1)2 =2 .【考点】直线与圆的位置关系.【分析】设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),可得圆心M还在直线y=1上,故M(1,1),求得半径AM的值,可得要求的圆的方程.【解答】解:圆C:(x+3)2+(y+3)2=18的圆心C(﹣3,﹣3).根据两圆相切于原点,设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),故圆心M还在直线y=1上,故M(1,1),半径为AM=,故要求的圆的方程为:(x﹣1)2+(y﹣1)2 =2,故答案为:(x﹣1)2+(y﹣1)2 =2.【点评】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程,垂径定理,勾股定理,两圆相切的性质,属于中档题.11.底面边长为2,侧棱长为的正四棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】作出棱锥的高,则顶点在底面的射影为底面中心,利用正方形的性质可求出底面中心到底面顶点的距离,借助勾股定理求出棱锥的高,代入体积公式计算.【解答】解:取底面中心O,过O作OE⊥AB,垂足为E,连接SO,AO,∵四棱锥S﹣ABCD为正四棱锥,∴SO⊥平面ABCD,∵AO⊂平面ABCD,∴SO⊥AO.∵四边形ABCD是边长为2的正方形,∴AE=AB=1,∠OAE=∠BAD=45°,∴OE=AE=1,∵OE2+AE2=AO2,∴AO=,∵SA=,∴SO==1.•SO=•22•1=.V=•SABCD故答案为.【点评】本题考查了正三棱锥的结构特征和体积计算,属于基础题.12.已知函数f(x)满足f(1)=1,对任意x∈R,f′(x)>1,则f(x)>x的解集是(1,+∞).【考点】利用导数研究函数的单调性;导数的运算.【分析】题目给出的函数f(x)为抽象函数,没法代式求解不等式f(x)>x,结合题目给出了对任意x∈R,f′(x)>1这一条件,想到借助于辅助函数解决,令令g(x)=f(x)﹣x,然后分析g(x)在实数集上的单调性,又f(1)=1,可求出g(1)=0,最后用g(x)与0的关系求解不等式f(x)>x的解集.【解答】解:令g(x)=f(x)﹣x,则,g′(x)=f′(x)﹣1,∵f′(x)>1,∴g′(x)>0,所以函数g(x)在(﹣∞,+∞)上为增函数,又g(1)=f(1)﹣1=0,则由g(x)>0,得g(x)>g(1),即x>1,∴f(x)﹣x>0的解集为(1,+∞),也就是f(x)>x的解集为(1,+∞)故答案为:(1,+∞).【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,解答此题的关键是引入辅助函数g(x).13.如图,过椭圆+=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且=2,则椭圆的离心率是.【考点】椭圆的简单性质.【分析】利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.【解答】解:∵△AOP是等腰三角形,A(﹣a,0)∴P(0,a).设Q(x0,y),∵=2,∴(x0,y﹣a)=2(﹣a﹣x,﹣y).∴,解得.代入椭圆方程得+=1,化为=.∴e===.故答案:【点评】熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.14.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是∅.【考点】函数零点的判定定理.【分析】画出函数图象,令f(f(x)﹣2a)=0⇒f(x)﹣2a=﹣2或f(x)﹣2a=1,⇒f(x)=2a﹣2或f(x)=2a+1,由函数函数f(x)=的值域为R,可得f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,要使函数y=f (f(x)﹣2a)有两个零点,必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.【解答】解:函数y=的定义域是(0,+∞),令y′>0,解得:0<x<e,令y′<0,解得:x>e,故函数y=在(0,e)递增,在(e,+∞)递减,故x=e时,函数y=取得最大值,最大值是,函数y=x2﹣4( x≤0)是抛物线的一部分.∴函数f(x)=的图象如下:令y=f(f(x)﹣2a)=0⇒f(x)﹣2a=﹣2或f(x)﹣2a=1,⇒f(x)=2a﹣2或f(x)=2a+1,∵函数函数f(x)=的值域为R,∴f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,函数y=f(f(x)﹣2a)有两个零点,则必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.∵2a+1>2a﹣3,∴2a﹣2<﹣4且2a+1>⇒a∈∅,故答案为∅【点评】本题考查了利用数形结合的思想求解函数的零点问题,同时也考查了函数的单调性及分类讨论思想,属于难题.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(14分)(2016秋•淮安期末)命题p:f(x)=x3+ax2+ax在R上的单调递增函数,命题q:方程+=1表示双曲线.(1)当a=1时,判断命题p的真假,并说明理由;(2)若命题“p且q“为真命题,求实数a的取值范围.【考点】命题的真假判断与应用.【分析】(1)若命题p:f(x)=x3+ax2+ax在R上的单调递增函数为真命题,则f′(x)=3x2+2ax+a≥0恒成立,解出a的范围,可判断命题p的真假;(2)若命题“p且q“为真命题,则命题p,命题q均为真命题,进而可得实数a的取值范围.【解答】解:(1)若命题p:f(x)=x3+ax2+ax在R上的单调递增函数为真命题,则f′(x)=3x2+2ax+a≥0恒成立,故△=4a2﹣12a≤0,解得:a∈[0,3],故当a=1时,命题p为真命题;(2)若命题q:方程+=1表示双曲线为真命题,则(a+2)(a﹣2)<0.解得:a∈(﹣2,2),若命题“p且q“为真命题,则命题p,命题q均为真命题,故a∈[0,2).【点评】本题以命题的真假判断与应用为载体,考查了复合命题,导数法研究函数的单调性,双曲线的标准方程等知识点,难度中档.16.(14分)(2016秋•淮安期末)如图,在直三棱柱ABC﹣A1B1C1中,AC=BC,F为A1B1的中点.求证:(1)B1C∥平面FAC1;(2)平面FAC1⊥平面ABB1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)如图所示取AB的中点E,连接CE,EB1,可得面B1CE∥平面FAC1,即B1C∥平面FAC1(2)只需证明C1F⊥面AA1C1B1B,即可得平面FAC1⊥平面ABB1A1.【解答】解:(1)证明:如图所示取AB的中点E,连接CE,EB1,∵F为A1B1的中点,∴C1F∥CE,AF∥B1E,且C1F∩AF=F,CE∩B1E=E,∴面B1CE∥平面FAC1,∵B1C⊂B1CE,∴B1C∥平面FAC1(2)证明:直三棱柱ABC﹣A1B1C1中,A1A⊥面A1C1B1,∵C1F⊂面A1C1B1,∴A1A⊥C1 F,∵AC=BC,F为A1B1的中点,∴A1B1⊥C1F,且AA1∩A1B1,∴C1F⊥面AA1C1B1B,C1F⊂面A1C1B1,∴平面FAC1⊥平面ABB1A1.【点评】本题考查了线面平行、面面垂直的判定,关键是空间位置关系的判定与性质的应用,属于中档题.17.(14分)(2016秋•淮安期末)如图,在半径为30cm的半圆形铁皮上截取一块矩形材料ABCD(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).(1)设BC为xcm,AB为ycm,请写出y关于x的函数关系,并写出x的取值范围;(2)若要求圆柱体罐子的体积最大,应如何截取?【考点】旋转体(圆柱、圆锥、圆台).【分析】(1)设BC=x,求出AB,写出y关于x的函数关系,并写出x的取值范围;(2)用x表示出圆柱的底面半径,得出体积V(x)关于x的函数,判断V(x)的单调性,得出V(x)的最大值.【解答】解:(1)连接OC,设BC=x,则y=2,(其中0<x<30),(2)设圆柱底面半径为r,高为x,则AB=2=2πr,解得r=,∴V=πr2h=(900x﹣x3),(其中0<x<30);∴V′=(900﹣3x2),令V′(x)=0,得x=10;因此V(x)=(900x﹣x3)在(0,10)上是增函数,在(10,30)上是减函数;∴当x=10时,V(x)取得最大值V(10)=,∴取BC=10cm时,做出的圆柱形罐子体积最大,最大值为cm3.【点评】本题考查了圆柱的结构特征,圆柱与体积计算,用函数单调性求函数最值,属于中档题.18.(16分)(2016秋•淮安期末)在平面直角坐标系xOy中,△ABC顶点的坐标为A(﹣1,2),B(1,4),C(3,2).(1)求△ABC外接圆E的方程;(2)若直线l经过点(0,4),且与圆E相交所得的弦长为2,求直线l的方程;(3)在圆E上是否存在点P,满足PB2﹣2PA2=12,若存在,求出点P的坐标;若不存在,请说明理由.【考点】直线与圆的位置关系.【分析】(1)利用待定系数法求△ABC外接圆E的方程;(2)分类讨论,利用韦达定理,结合弦长公式,求直线l的方程;(3)求出P的轨迹方程,与圆E联立,即可得出结论.【解答】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=﹣4,F=1,∴△ABC外接圆E的方程为x2+y2﹣2x﹣4y+1=0.(2)当直线l的斜率k不存在时,直线l的方程为x=0,联立,得或,弦长为2,满足题意.当直线l的斜率k存在时,设直线l的方程为y﹣4=kx,即t=kx+4,联立,得(1+k2)x﹣(2k﹣2)x﹣2=0,△=[﹣(2k﹣2)]2+8(1+k2)=12k2+8k+12>0,设直线l与圆交于E(x1,y1),F(x2,y2),则,,∵弦长为2,∴ =2,解得k=1,∴直线l的方程为x﹣y+4=0.∴直线l的方程为x=0,或x﹣y+4=0.(3)设P(x,y),∵PB2﹣2PA2=12,A(﹣1,2),B(1,4),∴(x﹣1)2+(y﹣4)2﹣2(x+1)2﹣2(y﹣2)2=12,即x2+y2+6x+16y+5=0.与x2+y2﹣2x﹣4y+1=0相减可得2x+5y+1=0,与x2+y2﹣2x﹣4y+1=0联立可得29y2+14y+9=0,方程无解,∴圆E上不存在点P,满足PB2﹣2PA2=12.【点评】本题考查圆的方程,考查轨迹方程,考查直线与圆、圆与圆的位置关系,属于中档题.19.(16分)(2016秋•淮安期末)如图,在平面直角坐标系xOy中,椭圆+=1(a>b>0)的焦距为2,且过点(1,),椭圆上顶点为A,过点A作圆(x﹣1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为kAB ,KAC.(1)求椭圆的标准方程;(2)求kAB •kAC的值;(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)由题意可得:2c=2, =1,又a2=b2+c2,联立解得求出椭圆的方程.(2)设切线方程为y=kx+1,则(1﹣r2)k2﹣2k+1﹣r2=0,设两切线AB,AD的斜率为k1,k2(k1≠k2),k1•k2=1,由切线方程与椭圆方程联立得:(1+4k2)x2+8kx=0,由此能求出直线BD方程,进而得到直线.(3)设B(x1,y1),C(x2,y2),kAB=k1,kAC=k2.设经过点A所作的圆的切线方程为:y=kx+1.与椭圆方程联立可得:(1+4k2)x2+8kx=0,解得x=0,x=,可得:xB ,xC.yB,yC,kBC=.可得直线BC的方程,即可得出.【解答】解:(1)由题意可得:2c=2, =1,又a2=b2+c2,联立解得c=,a=2,b=1.∴椭圆的标准方程为=1.(2)A(0,1),设经过点A的圆(x﹣1)2+y2=r2(0<r<1)的切线方程为:y=kx+1.则=r,化为:(r2﹣1)k2+2k+r2﹣1=0,则kAB •kAC==1.(3)设B(x1,y1),C(x2,y2),kAB=k1,kAC=k2.设经过点A的圆(x﹣1)2+y2=r2(0<r<1)的切线方程为:y=kx+1.联立,化为:(1+4k2)x2+8kx=0,解得x=0,x=,∴xB =,xC==.yB =,yC=.∴kBC==.∴直线BC的方程为:y﹣=,令x=0,可得:y=.∴直线BC经过定点.【点评】本题考查了椭圆的标准方程及其性质、圆的切线方程、一元二次方程的根与系数的关系、点到直线的距离公式,考查了推理能力与计算能力,属于难题.20.(16分)(2016秋•淮安期末)已知函数f(x)=lnx+ax,g(x)=ax2+2x,其中a为实数,e为自然对数的底数.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)的极大值为﹣2,求实数a的值;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到函数的极大值,从而求出a的值即可;(3)即a≥,设g(x)=,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可.【解答】解:(1)a=1时,f(x)=lnx+x,f′(x)=1+,f(1)=1,f′(1)=2,故切线方程是:y﹣1=2(x﹣1),即:2x﹣y﹣1=0;(2)f(x)的定义域是(0,+∞),f′(x)=+a=,a≥0时,f(x)在(0,+∞)递增,无极值,a<0时,令f′(x)>0,解得:x<﹣,令f′(x)<0,解得:x>﹣,故f(x)在(0,﹣)递增,在(﹣,+∞)递减,故f(x)的极大值是f(﹣)=ln(﹣)﹣1,若函数y=f(x)的极大值为﹣2,则ln(﹣)﹣1=﹣2,解得:a=﹣e;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,即x∈[1,e]时,ax2﹣lnx﹣(a﹣2)x≥0恒成立.即a≥,设g(x)=,则g′(x)=,当x>1时,g′(x)>0,∴g(x)在区间(1,+∞)上递增,∴当x∈[1,e]时,g(x)≤g(e)=,∴a<0,且对任意的.x∈[1,e],f(x)≥(a﹣2)x恒成立,∴实数a的取值范围为[,0).【点评】本题考查利用导数研究函数的极值以及由函数恒成立的问题求参数的取值范围,求解本题关键是记忆好求导的公式以及极值的定义,对于函数的恒成立的问题求参数,要注意正确转化,恰当的转化可以大大降低解题难度.。

2022年江苏省南京市金陵中学高二数学理上学期期末试卷含解析

2022年江苏省南京市金陵中学高二数学理上学期期末试卷含解析

2022年江苏省南京市金陵中学高二数学理上学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设a ,b∈R,则“a≥1且b≥1”是“a+b≥2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件参考答案:A【考点】2L :必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式的关系进行判断即可. 【解答】解:若a≥1且b≥1则a+b≥2成立,当a=0,b=3时,满足a+b≥2,但a≥1且b≥1不成立, 即“a≥1且b≥1”是“a+b≥2”的充分不必要条件, 故选:A2. 执行如图所示的程序框图,输出的S 值为( )A . 43B .55C .61D .81参考答案:C3. 已知倾斜角为A 、B 两点,则弦AB的长为( )A 、16B 、18C 、8D 、6参考答案:C4. 在的展开式中的常数项是( )A. B . C .D .参考答案:A 略5. 已知变量x 与y 之间的一组数据:根据数据表可得回归直线方程,其中,,据此模型预测当时,y 的估计值是()A .19B .20C .21D .22参考答案:A6. 已知函数满足,且是偶函数,当时,,若在区间内,函数有4个零点,则实数的取值范围是( )A .B .C .D .参考答案:C7. 已知双曲线C :上任意一点为G ,则G 到双曲线C 的两条渐近线距离之积为A. B. C. 1 D.参考答案:B设,双曲线的两条渐近线方程分别为,所以到双曲线的两条渐近线的距离分别为,所以又因为点在双曲线上,所以,即,代入上式,可得.8. 下列命题中为真命题的是()A.命题“若∥且∥,则∥”B.命题“若x>2015,则x>0”的逆命题C.命题“若xy=0,则x=0或y=0”的否命题D.命题“若x2≥1,则x≥1”的逆否命题参考答案:C【考点】四种命题.【分析】根据向量平行判断A,写出命题的逆命题.即可判断B,写出命题的否命题,即可判断C,根据原命题和逆否命题为等价命题判断D【解答】解:对于A:零向量和和非零向量都平行,故若∥且∥,则∥”为假命题,对于B:命题“若x>2015,则x>0”的逆命题为“若x>0,则x>2015”显然为假命题,对于C:命题“若xy=0,则x=0或y=0”的否命题为“则若xy≠0,则x≠0且y≠0”为真命题,对于D:命题“若x2≥1,则x≥1”为假命题,则逆否命题也为假命题,故选:C【点评】本题主要考查命题的真假判断与应用,比较基础.9. 若曲线的一条切线与直线垂直,则的方程为()A B C D参考答案:A5. 在等差数列中,已知,是数列的前n项和,则=( )A.45B.50C.55D.60参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 过抛物线y2=2px (p>0)焦点F的直线与抛物线交于A、B两点,M、N为准线l上两点,AM⊥l,BN⊥l,M、N为垂足,C为线段AB中点,D为线段MN中点,CD交抛物线于点E,下列结论中正确的是 .(把你认为正确的序号都填上)①+为定值②以AB为直径的圆与l相切③以MN为直径的圆与AB所在直线相切④以AF为直径的圆与y轴相切⑤E为线段CD中点参考答案:①②③④⑤略12. 若关于实数的不等式无解,则实数的取值范围是 .参考答案:a≤813. 若直线被圆所截得的弦长为,则实数a 的值为.参考答案:0或4圆心到直线的距离为:,结合弦长公式有:,求解关于实数的方程可得:或.14. 如图,在长方形中,,.现将沿折起,使平面平面,设为中点,则异面直线和所成角的余弦值为.参考答案:略15. “扫雷”游戏,要求游戏者找出所有的雷,游戏规则是:一个方块下面有一个雷或没有雷,如果无雷,掀开方块下面就会标有数字(如果数学是0,常省略不标),此数字表明它周围的方块中雷的个数(至多八个),如图甲中的“3”表示它的周围八个方块中有且仅有3个雷.图乙是小明玩的游戏中的局部,根据图乙中信息,在ABCDEFG这七个方块中,有雷的方块为.参考答案:ADFG第4行第7个数字2,所以F、G方块有雷. 第4行第6个数字4,说明E方块没有雷.由于第4行第4个数字3,说明C、D中必有一个有雷. 假设C有雷,D无雷. 由于第6行第7个数字2,所以第7行6、7、8、9都没有雷,第5个有雷,但是第6行第4 个数字2,这样第6行第4个数字周围就有3个雷,与题目矛盾,故C无雷,D有雷.由于第4行第3个数字1,所以B五雷,由于第4行第2个数字1,所以A有雷. 故有雷的是A、D、F、G.故填A、D、F、G.16. 以椭圆=1的焦点为顶点,顶点为焦点的双曲线方程为.参考答案:【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】通过椭圆的焦点、顶点坐标可知双曲线的a=、c=2,进而计算可得结论.【解答】解:∵椭圆方程为:=1,∴其焦点坐标为:(﹣,0)、(,0),顶点坐标为:(﹣2,0)、(2,0),∴双曲线的焦点坐标为:(﹣2,0)、(2,0),顶点坐标为:(﹣,0)、(,0),∴双曲线方程:中a=、c=2,∴b2=c2﹣a2=8﹣3=5,∴双曲线方程:,故答案为:.【点评】本题考查双曲线方程,注意解题方法的积累,属于中档题.17. 设,当时,恒成立,则实数的取值范围为▲.参考答案:略三、解答题:本大题共5小题,共72分。

2023-2024学年江苏省南京市高二上学期期末数学质量检测试题(含解析)

2023-2024学年江苏省南京市高二上学期期末数学质量检测试题(含解析)

2023-2024学年江苏省南京市高二上册期末数学质量检测试题一、单选题1.设正项等比数列{}n a 满足4336a a -=,26a =,则1a =()A .3B .12C .2D .13【正确答案】C【分析】本题可设公比为q ,然后根据4336a a -=得出26q q -=,通过计算求出3q =,最后通过21aa q=即可得出结果.【详解】设等比数列{}n a 的公比为q ,因为4336a a -=,26a =,所以22236a q a q -=,即26636q q -=,26q q -=,解得3q =或2-(舍去),3q =,则21623a a q ===,故选:C.2.“k =是“直线2y kx =+与圆221x y +=相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可.【详解】解:若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d =,即214k +=,23k ∴=,即k =,∴“k 是“直线2y kx =+与圆221x y +=相切”的充分不必要条件,故选:A .本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,比较基础.3.如果抛物线2y ax =的准线是直线1x =,那么它的焦点坐标为()A .(1,0)B .(2,0)C .(3,0)D .()1,0-【正确答案】D【分析】结合抛物线的知识确定正确答案.【详解】由于抛物线的准线是直线1x =,所以它的焦点为()1,0-.故选:D4.过抛物线24y x =焦点F 的直线l 交抛物线于,A B 两点(点A 在第一象限),若直线l 的倾斜角为60,则||||AF BF 的值为()A .2B .3C .32D .52【正确答案】B【分析】求出直线方程,联立直线和抛物线方程,解得A ,B 坐标,即可由抛物线定义求得,AF BF ,得出所求.【详解】由题可得()1,0F ,设()()1122,,,A x y B x y ,(12x x >),直线l 的倾斜角为60 ,∴则直线l 的方程为)1y x =-,联立)241y x y x ⎧=⎪⎨=-⎪⎩可得231030x x -+=,解得1213,3x x ==,由抛物线的定义可得12414,13AF x BF x =+==+=,则||3||AF BF =.故选:B.5.已知函数()sin 2f x x x π⎛⎫=+ ⎪⎝⎭,则2f π⎛⎫'= ⎪⎝⎭()A .2π-B .0C .1D .2π【正确答案】A【分析】先利用诱导公式把()f x 化简为()cos f x x x =,再利用常见函数的导数公式和函数乘积的导数的运算法则求出()f x ',代入2π可得所求的导数值.【详解】()sin cos 2f x x x x x π⎛⎫=+= ⎪⎝⎭,故()cos sin f x x x x '=-,所以22f ππ⎛⎫'=- ⎪⎝⎭.故选:A.本题考查诱导公式及导数的运算,注意函数乘积的导数的运算法则的正确应用,本题属于基础题.6.若2()24ln f x x x x =--,则()0f x ¢>的解集为()A .(0,)B .(-1,0)(2,)C .(2,)D .(-1,0)【正确答案】C【详解】()242220,0,x x f x x x x --'=-->()()0,210,2x x x x >∴-+>∴> 7.已知函数()322f x x ax bx a =+++在1x =处取得极值为10,则=a ()A .4或-3B .4或-11C .4D .-3【正确答案】C【分析】根据函数322()f x x ax bx a =+++在1x =处有极值10,可知f '(1)0=和f (1)10=,可求出a .【详解】由322()f x x ax bx a =+++,得2()32f x x ax b '=++,函数322()f x x ax bx a =+++在1x =处取得极值10,f ∴'(1)0=,f (1)10=,∴2230110a b a a b ++=⎧⎨+++=⎩,∴411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,当33a b =-⎧⎨=⎩时,2()3(1)0f x x '=-,∴在1x =处不存在极值;当411a b =⎧⎨=-⎩时,2()3811(311)(1)f x x x x x '=+-=+-11(3x ∴∈-,1),()0f x '<,(1,)x ∈+∞,()0f x '>,∴符合题意.故选:C本题主要考查利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平.8.过抛物线2:8C y x =的焦点F 的直线交抛物线C 于A 、B 两点,若6AF =,则BF =()A .9或6B .6或3C .9D .3【正确答案】D设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,利用抛物线的定义可求得点A 的坐标,进而可求得直线AB 的方程,将直线AB 的方程与抛物线C 的方程联立,由韦达定理可求得点B 的横坐标,进而可求得BF .【详解】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,则1>0x ,10y >,则由题意可得:点()2,0F ,126AF x =+=,则14x =,由2118y x =,得1y =,所以42AB k ==-AB 方程为)2y x =-,将直线AB 的方程代入28y x =化简得2540x x -+=,所以21x =,所以223F x B =+=,故选:D .结论点睛:过抛物线()220y px p =>焦点F 的弦AB ,点A 在第一象限,直线AB 的倾斜角为θ.(1)1cos p AF θ=-,1cos pBF θ=+;(2)22sin pAB θ=;(3)112AF BF p+=.二、多选题9.已知()0,πα∈,关于曲线C :22sin cos 1x y αα+=,下列说法正确的是()A .曲线C 不可能是圆B .曲线C 可能是焦点在x 轴上的椭圆C .曲线C 不可能是焦点在y 轴上的椭圆D .曲线C 可能是双曲线【正确答案】BD【分析】根据α的不同取值,结合椭圆和双曲线标准方程的形式,即可判断选项.【详解】A.当π4α=时,ππsin cos 44=22x y +=,即为圆的方程,故A 错误;B.曲线方程整理为22111sin cos x y αα+=,当π0,4α⎛⎫∈ ⎪⎝⎭时,110sin cos αα>>,曲线C 是焦点在x 轴上的椭圆,故B 正确;C.当ππ,42α⎛⎫∈ ⎪⎝⎭时,110cos sin αα>>,曲线C 是焦点在y 轴上的椭圆,故C 错误;D.当π,π2α⎛⎫∈ ⎪⎝⎭时,110,0cos sin αα<>,曲线C 表示双曲线,故D 正确.故选:BD10.已知数列{}n a 和{}n b 满足12a =,11b =,1251n n n a a b +=-+,1251n n n b b a +=-+.则下列结论不正确的是()A .数列{}n n a b -为等比数列B .数列{}n n a b +为等差数列C .6695a b +=D .()11132312n n n a --=⨯+-【正确答案】BCD【分析】对A ,条件两等式相减,根据定义判断等比数列;对B ,条件两等式相加,根据定义判断等差数列;对C ,由B 的结论求出通项,再求第6项;对D ,由AB 的结论求出通项公式,再两式相加.【详解】对A ,()()()11251516n n n n n n n n a b a b b a a b ++-=-+--+=-,即()113n n n n a b a b ++-=-,1110a b -=≠,故数列{}n n a b -为首项为1,公比为3的等比数列,A 对;对BC ,()()112515142n n n n n n n n a b a b b a a b +++=-++-+=++,即()1121n n n n a b a b +++=++,即()11121n n n n a b a b ++++=++,故数列{}1n n a b ++为首项为1114a b ++=,公比为2的等比数列,故111422n n n n a b -+++=⨯=,故121n n n a b ++=-,故数列{}n n a b +不为等差数列,76621127a b +=-=,BC 错;对D ,由A 得13n n n a b --=,又121n n n a b ++=-,两式相加得112231n n n a +-=+-,即()11142312n n n a --=⨯+-,D 错.故选:BCD11.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列结论中正确的是()A .三棱锥11A PB D -的体积不变B .DP 平面11AB D C .11A P BD ⊥D .平面1ACP ⊥平面PBD 【正确答案】ABD【分析】利用等体积法判断体积不变,A 正确;证明平面11//AB D 平面1BDC ,即知//DP 平面11AB D ,B 正确;建立空间直角坐标系,通过空间向量的数量积运算证明C 错误D 正确即可.【详解】对于A ,11AB D 的面积是定值,11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D ,∴1//BC 平面11AB D ,故P 到平面11AB D 的距离为定值,∴三棱锥11P AB D -的体积是定值,即三棱锥11A PB D -的体积不变,故A 正确;对于B ,由选项A 知,1//BC 平面11AB D ,同理//DB 平面11AB D ,而1BC BD B = ,1,BC BD ⊂平面1BDC ,∴平面11//AB D 平面1BDC ,DP ⊂ 平面1BDC ,//DP ∴平面11AB D ,故B正确;对于C ,以1D为原点,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,P 在1BC 上,故可设(,2,),02P a a a ,则11(2,0,0),(2,2,2),(0,0,0)A B D ,1(2,2,)A P a a =- ,1(2,2,2)BD =---,则()1122424A P BD a a a ⋅=----=-不一定为0,1A P ∴和1BD 不垂直,故C 错误;对于D ,设(,2,),02P a a a,则11(2,0,0),(0,2,2),(2,2,2),(0,0,0),(0,0,2)A C B D D ,1(2,2,)A P a a =- ,1(2,2,2)A C =- ,(,2,2)DP a a =- ,(2,2,0)DB =,设平面1ACP 的法向量(,,)n x y z =,则11(2)202220n A P a x y az n A C x y z ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,取1x =,得221,,22a a n a a -⎛⎫= --⎝⎭ ,设平面PBD 的法向量(,,)m a b c =,则20220m DP ax y az m DB x y ⎧⋅=+-=⎪⎨⋅=+=⎪⎩ ,取1x =,得()1,1,1m =-- ,221022a a m n a a-⋅=--=-- .∴平面1ACP 和平面PBD 垂直,故D 正确.故选:ABD.12.已知函数()f x 的定义域为R ,其导函数()f x '满足()()f x f x '<,则()A .()()1e 0f f <B .()()1e 0f f >C .()()e ln 221f f <D .()()e ln 221f f >【正确答案】BC 【分析】构造函数()()xf xg x =e,利用导数分析函数()g x 的单调性,利用函数()g x 的单调性逐项判断,可得出合适的选项.【详解】构造函数()()x f x g x =e ,其中x ∈R ,则()()()0e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,则()()10g g >,即()()10ef f >,所以,()()1e 0f f >,A 错B 对;因为ln 2ln e 1<=,则()()ln 21g g <,即()()ln 212ef f <,所以,()()e ln 221f f <,C 对D 错.故选:BC.三、填空题13.已知定义在区间()0,π上的函数()2sin f x x =-,则()f x 的单调递增区间为______.【正确答案】π,π4⎛⎫⎪⎝⎭【分析】对()f x 求导,求出()0f x ¢>的解即可求出答案.【详解】因为()2sin f x x =-,则()2cos f x x '=令()2cos 0f x x '=>,即cos x <且()0,πx ∈所以π,π4x ⎛⎫∈ ⎪⎝⎭,所以()f x 的单调递增区间为π,π4⎛⎫⎪⎝⎭故π,π4⎛⎫ ⎪⎝⎭14.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为___________.【分析】取11B C 的中点F ,连接EF ,1ED ,证得1//CC 平面1D EF ,把1C C 上任一点到平面1D EF 的距离即为两条异面直线1D E 与1CC 的距离,过点1C 作11C M D F ⊥,利用面面垂直的性质定理,证得1C M ⊥平面1D EF ,过点M 作//MP EF 交1D E 于点P ,得到1//MP C C ,取1C N MP =,连接PN ,证得NP ⊥平面1D EF ,在直角11D C F 中,求得1C M 的值,即可求解.【详解】解:如图所示,取11B C 的中点F ,连接EF ,1ED ,所以1//CC EF ,又EF ⊂平面1D EF ,1CC ⊄平面1D EF ,所以1//CC 平面1D EF ,所以直线1C C 上任一点到平面1D EF 的距离即为两条异面直线1D E 与1CC 的距离,过点1C 作11C M D F ⊥,因为平面1D EF ⊥平面1111D C B A ,且1C M ⊂平面1111D C B A ,所以1C M ⊥平面1D EF .过点M 作//MP EF 交1D E 于点P ,则1//MP C C ,取1C N MP =,连接PN ,则四边形1MPNC 是矩形,可得NP ⊥平面1D EF ,在直角11D C F 中,由11111C MD F D C C F ⋅=⋅,所以1111111·2D C C F C M D F ⨯===故点P 到直线1CC15.已知数列{}n a 满足*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2410n ta n n++≥恒成立,则实数t 的取值范围是__________【正确答案】[9,)-+∞【分析】根据题意化简得到1111(1)n n n a na +-=+,利用等差数列的通项公式化简得1(1)n a n n =+,把不等式2410nta n n++≥,转化(4)(1)n n t n ++≥-恒成立,结合基本不等式,即可求解.【详解】由数列{}n a 满足*111,()2(1)(1)n n n na a a n N n na +==∈++,可得1111(1)n n n a na +-=+,且112a =,所以数列1n na ⎧⎫⎨⎬⎩⎭表示首项为2,公差为1的等差数列,所以111=+(1)1n n n na a -=+,所以1(1)n a n n =+,又由2410n ta n n++≥恒成立,即(4)(1)n n t n ++≥-对n N *∈恒成立,因为(4)(1)44(5)(25)9n n n n n n n++-=-++≤-⋅+=-,当且仅当2n =时取等号,所以9t ≥-,即实数t 的取值范围是[9,)-+∞.16.已知正项数列{}n a 满足递推关系11(2)21n n n a a n a --=+,且114a =,数列{}n b 满足21n n b a ⎛⎫= ⎪⎝⎭,则12231n b b bn ++⋅⋅⋅+=+________.【正确答案】226n n +【分析】将1121n n n a a a --=+两边取倒数得1112n n a a --=,可得1n a ⎧⎫⎨⎬⎩⎭是一个首项114a =,公差为2的等差数列,可求14(1)222n n n a =+-⨯=+,继而求出4(1)1n b n n =++,所以数列1n b n ⎧⎫⎨⎬+⎩⎭是以8为首项,4为公差的等差数列,利用等差数列求和公式即可求解.【详解】将1121n n n a a a --=+两边取倒数得1112n n a a --=,这说明1n a ⎧⎫⎨⎬⎩⎭是一个等差数列,又首项114a =,公差为2,所以14(1)222nn n a =+-⨯=+,于是2214(1)n n b n a ⎛⎫==+ ⎪⎝⎭,于是4(1)1n b n n =++,所以数列1n b n ⎧⎫⎨⎬+⎩⎭是以8为首项,4为公差的等差数列,故212(1)84262312n b b b n n n n n n -++⋅⋅⋅+=+⨯=++.故答案为.226n n+本题考查等差数列的推导证明以及等差数列的求和问题,意在考查学生的转化能力和计算求解能力,属于中等题.四、解答题17.在①71a =,②848S =,③894a a +=-这三个条件中任选一个,补充在下面问题中,并作答.设等差数列{}n a 的前n 项和为n S ,440S =,(1)求数列{}n a 的通项公式;(2)求n S 的最大值.【正确答案】(1)215n a n =-+(2)49【分析】(1)分别选①②③,根据等差数列的通项公式和求和公式,列出方程组,求得1,a d 的值,进而求得数列的通项公式;(2)由113a =,2d =-,利用等差数列的求和公式,化简得到2(7)49n S n =--+,结合二次函数的性质,即可得到答案.【详解】(1)解:选①,设等差数列{}n a 的首项为1a ,公差为d ,由题意得7141614640a a d S a d =+=⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.选②,设等差数列{}n a 的首项为1a ,公差为d ,由题意得8141828484640S a d S a d =+=⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.选③,设等差数列{}n a 的首项为1a ,公差为d ,由题意得8914121544640a a a d S a d +=+=-⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.(2)解:由113a =,2d =-,所以2213(215)14(7)492n n S n n n n +-+=⨯=-+=--+,所以当7n =时,n S 取得最大值为49.18.已知圆C 过两点()3,5A -,()1,7B ,且圆心在直线230x y -+=上.(1)求圆C 的方程;(2)过点()4,4P -作直线l 与圆C 交于M ,N 两点,若8MN =,求直线l 的方程.【正确答案】(1)()()221225x y -+-=;(2)4x =或3440x y ++=.【分析】(1)设出圆的标准方程,利用待定系数法求解;(2)根据弦长及圆的半径求出弦心距,据此分直线斜率存在与不存在两种情况求解即可.【详解】(1)设圆C 的方程为()()222x a y b r -+-=,则222222(3)(5)(1)(7)230a b r a b r a b ⎧--+-=⎪-+-=⎨⎪-+=⎩,解得125a b r =⎧⎪=⎨⎪=⎩,所以圆C 的方程为()()221225x y -+-=.(2)设圆心()1,2C 到直线l 的距离为d ,则8M N ===,则3d =.当直线l 的斜率不存在时,直线l :4x =,满足题意;当直线l 的斜率存在时,设直线l 的方程为()44y k x +=-,即440kx y k ---=,所以3d =,解得34k =-,此时,直线l 的方程为()3444y x +=--,即3440x y ++=.综上所述,直线l 的方程为4x =或3440x y ++=.19.已知数列{}n a 的前n 项和为n S ,且232-=n n n S ,*N n ∈,等比数列{}n b 中,1212b b +=,且1b ,26b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n T .【正确答案】(1)32n a n =-,3n n b =(2)123332n n n n T +-+-=【分析】(1)根据,n n a S 关系,结合应用等差等比数列基本量运算即可得出通项公式;(2)计算n c 后再应用等差数列前n 项和公式,等比数列前n 项和公式分组求和即可.【详解】(1)因为232-=n n n S ,所以当1n =时,111a S ==;当2n ≥时,()()22131133222n n n n n n n a S S n -----=-=-=-,1n =时也成立,所以32n a n =-.设等比数列{}n b 公比q ,因为1b ,26b +,3b 成等差数列,且1212b b +=,所以()122131226b b b b b +=⎧⎨+=+⎩,则21111121212b q b b q b b q ⎧+=+⎨+=⎩,所以133b q =⎧⎨=⎩,所以3n n b =.(2)因为nc 为在区间(32,3n n ⎤-⎦中的整数个数,所以()332n n c n =--,则()()()122313132333333143213222n n n n n n n n T n +-+---=++⋅⋅⋅+-++⋅⋅⋅+-=-=--所以123332n n n n T +-+-=.20.如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,1190,1,2,5BAC AB BC BB C D CD ∠====== ,平面1CC D ⊥平面11ACC A (1)求证:1AC DC ⊥;(2)若M 为1DC 中点,求证://AM 平面1DBB ;【正确答案】(1)证明见解析;(2)证明见解析.【分析】(1)在直三棱柱111ABC A B C -中,易得1CC AC ⊥,又平面1CC D ⊥平面11ACC A ,利用面面垂直的性质定理证明即可;(2)由1AA ⊥平面111A B C ,且90BAC ∠= ,建立空间直角坐标系,求得平面1DBB 的一个法向量为(),,n x y z = ,证明AM n ⊥ 即可;【详解】(1) 在直三棱柱111ABC A B C -中,∴1CC ⊥平面ABC ,又AC ⊂平面ABC ,∴1CC AC ⊥,∵平面1CC D ⊥平面11ACC A ,且平面1CC D ⋂平面111ACC A CC =,又AC ⊂ 平面11ACC A ,∴AC ⊥平面1CC D ,又1DC ⊂平面1CC D ,∴1AC DC ⊥(2)直三棱柱111ABC A B C -中,∵1AA ⊥平面111A B C ,而1111,A B A C ⊂平面111A B C ∴111111,AA A B AA AC ⊥⊥,又90BAC ∠= ,建立如图所示的空间直角坐标系,则()()()()()()112,0,0,,,2,0,1,0,0,1,2A C C B B D ,所以()()12,0,0,1,1BB BD =-=- ,设平面1DBB 的一个法向量为(),,n x y z = ,则100n BB n BD ⎧⋅=⎨⋅=⎩,即200x x z -=⎧⎪⎨-=⎪⎩,令1y =,则(0,1,n = ,∵M 为1DC的中点,则12M ⎛⎫ ⎪⎝⎭,所以32AM ⎛⎫=- ⎪⎝⎭,因为0AM n ⋅= ,所以AM n ⊥ ,又AM ⊄平面1DBB ,∴//AM 平面1DBB .方法点睛:证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.21.已知函数32()f x x ax x b =-++在1x =处取得极值.(1)当2b =-时,求曲线()y f x =在0x =处的切线方程;(2)若函数()f x 有三个零点,求实数b 的取值范围.【正确答案】(1)20x y --=(2)4027b b ⎧⎫-<<⎨⎬⎩⎭【分析】先对函数()f x 求导,根据函数()f x 在1x =处取得极值,求出a ;(1)将2b =-代入()f x 解析式,再由导数的方法求出其在0x =处的切线斜率,进而可求出结果;(2)函数()f x 有三个零点,等价于方程322x x x b -+=-有三个不等实根,也即是函数()322g x x x x =-+与直线y b =-有三个不同的交点,由导数的方法研究函数()322g x x x x =-+的极值,即可得出结果.【详解】解:()2'321f x x ax =-+,由题意知()'10f =,所以3210a -+=,即2a =.所以()322f x x x x b =-++.(1)当2b =-时,()3222f x x x x =-+-,()2'341f x x x =-+,所以()'01f =,()02f =-,所以()f x 在0x =处的切线方程为()20y x --=-,即20x y --=.(2)令()0f x =,则322x x x b -+=-.设()322g x x x x =-+,则()y g x =与y b =-的图象有三个交点.()()()2'341311g x x x x x =-+=--,所以当x 变化时,()g x ,()'g x 的变化情况为x 1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1()1,+∞()'g x +0-0+()g x 增函数极大值减函数极小值增函数所以14327g ⎛⎫= ⎪⎝⎭,()10g =.又当x →-∞时,y →-∞;当x →+∞时,y →+∞,所以4027b <-<,即4027b -<<.所以b 的取值范围是4027b b ⎧⎫-<<⎨⎬⎩⎭.本题主要考查导数在函数中的应用,以及导数的几何意义;对于求函数在某点的切线方程,只需对函数求导,求出切线斜率,再由点斜式求出切线方程即可;对于函数零点问题,可转化为两个函数图像交点的问题,由导数的方法研究函数的极值,进而可求出结果.22.如图,在六面体PABCD 中,PAB 是等边三角形,二面角P AB D --的平面角为30°,4PC AB ====.(1)证明:AB PD ⊥;(2)若点E 为线段BD 上一动点,求直线CE 与平面PAB 所成角的正切的最大值.【正确答案】(1)证明见解析(2)2【分析】(1)利用线面垂直的判定定理及性质定理即可证得;(2)建立空间直角坐标系,利用空间向量求得线面θ,满足sin θ=利用换元法结合二次函数的最值即可求解.【详解】(1)证明:取AB 中点M ,连接,PM DM ,因为,PA PB DA DB ==,所以,PM AB DM AB ⊥⊥,且PM DM M = ,所以AB ⊥平面PMD ,又PD ⊂平面PMD ,所以AB PD ⊥.(2)连接CM ,则CM AB ⊥,由4AC BC AB ===,可得2CM =,于是22216CM PM PC +==,所以PM CM ⊥,又,PM AB AB CM M ⊥⋂=,所以PM ⊥平面ABC ,以M 为原点,,,MC MB MP 分别为,,x y z 轴建立空间直角坐标系,则()()()(0,0,0,2,0,0,0,2,0,0,0,M C B P ,由120CMD ∠= ,可得(D -,平面PAB 的法向量为()1,0,0n = ,设([]1,,0,1BE BD λλλ==--∈,则()2,22,CE CB BE λλ=+=--- ,设CE 与平面PAB 所成角为θ,则sin cos ,n CE θ=令[]2,2,3t t λ+=∈,则sin θ令()[]248368,2,3f t t t t=-+∈,由对称轴138t =知,当138t =,即23λ=时,min 5()4f t =,max (sin )5θ==,于是max (tan ) 2.θ=直线CE 与平面PAB 所成角的正切的最大值为2.。

2020年江苏省南京市区中学高二数学理上学期期末试卷含解析

2020年江苏省南京市区中学高二数学理上学期期末试卷含解析

2020年江苏省南京市区中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知幂函数的图像经过点,则的值为()A.2 B.C.16 D.参考答案:B2. 等差数列{a n}中,,则此数列前20项和等于A.160 B.180 C.200 D.220参考答案:B3. 设,且,则( )A. 0B. 100C. -100D. 10200参考答案:B略4. 在高的山顶上,测得山下一塔顶与塔底俯角分别为,则塔高为()A.B. C. D.参考答案:A5. 已知等比数列,,,则A. B. C. D.参考答案:D6. 曲线y=x3在点P处的切线斜率为3,则P点坐标为()A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8) D.(-,-)参考答案:B略7. 已知数列,那么9是此数列的第()项.A.12 B.13 C.14 D.15参考答案:C【考点】数列的概念及简单表示法.【分析】根据题意,分析可得数列的通项公式为a n=,令a n==9,解可得n的值,即可得答案.【解答】解:根据题意,数列,则有a n=,若a n==9,解可得n=14,即9是此数列的第14项,故选:C.8. 等差数列{a n}的前10项和为30,前20项和为100,则它的前30项和是()A.130 B.170 C.210 D.260参考答案:C【考点】等差数列的前n项和.【分析】由等差数列{a n}的前n项和的性质:S n,S2n﹣S n,S3n﹣S2n成等差数列.即可得出.【解答】解:由等差数列{a n}的前n项和的性质:S n,S2n﹣S n,S3n﹣S2n成等差数列.∴30+S30﹣100=2×(100﹣30),解得:S30=210.故选:C.【点评】本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.9. 从某实验班45名同学中随机抽取5名同学参加“挑战杯”竞赛,用随机数法确定这5名同学,现将随机数表摘录部分如下:号为()A.23 B.37 C.35 D.17参考答案:A【考点】简单随机抽样.【分析】随机数表法也是简单随机抽样的一种方法,采用随机数表法读数时可以从左向右,也可以从右向左或者从上向下等等.应该注意的是,在读数中出现的相同数据只取一次,超过编号的数据要剔除.【解答】解:随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,第一个数为39,然后是43,17,37,23,故选出来的第5个同学的编号是23,故选:A.10. 若以双曲线﹣=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,则b 等于()A.B.1 C.D.2参考答案:B 【考点】双曲线的简单性质.【分析】由题意,以双曲线﹣=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,可得(1﹣c,)?(1+c,)=0,求出c,即可求出b.【解答】解:由题意,以双曲线﹣=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,∴(1﹣c,)?(1+c,)=0,∴1﹣c2+2=0,∴c=,∵a=,∴b=1.故选:B.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,正确求出c是关键.二、填空题:本大题共7小题,每小题4分,共28分11. 如果一个四面体的三个面是直角三角形,那么,第四个面可能是:①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形;⑤等腰直角三角形;⑥等边三角形。

江苏省南京市仙林中学高二数学理上学期期末试题含解析

江苏省南京市仙林中学高二数学理上学期期末试题含解析

江苏省南京市仙林中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. .下列直线中,与函数的图象在处的切线平行的是()A. B.C. D.参考答案:B,,∴∴函数的图象在处的切线方程为与其平行的直线可以为:故选:B点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.2. “”是“直线和直线垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:C略3. “平面内一动点P到两个定点的距离的和为常数”是“平面内一动点P的轨迹为椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【专题】整体思想;定义法;简易逻辑.【分析】根据充分条件和必要条件的定义结合椭圆的定义进行判断即可.【解答】解:若平面内一动点P到两个定点的距离的和为常数,当常数小于等于两定点的距离时,轨迹不是椭圆,若平面内一动点P的轨迹为椭圆,则平面内一动点P到两个定点的距离的和为常数成立,即“平面内一动点P到两个定点的距离的和为常数”是“平面内一动点P的轨迹为椭圆”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义是解决本题的关键.比较基础.4. 设,则( )A. 2B. 3C. 4D. 5参考答案:B【分析】利用复数的除法运算求出,进而可得到.【详解】,则,故,选B.【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题。

5. 双曲线虚轴的长是实轴长的2倍,则A.B. C. D. 参考答案:A略6. 函数f(x)=x3+sin x+1(x∈R),若f(a)=2,则f(-a)的值为()A.3B.0C.-1D.-2参考答案:B7. 数列1,-3,5,-7,9,…的一个通项公式为()A BC D参考答案:B8. 已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(?R B);(2)若A∩B={x|-1<x<4},求实数m的值.参考答案:略9. 某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是()A.①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法参考答案:B略10. 函数在区间[1,+∞)内是增函数,则实数a的取值范围是()A. [3,+∞)B. [-3,+∞)C. (-3,+∞)D. (-∞,-3)参考答案:B试题分析:,令即,当a≥0,x∈R;当a<0时,解得,或;因为函数在区间(1,+∞)内是增函数,所以,解得a≥-3,所以实数a的取值范围是[-3,+∞)考点:函数导数与单调性二、填空题:本大题共7小题,每小题4分,共28分11. 当时,有当时,有当时,有当时,有当时,你能得到的结论是:.参考答案:=略12. 复数z=(i为虚数单位)是实数,则实数a=_________.参考答案:-3略13. 已知函数()在上恒正,则实数a的取值范围为▲.参考答案:14. 如图,在平行六面体ABCD﹣A'B'C'D'中,,,,则AC'= .参考答案:【考点】点、线、面间的距离计算.【分析】2=(++)2,由此利用向量能求出AC′的长.【解答】解:∵在平行六面体ABCD﹣A′B′C′D′中,AB=3,AD=4,AA′=4,∠BAD=90°,∠BAA′=∠DAA′=60°,=(++)2=9+16+16+2×3×4×cos60°+2×4×4×cos60°=69,∴AC′的长是.故答案为:.15. 某办公室共有4个人,他们的年龄成等差数列,已知年龄最大的为50岁,而4个人的年龄和为158岁,则年龄最小的为岁.参考答案:29【考点】等差数列的性质;等差数列的前n项和.【分析】设四人的年龄从小到大依次为a1,a2,a3,a4,建立等差数列,利用等差数列求和公式解决.【解答】解:设四人的年龄从小到大依次为a1,a2,a3,a4,由题a1+a2+a3+a4=2(a1+a4)=2(a1+50)=158,∴a1=29,即年龄最小的为29故答案为:29.16. 在北纬45︒圈上的甲、乙两地,甲在东经30︒,乙在西经60︒处,若地球半径为R,则甲、乙两地的球面距离是参考答案:17. 若,其中、,是虚数单位,则.参考答案:5略三、解答题:本大题共5小题,共72分。

江苏省南京市大厂中学高二数学理期末试卷含解析

江苏省南京市大厂中学高二数学理期末试卷含解析

江苏省南京市大厂中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若成等比数列,则函数的图像与轴交点个数是()A.B.C.D.参考答案:A略2. “对任意的正整数,不等式都成立”的一个充分不必要条件是()A . B. C. D. 或参考答案:B略3. “”是“直线(-2)x+3y+1=0与直线(+2)x+(-2)y-3=0相互垂直”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要参考答案:A4. 从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有A.420 B.360 C.400D.380参考答案:A 略5. 下列命题为真命题的是()A.平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C.垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

参考答案:C略6. 如果命题“”为假命题,则()A.、均为假命题 B.、均为真命题C.、中至少有一个假命题 D.、中至少有一个真命题参考答案:D7. 设随机变量的分布列为,,则等于()A.B.C.D.参考答案:C略8. 已知函数,其导函数的图象如下图,则对于函数的描述正确的是A. 在上为减函数B. 在上为减函数C. 在处取得最大值D. 在处取得最小值参考答案:B9. 道路安全交通法规定,驾驶员血液酒精含量在20~80mg/100ml,属酒后驾车,血液酒精含量在80mg/100ml以上时,属醉酒驾车,2011年6月1日7:00至22:30,某地查处酒后驾车和醉酒驾车共50起,如图是对这50人的血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数大约为()A.9 B.10 C.11 D.12参考答案:D10. 以3i-的虚部为实部,以-3+i的实部为虚部的复数是()A.3-3i B.3+I C.-+i D.+i参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 一个空间几何体的三视图如右图所示,其主视图、俯视图、左视图、均为等腰直角三角形,且直角边长都为1,则它的外接球的表面积是.参考答案:略12. 已知,,则______.参考答案:【分析】利用两角差的正切公式展开,代入相应值可计算出的值。

2018-2019学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年江苏省南京市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应位置上1.(5分)已知命题p:∀x>0,e x≥ex,写出命题p的否定:.2.(5分)在平面直角坐标系xOy中,抛物线y2=2x的准线方程为.3.(5分)已知f(x)=e x•sin x,则f′(0)的值为.4.(5分)设复数z满足(z﹣2)i=1+i(i为虚数单位),则z的实部是.5.(5分)在平面直角坐标系xOy中,P是椭圆C:+y2=1上一点.若点P到椭圆C的右焦点的距离为2,则它到椭圆C的右准线的距离为.6.(5分)已知实数x,y满足,则z=x+2y的最小值为.7.(5分)在平面直角坐标系xOy中,“m>0”是“方程x2+my2=1表示椭圆”的条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的顶点到它的渐近线的距离为.9.(5分)在平面直角坐标系xOy中,点A(4,0),点B(0,2),平面内点P满足•=15,则PO的最大值是.10.(5分)在平面直角坐标系xOy中,点F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过点F2且与x轴垂直的直线与椭圆交于A,B两点.若∠AF1B为锐角,则该椭圆的离心率的取值范围是.11.(5分)在平面直角坐标系xOy中,圆C1:(x﹣a)2+(y﹣a﹣2)2=1与圆C2:x2+y2﹣2x﹣3=0有公共点,则实数a的取值范围是.12.(5分)如图,在正四棱锥P﹣ABCD中,P A=AB,点M为P A的中点,=λ.若MN⊥AD,则实数λ=.13.(5分)在平面直角坐标系xOy中,圆M:(x﹣1)2+y2=1,点A(3,1),P为抛物线y2=2x上任意一点(异于原点),过点P作圆M的切线PB,B为切点,则P A+PB的最小值是.14.(5分)已知函数f(x)=x3﹣3a2x﹣6a2+4a(a>0)只有一个零点,且这个零点为正数,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平面直角坐标系xOy中,已知椭圆E:+=1(a>b>0)经过点A(4,0),其离心率为.(1)求椭圆E的方程;(2)已知P是椭圆E上一点,F1,F2为椭圆E的焦点,且∠F1PF2=,求点P到y 轴的距离.16.(14分)如图,正四棱柱ABCD﹣A1B1C1D1的底面边长为,侧棱长为1,求:(1)直线A1C与直线AD1所成角的余弦值;(2)平面D1AC与平面ABB1A1所成二面角的正弦值.17.(14分)在平面直角坐标系xOy中,已知圆C经过抛物线y=x2﹣x﹣6与坐标轴的三个交点.(1)求圆C的方程;(2)经过点P(﹣2,5)的直线l与圆C相交于A,B两点,若圆C在A,B两点处的切线互相垂直,求直线l的方程.18.(16分)如图,从一个面积为15π的半圆形铁皮上截取两个高度均为x的矩形,并将截得的两块矩形铁皮分别以AB,A1B1为母线卷成两个高均为x的圆柱(无底面,连接部分材料损失忽略不计).记这两个圆柱的体积之和为V.(1)将V表示成x的函数关系式,并写出x的取值范围;(2)求两个圆柱体积之和V的最大值.19.(16分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆C:+=1的左、右焦点.动直线l过点F2,且与椭圆C相交于A,B两点(直线l与x轴不重合).(1)若点A的坐标为(0,),求点B坐标;(2)点M(4,0),设直线AM,BM的斜率分别为k1,k2,求证:k1+k2=0;(3)求△AF1B面积最大时的直线l的方程.20.(16分)已知函数f(x)=alnx+,a∈R.(1)若a=2,且直线y=x+m是曲线y=f(x)的一条切线,求实数m的值;(2)若不等式f(x)>1对任意x∈(1,+∞)恒成立,求a的取值范围;(3)若函数h(x)=f(x)﹣x有两个极值点x1,x2(x1<x2),且h(x2)﹣h(x1)≤,求a的取值范围.2018-2019学年江苏省南京市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应位置上1.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x>0,e x≥ex,的否定是:∃x>0,e x<ex.故答案为:∃x>0,e x<ex.2.【解答】解:抛物线y2=2x的焦点到其准线的距离为:p=1.抛物线的准线方程为:x=﹣.故答案为:x=﹣3.【解答】解:f(x)=e x•sin x,f′(x)=(e x)′sin x+e x.(sin x)′=e x•sin x+e x•cos x,∴f'(0)=0+1=1故答案为:14.【解答】解:由(z﹣2)i=1+i得,z====3﹣i,所以复数的实部为:3.故答案为:3.5.【解答】解:椭圆C:+y2=1,可得e=,由椭圆的第二定义可得:它到椭圆C的右准线的距离为d,d==.故答案为:.6.【解答】解:由实数x,y满足,作出可行域如图,由解得B(3,﹣1).化z=x+2y为y=﹣x+,由图可知,当直线y=﹣x+过B(3,﹣1)时,直线在y轴上的截距最小,z有最小值等于z=3+2×(﹣1)=1.故答案为:1.7.【解答】解:由椭圆的性质有:“方程x2+my2=1表示椭圆”的充要条件为:,又“m>0”是“”的必要不充分条件,所以,“m>0”是“方程x2+my2=1表示椭圆”的必要不充分条件,故答案为:必要不充分8.【解答】解:双曲线﹣y2=1的一个顶点为A(2,0),双曲线的一条渐近线为y=x,即x﹣2y=0,则点到直线的距离公式d==,故答案为:.9.【解答】解:设P(x,y),则=(4﹣x,﹣y),=(﹣x,2﹣y)∵•=15,∴x(x﹣4)+y(y﹣2)=15,即(x﹣2)2+(y﹣1)2=20,∴点P的轨迹是以C(2,1)为圆心,2为半径的圆,∴PO的最大值为:|OC|+半径=3.故答案为:3.10.【解答】解:∵点F1、F2分别是椭圆+=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,∴F1(﹣c,0),F2(c,0),A(﹣c,),B(﹣c,﹣),∵△AF1B是锐角三角形,∴∠AF2F1<45°,∴tan∠AF2F1<1,∴<1,整理,得b2<2ac,∴a2﹣c2<2ac,两边同时除以a2,并整理,得e2+2e﹣1>0,解得e>﹣1,或e<﹣﹣1,(舍),∴0<e<1,∴椭圆的离心率e的取值范围是(﹣1,1).故答案为:(﹣1,1).11.【解答】解:根据题意,圆C1:(x﹣a)2+(y﹣a﹣2)2=1,其圆心C1为(a,a+2),半径为r1=1,圆C2:x2+y2﹣2x﹣3=0,即(x﹣1)2+y2=4,其圆心C2(1,0),半径r2=2,若两圆有公共点,则2﹣1≤|C1C2|≤2+1,即1≤(a﹣1)2+(a+2)2≤9,变形可得:a2+a+2≥0且a2+a﹣2≥0,解可得:﹣2≤a≤1,即a的取值范围为[﹣2,1];故答案为:[﹣2,1].12.【解答】解:连结AC,交BD于O,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,设P A=AB=2,则A(,0,0),D(0,﹣,0),P(0,0,),M(,0,),B(0,,0),=(0,﹣2,0),设N(0,b,0),则=(0,b﹣,0),∵=λ,∴﹣2=,∴b=,∴N(0,,0),=(﹣,,﹣),=(﹣,0),∵MN⊥AD,∴=1﹣=0,解得实数λ=4.故答案为:4.13.【解答】解:设P(x,y),可得y2=2x,圆M:(x﹣1)2+y2=1的圆心M(1,0),半径为1,|PB|====|x|,即|PB|为P到y轴的距离,抛物线的焦点F(,0),准线方程为x=﹣,可得|P A|+|PB|=|P A|+|PK|﹣=|P A|+|PF|﹣,过A作准线的垂线,垂足为K,可得A,P,K共线时,|P A|+|PK|取得最小值|AK|=,即有|P A|+|PB|的最小值为3.故答案为:3.14.【解答】解:令f'(x)=3x2﹣3a2=3(x﹣a)(x+a)=0,解得x1=﹣a,x2=a,其中a>0,所以函数的单调性和单调区间如下:x∈(﹣∞,﹣a),f(x)递增;x∈(﹣a,a),f(x)递减;x∈(a,+∞),f(x)递增.因此,f(x)在x=﹣a处取得极大值,在x=a处取得极小值,结合函数图象,要使f(x)只有一个零点x0,且x0>0,只需满足:f(x)极大值=f(﹣a)<0,即﹣a3+3a3﹣6a2+4a<0,整理得a(a﹣1)(a﹣2)<0,解得,a∈(1,2),故答案为:(1,2)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解(1)因为椭圆E:+=1(a>b>0)经过点A(4,0),所以a=4.…………………(2分)又椭圆E的离心率e==,所以c=2.…………………(4分)所以b2=a2﹣c2=4.因此椭圆E的方程为…………………(6分)(2):由椭圆E的方程为.知F1(﹣2,0),F2(2,0).设P(x,y).因为∠F1PF2=,所以•=0,所以x2+y2=12.…………………(10分)由解得x2=.…………………(12分)所以|x|=,即P到y轴的距离为.…………………(14分)16.【解答】(本题满分14分)解:如图,正四棱柱ABCD﹣A1B1C1D1 的底面边长为,侧棱长为1,故以{,,} 为正交基底建立空间直角坐标系D﹣xyz.则D(0,0,0),A(,0,0),A1(,0,1),C(0,,0),D1(0,0,1).(1)因为=(0,,0)﹣(,0,1)=(﹣,,﹣1),=(0,0,1)﹣(,0,0)=(﹣,0,1),……………(2分)所以=(﹣)×(﹣)+(﹣1)×1=1,||==,||==,从而cos<>===.…………………(5分)又异面直线所成的角的范围是(0,],所以直线A1C与直线AD1所成角的余弦值为.…………………(6分)(2)=(﹣,,0),=(﹣,0,1),设平面D1AC的一个法向量为n=(x,y,z),则,取x=1,可得=(1,1,).…………………(9分)在正四棱柱ABCD﹣A1B1C1D1中,DA⊥平面ABB1A1,又=(,0,0)=(1,0,0),所以=(1,0,0)为平面ABB1A1的一个法向量.…………………(11分)因为cos<,>===,且0≤<,>≤π,所以<>=.因此平面D1AC与平面ABB1A1所成二面角的正弦值为.…………………(14分)17.【解答】解:(1)方法一:抛物线y=x2﹣x﹣6与坐标轴的三个交点坐标为(﹣2,0),(3,0),(0,﹣6),设圆C的方程为x2+y2+Dx+Ey+F=0,则,解得,所以圆C的方程为x2+y2﹣x+5y﹣6=0.方法二:设圆C的方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0.因为圆C经过抛物线y=x2﹣x﹣6与x轴的交点,所以x2+Dx+F=0与方程x2﹣x﹣6=0同解,所以D=﹣1,F=﹣6.因此圆C:x2+y2﹣x+Ey﹣6=0.因为抛物线y=x2﹣x﹣6与y轴的交点坐标为(0,﹣6),又所以点(0,﹣6)也在圆C上,所以36﹣6E﹣6=0,解得E=5.所以圆C的方程为x2+y2﹣x+5y﹣6=0.(2)由(1)可得,圆C:(x﹣)2+(y+)2=,故圆心C(,﹣),半径r=.因为圆C在A,B两点处的切线互相垂直,所以∠ACB=.所以C到直线l的距离d=×=.①当直线l的斜率不存在时,l:x=﹣2,符合题意;②当直线l的斜率存在时,设l:y﹣5=k(x+2),即kx﹣y+(2k+5)=0,所以=,解得k=﹣,所以直线l:y﹣5=﹣(x+2),即4x+3y﹣7=0.综上,所求直线l的方程为x=﹣2和4x+3y﹣7=0.18.【解答】解:(1)设半圆形铁皮的半径为r,自下而上两个矩形卷成的圆柱的底面半径分别为r1,r2.因为半圆形铁皮的面积为15π,所以πr2=15π,即r2=30.因为2πr1=2,所以r1=,同理2πr2=2,即r2=.所以卷成的两个圆柱的体积之和V=f(x)=(πr12+πr22)x=(60x﹣5x3).因为0<2x<r=,所以x的取值范围是(0,).(2)由f(x)=(60x﹣5x3),得f′(x)=(60﹣15x2),令f′(x)=0,因为x∈(0,),故x=2.当x∈(0,2)时,f′(x)>0;当x∈(2,)时,f′(x)<0,所以f(x)在(0,2)上为增函数,在(2,)上为减函数,所以当x=2时,f(x)取得极大值,也是最大值.因此f(x)的最大值为f(2)=.答:两个圆柱体积之和V的最大值为.19.【解答】(1)解:∵直线l经过点F2(1,0),A(0,),∴直线l的方程为y=﹣(x﹣1).由,解得或.∴B();(2)证明:∵直线l与x轴不重合,故可设直线l的方程为x=ty+1.设A(x1,y1),B(x2,y2).由,得(4+3t2)y2+6ty﹣9=0,∴y1+y2=,y1y2=,∵A,B在直线l上,∴x1=ty1+1,x2=ty2+1,∴k1=,k2=,从而k1+k2==.∵2ty1y2﹣3(y1+y2)=2t•()﹣3•(﹣)=0,∴k1+k2=0;(3)解:△AF1B的面积S=|F1F2|•|y1﹣y2|=|y1﹣y2|=.由(2)知,y1+y2=﹣,y1y2=﹣,故S==12==.设函数f(x)=9x+(x≥1).∵f'(x)=9﹣>0,∴f(x)=9x+在[1,+∞)上单调递增,∴当t2+1=1,即t=0时,9(t2+1)+取最小值10.即当t=0时,△AF1B的面积取最大值,此时直线l的方程为x=1.因此,△AF1B的面积取最大值时,直线l的方程为x=1.20.【解答】解:(1)当a=2时,f(x)=2lnx+,f′(x)=﹣.设直线y=x+m与曲线y=f(x)相切于点(x0,2lnx0+),则﹣=1,即﹣2x0+1=0,解得x0=1,即切点为(1,1),因为切点在y=x+m上,所以1=1+m,解得m=0.…………………(3分)(2)不等式f(x)>1可化为alnx+﹣1>0.记g(x)=alnx+﹣1,则g(x)>0对任意x∈(1,+∞)恒成立.考察函数g(x)=alnx+﹣1,x>0,g′(x)=﹣=.当a≤0时,g′(x)<0,g(x)在(0,+∞)上单调递减,又g(1)=0,所以g(2)<g(1)=0,不合题意;…………………(5分)当a>0时,x∈(0,),g′(x)<0;x∈(,+∞),g′(x)>0,所以g(x)在(0,]上单调递减,在[,+∞)上单调递增,若≤1,即a≥1时,g(x)在[1,+∞)上单调递增,所以x∈(1,+∞)时,g(x)>g(1)=0,符合题意;…………………(7分)若>1,即0<a<1时,g(x)在[1,)上单调递减,所以当x∈(1,)时,g(x)<g(1)=0,不符合题意;综上所述,实数a的取值范围为[1,+∞).…………………(9分)(3)方法一:h(x)=f(x)﹣x=alnx+﹣x,x>0,h′(x)=﹣﹣1=,因为h(x)有两个极值点x1,x2(x1<x2),所以h′(x)=0,即x2﹣ax+1=0的两实数根为x1,x2,0<x1<x2,所以x1+x2=a,x1x2=1,△=a2﹣4>0,所以a>2,0<x1<1<x2,从而h(x2)﹣h(x1)=(alnx2+﹣x2)﹣(alnx1+﹣x1)=2(alnx2+﹣x2)=2[(x2+)lnx2+﹣x2].…………………(12分)记m(x)=2[(x+)lnx+﹣x],x≥1.则m′(x)=2[(1﹣)lnx+(x+)•﹣﹣1]=2(1﹣)lnx≥0 (当且仅当x=1时取等号),所以m(x)在[1,+∞)上单调递增,又m(e)=,不等式h(x2)﹣h(x1)≤可化为m(x2)≤m(e),所以1<x2≤e.…………(14分)因为a=x2+,且y=x+在(1,+∞)上递增,所以2<a≤e+,即a的取值范围为(2,e+].…………………(16分)方法二:h(x)=f(x)﹣x=alnx+﹣x,x>0,h′(x)=﹣﹣1=.因为h(x)有两个极值点x1,x2(x1<x2),所以h′(x)=0,即x2﹣ax+1=0的两实数根为x1,x2,0<x1<x2,所以x1+x2=a,x1x2=1,△=a2﹣4>0,所以a>2,0<x1<1<x2.设t2=(t>1),则x1+t2x1=a,t2=1,所以x1=,a=t+,x2=t,从而h(x2)﹣h(x1)≤等价于h(t)=(t+)lnt+﹣t≤,t>1.……………(12分)记m(x)=(x+)lnx+﹣x,x≥1.则m′(x)=(1﹣)lnx+(x+)﹣﹣1=(1﹣)lnx≥0 (当且仅当x=1时取等号),所以m(x)在[1,+∞)上单调递增.又t>1,m(e)=,所以1<t≤e.…………………(14分)因为a=t+,且y=x+在(1,+∞)上递增,所以2<a≤e+,即a的取值范围为(2,e+].…………………(16分)。

江苏省南京市2018-2019学年高二上学期期末考试数学理试题Word版含解析

江苏省南京市2018-2019学年高二上学期期末考试数学理试题Word版含解析

江苏省南京市2018-2019学年上学期期末考试高二数学理试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1. 命题“若ab=0,则b=0”的逆否命题是______.【答案】“若b≠0,则ab≠0”【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:“若b≠0,则ab≠0”.2. 已知复数z满足z(1+i)=i,其中i是虚数单位,则 |z| 为______.【答案】【解析】复数z满足z(1+i)=i,所以.所以.故答案为:.3. 在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是______.【答案】(1,0)【解析】抛物线y2=4x,满足y2=2p x,其中p=2.所以抛物线y2=4x的焦点坐标是(1,0).故答案为:(1,0).4. “x2-3x+2<0”是“-1<x<2”成立的______条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).【答案】充分不必要【解析】由x2-3x+2<0,解得1<x<2,因为1<x<2是“-1<x<2”成立的充分不必要条件,所以“x2-3x+2<0”是“-1<x<2”成立的充分不必要条件.故答案为:充分不必要.5. 已知实数x,y满足条件则z=3x+y 的最大值是______.【答案】7【解析】作出不等式的可行域如图所示:作直线经过点A(2,1)时,z取最大值7.故答案为:7.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6. 函数f(x)=x e x 的单调减区间是______.【答案】(-∞,-1)或(-∞,-1]【解析】函数f(x)=x e x,求导得:.令,解得.所以函数f(x)=x e x 的单调减区间是(-∞,-1)( (-∞,-1]也可以).故答案为: (-∞,-1)或(-∞,-1].7. 如图,直线l经过点(0,1),且与曲线y=f(x) 相切于点(a,3).若f ′(a)=,则实数a的值是______.【答案】3【解析】由导数的几何意义知f ′(a)=,即为切线斜率为.所以,解得.故答案为:3.8. 在平面直角坐标系xOy中,若圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则实数a的值为______.【答案】3【解析】圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则圆心距等于半径之和,即,解得.故答案为:3.点睛:这个题目考查的是两圆的位置关系;两圆的位置关系有相交,外切,内切,内含,外离这几种情况。

【配套K12】江苏省南京市2017-2018学年高二数学上学期期末考试试题 理(含解析)

【配套K12】江苏省南京市2017-2018学年高二数学上学期期末考试试题 理(含解析)

江苏省南京市2017-2018学年高二数学上学期期末考试试题理一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1. 命题“若ab=0,则b=0”的逆否命题是______.【答案】“若b≠0,则ab≠0”【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:“若b≠0,则ab≠0”.2. 已知复数z满足z(1+i)=i,其中i是虚数单位,则 |z| 为______.【答案】【解析】复数z满足z(1+i)=i,所以.所以.故答案为:.3. 在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是______.【答案】(1,0)【解析】抛物线y2=4x,满足y2=2p x,其中p=2.所以抛物线y2=4x的焦点坐标是(1,0).故答案为:(1,0).4. “x2-3x+2<0”是“-1<x<2”成立的______条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).【答案】充分不必要【解析】由x2-3x+2<0,解得1<x<2,因为1<x<2是“-1<x<2”成立的充分不必要条件,所以“x2-3x+2<0”是“-1<x<2”成立的充分不必要条件.故答案为:充分不必要.5. 已知实数x,y满足条件则z=3x+y 的最大值是______.【答案】7【解析】作出不等式的可行域如图所示:作直线经过点A(2,1)时,z取最大值7.故答案为:7.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6. 函数f(x)=x e x 的单调减区间是______.【答案】(-∞,-1)或(-∞,-1]【解析】函数f(x)=x e x,求导得:.令,解得.所以函数f(x)=x e x 的单调减区间是(-∞,-1)( (-∞,-1]也可以).故答案为: (-∞,-1)或(-∞,-1].7. 如图,直线l经过点(0,1),且与曲线y=f(x) 相切于点(a,3).若f ′(a)=,则实数a的值是______.【解析】由导数的几何意义知f ′(a)=,即为切线斜率为.所以,解得.故答案为:3.8. 在平面直角坐标系xOy中,若圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则实数a的值为______.【答案】3【解析】圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则圆心距等于半径之和,即,解得.故答案为:3.点睛:这个题目考查的是两圆的位置关系;两圆的位置关系有相交,外切,内切,内含,外离这几种情况。

江苏省南京市2023-2024学年高二上学期期末考试 数学含答案

江苏省南京市2023-2024学年高二上学期期末考试 数学含答案

南京市高二年级期末试卷数学(答案在最后)2024.01注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系xOy 中,若直线()210x a y +-+=与直线310ax y +-=互相垂直,则实数a 的值是()A.-1B.23C.32D.32.现有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择种数为()A.53 B.35A C.35C D.353.设等比数列{}n a 的首项为1a ,公比为q ,则“10a <,且01q <<”是“对于任意*N 都有1n n a a +>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在空间直角坐标系xOy 中,已知()()1,2,1,1,1,1a b x =--=-- ,且a 与b的夹角为钝角,则x 的取值范围是()A.()0,∞+ B.()0,3 C.()3,+∞ D.()()0,33,⋃+∞5.如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,且BC ⊥平面PAB ,PA ⊥AB ,M 为PB 的中点,PA =AD =2.若AB =1,则二面角B —AC —M 的余弦值为()A.66B.36C.26D.166.在平面直角坐标系xOy 中,已知圆221:(4)(8)1C x y -+-=,圆222:(6)(6)9C x y -++=.若圆心在x轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是()A.2281x y +=B.2264x y +=C.2249x y += D.2236x y +=7.已知数列{}n a 满足1(1)21nn n a a n ++-=+,则35991a a a a ++++ 的值是()A .25B.50C.75D.1008.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点1F ,2F ,点P 是两曲线在第一象限的交点,且12F F 在1F P上的投影等于1F P ,1e ,2e 分别是椭圆1C 和双曲线2C 的离心率,则22129e e +的最小值是()A.4B.6C.8D.16二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.过点(2,1)P 且在两坐标轴上的截距的绝对值相等的直线方程为()A.30x y +-= B.30x y ++= C.10x y --= D.20x y -=10.已知某种产品的加工需要经过5道工序,则下列说法正确的是()A.若其中某道工序不能放在最后,有96种加工顺序B.若其中某2道工序既不能放在最前,也不能放在最后,有72种加工顺序C.若其中某2道工序必须相邻,有48种加工顺序D.若其中某2道工序不能相邻,有36种加工顺序11.在平面直角坐标系xOy 中,过抛物线2:4C y x =的焦点F 作直线l 交抛物线C 于,A B 两点,则()A.AB 的最小值为2B.以线段AF为直径的圆与y 轴相切C.111FA FB+=D.当3AF FB =时,直线AB 的斜率为1±12.已知正方体1111ABCD A B C D -的棱长为1,点E 满足()101,01BE BC BB λμλμ=+≤≤≤≤,则()A.若λμ=,则1B C AE ⊥B.若1λμ+=,则1B C 平面1A DEC.若1λμ+=,则1AE D E +D.若221λμ+=,则AE 与平面11BB C C 的所成角为定值π4第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.已知1121n n C -+=,那么n =________;14.在直三棱柱111ABC A B C -中,3,3,AC BC AB ===,14AA =,则异面直线1AC 与1BC 所成角的余弦值为__________.15.数列{}n a 满足1111,2n na a a +=-=,则2024a =__________.16.在平面直角坐标系xOy 中,已知双曲线22:14yC x -=的左、右顶点分别为P 、Q ,点D 在双曲线上且位于第一象限,若DP t DQ =且2DQP DPQ ∠=∠,则t 的值是__________.四、解答题(本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)17.如图,正四面体(四个面都是正三角形)OABC 的棱长为1,M 是棱BC 的中点,点N 满足2ON NM =,点P 满足34AP AN =.(1)用向量OAOB OC,,表示OP;(2)求||OP .18.在平面直角坐标系xOy 中,已知半径为4的圆C 与直线1:3480l x y -+=相切,圆心C 在y 轴的负半轴上.(1)求圆C 的方程;(2)若直线2:170l kx y -+=与圆C 相交于,A B 两点,且ABC 的面积为8,求直线2l 的方程.19.在等比数列{}n a 中,3339,22a S ==.(1)求数列{}n a 的通项公式;(2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++< .20.如图,四棱锥S ABCD -中,ABS 是正三角形,四边形ABCD 是菱形,点E 是BS的中点.(I)求证:SD //平面ACE ;(II)若平面ABS ⊥平面ABCD ,120ABC ∠=︒,求直线AC 与平面ADS 所成角的正弦值.21.数列{}n a 的前n 项和为n s ,11a =,对任意的*n ∈N 有0n a >,1n a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b ,15-2b =,*111,2()n n n n n N b b a +++∀∈-=,求数列{}n b 的通项公式.22.已知椭圆2221(1)x y a a+=>,过点(作椭圆的两条切线,且两切线垂直.(1)求a ;(2)已知点()0,1Q -,若直线l 与椭圆交于,M N ,且以MN 为直径的圆过点Q (,M N 不与Q 重合),求证直线MN 过定点,并求出定点.南京市高二年级期末试卷数学2024.01注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系xOy 中,若直线()210x a y +-+=与直线310ax y +-=互相垂直,则实数a 的值是()A.-1B.23C.32D.3【答案】C 【解析】【分析】根据两直线垂直的条件列方程求解.【详解】直线()210x a y +-+=与直线310ax y +-=互相垂直,则1(2)30a a ⋅+-⋅=,解得32a =.故选:C2.现有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择种数为()A.53B.35A C.35C D.35【答案】A 【解析】【分析】利用分步计数原理即得.【详解】每一位同学有3种不同的选择,则5名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的1个讲座,不同选法的种数是53.故选:A .3.设等比数列{}n a 的首项为1a ,公比为q ,则“10a <,且01q <<”是“对于任意*N 都有1n n a a +>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义,结合等比数列的性质分析判断即可【详解】若10a <,且01q <<,则111111(1)0n n n n n a a q a q a q q a -+--=-=->,所以1n n a a +>,反之,若1n n a a +>,则111111(1)0n n n n n a a q a q a q q a -+--=-=->,所以10a <,且01q <<或10a >,且1q >,所以“10a <,且01q <<”是“对于任意*N ,都有1n n a a +>”的充分不必要条件.故选:A4.在空间直角坐标系xOy 中,已知()()1,2,1,1,1,1a b x =--=-- ,且a 与b的夹角为钝角,则x 的取值范围是()A.()0,∞+ B.()0,3 C.()3,+∞ D.()()0,33,⋃+∞【答案】D 【解析】【分析】根据题意得出0a b ⋅< 且a 与b 不共线,根据数量积公式列出不等式并排除两个向量反向时x 的值,从而得解.【详解】因为a与b的夹角为钝角,所以0a b ⋅< ,且a 与b 不共线,又()()1,2,1,1,1,1a b x =--=--则()()11211120a b x x ⋅=⨯--⨯--⨯=-<,解得0x >,若a与b共线,则111112x --==--,即3x =,此时a b =- ,a 与b 反向,需要舍去,所以x 的取值范围为0x >且3x ≠,即()()0,33,x ∈⋃+∞.故选:D.5.如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,且BC ⊥平面PAB ,PA ⊥AB ,M 为PB 的中点,PA =AD =2.若AB =1,则二面角B —AC —M 的余弦值为()A.6B.6 C.26D.16【答案】A 【解析】【分析】以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz ,求平面AMC 的一个法向量n以及平面ABC 的一个法向量,利用空间向量的数量积即可求解.【详解】因为BC ⊥平面PAB ,PA ⊂平面PAB ,所以PA ⊥BC ,又PA ⊥AB ,且BC ∩AB =B ,所以PA ⊥平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M 1,0,12⎛⎫⎪⎝⎭,所以()1,2,0AC = ,1,0,12AM ⎛⎫= ⎪⎝⎭,求得平面AMC 的一个法向量为n=(-2,1,1),又平面ABC 的一个法向量AP=(0,0,2),所以cos 〈n ,AP〉=6n AP n AP⋅=== .所以二面角B --AC --M的余弦值为6.故选:A【点睛】本题考查了空间向量法求面面角,考查了基本运算求解能力,属于基础题.6.在平面直角坐标系xOy 中,已知圆221:(4)(8)1C x y -+-=,圆222:(6)(6)9C x y -++=.若圆心在x轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是()A .2281x y += B.2264x y +=C.2249x y += D.2236x y +=【答案】A 【解析】【分析】由题知圆C 与圆1C 的公共弦是圆1C 的直径,圆C 与圆2C 的公共弦是圆2C 的直径,进而设圆C 的圆心为(,0)C a ,半径为r 得2222121,9r CC r CC =+=+,再结合距离公式解方程即可得答案.【详解】圆C 平分圆C 1等价于圆C 与圆1C 的公共弦是圆1C 的直径.同理圆C 与圆2C 的公共弦是圆2C 的直径设圆C 的圆心为(,0)C a ,半径为r ,则()222x a y r -+=,所以2222121,9r CC r CC =+=+,即()()()222222481669a r a r⎧-+-+=⎪⎨-++=⎪⎩,解得20,81.a r =⎧⎨=⎩所以圆C 的方程为2281x y +=.故选:A7.已知数列{}n a 满足1(1)21nn n a a n ++-=+,则35991a a a a ++++ 的值是()A.25B.50C.75D.100【答案】B 【解析】【分析】根据所给递推关系可得317599972a a a a a a +=+==+= ,即可得解.【详解】由1(1)21nn n a a n ++-=+,故2212212(1)41nn n n n a a a a n +++-=+=+,21221221(1)41n n n n n a a a a n ---+-=-=-,则()()212221212141412n n n n n n a a a a a a n n +-+-+--=+=+--=,故317599972a a a a a a +=+==+= ,故91359502502a a a a ++=⨯+=+ .故选:B.8.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点1F ,2F ,点P 是两曲线在第一象限的交点,且12F F 在1F P上的投影等于1F P ,1e ,2e 分别是椭圆1C 和双曲线2C 的离心率,则22129e e +的最小值是()A.4B.6C.8D.16【答案】C 【解析】【分析】由12F F 在1F P上的投影等于1F P 可知PF 1⊥PF 2,利用椭圆与双曲线的焦距相同找到1e 和2e 的关系,最后构建函数利用导数求出22129e e +的最小值.【详解】如图,设半焦距为c .∵点P 是两曲线在第一象限的交点,且12F F 在1F P上的投影等于1F P,∴PF 1⊥PF 2.设1PF m =,2PF n =,则12m n a +=,22m n a -=.∴22()()4m n m n mn +--==21a ﹣22a .在12PF F △中,由勾股定理可得:()()22222221124242c m n m n mn a a a =+=+-=--.∴222122c a a =+.两边同除以c 2,得2=221211+e e ,所以()()222222121212222212219111==1199++10+10+6=8222e e e e e e e e e e ⎛⎫⎛⎫≥ ⎪ ⎝⎭⎝⎭++,当22123=e e即1=3e 时取等号,因此9e 12+e 22的最小值是8.故选:C.【点睛】求最值题目一般分为三步:①写表达式;②消元;③求值域.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.过点(2,1)P 且在两坐标轴上的截距的绝对值相等的直线方程为()A.30x y +-=B.30x y ++= C.10x y --= D.20x y -=【答案】ACD 【解析】【分析】利用截距式的求法,讨论截距的绝对值相等的情况,在进行截距式假设时,分截距为0,截距不为0进行假设.【详解】当直线的截距不为0时,设直线的截距式方程为1x ya b+=,由题可得211,,a ba b ⎧+=⎪⎨⎪=⎩所以211,a b a b ⎧+=⎪⎨⎪=⎩或211,,a ba b ⎧+=⎪⎨⎪=-⎩解得3,3a b =⎧⎨=⎩或1,1,a b =⎧⎨=-⎩所以直线方程为30x y +-=或10x y --=,故A ,C 正确;当直线的截距为0时,设直线方程为y kx =,由题可知12k =,故直线方程为20x y -=,D 正确.故选:ACD10.已知某种产品的加工需要经过5道工序,则下列说法正确的是()A.若其中某道工序不能放在最后,有96种加工顺序B.若其中某2道工序既不能放在最前,也不能放在最后,有72种加工顺序C.若其中某2道工序必须相邻,有48种加工顺序D.若其中某2道工序不能相邻,有36种加工顺序【答案】AC 【解析】【分析】对AB :根据分步计数原理,先安排特殊的工序,再安排其它工序即可;对C :采用捆绑法,再根据分步计数原理即可求得结果;对D :采用插空法,再根据分步计数原理即可求得结果.【详解】假设有甲乙丙丁戊,这5道工序.对A :假设甲工序不能放到最后,则甲有4种安排方式,根据分步计数原理,所有的安排顺序有:4432196⨯⨯⨯⨯=种,故A 正确;对B :假设甲乙2道工序不能放到最前,也不能放到最后,先安排甲乙,则共有326⨯=种安排方式;再安排剩余3道工序,共有3216⨯⨯=种;根据分步计数原理,则所有的安排顺序有:6636⨯=种,故B 错误;对C :假设甲乙工序相邻,将甲和乙捆绑为一道工序,和剩余3道工序放在一起排序,则共有4321248⨯⨯⨯⨯=种加工顺序,故C 正确;对D :假设甲乙工序不能相邻,则先安排剩余3道工序,在形成的4个空中,安排甲乙,故共有:3214372⨯⨯⨯⨯=种加工顺序,故D 错误.故选:AC.11.在平面直角坐标系xOy 中,过抛物线2:4C y x =的焦点F 作直线l 交抛物线C 于,A B 两点,则()A.AB 的最小值为2B.以线段AF为直径的圆与y 轴相切C.111FA FB+=D.当3AF FB =时,直线AB 的斜率为1±【答案】BC 【解析】【分析】根据题意设直线:1l x my =+,()11,A x y ,()22,B x y ,联立方程可得124y y m +=,124y y =-,进而可得21242x x m +=+,()241AB m =+,根据抛物线的定义结合韦达定理逐项分析判断即可得.【详解】由题意可知:拋物线C :24y x =的焦点()1,0F ,准线为=1x -,且直线l 的斜率可以不存在,但不为0,设直线:1l x my =+,()()1122,,,A x y B x y ,联立方程214x my y x=+⎧⎨=⎩,消去x 可得2440y my --=,则216160m ∆=+>,可得12124,4y y m y y +==-,可得()()()212121211242x x my my m y y m +=+++=++=+,()212241AB x x m =++=+,对于选项A :因为()2414AB m =+≥,当且仅当0m =时,等号成立,所以AB 的最小值为4,故A 错误;对于选项B :因为线段AF 的中点为111,22x y M +⎛⎫⎪⎝⎭,1112p AF x x =+=+,则M 到y 轴的距离112x d +=,以以线段AF 为直径的圆的半径为112x +,即圆心到y 轴的距离等于该圆半径,故y 轴与该圆相切,故B 正确;对于选项C :因为12121111111122FA FB x x my my +=+=+++++()()2212222212124444412448444m y y m m m y y m y y m m m ++++====+++-+++,所以111FA FB+=,故C 正确;对于选项D :因为()()11221,,1,AF x y FB x y =--=-uuu r uu r ,且3AF FB =,则123y y -=,即123y y =-,联立121234y y y y m =-⎧⎨+=⎩,解得1262y my m =⎧⎨=-⎩,代入124y y =-可得2124m -=-,解得3m =±,所以直线l的斜率为,故D 错误.故选:BC.12.已知正方体1111ABCD A B C D -的棱长为1,点E 满足()101,01BE BC BB λμλμ=+≤≤≤≤,则()A.若λμ=,则1B C AE ⊥B.若1λμ+=,则1B C 平面1A DEC.若1λμ+=,则1AE D E +D.若221λμ+=,则AE 与平面11BB C C 的所成角为定值π4【答案】ACD 【解析】【分析】对于A 选项,点E 为1BC 中点,连接1AB 和AC ,易知1B C AE ⊥;对于B 选项,点E 在线段1B C 上运动,1B ,C ,1A ,D 四点共面,平面1A DE 和平面11B CA D 为同一平面;对于C 选项,AE 扫过的平面为平面1AB C ,1D E 扫过的平面为平面11D B C ,将这两个平面独立出来展开成同一个平面即可求解;对于D 选项,点E 在以B 为圆心半径为1的14圆上运动,AE 扫过的图形为圆锥面,据此即可求解.【详解】对于A 选项,因为λμ=,所以易知点E 为1BC 中点,如图,连接1AB 和AC ,由正方形易知1AB AC =,因为点E 是1B C 的中点,所以1B C AE ⊥,故A 选项正确;对于B 选项,由题意得点E 在线段1B C 上运动,由正方体的性质可知11//B C A D ,所以1B ,C ,1A ,D 四点共面,因为点1E C B ∈,所以点E ∈平面11CDA B ,所以平面1A DE 和平面11B CA D 为同一平面,所以1B C 在平面1A DE ,故B 选项错误;对于C 选项,由题意得AE 扫过的平面为平面1AB C ,1D E 扫过的平面为平面11D B C ,所以将这两个平面独立出来展开成同一个平面,易知当点A 、E 、1D 三点共线时1AE ED +最短,所以1162260AE ED AD +≥=︒=,故C 选项正确;对于D 选项,由11BC BB ==和221λμ+=易知点E 在以B 为圆心半径为1的14圆上运动,因为AB ⊥平面11BCC B ,所以AE 扫过的图形为圆锥面,所以12AE AB AC ===,且AE 为圆锥的母线,因为圆锥的母线与底面的夹角是恒定的,所以AE 与平面11BB C C 的所成的线面角θ恒定,因为1t n 11a h r θ===,所以π4θ=,故D 选项正确.故选:ACD.【点睛】关键点点睛:本题关键在于AE 扫过的平面为平面1AB C ,1D E 扫过的平面为平面11D B C ,点E 在以B 为圆心半径为1的14圆上运动的分析.第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.已知1121n n C -+=,那么n =________;【答案】6【解析】【分析】根据组合数的性质及组合数的计算公式计算可得;【详解】解:因为1121n n C -+=,所以2121n C +=,即()1212n n +=,即2420n n +-=,解得6n =或7n =-(舍去)故答案为:614.在直三棱柱111ABC A B C -中,3,3,32AC BC AB ===,14AA =,则异面直线1AC 与1BC 所成角的余弦值为__________.【答案】1625【解析】【分析】先由题意可得1CA CB CC 、、两两垂直,以C 点为坐标原点,以1CA CB CC 、、方向分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求出直线1AC 与1BC 的方向向量,根据向量夹角余弦值即可得出结果.【详解】因为3,3,32AC BC AB ===,所以角C 为直角,又直棱柱中,侧棱与底面垂直,所以1CA CB CC 、、两两垂直,以C 点为坐标原点,以1CA CB CC 、、方向分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,()10,0,4C ,()13,0,4A ,()0,3,0B ,所以()13,0,4A C =-- ,()10,3,4BC =-,设异面直线1AC 与1BC 所成角为θ,则1111114416cos cos 25916916A C BC A C BC A C BC θ⋅-⨯====+⨯+,.故答案为1625【点睛】本题主要考查异面直线所成的角,空间向量法求异面直线所成角,是一种常用的方法,属于常考题型.15.数列{}n a 满足1111,2n na a a +=-=,则2024a =__________.【答案】12##0.5【解析】【分析】根据递推式得到数列的周期,应用周期性求对应项.【详解】由题设312411,2, (2)2,,a a a a =-===,所以{}n a 是周期为3的数列,则202436742212a a a ⨯+===.故答案为:1216.在平面直角坐标系xOy 中,已知双曲线22:14yC x -=的左、右顶点分别为P 、Q ,点D 在双曲线上且位于第一象限,若DP t DQ =且2DQP DPQ ∠=∠,则t 的值是__________.【答案】233【解析】【分析】设DPQ θ∠=,则2DQP θ∠=,由4DP DQ k k ⋅=得出cos 3θ=,再由正弦定理有||||sin 2sin DP DQ θθ=,即可得出t .【详解】如图所示,设DPQ θ∠=,则2DQP θ∠=,设11(,)D x y ,则221114y x -=,即212141y x =-,由双曲线方程可得(1,0),(1,0)P Q -,所以211121114111DP DQy y y k k x x x ⋅=⋅==+--,又2DQP DPQ ∠=∠,()tan ,tan π2DP DQ k k θθ==-,则()tan tan π24θθ⋅-=,解得tan θ=,则cos 3θ=,在DPQ V 中,由正弦定理得||||sin 2sin DP DQ θθ=,可得||sin 2232cos ||sin 3DP t DQ θθθ====.故答案为:3.四、解答题(本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)17.如图,正四面体(四个面都是正三角形)OABC 的棱长为1,M 是棱BC 的中点,点N 满足2ON NM =,点P 满足34AP AN = .(1)用向量OAOB OC ,,表示OP;(2)求||OP.【答案】(1)111444OP OA OB OC=++ (2)6||4OP =【解析】【分析】(1)根据空间向量的线性运算即可求解;(2)先计算22111444OP OA OB OC ⎛⎫=++ ⎪⎝⎭,再开方即可求解.【小问1详解】因为M 是棱BC 的中点,点N 满足2ON NM =,点P 满足34AP AN = .所以()33131324444443OP OA AP OA AN OA ON OA OA ON OA OM=+=+=+-=+=+⨯()111111422444OA OB OC OA OB OC =+⨯+=++;【小问2详解】因为正四面体(四个面都是正三角形)OABC 的棱长为1,所以1OA OB OC === ,π3AOB AOC BOC ∠=∠=∠=,所以111122OA OB OB OC OA OC ⋅=⋅=⋅=⨯⨯= ,所以22111444OP OA OB OC ⎛⎫=++ ⎪⎝⎭222111111111222161616444444OA OB OC OA OB OB OC OA OC =+++⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 11111131616161616168=+++++=,所以||4OP = .18.在平面直角坐标系xOy 中,已知半径为4的圆C 与直线1:3480l x y -+=相切,圆心C 在y 轴的负半轴上.(1)求圆C 的方程;(2)若直线2:170l kx y -+=与圆C 相交于,A B 两点,且ABC 的面积为8,求直线2l 的方程.【答案】(1)22(3)16x y ++=(2)7170x y -+=或7170x y +-=.【解析】【分析】(1)设出圆心,借助点到直线距离公式可解得圆心坐标,即可得方程;(2)结合三角形面积与点到直线距离公式及勾股定理计算即可得.【小问1详解】由已知可设圆心()0,(0)C b b <,4=,解得3b =-或7b =(舍),所以圆C 的方程为22(3)16x y ++=;【小问2详解】设圆心C 到直线2l 的距离为d ,则182ABC AB S AB d ==⨯== ,即4216640d d -+=,解得d =又d ==所以7k =或7-,所以直线2l 的方程为7170x y -+=或7170x y +-=.19.在等比数列{}n a 中,3339,22a S ==.(1)求数列{}n a 的通项公式;(2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++< .【答案】(1)32n a =或1162n n a -⎛⎫=⨯- ⎪⎝⎭;(2)证明见解析.【解析】【分析】(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得32n a =或1162n n a -⎛⎫=⨯- ⎪⎝⎭;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⨯- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭ ,其前n 项和为()1114414n -<+.【详解】(1)假设等比数列{a n }公比为q,3339,22a S == ,313·2a a q ∴==,且()3312113S a a a a q -=+=+=,解得1132q a =⎧⎪⎨=⎪⎩或1126q a ⎧=-⎪⎨⎪=⎩,32n a ∴=或1162n n a -⎛⎫=⨯- ⎪⎝⎭;(2)由题意{}n b 为递增数列,所以取1162n n a -⎛⎫=⨯-⎪⎝⎭,222222166log log log 22162n n nn b na +====⎛⎫⨯- ⎪⎝⎭,()111111·4141n n n c b b n n n n +⎛⎫∴===- ⎪++⎝⎭,()123111111111111142231414414n c c c c n n n n ⎛⎫⎛⎫∴++++=-+-+-=-=-< ⎪⎪+++⎝⎭⎝⎭ .20.如图,四棱锥S ABCD -中,ABS 是正三角形,四边形ABCD 是菱形,点E 是BS的中点.(I)求证:SD //平面ACE ;(II)若平面ABS ⊥平面ABCD ,120ABC ∠=︒,求直线AC 与平面ADS 所成角的正弦值.【答案】(I)证明见解析;(II)5.【解析】【分析】(I)连接BD 交AC 于点F,再连接EF,利用EF 是三角形DBS 的中位线,判断出DS 平行EF,再利用线面平行的判定得证;(II)取AB 的中点为O,利用已知条件证明DO、SO、BO 两两垂直,然后建立空间直角坐标系,求出平面ADC 的法向量,再利用线面角的公式求出直线AC 与平面ADS 所成角的正弦值.【详解】(I)证明:连接BD 角AC 于点F,再连接EF.因为四边形ABCD 是菱形,所以点F 是BD 的中点,又因为点E 是BS 的中点,所以EF 是三角形DBS 的中位线,所以DS 平行EF,又因为EF ⊂平面ACE,SD ⊄平面ACE 所以SD //平面ACE(II)因为四边形ABCD 是菱形,120ABC ∠=︒,所以1602ABD ABC ∠=∠= 又AB=AD,所以三角形ABD 为正三角形.取AB 的中点O,连接SO,则DO ⊥AB 因为平面ABS ⊥平面ABCD ,平面ABS平面ABCD =AB所以DO ⊥平面ABS,又因为三角形ABS 为正三角形则以O为坐标原点建立坐标系设AB=2a,则(0,,0),,0,0),(0,0,),(0,2,)A a S D C a-(0,),,,0),(0,3)AD a AS a AC a ===设平面ADS 的一个法向量为(,,)n x y z =则0000y AD n AS n y ⎧⎧+=⋅=⎪⇒⎨⋅=+=⎩ 取x=1,则1y z ==所以(1,n =r设直线AC 与平面ADS 所成角为θ则sin cos ,5AC n AC n AC nθ⋅===⋅【点睛】本题主要考查了线面平行的判定定理以及运用空间向量去解决立体几何的问题,如何建系和求法向量是解题的关键,属于中档题.21.数列{}n a 的前n 项和为n s ,11a =,对任意的*n ∈N 有0n a >,1n a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b ,15-2b =,*111,2()n n n n n N b b a +++∀∈-=,求数列{}n b 的通项公式.【答案】(1)21n a n =-;(2)232n nn b +=-.【解析】【分析】(1)利用递推关系化简,消去S n ,得到a n 与a n+1间的关系,满足等差数列定义,从而求得通项公式;(2)将(1)中通项代入递推关系中,化简得到等差数列乘等比数列的形式,利用错位相减法求和,即可得到数列通项.【详解】解:(1)()214n n a s +=①,2n+11(+1)4n a s +=②②-①得到()()11124n n n n n aa a a a +++++-=,所以()()1120n n n n a a a a +++--=因为10n n a a ++>所以12n n a a +-=所以数列{}n a 为等差数列,又因为11a =所以21n a n =-(2)因为*111,2()n n n n n N b b a +++∀∈-=所以11112122n n n n n a n b b +++++-==所以11232211()())()n n n n n b b b b b b b b b b ---=-+-++-+-+ (1322-12353522222n n n n --=++++- ③所以12212n-12353252222n n n n b ---=++++- ④.所以④-③得到1222222112222n n n n n b ---=+++-- =2111-)212322112212n n n n n --+--=--(【点睛】方法点睛:化简转化递推关系,转化为满足等差数列的形式,利用错位相减法求解等比数列与等差数列乘积形式的前n 项和.22.已知椭圆2221(1)x y a a+=>,过点(作椭圆的两条切线,且两切线垂直.(1)求a ;(2)已知点()0,1Q -,若直线l 与椭圆交于,M N ,且以MN 为直径的圆过点Q (,M N 不与Q 重合),求证直线MN 过定点,并求出定点.【答案】(1;(2)证明过程见解析,定点坐标为10,3⎛⎫ ⎪⎝⎭.【解析】【分析】(1)设切线方程,联立直线与椭圆,利用相切,得判别式为0,再利用切线垂直,即可得a 的值;(2)设直线MN 的方程,由以MN 为直径的圆过点Q ,得0QM QN ⋅=,利用一元二次方程根与系数的关系进行求解即可.【小问1详解】由题可知,切线斜率存在,则设切线y kx =,联立得222220x k x a+++=,即()22222120a k x kx a +++=,相切得:()42222Δ12810a k aa k=-+=,即2220a k -=,所以12,=-=k k a a由两切线垂直得:12221k k a-⋅==-a ∴=;【小问2详解】由(1)得,椭圆方程为2212x y +=由题可知,直线MN 的斜率存在,设:=+MN y nx t ,联立得()222214220+++-=n x ntx t 设()()1122,,,M x y N x y ,由韦达定理得:2121222422,2121--+==++nt t x x x x n n 由题意MN 为直径的圆过点Q ,1122121212(,1)(,1)10QM QN x y x y x x y y y y ⋅=+⋅+=+++∴+=①又22221212121222()()()21-=++=+++=+t n y y nx t nx t n x x nt x x t n 12121222()()()221=+++=++++=t y y nx t nx t n x x t n代入①式得:23210t t +-=13t ∴=或1-(舍去),所以MN 过定点10,3⎛⎫ ⎪⎝⎭,【点睛】关键点睛:根据一元二次方程根与系数的关系,结合圆的几何性质是解题的关键.。

2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)命题“若ab=0,则b=0”的逆否命题是.2.(5分)已知复数z满足z(1+i)=i,其中i是虚数单位,则|z|为.3.(5分)在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是.4.(5分)“x2﹣3x+2<0”是“﹣1<x<2”成立的条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).5.(5分)已知实数x,y满足条件,则z=3x+y的最大值是.6.(5分)函数f(x)=xe x的单调减区间是.7.(5分)如图,直线l经过点(0,1),且与曲线y=f(x)相切于点(a,3).若f′(a)=,则实数a的值是.8.(5分)在平面直角坐标系xOy中,若圆(x﹣a)2+(y﹣a)2=2与圆x2+(y﹣6)2=8相外切,则实数a的值为.9.(5分)如图,在三棱锥P﹣ABC中,M是侧棱PC的中点,且=x+y+z,则x+y+z的值为.10.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1的渐近线与抛物线x2=4y 的准线相交于A,B两点,则三角形OAB的面积为.11.(5分)在平面直角坐标系xOy中,若点A到原点的距离为2,到直线x+y﹣2=0的距离为1,则满足条件的点A的个数为.12.(5分)若函数f(x)=x3﹣3x2+mx在区间(0,3)内有极值,则实数m的取值范围是.13.(5分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C.若=2,则该椭圆的离心率为.14.(5分)已知函数f(x)=x|x2﹣3|.若存在实数m,m∈(0,],使得当x∈[0,m]时,f(x)的取值范围是[0,am],则实数a的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知复数z=,(m∈R,i是虚数单位).(1)若z是纯虚数,求m的值;(2)设是z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.16.(14分)如图,在正方体ABCD﹣A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.(1)求异面直线EF与DG所成角的余弦值;(2)设二面角A﹣BD﹣G的大小为θ,求|cosθ|的值.17.(14分)如图,圆锥OO1的体积为π.设它的底面半径为x,侧面积为S.(1)试写出S关于x的函数关系式;(2)当圆锥底面半径x为多少时,圆锥的侧面积最小?18.(16分)在平面直角坐标系xOy中,已知圆C经过点A(1,3),B(4,2),且圆心在直线l:x﹣y﹣1=0上.(1)求圆C的方程;(2)设P是圆D:x2+y2+8x﹣2y+16=0上任意一点,过点P作圆C的两条切线PM,PN,M,N为切点,试求四边形PMCN面积S的最小值及对应的点P坐标.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的一条准线方程为x=,离心率为.(1)求椭圆C的方程;(2)如图,设A为椭圆的上顶点,过点A作两条直线AM,AN,分别与椭圆C相交于M,N两点,且直线MN垂直于x轴.①设直线AM,AN的斜率分别是k1,k2,求k1k2的值;②过M作直线l1⊥AM,过N作直线l2⊥AN,l1与l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.20.(16分)设函数f(x)=ax2﹣1﹣lnx,其中a∈R.(1)若a=0,求过点(0,﹣1)且与曲线y=f(x)相切的直线方程;(2)若函数f(x)有两个零点x1,x2,①求a的取值范围;②求证:f′(x1)+f′(x2)<0.2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.【解答】解:根据原命题与逆否命题的关系,知:命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:若b≠0,则ab≠0.2.【解答】解:由z(1+i)=i,得z=,∴|z|=.故答案为:.3.【解答】解:抛物线y2=4x开口向右,p=2,所以抛物线的焦点坐标是(1,0).故答案为:(1,0).4.【解答】解:∵x2﹣3x+2<0⇔1<x<2,∵{x|1<x<2}⊊{x|﹣1<x<2},∴“x2﹣3x+2<0”是“﹣1<x<2”成立的充分不必要,故答案为:充分不必要.5.【解答】解:由题意,实数x,y满足条件表示一个三角形区域(包含边界),三角形的三个顶点的坐标分别为A(0,5),B(2,1),C(0,1)目标函数z=3x+y的几何意义是直线的纵截距由线性规划知识可得,在点(2,1)处取得最大值7.故答案为:76.【解答】解:函数f(x)=xe x,可得f′(x)=(1+x)e x,当f′(x)=(1+x)e x≤0,解得x≤﹣1,此时函数f(x)=xe x是单调减函数,函数的单调减区间(﹣∞,﹣1].故答案为:(﹣∞,﹣1].[或(﹣∞,﹣1)].7.【解答】解:直线l经过点(0,1),且与曲线y=f(x)相切于点(a,3).若f′(a)=,切线的斜率为,切线方程为:y﹣1=x,所以3﹣1=,解得a=3.故答案为:3.8.【解答】解:根据题意,圆(x﹣a)2+(y﹣a)2=2的圆心为(a,a),半径r1=,圆x2+(y﹣6)2=8的圆心为(0,6),半径r2=2,若圆(x﹣a)2+(y﹣a)2=2与圆x2+(y﹣6)2=8相外切,则有a2+(a﹣6)2=(+2)2,解可得:a=3;故答案为:3.9.【解答】解:∵M是侧棱PC的中点,∴=,又=,=.∴=()=﹣++,又=x+y+z,∴x=﹣1,y=z=.则x+y+z=0.故答案为:0.10.【解答】解:双曲线﹣y2=1的渐近线:x=y,抛物线x2=4y的准线y=﹣,双曲线﹣y2=1的渐近线与抛物线x2=4y的准线相交于A,B两点,所以A(3,﹣),(﹣3,﹣),则三角形OAB的面积为:=3.故答案为:3.11.【解答】解:如图,作出直线x+y﹣2=0,作出以原点为圆心,以2为半径的圆,∵原点O到直线x+y﹣2=0的距离为1,∴在直线x+y﹣2=0的右上方有一点满足到原点的距离为2,到直线x+y﹣2=0的距离为1,过原点作直线x+y﹣2=0的平行线,交圆于两点,则交点满足到原点的距离为2,到直线x+y﹣2=0的距离为1.∴到原点的距离为2,到直线x+y﹣2=0的距离为1的点A共3个.故答案为:3.12.【解答】解:∵函数f(x)=x3﹣3x2+mx.∴f′(x)=3x2﹣6x+m,若函数f(x)=x3﹣3x2+mx在区间(0,3)内有极值,则f′(x)=3x2﹣6x+m在区间(0,3)内有零点,导函数的对称轴为x=1,可得△=36﹣12m>0,解得m<3.并且f′(3)>0.即27﹣18+m>0.解得m∈(﹣9,3).故答案为:(﹣9,3).13.【解答】解:F1(﹣c,0),F2(c,0),直线AB的方程为x=﹣c,不妨设A在第二象限,把x=﹣c代入椭圆方程得A(﹣c,),过C作CD⊥x轴,垂足为D,则Rt△AF1F2∽Rt△CDF2,∴==,∴C(2c,﹣),代入椭圆方程得:+=1,即4e2+(1﹣e2)=1,解得e=.故答案为:.14.【解答】解:f(x)=x|x2﹣3|=,作出函数图象如图所示:根据题意知,m∈[0,],x∈[0,m],当m∈[0,1]时,f(x)在[0,m]上单调递增,此时f(x)的取值范围是[0,f(m)],所以f(m)=am,即m(3﹣m2)=am,得a=3﹣m2∈[[2,3);当m∈(1,2]时,此时f(x)的取值范围是[0,2],所以am=2,得a=∈[1,2),当m∈(2,]时,此时f(x)的取值范围是[0,f(m)],所以f(m)=am,即m(m2﹣3)=am,即a=m2﹣3∈(1,2],综上:实数a的取值范围是[1,3).故答案为:[1,3)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解:z==.(1)∵z是纯虚数,∴,即m=;(2)∵=(1﹣2m)﹣(1+2m)i,∴+2z=(1﹣2m)﹣(1+2m)i+2(1﹣2m)+2(1+2m)i=(3﹣6m)+(1+2m)i,由复数+2z在复平面上对应的点在第一象限,得,解得.∴m的取值范围是().16.【解答】(本题满分14分)解:如图,以{,,}为正交基底建立坐标系D﹣xyz.设正方体的边长为2,则D(0,0,0),A(2,0,0),B(2,2,0),E(1,2,0),F(2,1,2),G(1,2,2).(1)因为=(2,1,2)﹣(1,2,0)=(1,﹣1,2),=(1,2,2),…(2分)所以•=1×1+(﹣1)×2+2×2=3,||==,||=3.…(4分)从而cos<,>===,即向量与的夹角的余弦为,从而异面直线EF与DG所成角的余弦值为.…(7分)(2)=(2,2,0),=(1,2,2),设平面DBG的一个法向量为=(x,y,z).由题意,得,取x=2,可得y=﹣2,z=1.所以=(2,﹣2,1).…(11分)又平面ABD的一个法向量==(0,0,2),所以cos<,>===.因此|cosθ|=.…(14分)17.【解答】解:(1)设圆锥OO1的高为h,母线长为l.∵圆锥的体积为π,即πx2h=π,∴h=.因此l=,从而S=πxl=πx•=π,(x>0).(2)令f(x)=x4+,则f′(x)=4x3﹣,(x>0).由f′(x)=0,解得x=.当0<x<时,f′(x)<0,即函数f(x)在区间(0,)上单调递减;当x>时,f′(x)>0,即函数f(x)在区间(,+∞)上单调递增.∴当x=时,f(x)取得极小值也是最小值.答:当圆锥底面半径为时,圆锥的侧面积最小.18.【解答】解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,其圆心为(﹣,﹣).∵圆C经过点A(1,3),B(4,2),且圆心在直线l:x﹣y﹣1=0上,∴,解得.∴所求圆C的方程为x2+y2﹣4x﹣2y=0;(2)由(1)知,圆C的方程为(x﹣2)2+(y﹣1)2=5.依题意,S=2S△PMC=PM×MC=.∴当PC最小时,S最小.∵圆D:x2+y2+8x﹣2y+16=0,∴D(﹣4,1),半径为1.∵C(2,1),∴两个圆的圆心距DC=6.∵点P在圆D上,且圆D的半径为1,∴PC min=6﹣1=5.∴S min=×=10.此时直线PC:y=1,从而P(﹣3,1).19.【解答】解:(1)设椭圆C::+=1的半焦距为c.由题意,得解得从而b=1.所以椭圆C的方程为+y2=1.(2)①根据椭圆的性质,M,N两点关于x轴对称,故可设M(x0,y0),N(x0,﹣y0)(x0≠0,y0≠0),从而k1k2=•=.因为点M在椭圆C上,所以+y02=1,所以1﹣y02=,所以k1k2==.②设Q(x1,y1),依题意A(0,1).因为l1⊥AM,所以•=﹣1,即(y0﹣1)(y1﹣y0)=﹣x0(x1﹣x0);因为l2⊥AN,所以•=﹣1,即(﹣y0﹣1)(y1+y0)=﹣x0(x1﹣x0),故(y0﹣1)(y1﹣y0)﹣(﹣y0﹣1)(y1+y0)=0,化得(y1+1)y0=0.从而必有y1+1=0,即y1=﹣1.即点Q在一条定直线y=﹣1上.20.【解答】(本题满分16分)解(1)当a=0时,f(x)=﹣1﹣lnx,f′(x)=﹣.设切点为T(x0,﹣1﹣lnx0),则切线方程为:y+1+lnx0=﹣(x﹣x0).…(2分)因为切线过点(0,﹣1),所以﹣1+1+ln x0=﹣(0﹣x0),解得x0=e.所以所求切线方程为y=﹣x﹣1.…(4分)(2)①f′(x)=ax﹣=,x>0.(i)若a≤0,则f′(x)<0,所以函数f(x)在(0,+∞)上单调递减,从而函数f(x)在(0,+∞)上至多有1个零点,不合题意.…(5分)(ii)若a>0,由f′(x)=0,解得x=.当0<x<时,f′(x)<0,函数f(x)单调递减;当x>时,f′(x)>0,f(x)单调递增,所以f(x)min=f()=﹣ln﹣1=﹣﹣ln.要使函数f(x)有两个零点,首先﹣﹣ln<0,解得0<a<e.…(7分)当0<a<e时,>>.因为f()=>0,故f()•f()<0.又函数f(x)在(0,)上单调递减,且其图象在(0,)上不间断,所以函数f(x)在区间(0,)内恰有1个零点.…(9分)考察函数g(x)=x﹣1﹣lnx,则g′(x)=1﹣=.当x∈(0,1)时,g′(x)<0,函数g(x)在(0,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,函数g(x)在(1,+∞)上单调递增,所以g(x)≥g(1)=0,故f()=﹣1﹣ln≥0.因为﹣=>0,故>.因为f()•f()≤0,且f(x)在(,+∞)上单调递增,其图象在(,+∞)上不间断,所以函数f(x)在区间(,]上恰有1个零点,即在(,+∞)上恰有1个零点.综上所述,a的取值范围是(0,e).…(11分)②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得两式相减,得a(x12﹣x22)﹣ln=0,即a(x1+x2)(x1﹣x2)﹣ln=0,所以a(x1+x2)=.…(13分)f′(x1)+f′(x2)<0等价于ax1﹣+ax2﹣<0,即a(x1+x2)﹣﹣<0,即:﹣﹣<0,即2ln+﹣>0.设h(x)=2lnx+﹣x,x∈(0,1).则h′(x)=﹣﹣1=﹣<0,所以函数h(x)在(0,1)单调递减,所以h(x)>h(1)=0.因为∈(0,1),所以2ln+﹣>0,即f′(x1)+f′(x2)<0成立.…(16分)。

江苏省南京市高二上学期期末数学试题(解析版)

江苏省南京市高二上学期期末数学试题(解析版)

一、单选题1.已知,,,则△ABC 的BC 边上的高所在的直线的方程为( ) ()1,1A -()3,1B ()1,3C A . B . C . D .20x y ++=0x y +=20x y -+=0x y -=【答案】C【分析】根据垂直关系求出高线的斜率,利用点斜式方程求出. 【详解】边BC 所在直线的斜率, 13131BC k -==--∴BC 边上的高线斜率.1k =又∵BC 边上的高线经过点A (﹣1,1),∴BC 边上的高线方程为,即. 11y x -=+20x y -+=故选:C .2.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是( ) P 221x y +=()3,0Q PQ M A . B . ()2231x y ++=()2231x y -+=C . D .()222341x y -+=()222341x y ++=【答案】C【分析】设出的坐标,根据中点坐标关系用的坐标表示出的坐标,结合在圆上得到,M P M P P M 的坐标所满足的关系式,即为的轨迹方程.M 【详解】设,因为的中点为,()()00,,,M x y P x y PQ M 所以,所以,003202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩00232x x y y =-⎧⎨=⎩又因为在圆上,所以, P 221x y +=()222341x y -+=所以的轨迹方程即为, M ()222341x y -+=故选:C.3.设椭圆的左、右焦点分别为,,为直线上一点,()2222:10x y C a b a b+=>>1F 2F P 32x a =21F PF A 是底角为的等腰三角形,则椭圆的离心率为( ) 30︒C AB .CD .1234【答案】D【分析】由是底角为的等腰三角形,把用表示出来后可求得离心率.21F PF A 30︒212PF F F =,a c【详解】解:由题意可得,,如图,,则,212PF F F =2(,0)F c 121230PF F F PF ∠=∠=︒260PF E ∠=︒,230F PE ∠=︒所以,223222PF EF a c ⎛⎫==- ⎪⎝⎭所以,∴,∴.3222a c c ⎛⎫-= ⎪⎝⎭34a c =34e =故选:D .4.已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线22221(0,0)y x a b a b -=>>)2的准线上,则双曲线的方程为 2x =()A .B .2212128x y -=2212821x y -=C .D .22143y x -=22134x y -=【答案】C【分析】由题意可得渐近线的斜率,即为a ,b 的关系式,再根据抛物线的准线方程解得c ,由a ,b ,c 的关系,解方程可得a ,b ,进而得到所求双曲线的方程.【详解】解:双曲线的一条渐近线过点,22221(0,0)y x a b a b-=>>)2可得渐近线的斜率为a kb ==双曲线的一个焦点在抛物线的准线上, 2x =y =可得 c =即, 227a b +=解得,2a =b =则双曲线的方程为:.22143y x -=故选C .【点睛】本题考查双曲线的方程和性质,以及抛物线的方程和性质,运用渐近线方程和斜率公式是解题的关键,属于基础题.5.在数列中,,(,),则数列的前n 项和取最大值时,n {}n a 120a =13n n a a -=-2n ≥*N n ∈{}n a 的值是( ) A .7 B .8 C .9 D .10【答案】A【分析】由已知得,根据等差数列的定义得数列是以20为首项,以-3为公差的13n n a a --=-{}n a 等差数列,由等差数列的通项公式求得,令,求解即可.n a 0n a ≥【详解】解:由得,又因为,所以数列是以20为首项,以-3为13n n a a -=-13n n a a --=-120a ={}n a 公差的等差数列,所以, ()20313+23n a n n =--=-令,解得:,又,所以数列的前n 项和取最大值时,n 的值是7, 3+230n a n =-≥233n ≤*N n ∈{}n a 故选:A.6.已知等比数列的前项和为,若,公比,,,则{}n a n n S 0n a >1q >3520a a +=2664a a =6S =( ) A . B .C .D .31364863【答案】D【分析】根据等比中项的性质可得,解方程即可得数列中的项,进而可得首项与公263564a a a a ==比,求得.6S 【详解】由等比中项的性质得, 263564a a a a ==又,3520a a +=解得或,35=4=16a a ⎧⎨⎩35=16=4a a ⎧⎨⎩当时,或(舍),35=4=16a a ⎧⎨⎩=2q 2q =-当时,(舍),35=16=4a a ⎧⎨⎩12q =±所以,,35=4=16a a ⎧⎨⎩=2q此时,1=1a 所以,()()6616111263112a q S q-⨯-===--故选:D.7.若函数在区间上单调递增,则实数的取值范围是 ()ln f x kx x =-()1,+∞k A . B .C .D .(],2-∞-(],1-∞-[)2,∞+[)1,+∞【答案】D【详解】试题分析:,∵函数在区间单调递增,∴在区()ln f x kx x =-()1,+∞间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是()1,+∞()1,+∞.故选D .[)1,+∞【解析】利用导数研究函数的单调性.8.设等差数列,的前n 项和分别是,若,则 ( ) {}n a {}n b ,n n S T 237n n S nT n =+33a b =A .1 B .C .D .511221738【答案】B【分析】根据等差数列的性质和求和公式变形求解即可 【详解】因为等差数列,的前n 项和分别是,{}n a {}n b ,n n S T 所以, 1515351515355()105225()1571122a a a a a S b b b b b T ++=====+++故选:B二、多选题9.已知双曲线的左右焦点分别为F 1,F 2,右顶点为A ,M 为OA 的中点,P2222:1(0,0)x y C a b a b-=>>为双曲线C 右支上一点且,且,则( ) 212PF F F ⊥123tan 4PF F ∠=A .C 的离心率为2B .C 的渐近线方程为0x =C .PM 平分D .12F PF ∠121344PA PF PF =+ 【答案】ACD【分析】在直角三角形中,利用列出关于a 、b 、c 的齐次式求出离心率,从而12PF F 123tan 4PF F ∠=判断A ;根据离心率求出渐近线方程,从而判断B ;根据是否相等即可判断PM 是否平1122PF F MPF F M、分,从而判断C ;根据、的比例关系,利用平面向量的线性运算即可表示用12F PF ∠2F A 12F F 表示,从而判断D.12PF PF 、PA 【详解】由可知,212PF F F ⊥22b PF a=由得,,22212123tan 224b PF b a PF F F Fc ac ∠====232ac b =即,即,即,∴,故A 正确;()2232ac c a =-22320e e --=()()2120e e +-=2e =由∴双曲线渐近线为,故B 错误;2b e a ==⇒=y =由,﹒ 22cc a a=⇒=b =则,,22233b a PF a a a ===12125PF PF a PF a -=⇒=∴; 125533PF a PF a ==∵,,∴, 152222a a a F M c a =+=+=232222a a aF M c a =-=-=12552332aF M a F M ==∴,∴根据角平分线的性质可知PM 平分,故C 正确; 112253PF F M PF F M==12F PF ∠,,22F A c a a a a =-=-=1224F F c a ==,故D 正确;()222212121211134444PA PF F A PF F F PF PF PF PF PF =+=+=+-=+故选:ACD .【点睛】本题主要考查与双曲线的焦半径和焦点三角形有关的性质,考察构造关于a 、b 、c 的齐次式求离心率的方法,考察利用角平分线的性质,考察了向量的线性运算,解题时需数形结合,合理运用图形的几何关系. 10.对于函数,下列说法正确的有( ) ln ()xf x x=A .在处取得极大值B .在处取得最大值()f x e x =1e()f x e x =1eC .有两个不同零点D .()f x ()()2(π)3f f f <<【答案】ABD【分析】对函数求导,利用函数单调性求极值和最值即可判断A 、B ,令函数等于0,求出零点即可判断C ,利用函数单调性即可判断D. 【详解】函数的导数, 21ln (),(0)xf x x x -'=>令得,()0f x '=e x =则当时,,函数为增函数, 0e x <<()0f x '>()f x 当时,,函数为减函数, e x >()0f x '<()f x 则当时,函数取得极大值,极大值为,e x =1(e)ef =故A 正确,由上述可知当时,函数的极大值即为最大值,且最大值为,e x =1(e)ef =故B 正确,由,得,得,即函数只有一个零点, ()0f x =ln 0x =1x =()f x 故C 错误, 由, ()()ln 2ln 42ln 2ln 22,42442f f ====所以,()()24f f =由时,函数为减函数,知, e x >()f x ()()()3(π)42f f f f >>=故成立, ()()2(π)3f f f <<故D 正确. 故选:ABD .11.已知,,,依次成等比数列,且公比不为1.将此数列删去一个数后得到的数列1a 2a 3a 4a q (按原来的顺序)是等差数列,则正数的值是( ) qA B C D . 【答案】AB【分析】因为公比不为1,所以不能删去,,分类讨论,结合等差数列的性质及等比的通项q 1a 4a 公式,即可得到答案.【详解】公比不为1,删去的不是与, q ∴1a 4a 当删去的是时:2a ,,成等差数列,,即,1a 3a 4a 3142a a a ∴=+231112a q a a q =+则,即,又,解得;232(1)()0q q q -+-=2(1)(1)0q q q ---=1q ≠q =q )当删去的是时:3a ,,成等差数列,,即,1a 2a 4a 2142a a a ∴=+31112a q a a q =+则,即,又,解得, 3(1)()0q q q -+-=2(1)(1)0q q q -+-=1q ≠q =q =)综上,, q =q =故选:AB .12.下列不等式正确的是( ) A .当时, B .当时, x R ∈1x e x ≥+0x >ln 1≤-x x C .当时, D .当时,x R ∈x e ex ≥x R ∈sin x x ≥【答案】ABC【解析】构建函数,利用导数研究其单调性和最值,可得出每个选项中的不等式正不正确. 【详解】对于A :设,则,令,解得,()1x f x e x =--()1x f x e =-'()0f x '=0x =当时函数单调递减,当时,函数单调递增,(,0)x ∈-∞(0,)x ∈+∞所以函数在时,函数取得最小值,故当时,,故A 正确;0x =()(0)0min f x f ==x R ∈1x e x +…对于B :设,所以, ()ln 1f x x x =-+1(1)()1'--=-=x f x x x令,解得,当时,函数单调递增,当时,函数单调递减, ()0f x '=1x =(0,1)x ∈(1,)x ∈+∞所以在时,(1),故当时,恒成立,故B 正确;1x =max ()f x f =0=0x >1lnx x -…对于C :设,所以,令,解得,当时,函数单调()x f x e ex =-()x f x e e '=-()0f x '=1x =(,1)x ∈-∞递减,当时,函数单调递增,(1,)x ∈+∞所以当时,(1),所以当时,,故C 正确;1x =min ()f x f =0=x R ∈x e ex …对于D :设函数,则,所以是定义在上单调递增的奇函数, ()sin f x x x =-()1cos 0f x x '=-…()f x R 所以时,成立,时,,故D 错误. 0x >sin x x …0x <()0f x <故选:ABC三、填空题13.观察数列1,,,4,,,7,,,…,则该数列的第11项等于_____ ln 2sin 3ln 5sin 6ln 8sin 9【答案】ln11【分析】由数列得出规律,该数列各项里面的数字是按正整数的顺序排列,且以3为循环节,依次出现常数,对数,正弦的形式,从而得解.【详解】由数列得出规律,该数列各项里面的数字是按正整数的顺序排列,且以3为循环节,依次出现常数,对数,正弦的形式,由,所以该数列的第11项为. 11332=⨯+ln11故答案为:.ln1114.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【详解】试题分析:. 1109M M x x +=⇒=【解析】抛物线的定义.【思路点睛】当题目中出现抛物线上的点到焦点的距离时,一般都会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到轴的距离. y15.已知圆过点,,,则圆的方程为___.C (1,0)(3,0)-C【答案】22230x y x ++-=【分析】设圆的一般方程,然后将点代入组成方程组解出即可. 【详解】根据题意,设圆的方程为 220x y Dx Ey F ++++=又由圆过点,,,C(1,0)(3,0)-则有,1030930D F F D F ++=⎧⎪+=⎨⎪-+=⎩解可得,,, 2D =0E =3F =-即圆的方程为:, 22230x y x ++-=故答案为:.22230x y x ++-=16.设函数是奇函数的导函数.,当时,,则()f x '()()f x x R ∈()10f -=0x >()()0xf x f x '-<使得成立的的取值范围为______. ()0f x <x 【答案】()()1,01,-⋃+∞【分析】构造函数,求解单调性与奇偶性,再结合的正负求解. ()()f xg x x=(),g x x 【详解】令,当时,, ()()f xg x x =0x >()()()20xf x f x g x x '-'=<所以函数在上为减函数,()g x ()0,∞+又因为为奇函数,的定义域为, ()f x ()g x ()(),00,∞-+∞U 所以, ()()()()f x f x g x g x x x---===--所以为偶函数,得在上为增函数, ()g x ()g x (),0∞-因为,所以, ()10f -=()()110g g =-=作出的大致图象如图所示,()g x 当时,,得, ()0,0f x x <>()0g x <()1,x ∈+∞当时,,得 ()0,0f x x <<()0g x >()1,0x ∈-所以的取值范围为 x ()()1,01,-⋃+∞故答案为:()()1,01,-⋃+∞【点睛】根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧,许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.四、解答题17.已知函数 (a ,b ∈R)的图象在点处的切线方程为y =1. ()sin f x x ax+b -=()()00f ,(1)实数a 的值;(2)求函数在区间上的最大值和最小值. ()f x [0]1,【答案】(1)1;(2)最大值为b ,最小值为. sin11b -+【分析】(1)直接利用导数的几何意义求出a ; (2)先利用导数判断单调性,求出最值.【详解】(1)因为函数,则. ()sin f x x ax+b -=()cos f x x a '-=所以.()0cos01f a a '-=-=又函数的图象在点(0,f (0))处的切线方程为y =1, ()f x 所以,解得:.()010f a '=-=1a =(2)由(1)知,,.()sin f x x x+b -=()cos 1f x x '-=在时,有,所以函数f (x )在区间上单减, ]1[0x ∈,()cos 10f x x '-≤=[0]1,所以,.()()max 0f x f b ==()()min sin111f b x f ==-+18.已知是各项均为正数的等比数列,.{}n a 1322,216a a a ==+(1)求的通项公式;{}n a (2)设,求数列的前n 项和.2log n n b a ={}n b 【答案】(1);(2).212n n a -=2n S n =【分析】(1)本题首先可以根据数列是等比数列将转化为,转化为,再然后将其带{}n a 3a 21a q 2a 1a q 入中,并根据数列是各项均为正数以及即可通过运算得出结果;32216a a =+{}n a 12a =(2)本题可以通过数列的通项公式以及对数的相关性质计算出数列的通项公式,再通过数列{}n a {}n b 的通项公式得知数列是等差数列,最后通过等差数列求和公式即可得出结果.{}n b {}n b 【详解】(1)因为数列是各项均为正数的等比数列,,,{}n a 32216a a =+12a =所以令数列的公比为,,,{}n a q 2231=2a a q q =212a a q q ==所以,解得(舍去)或,22416q q =+2q =-4所以数列是首项为、公比为的等比数列,.{}n a 24121242n n n a --=⨯=(2)因为,所以,,,2log n n b a =21n b n =-+121n b n =+12n n b b +-=所以数列是首项为、公差为的等差数列,.{}n b 1221212n n S n n +-=⨯=【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.19.已知抛物线的焦点为,点.2:4C y x =F (4,0)P (1)设是抛物线上的动点,求的最小值;Q C ||PQ(2)过点的直线与抛物线交于、两点,若的面积为的方程.P l C M N FMN A l【答案】(1)(2)40x y ±-=【分析】(1)设,由两点间距离公式得(,)Q x y PQ =果;(2)设直线,与抛物线方程联立,结合韦达定理与面积的表达式求解即可.:4l x my =+FMN A【详解】(1)设,则,(,)Q x y PQ ==当时,2x =min ||PQ =(2)设直线,,,焦点.:4l x my =+11(,)M x y 22(,)N x y (1,0)F 联立,消去得, 244x my y x=+⎧⎨=⎩x 24160y my --=,.124y y m ∴+=1216y y =-121·2FMN S PF y y ∴=-=△===,1m ∴=±直线的方程为:.∴l 40x y ±-=20.已知点在双曲线上. (2,1)A 2222:1(1)1x y C a a a -=>-(1)求双曲线的方程;(2)是否存在过点的直线l 与双曲线相交于A ,B 两点,且满足P 是线段的中点?若存11,2P ⎛⎫- ⎪⎝⎭AB 在,求出直线l 的方程;若不存在,请说明理由.【答案】(1) 2212x y -=(2)不存在,理由见解析【分析】(1)代入点的坐标,解方程可得的值,即可得双曲线方程;(2,1)A a (2)假设存在,设过的直线方程为:,,两点的坐标为,,11,2P ⎛⎫- ⎪⎝⎭1(1)2y k x =--A B 1(x 1)y 2(x ,,代入双曲线方程,再相减,运用平方差公式和中点坐标公式,及斜率公式,即可得到所求2)y 直线的斜率,进而得到直线方程,代入双曲线方程,检验判别式即可判断.【详解】(1)解:已知点在双曲线上 (2,1)A 2222:1(1)1x y C a a a -=>-所以,整理得:,解得:,则221114a a -=-42440a a -+=22a =a =所以双曲线方程为:. 2212x y -=(2)解:由题可知若直线存在则直线的斜率存在,故设直线的方程为: l l 1(1)2y k x =--且设交点1122(,),(,)A x y B x y 则 ,两式相间得: 22112222=12=12x y x y --⎧⎪⎪⎨⎪⎪⎩()()()()121212122x x x x y y y y -+=-+由于为中点,则 11,2P ⎛⎫- ⎪⎝⎭AB 12122,1x x y y +=+=-则 12121y y k x x -==--即有直线的方程:,即 l 1(1)2y x =---12y x =-+ 2221=+224+5=0=12y x x x x y -⇒--⎧⎪⎪⎨⎪⎪⎩检验判别式为,方程无实根. ()24425240∆=--⨯⨯=-<故不存在过点的直线与该双曲线相交A ,B 两点,且满足P 是线段的中点. 11,2P ⎛⎫- ⎪⎝⎭l AB 21.设为等差数列的前项和,已知,.n S {}n a n 59a =525S =(1)求数列的通项公式;{}n a (2)记,为数列的前项和,求的取值范围. 11n n n b a a +=n T {}n b n n T 【答案】(1)()*21N n a n n =-∈(2) 11,32⎡⎫⎪⎢⎣⎭【分析】(1)利用等差数列通项公式及前项公式列出方程组解出等差数列的首项和公差即可; n (2)先求出数列的通项公式,然后利用裂项相减法求和,在根据数列的单调性求出的取值{}n b n T 范围.【详解】(1)等差数列中,,,{}n a 59a = 525S =, ∴1149545252a d a d +=⎧⎪⎨⨯+=⎪⎩解得,,11a =2d =. ()*21N n a n n ∴=-∈(2), 11n n n b a a += , ()()1111212122121n b n n n n ⎛⎫∴==- ⎪-+-+⎝⎭ 111111123352121n T n n ⎛⎫∴=-+-++- ⎪-+⎝⎭ , 11(122121n n n =-=++由于为递增数列, 11212n n n=++时,取得最小值,且, 1n =131121221n n n=<++则, 1132n T ≤<故的取值范围为:. n T 11,32⎡⎫⎪⎢⎣⎭22.已知函数. ()()()21ln 1R 2f x x ax a x a =+-+∈(1)当时,求函数的极值;2a =()y f x =(2)求当时,函数在区间上的最小值;0a >()y f x =[1,e]()Q a (3)若关于的方程有两个不同实根,求实数的取值范围并证明:. x 21()2f x ax =12,x x a 212e x x ⋅>【答案】(1)极大值为,极小值为 5ln 24--2-(2) 2111e (1)e,02e 11()ln 1,12e 11,12a a a Q a a a a a a ⎧+-+<≤⎪⎪⎪=---<<⎨⎪⎪--≥⎪⎩(3),证明见解析 111ea -<<-【分析】(1)求导,根据函数的单调性和极值的概念即可得到结果;(2)由函数的定义域是,分为,和四种情况,进行分类讨()f x (0,)+∞10,01a a ><≤11e a<<1e a ≥论即可求出结果;(3)根据题意和函数的单调性,结合函数的图象可知,当时,有两个不111e a -<<-()212f x ax =同实根,满足,,两式化简得到,不妨设12,x x ()11ln 1x a x =+()22ln 1x a x =+12122211ln ln x x x x x x x x +=-12x x <,利用分析证明法和换元法即可证明结果. 【详解】(1)当时,函数.2a =2()ln 3(0)f x x x x x =+->, 1(21)(1)()23x x f x x x x--'=+-=令,得或 ()0f x '=1x =12x =当时,,在上单调递增, 1(0,)2x ∈()0f x '>()f x 1(0,)2当时,,在上单调递减, 1(,1)2x ∈()0f x '<()f x 1(,1)2当时,,在上单调递增,(1,)x ∈+∞()0f x '>()f x (1,)+∞则在处取得极大值,在处取得极小值. ()f x 12x =1x =极大值为,极小值为. 15(ln 224f =--(1)2f =-(2)函数的定义域是,()f x [1,e]. 1()(1)1()(1)(0)a x x a f x ax a a x x--'=+-+=>当时,令有两个解,或. 0a >()0f x '=1x =1x a =当,即时,,在上单调递减, 10ea <≤1e a ≥()0f x '≤()f x ∴[1,e]在上的最小值是, ()f x ∴[1,e](e)f 211e (1)e 2a a =+-+当,即时, 11ea <<11e a <<当时,,在上单调递减, 1(1,x a ∈()0f x '<()f x ∴1(1,)a当时,,在上单调递增, 1(,e)x a ∈()0f x '>()f x ∴1(,e)a在上的最小值是, ()f x ∴[1,e]11()ln 12f a a a=---当,即时,,,在上单调递增, 1a ≥101a <≤[1,e]x ∈()0f x '≥()f x ∴[1,e]在上的最小值是. ()f x ∴[1,e](1)f 112a =--综上,. 2111e (1)e,02e 11()ln 1,12e 11,12a a a Q a a a a a a ⎧+-+<≤⎪⎪⎪=---<<⎨⎪⎪--≥⎪⎩(3)关于的方程有两个不同实根,即有两个不同实根, x 21()2f x ax =12,x x ln (1)0x a x -+=12,x x 得,令,, ln 1x a x +=ln ()(0)x g x x x=>21ln ()x g x x -'=令,得,()0g x '=e x =当时,,在上单调递增, (0,e)x ∈()0g x '>()g x ∴(0,e)当时,,在上单调递减, (e,)x ∈+∞()0g x '<()g x ∴(e,)+∞时,取得最大值,且,当时, e x ∴=()gx 1e(1)g 0=1x >()0g x >得的大致图象如下: ()g x. 11(0,)ea ∴+∈即当时,有两个不同实根. 111e a -<<-21()2f x ax =12,x x 两根满足,,11ln (1)x a x =+22ln (1)x a x =+两式相加得:,两式相减得:, 1212ln()(1)()x x a x x =++2211ln (1)()x a x x x =+-上述两式相除得. 12122211ln()ln x x x x x x x x +=-不妨设,要证:,12x x <212e x x ⋅>只需证:, 12212211ln()ln 2x x x x x x x x +=>-即证, 22211212112(1)2()ln 1x x x x x x x x x x -->=++设,令, 211x t x =>2(1)4()ln ln 211t F t t t t t -=-=+-++则, 22214(1)()0(1)(1)t F t t t t t '-=-=>++函数在上单调递增,且. ∴()F t (1,)+∞(1)F 0=,即,. ()0F t ∴>2(1)ln 1t t t ->+212e x x >⋅∴。

2023-2024学年江苏省南京市中华中学高二(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市中华中学高二(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市中华中学高二(上)期末数学试卷一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.) 1.已知方程x 22−m +y 2m =1表示椭圆,则实数m 的取值范围是( )A .(0,2)B .(0,1)C .(2,+∞)D .(0,1)∪(1,2)2.已知等差数列{a n }的公差不为0,且a 1,a 3,a 9成等比数列,则a 1,a 3,a 9的公比是( ) A .1B .2.C .3D .53.已知f (x )=x 3﹣x ,记f (x )在(0,0)处的切线为l ,则过(0,0)与l 垂直的直线方程为( ) A .y =xB .y =﹣xC .y =0D .y =3x4.已知直线l :ax +by =r 2,圆C :x 2+y 2=r 2,其中r >0.若点P (a ,b )在圆C 外,则直线l 与圆C 的位置关系是( ) A .相交 B .相切C .相离D .相交或相切5.数列{a n }满足a n+1=a n 2,a 1=2,则数列{log 2a n }的前8项和为( )A .63B .127C .255D .2566.已知A ,B 为圆C :x 2+y 2=4上两动点,且CA ⊥CB ,则弦AB 的中点M 到直线x +y ﹣4=0距离的最大值为( ) A .√2B .2√2C .3√2D .47.已知函数f(x)=2sinx +sin2x ,x ∈[0,π2],则f (x )的最大值为( )A .2B .3√32C .√2+1D .√32+1 8.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,焦距为2c (c >0).若双曲线C 右支上存在点P ,使得|PF 2|=4a ,且S △PF 1F 2=12a 2,则双曲线C 的离心率e =( ) A .√5B .53C .√6+1D .√13二、多选题(本题共4小题,每小题5分,共20分。

江苏省南京市上新河中学高二数学理期末试卷含解析

江苏省南京市上新河中学高二数学理期末试卷含解析

江苏省南京市上新河中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设随机变量服从正态分布,若,则等于A.0.8 B.0.5 C.0.2 D.0.1参考答案:D2. 已知、是两个不同的平面,直线,直线,命题:与没有公共点;命题:,则是的( )A.充分不必要的条件B.必要不充分的条件C.充要条件D.既不充分也不必要的条件参考答案:B3. 四棱锥的三视图如图所示,则最长的一条侧棱的长度是()A.B.5 C.D.2参考答案:A【考点】由三视图求面积、体积.【分析】由三视图可知几何体是底面为直角梯形的四棱锥,通过三视图的数据,求出最长的侧棱长度即可.【解答】解:由题意可知几何体是底面为直角梯形,直角边长为:4,2,高为3的梯形,棱锥的高为2,高所在的棱垂直直角梯形的上直角顶点,所以侧棱最长为,底面梯形下底边锐角顶点与棱锥顶点连线,所以长度为:=.故选:A.4. 设S n是等差数列的前n项和,若() A.1 B.-1 C.2 D.参考答案:A5. 函数的导函数是()A. B.C. D.参考答案:D【分析】根据导数的公式即可得到结论.【详解】解:由,得故选:D.【点睛】本题考查了导数的基本运算,属基础题.6. 方程表示圆,则的取值范围是(A)或(B)(C)(D)或参考答案:A因为方程表示圆,则有,那么可以解得参数a的范围是或,选A7. 若函数有零点,则实数的最小值是()A. B. C.D.参考答案:B8. 在下列命题中:①若、共线,则、所在的直线平行;②若、所在的直线是异面直线,则、一定不共面;③若、、三向量两两共面,则、、三向量一定也共面;④已知三向量、、,则空间任意一个向量总可以唯一表示为.其中正确命题的个数为()A.3 B.2 C.1 D.0参考答案:D略9. 数列则是该数列的A 第6项B 第7项C 第10项D 第11项参考答案:B略10. 若点(0,0)和点分别是双曲线,a>0的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为() s5_u.c o*mA. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 复数的虚部是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市高二(上)期末数学试卷(解析版)(理科)————————————————————————————————作者:————————————————————————————————日期:高二(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.抛物线y2=4x的焦点坐标为.2.命题:“∃x∈R,x2﹣x﹣1<0”的否定是.3.双曲线﹣=1的渐近线方程是.4.“x>1”是“x2>1”的条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5.过点(1,1)且与直线2x﹣y+1=0平行的直线方程为.6.函数f(x)=xe x的最小值是.7.两直线l1:ax+2y+6=0,l2:x+(a﹣1)y+(a2﹣1)=0,若l1⊥l2,则a=.8.过点(2,1)且与点(1,3)距离最大的直线方程是.9.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.10.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是.11.底面边长为2,侧棱长为的正四棱锥的体积为.12.已知函数f(x)满足f(1)=1,对任意x∈R,f′(x)>1,则f(x)>x的解集是.13.如图,过椭圆+=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且=2,则椭圆的离心率是.14.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(14分)命题p:f(x)=x3+ax2+ax在R上的单调递增函数,命题q:方程+=1表示双曲线.(1)当a=1时,判断命题p的真假,并说明理由;(2)若命题“p且q“为真命题,求实数a的取值范围.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,AC=BC,F为A1B1的中点.求证:(1)B1C∥平面FAC1;(2)平面FAC1⊥平面ABB1A1.17.(14分)如图,在半径为30cm的半圆形铁皮上截取一块矩形材料ABCD(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).(1)设BC为xcm,AB为ycm,请写出y关于x的函数关系,并写出x的取值范围;(2)若要求圆柱体罐子的体积最大,应如何截取?18.(16分)在平面直角坐标系xOy中,△ABC顶点的坐标为A(﹣1,2),B (1,4),C(3,2).(1)求△ABC外接圆E的方程;(2)若直线l经过点(0,4),且与圆E相交所得的弦长为2,求直线l的方程;(3)在圆E上是否存在点P,满足PB2﹣2PA2=12,若存在,求出点P的坐标;若不存在,请说明理由.19.(16分)如图,在平面直角坐标系xOy中,椭圆+=1(a>b>0)的焦距为2,且过点(1,),椭圆上顶点为A,过点A作圆(x﹣1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为k AB,K AC.(1)求椭圆的标准方程;(2)求k AB•k AC的值;(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(16分)已知函数f(x)=lnx+ax,g(x)=ax2+2x,其中a为实数,e为自然对数的底数.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)的极大值为﹣2,求实数a的值;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,求实数a的取值范围.高二(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.抛物线y2=4x的焦点坐标为(1,0).【考点】抛物线的简单性质.【分析】先确定焦点位置,即在x轴正半轴,再求出P的值,可得到焦点坐标.【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)【点评】本题主要考查抛物线的焦点坐标.属基础题.2.命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0.【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0;故答案为:∀x∈R,x2﹣x﹣1≥0.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.3.双曲线﹣=1的渐近线方程是y=±x.【考点】双曲线的简单性质.【分析】把曲线的方程化为标准方程,求出a和b的值,再根据焦点在x轴上,求出渐近线方程.【解答】解:双曲线,∴a=2,b=3,焦点在x轴上,故渐近线方程为y=±x=±x,故答案为y=±.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,本题的关键是求出a、b的值,要注意双曲线在x轴还是y轴上,是基础题.4.“x>1”是“x2>1”的充分不必要条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由x2>1得x>1或x<﹣1.∴“x>1”是“x2>1”的充分不必要条件.故答案为:充分不必要.【点评】本题主要考查充分条件和必要条件的应用,利用向量相等的定义是解决本题的关键.5.过点(1,1)且与直线2x﹣y+1=0平行的直线方程为2x﹣y﹣1=0.【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可设要求直线方程为2x﹣y+c=0,代点求c值可得.【解答】解:由直线的平行关系可设要求直线方程为2x﹣y+c=0,由直线过点(1,1)可得2×1﹣1+c=0,解得c=﹣1,∴所求直线方程为2x﹣y﹣1=0,故答案为:2x﹣y﹣1=0.【点评】本题考查直线的一般式方程和平行关系,属基础题.6.函数f(x)=xe x的最小值是﹣.【考点】利用导数求闭区间上函数的最值.【分析】求导函数,确定函数的单调性,即可求得函数的最小值.【解答】解:求导函数,可得y′=e x+xe x,令y′=0可得x=﹣1令y′>0,可得x>﹣1,令y′<0,可得x<﹣1∴函数在(﹣∞,﹣1)上单调减,在(﹣1,+∞)上单调增∴x=﹣1时,函数y=xe x取得最小值,最小值是﹣,故答案为:﹣.【点评】本题考查导数知识的运用,考查函数的单调性与最值,属于基础题.7.两直线l1:ax+2y+6=0,l2:x+(a﹣1)y+(a2﹣1)=0,若l1⊥l2,则a=.【考点】直线的一般式方程与直线的垂直关系.【分析】利用直线相互垂直与斜率的关系即可得出.【解答】解:当a=0或a=1时,不满足条件,舍去.两条直线的斜率分别为:,.∴l1⊥l2,∴k1k2==﹣1,解得a=.故答案为:.【点评】本题考查了直线相互垂直的充要条件,属于基础题.8.过点(2,1)且与点(1,3)距离最大的直线方程是x﹣2y=0.【考点】确定直线位置的几何要素.【分析】过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.则k l•k AB=﹣1,即可得出.【解答】解:过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.∴k l•k AB=﹣1,∴k l=.∴直线l的方程为:y﹣1=(x﹣2),化为x﹣2y=0.故答案为:x﹣2y=0.【点评】本题考查了相互垂直的直线斜率之间的关系、点斜式,考查了推理能力与计算能力,属于中档题.9.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.【考点】旋转体(圆柱、圆锥、圆台).【分析】由圆锥的侧面展开图是一个半径为2的半圆知,圆锥的轴截面为边长为2的正三角形.【解答】解:∵圆锥的侧面展开图是一个半径为2的半圆,∴圆锥的轴截面为边长为2的正三角形,则圆锥的高h=2×sin60°=.【点评】考查了学生的空间想象力.10.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是(x ﹣1)2+(y﹣1)2 =2.【考点】直线与圆的位置关系.【分析】设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),可得圆心M还在直线y=1上,故M(1,1),求得半径AM的值,可得要求的圆的方程.【解答】解:圆C:(x+3)2+(y+3)2=18的圆心C(﹣3,﹣3).根据两圆相切于原点,设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),故圆心M还在直线y=1上,故M(1,1),半径为AM=,故要求的圆的方程为:(x﹣1)2+(y﹣1)2 =2,故答案为:(x﹣1)2+(y﹣1)2 =2.【点评】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程,垂径定理,勾股定理,两圆相切的性质,属于中档题.11.底面边长为2,侧棱长为的正四棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】作出棱锥的高,则顶点在底面的射影为底面中心,利用正方形的性质可求出底面中心到底面顶点的距离,借助勾股定理求出棱锥的高,代入体积公式计算.【解答】解:取底面中心O,过O作OE⊥AB,垂足为E,连接SO,AO,∵四棱锥S﹣ABCD为正四棱锥,∴SO⊥平面ABCD,∵AO⊂平面ABCD,∴SO⊥AO.∵四边形ABCD是边长为2的正方形,∴AE=AB=1,∠OAE=∠BAD=45°,∴OE=AE=1,∵OE2+AE2=AO2,∴AO=,∵SA=,∴SO==1.V=•S ABCD•SO=•22•1=.故答案为.【点评】本题考查了正三棱锥的结构特征和体积计算,属于基础题.12.已知函数f(x)满足f(1)=1,对任意x∈R,f′(x)>1,则f(x)>x的解集是(1,+∞).【考点】利用导数研究函数的单调性;导数的运算.【分析】题目给出的函数f(x)为抽象函数,没法代式求解不等式f(x)>x,结合题目给出了对任意x∈R,f′(x)>1这一条件,想到借助于辅助函数解决,令令g(x)=f(x)﹣x,然后分析g(x)在实数集上的单调性,又f(1)=1,可求出g(1)=0,最后用g(x)与0的关系求解不等式f(x)>x的解集.【解答】解:令g(x)=f(x)﹣x,则,g′(x)=f′(x)﹣1,∵f′(x)>1,∴g′(x)>0,所以函数g(x)在(﹣∞,+∞)上为增函数,又g(1)=f(1)﹣1=0,则由g(x)>0,得g(x)>g(1),即x>1,∴f(x)﹣x>0的解集为(1,+∞),也就是f(x)>x的解集为(1,+∞)故答案为:(1,+∞).【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,解答此题的关键是引入辅助函数g(x).13.如图,过椭圆+=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且=2,则椭圆的离心率是.【考点】椭圆的简单性质.【分析】利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.【解答】解:∵△AOP是等腰三角形,A(﹣a,0)∴P(0,a).设Q(x0,y0),∵=2,∴(x0,y0﹣a)=2(﹣a﹣x0,﹣y0).∴,解得.代入椭圆方程得+=1,化为=.∴e===.故答案:【点评】熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.14.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是∅.【考点】函数零点的判定定理.【分析】画出函数图象,令f(f(x)﹣2a)=0⇒f(x)﹣2a=﹣2或f(x)﹣2a=1,⇒f(x)=2a﹣2或f(x)=2a+1,由函数函数f(x)=的值域为R,可得f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,要使函数y=f(f(x)﹣2a)有两个零点,必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.【解答】解:函数y=的定义域是(0,+∞),令y′>0,解得:0<x<e,令y′<0,解得:x>e,故函数y=在(0,e)递增,在(e,+∞)递减,故x=e时,函数y=取得最大值,最大值是,函数y=x2﹣4(x≤0)是抛物线的一部分.∴函数f(x)=的图象如下:令y=f(f(x)﹣2a)=0⇒f(x)﹣2a=﹣2或f(x)﹣2a=1,⇒f(x)=2a﹣2或f (x)=2a+1,∵函数函数f(x)=的值域为R,∴f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,函数y=f(f(x)﹣2a)有两个零点,则必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.∵2a+1>2a﹣3,∴2a﹣2<﹣4且2a+1>⇒a∈∅,故答案为∅【点评】本题考查了利用数形结合的思想求解函数的零点问题,同时也考查了函数的单调性及分类讨论思想,属于难题.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(14分)(2016秋•淮安期末)命题p:f(x)=x3+ax2+ax在R上的单调递增函数,命题q:方程+=1表示双曲线.(1)当a=1时,判断命题p的真假,并说明理由;(2)若命题“p且q“为真命题,求实数a的取值范围.【考点】命题的真假判断与应用.【分析】(1)若命题p:f(x)=x3+ax2+ax在R上的单调递增函数为真命题,则f′(x)=3x2+2ax+a≥0恒成立,解出a的范围,可判断命题p的真假;(2)若命题“p且q“为真命题,则命题p,命题q均为真命题,进而可得实数a 的取值范围.【解答】解:(1)若命题p:f(x)=x3+ax2+ax在R上的单调递增函数为真命题,则f′(x)=3x2+2ax+a≥0恒成立,故△=4a2﹣12a≤0,解得:a∈[0,3],故当a=1时,命题p为真命题;(2)若命题q:方程+=1表示双曲线为真命题,则(a+2)(a﹣2)<0.解得:a∈(﹣2,2),若命题“p且q“为真命题,则命题p,命题q均为真命题,故a∈[0,2).【点评】本题以命题的真假判断与应用为载体,考查了复合命题,导数法研究函数的单调性,双曲线的标准方程等知识点,难度中档.16.(14分)(2016秋•淮安期末)如图,在直三棱柱ABC﹣A1B1C1中,AC=BC,F为A1B1的中点.求证:(1)B1C∥平面FAC1;(2)平面FAC1⊥平面ABB1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)如图所示取AB的中点E,连接CE,EB1,可得面B1CE∥平面FAC1,即B1C∥平面FAC1(2)只需证明C1F⊥面AA1C1B1B,即可得平面FAC1⊥平面ABB1A1.【解答】解:(1)证明:如图所示取AB的中点E,连接CE,EB1,∵F为A1B1的中点,∴C1F∥CE,AF∥B1E,且C1F∩AF=F,CE∩B1E=E,∴面B1CE∥平面FAC1,∵B1C⊂B1CE,∴B1C∥平面FAC1(2)证明:直三棱柱ABC﹣A1B1C1中,A1A⊥面A1C1B1,∵C1F⊂面A1C1B1,∴A1A ⊥C1F,∵AC=BC,F为A1B1的中点,∴A1B1⊥C1F,且AA1∩A1B1,∴C1F⊥面AA1C1B1B,C1F⊂面A1C1B1,∴平面FAC1⊥平面ABB1A1.【点评】本题考查了线面平行、面面垂直的判定,关键是空间位置关系的判定与性质的应用,属于中档题.17.(14分)(2016秋•淮安期末)如图,在半径为30cm的半圆形铁皮上截取一块矩形材料ABCD(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).(1)设BC为xcm,AB为ycm,请写出y关于x的函数关系,并写出x的取值范围;(2)若要求圆柱体罐子的体积最大,应如何截取?【考点】旋转体(圆柱、圆锥、圆台).【分析】(1)设BC=x,求出AB,写出y关于x的函数关系,并写出x的取值范围;(2)用x表示出圆柱的底面半径,得出体积V(x)关于x的函数,判断V(x)的单调性,得出V(x)的最大值.【解答】解:(1)连接OC,设BC=x,则y=2,(其中0<x<30),(2)设圆柱底面半径为r,高为x,则AB=2=2πr,解得r=,∴V=πr2h=(900x﹣x3),(其中0<x<30);∴V′=(900﹣3x2),令V′(x)=0,得x=10;因此V(x)=(900x﹣x3)在(0,10)上是增函数,在(10,30)上是减函数;∴当x=10时,V(x)取得最大值V(10)=,∴取BC=10cm时,做出的圆柱形罐子体积最大,最大值为cm3.【点评】本题考查了圆柱的结构特征,圆柱与体积计算,用函数单调性求函数最值,属于中档题.18.(16分)(2016秋•淮安期末)在平面直角坐标系xOy中,△ABC顶点的坐标为A(﹣1,2),B(1,4),C(3,2).(1)求△ABC外接圆E的方程;(2)若直线l经过点(0,4),且与圆E相交所得的弦长为2,求直线l的方程;(3)在圆E上是否存在点P,满足PB2﹣2PA2=12,若存在,求出点P的坐标;若不存在,请说明理由.【考点】直线与圆的位置关系.【分析】(1)利用待定系数法求△ABC外接圆E的方程;(2)分类讨论,利用韦达定理,结合弦长公式,求直线l的方程;(3)求出P的轨迹方程,与圆E联立,即可得出结论.【解答】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=﹣4,F=1,∴△ABC外接圆E的方程为x2+y2﹣2x﹣4y+1=0.(2)当直线l的斜率k不存在时,直线l的方程为x=0,联立,得或,弦长为2,满足题意.当直线l的斜率k存在时,设直线l的方程为y﹣4=kx,即t=kx+4,联立,得(1+k2)x﹣(2k﹣2)x﹣2=0,△=[﹣(2k﹣2)]2+8(1+k2)=12k2+8k+12>0,设直线l与圆交于E(x1,y1),F(x2,y2),则,,∵弦长为2,∴=2,解得k=1,∴直线l的方程为x﹣y+4=0.∴直线l的方程为x=0,或x﹣y+4=0.(3)设P(x,y),∵PB2﹣2PA2=12,A(﹣1,2),B(1,4),∴(x﹣1)2+(y﹣4)2﹣2(x+1)2﹣2(y﹣2)2=12,即x2+y2+6x+16y+5=0.与x2+y2﹣2x﹣4y+1=0相减可得2x+5y+1=0,与x2+y2﹣2x﹣4y+1=0联立可得29y2+14y+9=0,方程无解,∴圆E上不存在点P,满足PB2﹣2PA2=12.【点评】本题考查圆的方程,考查轨迹方程,考查直线与圆、圆与圆的位置关系,属于中档题.19.(16分)(2016秋•淮安期末)如图,在平面直角坐标系xOy中,椭圆+=1(a>b>0)的焦距为2,且过点(1,),椭圆上顶点为A,过点A作圆(x﹣1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为k AB,K AC.(1)求椭圆的标准方程;(2)求k AB•k AC的值;(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)由题意可得:2c=2,=1,又a2=b2+c2,联立解得求出椭圆的方程.(2)设切线方程为y=kx+1,则(1﹣r2)k2﹣2k+1﹣r2=0,设两切线AB,AD的斜率为k1,k2(k1≠k2),k1•k2=1,由切线方程与椭圆方程联立得:(1+4k2)x2+8kx=0,由此能求出直线BD方程,进而得到直线.(3)设B(x1,y1),C(x2,y2),k AB=k1,k AC=k2.设经过点A所作的圆的切线方程为:y=kx+1.与椭圆方程联立可得:(1+4k2)x2+8kx=0,解得x=0,x=,可得:x B,x C.y B,y C,k BC=.可得直线BC的方程,即可得出.【解答】解:(1)由题意可得:2c=2,=1,又a2=b2+c2,联立解得c=,a=2,b=1.∴椭圆的标准方程为=1.(2)A(0,1),设经过点A的圆(x﹣1)2+y2=r2(0<r<1)的切线方程为:y=kx+1.则=r,化为:(r2﹣1)k2+2k+r2﹣1=0,则k AB•k AC==1.(3)设B(x1,y1),C(x2,y2),k AB=k1,k AC=k2.设经过点A的圆(x﹣1)2+y2=r2(0<r<1)的切线方程为:y=kx+1.联立,化为:(1+4k2)x2+8kx=0,解得x=0,x=,∴x B=,x C==.y B=,y C=.∴k BC==.∴直线BC的方程为:y﹣=,令x=0,可得:y=.∴直线BC经过定点.【点评】本题考查了椭圆的标准方程及其性质、圆的切线方程、一元二次方程的根与系数的关系、点到直线的距离公式,考查了推理能力与计算能力,属于难题.20.(16分)(2016秋•淮安期末)已知函数f(x)=lnx+ax,g(x)=ax2+2x,其中a为实数,e为自然对数的底数.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)的极大值为﹣2,求实数a的值;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到函数的极大值,从而求出a的值即可;(3)即a≥,设g(x)=,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可.【解答】解:(1)a=1时,f(x)=lnx+x,f′(x)=1+,f(1)=1,f′(1)=2,故切线方程是:y﹣1=2(x﹣1),即:2x﹣y﹣1=0;(2)f(x)的定义域是(0,+∞),f′(x)=+a=,a≥0时,f(x)在(0,+∞)递增,无极值,a<0时,令f′(x)>0,解得:x<﹣,令f′(x)<0,解得:x>﹣,故f(x)在(0,﹣)递增,在(﹣,+∞)递减,故f(x)的极大值是f(﹣)=ln(﹣)﹣1,若函数y=f(x)的极大值为﹣2,则ln(﹣)﹣1=﹣2,解得:a=﹣e;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,即x∈[1,e]时,ax2﹣lnx﹣(a﹣2)x≥0恒成立.即a≥,设g(x)=,则g′(x)=,当x>1时,g′(x)>0,∴g(x)在区间(1,+∞)上递增,∴当x∈[1,e]时,g(x)≤g(e)=,∴a<0,且对任意的.x∈[1,e],f(x)≥(a﹣2)x恒成立,∴实数a的取值范围为[,0).【点评】本题考查利用导数研究函数的极值以及由函数恒成立的问题求参数的取值范围,求解本题关键是记忆好求导的公式以及极值的定义,对于函数的恒成立的问题求参数,要注意正确转化,恰当的转化可以大大降低解题难度.。

相关文档
最新文档